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Abstract

This paper describes an unsupervised algo-
rithm for placing unknown words into a taxon-
omy and evaluates its accuracy on a large and
varied sample of words. The algorithm works
by first using a large corpus to find semantic
neighbors of the unknown word, which we ac-
complish by combining latent semantic analy-
sis with part-of-speech information. We then
place the unknown word in the part of the tax-
onomy where these neighbors are most concen-
trated, using a class-labelling algorithm devel-
oped especially for this task. This method is
used to reconstruct parts of the existing Word-
Net database, obtaining results for common
nouns, proper nouns and verbs. We evaluate
the contribution made by part-of-speech tag-
ging and show that automatic filtering using the
class-labelling algorithm gives a fourfold im-
provementin accuracy.

Introduction

Firstly, given a particular taxonomic class (suchrast)

one could seek members of this class (suchmse, ba-
nang. This problem is addressed by Riloff and Shepherd
(1997), Roark and Charniak (1998) and more recently by
Widdows and Dorow (2002). Secondly, given a partic-
ular word (such aspple, one could seek suitable tax-
onomic classes for describing this object (sucHrag,
foodstuff. The work in this paper addresses the second
of these questions.

The goal of automatically placing new words into a
taxonomy has been attempted in various ways for at least
ten years (Hearst and Schiitze, 1993). The process for
placing a wordw in a taxonomyl” using a corpu€’ often
contains some version of the following stages:

e For a wordw, find words from the corpu§’ whose
occurrences are similar to those of Consider
these the ‘corpus-derived neighbolé{w) of w.

e Assuming that at least some of these neighbors are
already in the taxonom§’, mapw to the place in
the taxonomy where these neighbors are most con-
centrated.

Hearst and Schitze (1993) added 27 words to Word-

The importance of automatic methods for enriching lexNet using a version of this process, with a 63% ac-
icons, taxonomies and knowledge bases from free text tairacy at assigning new words to one of a number of

well-recognized. For rapidly changing domains such adisjoint WordNet ‘classes’ produced by a previous al-
current affairs, static knowledge bases are inadequate fgorithm. (Direct comparison with this result is prob-
responding to new developments, and the cost of buildingmatic since the number of classes used is not stated.)
and maintaining resources by hand is prohibitive. A more recent example is the top-down algorithm of
This paper describes experiments which develop autédfonseca and Manandhar (2001), which seeks the node
matic methods for taking an original taxonomy as a skelen T" which shares the most collocational properties with
ton and fleshing it out with new terms which are discovthe wordw, adding 42 concepts taken frohie Lord of
ered in free text. The method is completely automatic antthe Ringswith an accuracy of 28%.
it is completely unsupervised apart from using the origi- The algorithm as presented above leaves many degrees
nal taxonomic skeleton to suggest possible classificationd freedom and open questions. What methods should
for new terms. We evaluate how accurately our methse used to obtain the corpus-derived neighb(sv)?
ods can reconstruct the WordNet taxonomy (FellbaunThis question is addressed in Section 2. Given a col-
1998). lection of neighbors, how should we define a “place in
The problem of enriching the lexical information inthe taxonomy where these neighbors are most concen-
a taxonomy can be posed in two complementary waystated?” This question is addressed in Section 3, which



defines a robust class-labelling algorithm for mapping &on of part-of-speech information to extracting seman-

list of words into a taxonomy. In Section 4 we describdic neighbors of the wordire is shown in Table 2. As

experiments, determining the accuracy with which thesean be seen, the nodine (as in the substance/element)
methods can be used to reconstruct the WordNet taxoand the verlfire (mainly used to mean firing some sort
omy. To our knowledge, this is the first such evaluatioof weapon) are related to quite different areas of mean-
for a large sample of words. Section 5 discusses relatéay. Building a single vector for the strirfiye confuses

work and other problems to which these techniques cahis distinction — the neighbors dire treated just as a

be adapted. string include words related to both the meanin§jrefas

a noun (more frequent in the BNC) and as a verb.

2 Finding semantic neighbors: Combining Part of the goal of our experiments was to investi-
latent semantic analysis with gate the contribytion that t.his part-of—sp_eech infornmatio
part-of-speech information. made for mapping word; into taxonomlgs. As _far as we

are aware, these experiments are the first to investigate

There are many empirical techniques for recognizin@ﬁe com_bination_oflatent semantic indexing with part-of-
when words are similar in meaning, rooted in the idea th&Peech information.

“you shall know a word by the company it keeps” (Firth, - . .
1957). It is certainly the case that words which repeaS Finding class-labels: Mapping

edly occur with similar companions often have related ~ Collections of words into a taxonomy

meanings, _anq common features us_ed for (_Jletermlmr@iven a collection of words or multiword expressions
this similarity include shared collocations (Lin, 1999),WhiCh are semantically related, it is often important to
co-occurrence in lists of quects (Widdows and DOrow o what these words have in’common. All adults with
200.2) and latent semantic f:\nalyss (Landauer and Dlﬁ’ormal language competence and world knowledge are
mais, 1997; Hearst and Schgtze, 1993?)' _ . adept at this task — we know thplant, animalandfun-

The method used to obtain semantic neighbors in 0 sare |l living things, and thatlant, factoryandworks
experiments was a version of latent semantic analysigeg g kinds of buildings. This ability to classify objects
descended from that used by Hearst and Schutze (1993, 1 work out which of the possible classifications of a
§4). First, 1000 frequent words were chosen as COlen object is appropriate in a particular context, is es-
umn labels (after removing stopwords (Baeza-Yates aridvia| for understanding and reasoning about linguistic
Ribiero-Neto, 1999, p. 167)). Other words were assignegie aning. We will refer to this process eass-labelling
co-ordinates determined by the number of times they oC- 1he approach demonstrated here uses a hand-built tax-
cured within the same context-window (15 words) as ongnomy to assign class-labels to a collection of similar
of the 1000 column-label words in a large corpus. Thiggns. As with much work of this nature, the taxonomy
gave a matrix where every word is represented by a rowse js wordNet (version 1.6), a freely-available broad-
vector determined by its co-occurence with frequently OCsoverage lexical database for English (Fellbaum, 1998).
curing, meaningful words. Since this matrix was veryy algorithm finds the hypernyms which subsume as
sparse, singular value decomposition (known in this COMhany as possible of the original nouns, as closely as pos-
text aslatent semantic analysi@ andauer and Dumais, gjpjel The concept is said to be aypernymof w if
1997)) was used to reduce the number of dimensions is 4 kind ofu. For this reason this sort of a taxonomy
from 1000 to 100. This reduced vector space is called sometimes referred to as as.a hierarchy’. For ex-

WordSpace (Hearst and Schiitze, 19%,. Similar_ity _ample, the possible hypernyms given for the woatkin
between words was then computed using the cosine sify,rqNet 1.6 are

ilarity measure (Baeza-Yates and Ribiero-Neto, 1999, p.

28). Such techniques for measuring similarity between oak = wood = plant material=- material,
words have been shown to capture semantic properties: stuff = substance, mattes object, physical
for example, they have been used successfully for recog- object=- entity, something

nizing synonymy (Landauer and Dumais, 1997) and f tAnother method which could be used for class-
finding correct translations of individual terms (WiddowsIabelling is given by the conceptual density algorithm of
etal., 2002). Agirre and Rigau (1996), which those authors applied to word

The corpus used for these experiments was the Britigense disambiguation. A different but related idea is prtese
National Corpus, which is tagged for parts-of-speectpy Li and Abe (1998), who use a principle from information
This enabled us to build syntactic distinctions intgn€ory to model selectional preferences for verbs usingrif

. . . . ent classes from a taxonomy. Their algorithm and goals are

WordSpace — instead of just giving a vector for the StriNGifterent from ours: we are looking for a single class-latel
testwe were able to build separate vectors for the noungemantically related words, whereas for modelling sedeeti

verbs and adjectivetest An example of the contribu- preferences several classes may be appropriate.



fire (string only) fire_nnl fire_wvi

fire 1.000000 || fire_nnl 1.000000](| fire_vvi 1.000000
flames 0.709939|| flamesnn2 0.700575|| gunsnn2 0.663820
smoke 0.680601|| smokennl 0.696028|| firing_vvg 0.537778
blaze 0.668504|| brigadennl 0.589625|| cannonnnO 0.523442
firemen 0.627065(| firesnn2 0.584643|| gunnnl 0.484106
fires 0.617494|| firemennn2 0.567170|| fired.vvd 0.478572

explosion 0.572138|| explosionnnl  0.551594|| detectorsnn2 0.477025
burning 0.559897(| destroyedvwvn  0.547631|| artillery.nnl 0.469173

destroyed 0.558699| burningajo 0.533586 || attackvvb 0.468767
brigade 0.532248|| blazennl 0.529126 || firing-nn1 0.459000
arson 0.528909|| arsonnnl 0.522844 || volley_-nn1 0.458717
accidental  0.519310/| alarmsnn2 0.512332|| trainedvvn 0.447797
chimney 0.489577|| destroyedvwvd  0.512130|| enemynnl 0.445523
blast 0.488617|| burningvvg 0.502052 || alertajo 0.443610
guns 0.487226(| burntvvn 0.500864 || shootvvi 0.443308
damaged 0.484897| blastnnl 0.498635|| defendermn2  0.438886

Table 1: Semantic neighbors fife with different parts-of-speech. The scores are cosindasiitiés

oak, oak tree=- tree=- woody plant, ligneous Hirst, 2001). The easiest method for assigning a distance
plant=- vascular plant, tracheophyte plant, between words and their hypernyms is to count the num-
flora, plant life=- life form, organism, being, ber of intervening levels in the taxonomy. This assumes
living thing = entity, something that the distance in specificity between ontological levels

. is constant, which is of course not the case, a problem
Let S be a set of nouns or verbs. If the warde S is addressed by Resnik (1999).

recognized by WordNet, the WordNet taxonomy assigns ™ _. . o . .
9 y y 9 Given an appropriate affinity score, itis a simple matter

to w an ordered set of hypernynis(w). . . .
Consider the union to define the besgtlass-labefor a collection of objects.
H= U H(w). Definition 1 Let S be a set of nouns, leH =
wes Uwes H(w) be the set of hypernyms 6fand leta(w, h)

This is the set of all hypernyms of any memberSofour be an affinity score function as _defined in equation (1).
intuition is that the most appropriate class-label for thd Nebest class-labehy,..(5) for S'is the nodeimax € H
setS is the hypernymh € H which subsumes as many with the highest total affinity score summed over all the
as possible of the members Sfas closely as possible MEMPErs 0, S0/ is the node which gives the max-
in the hierarchy. There is a trade-off here between sufyum score

suming ‘as many as possible’ of the membersoaind hax a(w, h).
subsuming them ‘as closely as possible’. This line of rea- wes
soning can be used to define a whole collection of ‘classince is determined byS, h...y is solely determined
labelling algorithms’. by the setS and the affinity score:.
For eachw € S and for eacth € H, define theaffinity In the event thak, ., is NOt unique, it is customary to
score functiony(w, k) betweenv andh to be take the most specific class-label available.
o, 1) = { ]i(gd(llsvt’(;:)), h)) :]t Z ; ggg (1) Example

A particularly simple example of this kind of algorithm
wheredist(w, h) is a measure of the distance between is used by Hearst and Schitze (1993). First they parti-
andh, f is some positive, monotonically decreasing function the WordNet taxonomy into a number of disjoint sets
tion, andg is some positive (possibly constant) function.which are used as class-labels. Thus each concept has
The functionf accords ‘positive points’ ta if 4 sub- @ single ‘hypernym’, and the ‘affinity-score’ between a
sumesw, and the condition thaf be monotonically de- wordw and a clas# is simply the set membership func-
creasing ensures that gets more positive points the tion, o(w, k) = 1if w € h and0 otherwise. A collection
closer it is tow. The functiony subtracts ‘penalty points’ of words is assigned a class-label by majority voting.
if h does not subsume. This function could depend in o
many ways onu andh — for example, there could be a 3-1 Ambiguity
smaller penalty if: is a very specific concept than/ifis  In theory, rather than a class-label for related strings, we
a very general concept. would like one for related meanings — the concepts to
The distance measuréist(w, ) could take many which the strings refer. To implement this for a set of
forms, and there are already a number of distance meaerds, we alter our affinity score functianas follows.
sures available to use with WordNet (Budanitsky andlet C'(w) be the set of concepts to which the ward



could refer. (So each € C is a possible sense aof.) e For a wordw, find the neighborsV(w) of w in
Then WordSpace. Removwve itself from this set.

alw,h) = max

{ f(dist(c,h)) if h € H(c) @) e Find the best class-labél, (N (w)) for this set
ceC(w)

—g(w, ¢ if h¢ H(c), (using Definition 1).

e Test to see if, according to WordNeét,, ., is a hy-
pernym of the original worav, and if so check how
closelyh,.x sSubsumes in the taxonomy.

This implies that the ‘preferred-sense’ofwith respect
to the possible subsuméris the sense closest fo In
practice, our class-labelling algorithm implements this

preference by computing the affinity scarée, ) for all Since our class-labelling algorithm gives a ranked list
¢ € C(w) and only using the best match. This selecpf possible hypernyms, credit was given for correct clas-
tive approach is much less noisy than simply averagingfications in the top 4 places. This algorithm was tested
the probability mass of the word over each possible sengg, singular common nouns (PoS-tagl), proper nouns
(the technique used in (Li and Abe, 1998), for example)(poS-tagnp0) and finite present-tense verbs (PoS-tag
vvb). For each of these classes, a random sample of words
was selected with corpus frequencies ranging from 1000
to 250. For the noun categories, 600 words were sam-
The precise choice of class-labelling algorithm depend@ed, and for the finite verbs, 420. For each wardwe

on the functionsf andg in the affinity score function found semantic neighbors with and without using part-of-
a of equation (2). There is some tension here betweesheech information. The same experiments were carried
being correct and being informative: ‘correct’ but unin-gt using 3, 6 and 12 neighbors: we will focus on the re-
formative class-labels (such astity, somethingcan be  gyits for 3 and 12 neighbors since those for 6 neighbors

obtained easily by preferring nodes high up in the hiefqyrned out to be reliably ‘somewhere in between’ these
archy, but since our goal in this work was to classify unyyg.

known words in an informativandaccurate fashion, the

functionsf andg had to be chosen to give an appropriatdtesults for Common Nouns

balance. After a variety of heuristic tests, the functjfon ~ The best results for reproducing WordNet classifica-

was chosen to be tions were obtained for common nouns, and are sum-

marized in Table 2, which shows the percentage of test

= wordsw which were given a class-labélwhich was a
dist(w, 2)? correct hypernym according to WordNet (so for which

where for the distance functiatist(w, h) we chose the h € H(w))' For these qudsf for’ which a correct clas-
sification was found, the ‘Height’ columns refer to the

computatlopally simple method of countlng the numbeHumber of levels in the hierarchy between the target word
of taxonomic levels between and i (inclusively to

avoid dividing by zero). For the penalty functignwe w and the class-labél. If the algorithm failed to find a

chose the CO%St;/Qt: 0 '25 P y o class-labelh which is a hypernym ofv, the result was

The net effect of choosing the reciprocal-distancegountGd as Wrong. The M|ssmg column rt_acords the
number of words in the sample which are notin WordNet

squared and a small constant penalty function was thg all

hypernyms_ close to th_e conceptin question received Mad" The following trends are apparent. For finding any
nified credit, but possible class-labels were not penalized .
L . correct class-label, the best results were obtained by
too harshly for missing out a node. This made the algo- . . . :
) : . . taking 12 neighbors and using part-of-speech informa-
rithm simple and robust to noise but with a strong prefer: . L
o . . tion, which found a correct classification f¢85/591 =
ence for detailed information-bearing class-labels. Thi ; :
i . . . .82% of the common nouns that were included in Word-
configuration of the class-labelling algorithm was used iy ; . . .
. . et. This compares favorably with previous experiments,
all the experiments described below. Co
though as stated earlier it is difficult to be sure we are
comparing like with like. Finding the hypernym which
immediately subsumes (with no intervening nodes)
To test the success of our approach to placing unknowexactly reproduces a classification given by WordNet,
words into the WordNet taxonomy on a large and signifand as such was taken to be a complete success. Tak-
icant sample, we designed the following experiment. Iling fewer neighbors and using PoS-information both im-
the algorithm is successful at placing unknown words iproved this success rate, the best accuracy obtained be-
the correchewplace in a taxonomy, we would expect iting 86/591 = 15%. However, this configuration actually
to place already known words in theiurrent position.  gave theworstresults at obtaining a correct classification

The experiment to test this worked as follows. overall.

3.2 Choice of scoring functions for the
class-labelling algorithm

f 1

4 Experiments and Evaluation



Height | 1 2 3 4 5 6 7 8 9 10| Wrong | Missing |

Common Nouns(sample size 600)
3 neighbors

With PoS 143 26.1 33.1 378 398 406 415 420 420 42.056.5 15
Stringsonly| 11.8 23.3 31.3 36.6 39.6 411 421 423 423 42.356.1 15
12 neighbors

With PoS 10.0 21.8 36.5 485 59.3 700 76.6 788 79.8 80.817.6 15
without PoS| 8.5 215 336 46.8 57.1 665 728 746 753 7pb.822.6 15
Proper Nouns(sample size 600)

3 neighbors

With PoS 106 13.8 155 16,5 108 18.6 18.8 18.8 19.1 19.325.0 55.6

N

Stringsonly| 9.8 143 16.1 186 195 20.1 208 21.1 215 21.6221 55.6

12 neighbors

With PoS 105 145 163 181 220 238 255 280 285 29.3150 55.6
Stringsonly| 9.5 13.8 175 208 223 246 266 30.7 325 343100 55.6
Verbs (sample size 420)

3 neighbors

With PoS 176 30.2 36.1 404 426 430 440 440 440 440526 3.3
Stringsonly| 24.7 39.7 433 454 471 480 483 488 49.0 4P.047.6 3.3
12 neighbors

With PoS 19.0 36.4 435 488 528 542 552 554 557 559407 3.3
Stringsonly| 28.0 48.3 559 60.2 633 64.2 645 650 650 65.031.7 3.3

Table 2: Percentage of words which were automatically assiglass-labels which subsume them in the WordNet
taxonomy, showing the number of taxonomic levels betweenalget word and the class-label

Height 1 2 3 4 5 6 | Wrong
Common Noung 0.799 0.905 0.785 0.858 0.671 0.6710.569
Proper Nouns | 1.625 0.688 0.350 0.581 0.683 0.4300.529
Verbs 1.062 1.248 1.095 1.103 1.143 0.7500.669

Table 3: Average affinity score of class-labels for sucagssifd unsuccessful classifications



In conclusion, taking more neighbors makes thautomatic discovery: preliminary experiments using the
chances of obtaining some correct classification for awo names above as ‘seed-words’ (Roark and Charniak,
word w greater, but taking fewer neighbors increases th£998; Widdows and Dorow, 2002) show that by taking
chances of ‘hitting the nail on the head’. The use of parta few known examples, finding neighbors and removing
of-speech information reliably increases the chances @fords which are already in WordNet, we can collect first
correctly obtaining both exact and broadly correct classhames of the same gender with at least 90% accuracy.
fications, though careful tuning is still necessary to abtai  Verbs pose special problems for knowledge bases. The

optimal results for either. usefulness of ars_A hierarchy for pinpointing informa-
tion and enabling inference is much less clear-cut than
Results for Proper Nouns and Verbs for nouns. For examplesleepingdoes entaibreathing

The results for proper nouns and verbs (also in Tablendarriving does implymoving but the aspectual prop-
2) demonstrate some interesting problems. On the wholetties, argument structure and case roles may all be dif-
the mapping is less reliable than for common nouns, dérent. The more restrictive definition efoponymyis
least when it comes to reconstructing WordNet as it cutdsed in WordNet to describe those properties of verbs
rently stands. that are inherited through the taxonomy (Fellbaum, 1998,

Proper nouns are rightly recognized as one of the caéh 3). In practice, the taxonomy of verbs in WordNet
egories where automatic methods for lexical acquisitiotends to have fewer levels and many more branches than
are most important (Hearst and Schuitze, 1988, It the noun taxonomy. This led to problems for our class-
is impossible for a single knowledge base to keep up-tdabelling algorithm — class-labels obtained for the verb
date with all possible meanings of proper names, and thigay includedexhaust, deploy, mowndbehave all of
would be undesirable without considerable filtering abilwhich are ‘correct’ hypernyms according to WordNet,
ities because proper names are often domain-specific. while possible class-labels obtained for the veppeal

Ih our experiments, the best results for proper nourigcludedkeep, defend, reassemdexamineall of which
were those obtained using 12 neighbors, where a cofere marked ‘wrong’. For our methods, the WordNet
rect classification was found f@06,/266 = 77% of the taxonomy as it stands appears to give much less reli-
proper nouns that were included in WordNet, using n@ble evaluation criteria for verbs than for common nouns.
part-of-speech information. Part-of-speech informatiol is also plausible that similarity measures based upon
still helps for mapping proper nouns into exactly the righSimple co-occurence are better for modelling similarity
place, but in general degrades performance. between nominals than between verbs, an observation

Several of the proper names tested are geographichich is compatible with psychological experiments on
and in the BNC they often refer to regions of the BritishWord-association (Fellbaum, 1998, p. 90).
Isles which are not in WordNet. For examplempshire In our experiments, the best results for verbs were
is labelled as derritorial division, which as an English clearly those obtained using 12 neighbors and no part-
county it certainly is, but in WordNebampshireis in- of-speech information, for which some correct classifi-
stead a hyponym oflomestic sheep For many of the cation was found foR73/406 = 59% of the verbs that
proper names which our evaluation labelled as ‘wronglyvere included in WordNet, and which achieved better re-
classified’, the classification was in fact correct but a difsults than those using part-of-speech information even for
ferent meaning from those given in WordNet. The chalfinding exact classifications. The shallowness of the tax-
lenge for these situations is how to recognize when copnomy for verbs means that most classifications which
pus methods give a correct meaning which is differervere successful at all were quite close to the word in
from the meaning already listed in a knowledge basdluestion, which should be taken into account when in-
Many of these meanings will be systematically relatederpreting the results in Table 2.
(such as the way a region is used to name an item or As we have seen, part-of-speech information degraded
product from that region, as with theampshireexample performance overall for proper nouns and verbs. This
above) by generative processes which are becoming wéfiay be because combining all uses of a particular word-
understood by theoretical linguists (Pustejovsky, 1995fprm into a single vector is less prone to problems of data
and linguistic theory may help our statistical algorithmssparseness, especially if these word-forms are semanti-
considerably by predicting whabrtof new meanings we cally related in spite of part-of-speech differenéedt is
might expect a known word to assume through metonymgiso plausible that discarding part-of-speech infornmatio

and systematic polysemy.

Tvpical first names of people such lia andralph al- . Thls issue is reminiscent of t.he question of whether stem-
yp beop P ming improves or harms information retrieval (Baeza-Yaied

most always have neighbors which are also first nam%biero-Neto, 1999) — the received wisdom is that stemming

(usually of the same gender), but these words are not reg best) improves recall at the expense of precision and our
resented in WordNet. This lexical category is ripe foffindings for proper nouns are consistent with this.



shouldimprove the classification of verbs for the follow- be added to the knowledge base for (at least) the domain
ing reason. Classification using corpus-derived neighbois question. Results for verbs are more difficult to inter-
is markedly better for common nouns than for verbs, andret: reasons for this might include the shallowness and
most of the verbs in our sample (57%) also occur as conreadth of the WordNet verb hierarchy, the suitability of
mon nouns in WordSpace. (In contrast, only 13% of ouour WordSpace similarity measure, and many theoretical
common nouns also occur as verbs, a reliable asymmetgsues which should be taken into account for a successful
for English.) Most of these noun senses are semanticalpproach to the classification of verbs.

related in some way to the corresponding verbs. Since Filtering using the affinity score from the class-
using neighboring words for classification is demonstraabelling algorithm can be used to dramatically increase
bly more reliable for nouns than for verbs, putting thes@erformance.

parts-of-speech together in a single vector in WordSpace ) )

might be expected tonproveperformance for verbs but 5 Related work and future directions

degrade it for nouns. The experiments in this paper describe one combination

Filtering using Affinity scores of algorithms for lexical acquisition: both the finding
One of the benefits of the class-labelling algoritthf semantic neighbors and the process of class-labelling

(Definition 1) presented in this paper is that it returns notPuld take many alternative forms, and an exhaustive
just class-labels but an affinity score measuring how weffvaluation of such combinations is far beyond the scope
each class-label describes the class of objects in questiGh this paper. Various mathematical models and distance

The affinity score turns out to be signficantly correlatedn€asures are available for modelling semantic proxim-
with the likelihood of obtaining a successful classificaly: @1d more detailed linguistic preprocessing (such as

tion. This can be seen very clearly in Table 3, whictffhunking, parsing and morphology) could be used in a

shows the average affinity score for correct class-labels Yrety of ways. As aninitial step, the way the granularity
different heights above the target word, and for incorre@f Part-of-speech classification affects our results fer le
class-labels — as a rule, correct and informative clasécal acquistion will be investigated. The class-labelling
labels have significantly higher affinity scores than incor!gorithm could be adapted to use more sensitive mea-
rect class-labels. It follows that the affinity score can b&ures of distance (Budanitsky and Hirst, 2001), and corre-
used as an indicator of success, and so filtering out clad&lions between taxonomic distance and WordSpace sim-

labels with poor scores can be used as a technique fi@ity used as afilter. o
improving accuracy. The coverage and accuracy of the initial taxonomy we

To test this, we repeated our experiments using 3'€ hoping to enrich has a great influence on success rates
neighbors and this time only using class-labels with afPr 0ur methods as they stand. Since these are precisely
affinity score greater thaf.75, the rest being marked the aspects of the taxonomy we are hoping to improve,
‘unknown’. Without filtering, there were 1143 successthis raises the question of whether we can use automati-

ful and 1380 unsuccessful outcomes: with filtering, thesg2lly obtained hypernyms as well as the hand-built ones
numbers changed to 660 and 184 respectively. FilterintQ help classification. This could be tested by randorr_wly
discarded some 87% of the incorrect labels and kept mof8Moving many nodes from WordNet before we begin,

than half of the correct ones, which amounts to at least®3'd measuring the effect of using automatically derived
fourfold improvementin accuracy. The improvementwag!assifications for some of these words (possibly those
particularly dramatic for proper nouns, where filtering re With high confidence scores) to help with the subsequent

moved 270 out of 283 incorrect results and still retaine§lassification of others. _
half of the correct ones. The use of semantic neighbors and class-labelling for

. computing with meaning go far beyond the experimen-

Conclusions tal set up for lexical acquisition described in this pa-

For common nouns, where WordNet is most reliableper — for example, Resnik (1999) used the idea of a
our mapping algorithm performs comparatively well, acmost informative subsuming node (which can be re-
curately classifying several words and finding some cogarded as a kind of class-label) for disambiguation, as
rect information about most others. The optimum numelid Agirre and Rigau (1996) with the conceptual density
ber of neighbors is smaller if we want to try for an exactlgorithm. Taking a whole domain as a ‘context’, this
classification and larger if we want information that isapproach to disambiguation can be used for lexical tun-
broadly reliable. Part-of-speech information noticeablyng. For example, using the Ohsumed corpus of medical
improves the process of both broad and narrow classifabstracts, the top few neighborsaferationareamputa-
cation. For proper names, many classifications are caiion, disease, therapgndresection Our algorithm gives
rect, and many which are absent or incorrect accordingedical care, medical aidndtherapyas possible class-
to WordNet are in fact correct meanings which shouldabels for this set, which successfully picks out the sense



of operationwhich is most important for the medical do- Ricardo Baeza-Yates and Berthier Ribiero-Neto. 1999.
main. Modern Information Retrieval Addison Wesley /

The level of detail which is appropriate for defining ACM press.

and grouping terms depend_s Very .much on the domain N Budanitsky and G. Hirst. 2001. Semantic distance in
question. For example, the immediate hypernyms offered yyordnet: An experimental, application-oriented evalu-
by WordNet for the wordrout include ation of five measures. IWorkshop on WordNet and

i . _ Other Lexical ResourceRittsburgh, PA. NAACL.
fish, foodstuff, salmonid, malacopterygian,

teleost fish, food fish, saltwater fish Christiane Fellbaum, editor. 1998MNordNet: An elec-
tronic lexical databaseMIT press, Cambridge MA.
Many of these classifications are inappropriately fine-

; ; : . Firth. 1957. A synopsis of linguistic theory 1930-
grained for many circumstances. To find a degree of A Al i ; ; )
abstraction which is suitable for the wasput is used 1955. Studies in Linguistic Analysis, Philological So-

. : . . .. ciety, Oxford reprinted in Palmer, F. (ed. 1968) Se-
in the BN.C’ we fOUT‘d its semantic neighbors .Wh'Ch N lected Papers of J. R. Firth, Longman, Harlow.
cludeherring swordfish turbot salmon tun@he highest-

scoring class-labels for this set are Marti Hearst and Hinrich Schiitze. 1993. Customizing
, a lexicon to better suit a computational task. AGL
2.911 saltwater fish SIGLEX WorkshopColumbus, Ohio.
2.600 food fish
1.580 fish T. Landauer and S. Dumais. 1997. A solution to plato’s
1.400 scombroid, scombroid problem: The latent semantic analysis theory of acqui-
0.972 teleost fish sition. Psychological Reviewl 04(2):211-240.

The preferred labels are the ones most humans would ajang Liand Naoki Abe. 1998. Generalizing case frames
using a thesaurus and the mdl principl€omputa-

swer if asked what &outis. This process can be used i na Linguistics 24(2):217—244.

to select the concepts from an ontology which are ap-

propriate to a particular domain in a completely unsupeekang Lin. 1999. Automatic identification of non-
vised fashion, using only the documents from that do- compositional phrases. WCL:1999 pages 317-324.

main whose meanings we wish to describe. James Pustejovsky. 199%5he Generative LexicorMIT

Demonstration press, Cambridge, MA.

Interactive demonstrations of the class-labelling alPhilip Resnik. 1999. Semantic similarity in a taxonomy:
gorithm and WordSpace are available on the web at An information-based measure and its application to
http://infomap. stanford. edu/ cl assesand  Problems of ambiguity in natural languagkurnal of
htt p: / /i nf omap. st anf or d. edu/ webdeno. An artificial intelligence research11:93-130.

interface to WordSpace incorporating the part-of-speeqhyjen, Riloff and Jessica Shepherd. 1997. A corpus-based
information is currently under consideration. approach for building semantic lexicons. In Claire
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