
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 271–280,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Making Neural QA as Simple as Possible but not Simpler

Dirk Weissenborn Georg Wiese
Language Technology Lab, DFKI

Alt-Moabit 91c
Berlin, Germany

{dirk.weissenborn, georg.wiese, laura.seiffe}@dfki.de

Laura Seiffe

Abstract

Recent development of large-scale ques-
tion answering (QA) datasets triggered a
substantial amount of research into end-to-
end neural architectures for QA. Increas-
ingly complex systems have been con-
ceived without comparison to simpler neu-
ral baseline systems that would justify
their complexity. In this work, we propose
a simple heuristic that guides the develop-
ment of neural baseline systems for the ex-
tractive QA task. We find that there are
two ingredients necessary for building a
high-performing neural QA system: first,
the awareness of question words while
processing the context and second, a com-
position function that goes beyond simple
bag-of-words modeling, such as recurrent
neural networks. Our results show that
FastQA, a system that meets these two re-
quirements, can achieve very competitive
performance compared with existing mod-
els. We argue that this surprising finding
puts results of previous systems and the
complexity of recent QA datasets into per-
spective.

1 Introduction

Question answering is an important end-user task
at the intersection of natural language processing
(NLP) and information retrieval (IR). QA systems
can bridge the gap between IR-based search en-
gines and sophisticated intelligent assistants that
enable a more directed information retrieval pro-
cess. Such systems aim at finding precisely the
piece of information sought by the user instead of
documents or snippets containing the answer. A
special form of QA, namely extractive QA, deals
with the extraction of a direct answer to a question

from a given textual context.
The creation of large-scale, extractive QA

datasets (Rajpurkar et al., 2016; Trischler et al.,
2017; Nguyen et al., 2016) sparked research in-
terest into the development of end-to-end neural
QA systems. A typical neural architecture consists
of an embedding-, encoding-, interaction- and an-
swer layer (Wang and Jiang, 2017; Yu et al., 2017;
Xiong et al., 2017; Seo et al., 2017; Yang et al.,
2017; Wang et al., 2017). Most such systems de-
scribe several innovations for the different layers
of the architecture with a special focus on devel-
oping powerful interaction layer that aims at mod-
eling word-by-word interaction between question
and context.

Although a variety of extractive QA systems
have been proposed, there is no competitive neu-
ral baseline. Most systems were built in what we
call a top-down process that proposes a complex
architecture and validates design decisions by an
ablation study. Most ablation studies, however, re-
move only a single part of an overall complex ar-
chitecture and therefore lack comparison to a rea-
sonable neural baseline. This gap raises the ques-
tion whether the complexity of current systems is
justified solely by their empirical results.

Another important observation is the fact that
seemingly complex questions might be answer-
able by simple heuristics. Let’s consider the fol-
lowing example:

When did building activity occur on St. Kazimierz
Church?

Building activity occurred in numerous noble palaces
and churches [...]. One of the best examples [..] are
Krasinski Palace (1677-1683), Wilanow Palace
(1677-1696) and St. Kazimierz Church (1688-1692)

Although it seems that evidence synthesis of mul-
tiple sentences is necessary to fully understand the

271



relation between the answer and the question, an-
swering this question is easily possible by apply-
ing a simple context/type matching heuristic. The
heuristic aims at selecting answer spans that a)
match the expected answer type (a time as indi-
cated by “When”) and b) are close to important
question words (“St. Kazimierz Church”). The
actual answer “1688-1692” would easily be ex-
tracted by such a heuristic.

In this work, we propose to use the aforemen-
tioned context/type matching heuristic as a guide-
line to derive simple neural baseline architectures
for the extractive QA task. In particular, we de-
velop a simple neural, bag-of-words (BoW)- and a
recurrent neural network (RNN) baseline, namely
FastQA. Crucially, both models do not make use
of a complex interaction layer but model interac-
tion between question and context only through
computable features on the word level. FastQA’s
strong performance questions the necessity of ad-
ditional complexity, especially in the interaction
layer, which is exhibited by recently developed
models. We address this question by evaluating
the impact of extending FastQA with an addi-
tional interaction layer (FastQAExt) and find that
it doesn’t lead to systematic improvements. Fi-
nally, our contributions are the following: i) def-
inition and evaluation of a BoW- and RNN-based
neural QA baselines guided by a simple heuris-
tic; ii) bottom-up evaluation of our FastQA system
with increasing architectural complexity, reveal-
ing that the awareness of question words and the
application of a RNN are enough to reach state-
of-the-art results; iii) a complexity comparison be-
tween FastQA and more complex architectures as
well as an in-depth discussion of usefulness of an
interaction layer; iv) a qualitative analysis indi-
cating that FastQA mostly follows our heuristic
which thus constitutes a strong baseline for extrac-
tive QA.

2 A Bag-of-Words Neural QA System

We begin by motivating our architectures by defin-
ing our proposed context/type matching heuristic:
a) the type of the answer span should correspond
to the expected answer type given by the ques-
tion, and b) the correct answer should further be
surrounded by a context that fits the question, or,
more precisely, it should be surrounded by many
question words. Similar heuristics were frequently
implemented explicitly in traditional QA systems,

e.g., in the answer extraction step of Moldovan
et al. (1999), however, in this work our heuristic
is merely used as a guideline for the construction
of neural QA systems. In the following, we de-
note the hidden dimensionality of the model by n,
the question tokens by Q = (q1, ..., qLQ

), and the
context tokens by X = (x1, ..., xLX

).

2.1 Embedding
The embedding layer is responsible for mapping
tokens x to their corresponding n-dimensional
representation x. Typically this is done by map-
ping each word x to its corresponding word em-
bedding xw (lookup-embedding) using an embed-
ding matrix E, s.t. xw = Ex. Another approach
is to embed each word by encoding their corre-
sponding character sequence xc = (c1, ..., cLX

)
with C, s.t. xc = C(xc) (char-embedding). In
this work, we use a convolutional neural network
for C of filter width 5 with max-pooling over time
as explored by Seo et al. (2017), to which we refer
the reader for additional details. Both approaches
are combined via concatenation, s.t. the final em-
bedding becomes x = [xw; xc] ∈ Rd.

2.2 Type Matching
For the BoW baseline, we extract the span in the
question that refers to the expected, lexical an-
swer type (LAT) by extracting either the question
word(s) (e.g., who, when, why, how, how many,
etc.) or the first noun phrase of the question after
the question words “what” or “which” (e.g., “what
year did...”).1 This leads to a correct LAT for
most questions. We encode the LAT by concate-
nating the embedding of the first- and last word
together with the average embedding of all words
within the LAT. The concatenated representations
are further transformed by a fully-connected layer
followed by a tanh non-linearity into z̃ ∈ Rn.
Note that we refer to a fully-connected layer in
the following by FC, s.t. FC(u) = Wu + b,
W ∈ Rn×m, b ∈ Rn, u ∈ Rm.

We similarly encode each potential answer span
(s, e) in the context, i.e., all spans with a specified,
maximum number of words (10 in this work), by
concatenating the embedding of the first- and last
word together with the average embedding of all
words within the span. Because the surrounding
context of a potential answer span can give im-
portant clues towards the type of an answer span,

1More complex heuristics can be employed here but for
the sake of simplicity we chose a very simple approach.

272



for instance, through nominal modifiers left of the
span (e.g., “... president obama ...”) or through an
apposition right of the span (e.g., “... obama, pres-
ident of...”), we additionally concatenate the aver-
age embeddings of the 5 words to the left and to
the right of a span, respectively. The concatenated
span representation, which comprises in total five
different embeddings, is further transformed by
a fully-connected layer with a tanh non-linearity
into x̃s,e ∈ Rn.

Finally, the concatenation of the LAT represen-
tation, the span representation and their element-
wise product, i.e., [z̃; x̃s,e; z̃⊙x̃s,e], serve as input
to a feed-forward neural network with one hidden
layer which computes the type score gtype(s, e) for
each span (s, e).

2.3 Context Matching

In order to account for the number of surrounding
words of an answer span as a measure for ques-
tion to answer span match (context match), we in-
troduce two word-in-question features. They are
computed for each context word xj and explained
in the following

binary The binary word-in-question (wiqb) fea-
ture is 1 for tokens that are part of the question and
else 0. The following equation formally defines
this feature where I denotes the indicator function:

wiqb
j = I(∃i : xj = qi) (1)

weighted The wiqw
j feature for context word xj

is defined in Eq. 3, where Eq. 2 defines a ba-
sic similarity score between qi and xj based on
their word-embeddings. It is motivated on the one
hand by the intuition that question tokens which
rarely appear in the context are more likely to be
important for answering the question, and on the
other hand by the fact that question words might
occur as morphological variants, synonyms or re-
lated words in the context. The latter can be cap-
tured (softly) by using word embeddings instead
of the words themselves whereas the former is
captured by the application of the softmax oper-
ation in Eq. 3 which ensures that infrequent occur-
rences of words are weighted more heavily.

simi,j = vwiq(xj ⊙ qi) , vwiq ∈ Rn (2)

wiqw
j =

∑
i

softmax(simi,·)j (3)

A derivation that connects wiqw with the term-
frequencies (a prominent information retrieval
measure) of a word in the question and the con-
text, respectively, is provided in Appendix A.

Finally, for each answer span (s, e) we compute
the average wiqb and wiqw scores of the 5, 10 and
20 token-windows to the left and to the right of the
respective (s, e)-span. This results in a total of 2
(kinds of features)×3 (windows)×2 (left/right) =
12 scores which are weighted by trainable scalar
parameters and summed to compute the context-
matching score gctxt(s, e).

2.4 Answer Span Scoring

The final score g for each span (s, e) is the
sum of the type- and the context matching score:
g(s, e) = gtype(s, e) + gctxt(s, e). The model
is trained to minimize the softmax-cross-entropy
loss given the scores for all spans.

3 FastQA

Although our BoW baseline closely models our
intended heuristic, it has several shortcomings.
First of all, it cannot capture the compositional-
ity of language making the detection of sensible
answer spans harder. Furthermore, the semantics
of a question is dramatically reduced to a BoW
representation of its expected answer-type and the
scalar word-in-question features. Finally, answer
spans are restricted to a certain length.

To account for these shortcomings we introduce
another baseline which relies on the application of
a single bi-directional recurrent neural networks
(BiRNN) followed by a answer layer that sepa-
rates the prediction of the start and end of the an-
swer span. Lample et al. (2016) demonstrated that
BiRNNs are powerful at recognizing named en-
tities which makes them sensible choice for con-
text encoding to allow for improved type match-
ing. Context matching can similarly be achieved
with a BiRNN by informing it of the locations of
question tokens appearing in the context through
our wiq-features. It is important to recognize that
our model should implicitly learn to capture the
heuristic, but is not limited by it.

On an abstract level, our RNN-based model,
called FastQA, consists of three basic layers,
namely the embedding-, encoding- and answer
layer. Embeddings are computed as explained in
§2.1. The other two layers are described in detail
in the following. An illustration of the basic archi-

273



274



275



its own representation. For the sake of brevity
we describe technical details of this layer in Ap-
pendix B, because this extension is not the focus
of this work but merely serves as a representative
of the more complex architectures described in §4.

6 Experimental Setup

We conduct experiments on the following datasets.

SQuAD The Stanford Question Answering
Dataset (Rajpurkar et al., 2016)2 comprises
over 100k questions about paragraphs of 536
Wikipedia articles.

NewsQA The NewsQA dataset (Trischler et al.,
2017)3 contains 100k answerable questions from
a total of 120k questions. The dataset is built from
CNN news stories that were originally collected
by Hermann et al. (2015).

Performance on the SQuAD and NewsQA
datasets is measured in terms of exact match (ac-
curacy) and a mean, per answer token-based F1
measure which was originally proposed by Ra-
jpurkar et al. (2016) to also account for partial
matches.

6.1 Implementation Details
BoW Model The BoW model is trained on
spans up to length 10 to keep the computation
tractable. This leads to an upper bound of about
95% accuracy on SQuAD and 87% on NewsQA.
As pre-processing steps we lowercase all inputs
and tokenize it using spacy4. The binary word in
question feature is computed on lemmas provided
by spacy and restricted to alphanumeric words that
are not stopwords. Throughout all experiments we
use a hidden dimensionality of n = 150, dropout
at the input embeddings with the same mask for all
words (Gal and Ghahramani, 2015) and a rate of
0.2 and 300-dimensional fixed word-embeddings
from Glove (Pennington et al., 2014). We em-
ployed ADAM (Kingma and Ba, 2015) for op-
timization with an initial learning-rate of 10−3

which was halved whenever the F1 measure on
the development set dropped between epochs. We
used mini-batches of size 32.

FastQA The pre-processing of FastQA is
slightly simpler than that of the BoW model. We

2https://rajpurkar.github.io/
SQuAD-explorer/

3https://datasets.maluuba.com/NewsQA/
4http://spacy.io

tokenize the input on whitespaces (exclusive) and
non-alphanumeric characters (inclusive). The
binary word in question feature is computed on
the words as they appear in context. Throughout
all experiments we use a hidden dimensionality
of n = 300, variational dropout at the input em-
beddings with the same mask for all words (Gal
and Ghahramani, 2015) and a rate of 0.5 and 300-
dimensional fixed word-embeddings from Glove
(Pennington et al., 2014). We employed ADAM
(Kingma and Ba, 2015) for optimization with an
initial learning-rate of 10−3 which was halved
whenever the F1 measure on the development
set dropped between checkpoints. Checkpoints
occurred after every 1000 mini-batches each
containing 64 examples.

Cutting Context Length Because NewsQA
contains examples with very large contexts (up to
more than 1500 tokens) we cut contexts larger than
400 tokens in order to efficiently train our models.
We ensure that at least one, but at best all answers
are still present in the remaining 400 tokens. Note
that this restriction is only employed during train-
ing.

7 Results

7.1 Model Component Analysis

Model Dev
F1 Exact

Logistic Regression1 51.0 40.0

Neural BoW Baseline 56.2 43.8

BiLSTM 58.2 48.7
BiLSTM + wiqb 71.8 62.3
BiLSTM + wiqw 73.8 64.3
BiLSTM + wiqb+w (FastQA∗) 74.9 65.5

FastQA∗ + intrafusion 76.2 67.2
FastQA∗ + intra + inter (FastQAExt∗) 77.5 68.4

FastQA∗ + char-emb. (FastQA) 76.3 67.6
FastQAExt∗ + char-emb. (FastQAExt) 78.3 69.9

FastQA w/ beam-size 5 76.3 67.8
FastQAExt w/ beam-size 5 78.5 70.3

Table 1: SQuAD results on development set for
increasingly complex architectures. 1Rajpurkar
et al. (2016)

Table 1 shows the individual contributions of
each model component that was incrementally
added to a plain BiLSTM model without features,
character embeddings and beam-search. We see
that the most crucial performance boost stems

276



from the introduction of either one of our features
(≈ 15% F1). However, all other extensions also
achieve notable improvements typically between
1 and 2% F1. Beam-search slightly improves re-
sults which shows that the most probable start is
not necessarily the start of the best answer span.

In general, these results are interesting in many
ways. For instance, it is surprising that a simple
binary feature like wiqb can have such a dramatic
effect on the overall performance. We believe that
the reason for this is the fact that an encoder with-
out any knowledge of the actual question has to
account for every possible question that might be
asked, i.e., it has to keep track of the entire con-
text around each token in its recurrent state. An
informed encoder, on the other hand, can selec-
tively keep track of question related information.
It can further abstract over concrete entities to their
respective types because it is rarely the case that
many entities of the same type occur in the ques-
tion. For example, if a person is mentioned in the
question the context encoder only needs to remem-
ber that the “question-person” was mentioned but
not the concrete name of the person.

Another interesting finding is the fact that ad-
ditional character based embeddings have a no-
table effect on the overall performance which was
already observed by Seo et al. (2017); Yu et al.
(2017). We see further improvements when em-
ploying representation fusion to allow for more in-
teraction. This shows that a more sophisticated in-
teraction layer can help. However, the differences
are not substantial, indicating that this extension
does not offer any systematic advantage.

7.2 Comparing to State-of-the-Art

Our neural BoW baseline achieves good results
on both datasets (Tables 3 and 1)5. For instance,
it outperforms a feature rich logistic-regression
baseline on the SQuAD development set (Table 1)
and nearly reaches the BiLSTM baseline sys-
tem (i.e., FastQA without character embeddings
and features). It shows that more than half or
more than a third of all questions in SQuAD or
NewsQA, respectively, are (partially) answerable
by a very simple neural BoW baseline. How-
ever, the gap to state-of-the-art systems is quite
large (≈ 20%F1) which indicates that employing

5We did not evaluate the BoW baseline on the SQuAD
test set because it requires submitting the model to Rajpurkar
et al. (2016) and we find that comparisons on NewsQA and
the SQuAD development set give us enough insights.

Model Test
F1 Exact

Logistic Regression1 51.0 40.4
Match-LSTM2 73.7 64.7
Dynamic Chunk Reader3 71.0 62.5
Fine-grained Gating4 73.3 62.5
Multi-Perspective Matching5 75.1 65.5
Dynamic Coattention Networks6 75.9 66.2
Bidirectional Attention Flow7 77.3 68.0
r-net8 77.9 69.5

FastQA w/ beam-size k = 5 77.1 68.4
FastQAExt k = 5 78.9 70.8

Table 2: Official SQuAD leaderboard of single-
model systems on test set from 2016/12/29, the
date of submitting our model. 1Rajpurkar et al.
(2016), 2Wang and Jiang (2017), 3Yu et al. (2017),
4Yang et al. (2017), 5Wang et al. (2017), 6Xiong
et al. (2017), 7Seo et al. (2017), 8 not published.
Note that systems are regularly uploaded and im-
proved on SQuAD.

Model Dev Test
F1 Exact F1 Exact

Match-LSTM1 48.9 35.2 48.0 33.4
BARB2 49.6 36.1 48.3 34.1

Neural BoW Baseline 37.6 25.8 36.6 24.1
FastQA k = 5 56.4 43.7 55.7 41.9
FastQAExt k = 5 56.1 43.7 56.1 42.8

Table 3: Results on the NewsQA dataset.
1Wang and Jiang (2017) was re-implemented by
2Trischler et al. (2017).

more complex composition functions than averag-
ing, such as RNNs in FastQA, are indeed neces-
sary to achieve good performance.

Results presented in Tables 2 and 3 clearly
demonstrate the strength of the FastQA system. It
is very competitive to previously established state-
of-the-art results on the two datasets and even im-
proves those for NewsQA. This is quite surpris-
ing when considering the simplicity of FastQA
putting existing systems and the complexity of
the datasets, especially SQuAD, into perspective.
Our extended version FastQAExt achieves even
slightly better results outperforming all reported
results prior to submitting our model on the very
competitive SQuAD benchmark.

In parallel to this work Chen et al. (2017) in-
troduced a very similar model to FastQA, which
relies on a few more hand-crafted features and a
3-layer encoder instead of a single layer in this

277



work. These changes result in slightly better per-
formance which is in line with the observations in
this work.

7.3 Do we need additional interaction?

In order to answer this question we compare
FastQA, a system without a complex word-by-
word interaction layer, to representative models
that have an interaction layer, namely FastQAExt
and the Dynamic Coattention Network (DCN,
Xiong et al. (2017)). We measured both time-
and space-complexity of FastQAExt and a reim-
plementation of the DCN in relation to FastQA
and found that FastQA is about twice as fast as
the other two systems and requires 2 − 4× less
memory compared to FastQAExt and DCN, re-
spectively6.

In addition, we looked for systematic advan-
tages of FastQAExt over FastQA by comparing
SQuAD examples from the development set that
were answered correctly by FastQAExt and incor-
rectly by FastQA (589 FastQAExt wins) against
FastQA wins (415). We studied the average
question- and answer length as well as the ques-
tion types for these two sets but could not find
any systematic difference. The same observation
was made when manually comparing the kind of
reasoning that is needed to answer a certain ques-
tion. This finding aligns with the marginal em-
pirical improvements, especially for NewsQA, be-
tween the two systems indicating that FastQAExt
seems to generalize slightly better but does not
offer a particular, systematic advantage. There-
fore, we argue that the additional complexity in-
troduced by the interaction layer is not necessarily
justified by the incremental performance improve-
ments presented in §7.2, especially when memory
or run-time constraints exist.

7.4 Qualitative Analysis

Besides our empirical evaluations this section pro-
vides a qualitative error inspection of predictions
for the SQuAD development dataset. We analyse
55 errors made by the FastQA system in detail and
highlight basic abilities that are missing to reach
human level performance.

We found that most errors are based on a lack
of either syntactic understanding or a fine-grained
semantic distinction between lexemes with similar

6We implemented all models in TensorFlow (Abadi et al.,
2015).

meanings. Other error types are mostly related to
annotation preferences, e.g., answer is good but
there is a better, more specific one, or ambiguities
within the question or context.

Example FastQA errors. Predicted answers are under-
lined while correct answers are presented in boldface.

Ex. 1: What religion did the Yuan discourage, to
support Buddhism?

Buddhism (especially Tibetan Buddhism) flourished,
although Taoism endured ... persecutions... from the
Yuan government

Ex. 2: Kurt Debus was appointed what position for the
Launch Operations Center?

Launch Operations Center (LOC) ... Kurt Debus,
a member of Dr. Wernher von Braun’s ... team. Debus
was named the LOC’s first Director .

Ex. 3: On what date was the record low temperature in
Fresno?

high temperature for Fresno ... set on July 8, 1905,
while the official record low ... set on January 6, 1913

A prominent type of mistake is a lack of fine-
grained understanding of certain answer types (Ex.
1). Another error is the lack of co-reference reso-
lution and context sensitive binding of abbrevia-
tions (Ex. 2). We also find that the model some-
times struggles to capture basic syntactic struc-
ture, especially with respect to nested sentences
where important separators like punctuation and
conjunctions are being ignored (Ex. 3).

A manual examination of errors reveals that
about 35 out of 55 mistakes (64%) can directly
be attributed to the plain application of our heuris-
tic. A similar analysis reveals that about 44 out of
50 (88%) analyzed positive cases are covered by
our heuristic as well. We therefore believe that our
model and, wrt. empirical results, other models as
well mostly learn a simple context/type matching
heuristic.

This finding is important because it reveals that
an extractive QA system does not have to solve the
complex reasoning types of Chen et al. (2016) that
were used to classify SQuAD instances (Rajpurkar
et al., 2016), in order to achieve current state-of-
the-art results.

8 Related Work

The creation of large scale cloze datasets such
the DailyMail/CNN dataset (Hermann et al., 2015)

278



or the Children’s Book Corpus (Hill et al., 2016)
paved the way for the construction of end-to-end
neural architectures for reading comprehension. A
thorough analysis by Chen et al. (2016), however,
revealed that the DailyMail/CNN was too easy and
still quite noisy. New datasets were constructed to
eliminate these problems including SQuAD (Ra-
jpurkar et al., 2016), NewsQA (Trischler et al.,
2017) and MsMARCO (Nguyen et al., 2016).

Previous question answering datasets such as
MCTest (Richardson et al., 2013) and TREC-QA
(Dang et al., 2007) were too small to success-
fully train end-to-end neural architectures such as
the models discussed in §4 and required differ-
ent approaches. Traditional statistical QA sys-
tems (e.g., Ferrucci (2012)) relied on linguistic
pre-processing pipelines and extensive exploita-
tion of external resources, such as knowledge
bases for feature-engineering. Other paradigms
include template matching or passage retrieval
(Andrenucci and Sneiders, 2005).

9 Conclusion

In this work, we introduced a simple, context/type
matching heuristic for extractive question answer-
ing which serves as guideline for the development
of two neural baseline system. Especially FastQA,
our RNN-based system turns out to be an efficient
neural baseline architecture for extractive question
answering. It combines two simple ingredients
necessary for building a currently competitive QA
system: a) the awareness of question words while
processing the context and b) a composition func-
tion that goes beyond simple bag-of-words mod-
eling. We argue that this important finding puts
results of previous, more complex architectures as
well as the complexity of recent QA datasets into
perspective. In the future we want to extend the
FastQA model to address linguistically motivated
error types of §7.4.

Acknowledgments

We thank Sebastian Riedel, Philippe Thomas,
Leonhard Hennig and Omer Levy for comments
on an early draft of this work as well as the
anonymous reviewers for their insightful com-
ments. This research was supported by the
German Federal Ministry of Education and Re-
search (BMBF) through the projects ALL SIDES
(01IW14002), BBDC (01IS14013E), and Soft-
ware Campus (01IS12050, sub-project GeNIE).

References
Martin Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Man, Rajat Monga, Sherry Moore, Derek Mur-
ray, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Oriol Vinyals, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. 2015. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Dis-
tributed Systems .

Andrea Andrenucci and Eriks Sneiders. 2005. Auto-
mated question answering: Review of the main ap-
proaches. In ICITA.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A Thorough Examination of the CNN /
Daily Mail Reading Comprehension Task. ACL .

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to Answer Open-
Domain Questions. ACL .

Hoa Trang Dang, Diane Kelly, and Jimmy J Lin. 2007.
Overview of the TREC 2007 Question Answering
Track. TREC .

D. A. Ferrucci. 2012. Introduction to ”This is Watson”.
IBM Journal of Research and Development .

Yarin Gal and Zoubin Ghahramani. 2015. Dropout as a
Bayesian Approximation : Representing Model Un-
certainty in Deep Learning. ICML .

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching Ma-
chines to Read and Comprehend. NIPS .

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The Goldilocks Principle: Reading
Children’s Books with Explicit Memory Represen-
tations. ICLR .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
LONG SHORT-TERM MEMORY. Neural Compu-
tation .

Diederik Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. ICLR .

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
NAACL .

Peng Li, Wei Li, Zhengyan He, Xuguang Wang,
Ying Cao, Jie Zhou, and Wei Xu. 2016. Dataset
and Neural Recurrent Sequence Labeling Model
for Open-Domain Factoid Question Answering.
arXiv:1607.06275v1 [cs.CL] .

279



Dan I. Moldovan, Sanda M. Harabagiu, Marius Pasca,
Rada Mihalcea, Richard Goodrum, Roxana Girju,
and Vasile Rus. 1999. Lasso: A tool for surfing the
answer net. In TREC.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms Marco: a Human Generated Machine
Reading Comprehension Dataset. NIPS .

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global Vectors for Word
Representation. EMNLP .

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. EMNLP .

Matthew Richardson, Christopher J C Burges, and Erin
Renshaw. 2013. MCTest: A Challenge Dataset for
the Open-Domain Machine Comprehension of Text.
EMNLP .

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hananneh Hajishirzi. 2017. Bi-Directional Atten-
tion Flow for Machine Comprehension. In ICLR.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2016. ReasoNet: Learning
to Stop Reading in Machine Comprehension.
arXiv:1609.05284 .

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A Machine Com-
prehension Dataset. arXiv:1611.09830 .

Shuohang Wang and Jing Jiang. 2017. Machine
Comprehension Using Match-LSTM and Answer
Pointer. In ICLR.

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Flo-
rian. 2017. Multi-Perspective Context Matching for
Machine Comprehension. arXiv:1612.04211 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2017. Dynamic Coattention Networks for Question
Answering. ICLR .

Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu,
William W Cohen, and Ruslan Salakhutdinov. 2017.
Words or Characters? Fine-grained Gating for Read-
ing Comprehension. ICLR .

Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang,
and Bowen Zhou. 2017. End-to-End Reading Com-
prehension with Dynamic Answer Chunk Ranking.
In ArXiv.

280


