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Orthographic similarities across languages provide a strong signal for unsupervised probabilistic
transduction (decipherment) for closely related language pairs. The existing decipherment mod-
els, however, are not well suited for exploiting these orthographic similarities. We propose a log-
linear model with latent variables that incorporates orthographic similarity features. Maximum
likelihood training is computationally expensive for the proposed log-linear model. To address
this challenge, we perform approximate inference via Markov chain Monte Carlo sampling and
contrastive divergence. Our results show that the proposed log-linear model with contrastive
divergence outperforms the existing generative decipherment models by exploiting the ortho-
graphic features. The model both scales to large vocabularies and preserves accuracy in low- and
no-resource contexts.

1. Introduction

Word-level translation models are typically learned by applying statistical word align-
ment algorithms on large-scale bilingual parallel corpora (Brown et al. 1993). Building
a parallel corpus, however, is expensive and time-consuming. As a result, parallel data
are limited or even unavailable for many language pairs. In the absence of a sufficient
amount of parallel data, the accuracy of standard word alignment algorithms drops
significantly. This is also true of supervised neural methods: Even with hundreds of
thousands of parallel training sentences, neural methods only achieve modest results
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(Zoph et al. 2016). Low- and no-resource languages generally do not have parallel cor-
pora, and even their monolingual corpora tend to be small. However, these monolingual
corpora can often be downloaded from the Internet, and are much easier to obtain or
produce than parallel corpora. Leveraging useful information from monolingual cor-
pora can be extremely helpful for learning translation models for low- and no-resource
language pairs.

Decipherment algorithms (so-called because of the assumption that one language
is a cipher for the other) aim to exploit such monolingual corpora in order to learn
translation model parameters, when parallel data are limited or unavailable (Koehn
and Knight 2000; Ravi and Knight 2011; Dou, Vaswani, and Knight 2014). The key
intuition is that similar words and n-grams tend to have similar distributional properties
across languages. For example, if a bigram appears frequently in the monolingual
source corpus, its translation is likely to appear frequently in the monolingual target
corpus, and vice versa. This is especially true when the corpora share similar topics
and context. Furthermore, for many such language pairs, we observe similar monotonic
word ordering—that is, the translation of a bigram is often the same as the concatenation
of the translations of individual unigrams (consider the shared use of postnominal
adjectives in the French maison bleu and Spanish casa azul). Although this certainly is not
always true, we assume that it is common enough to provide a useful signal. The goal
of decipherment algorithms is to leverage such statistical similarities across languages,
and effectively learn word-level translation probabilities from monolingual data.

Existing decipherment methods are predominantly based on probabilistic genera-
tive models (Koehn and Knight 2000; Ravi and Knight 2011; Dou and Knight 2012; Nuhn
and Ney 2014). These models primarily focus on the statistical similarities between the
n-gram frequencies in the source and the target language, and rely on the expectation
maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) or its faster approxi-
mations. However, there can be many other types of statistical and linguistic similari-
ties across languages beyond n-gram frequencies (similarities in spelling, word-length
distribution, syntactic structure, etc.). Unfortunately, existing generative models do not
allow incorporating such a wide range of linguistically motivated features. Previous
research has shown the effectiveness of incorporating linguistically motivated features
for many different unsupervised learning tasks, such as unsupervised part-of-speech in-
duction (Haghighi and Klein 2006; Berg-Kirkpatrick et al. 2010), word alignment (Dyer
et al. 2011; Ammar, Dyer, and Smith 2014), and grammar induction (Berg-Kirkpatrick
et al. 2010).

Many pairs of related languages share vocabulary or grammatical structure due
to borrowing or inheritance: the English aquatic and Spanish agua share the Latin root
aqua, and the English beige was borrowed from French. As a result, orthographic fea-
tures provide crucial information for determining word-level translations for closely
related language pairs. Church (1993) leveraged orthographic similarity for character
alignment. Haghighi, Berg-Kirkpatrick, and Klein (2008) proposed a generative model
for inducing a bilingual lexicon from monolingual text by exploiting orthographic
and contextual similarities among the words in two different languages. The model
proposed by Haghighi et al. learns a one-to-one mapping between the words in two
languages by analyzing type-level features only, while ignoring the token-level n-gram
frequencies. We propose a decipherment model that unifies the type-level feature-based
approach of Haghighi et al. with token-level EM-based approaches such as Koehn and
Knight (2000) and Ravi and Knight (2011).

In addition to orthographic similarity, we also often observe similarity in the dis-
tribution of word lengths across different languages. Linguists have long noted the
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relationship between word frequency and length (Zipf 1949), so the tendency of words
and their translations to have similar frequencies (Rapp 1995) may apply to length
as well. Our feature-rich log-linear model can easily incorporate such length-based
similarity features.

One of the key challenges with the proposed latent variable log-linear model is
the high computational complexity of training, as it requires normalizing globally via
summing over all possible observations and latent variables. As a result, an exact
implementation is impractical even for the moderate vocabulary size of most low-
resource languages. To address this challenge, we perform approximate inference using
Markov chain Monte Carlo (MCMC) sampling for scalable training of the log-linear
decipherment models. We present a series of increasingly scalable approximations, each
most suitable for a different amount of available data. They are applicable in contexts
ranging from no-resource languages (such as “lost” languages, a context considered by
Snyder, Barzilay, and Knight [2010]) to languages with a modest amount of data that is
still insufficient for state-of-the-art unsupervised methods based on word embeddings.

The main contributions of this article are as follows.

r We propose a feature-based decipherment model for low- and no-resource
languages that combines both type-level orthographic features and
token-level distributional similarities. Our proposed model outperforms
the existing EM-based decipherment models.r We apply three different MCMC sampling strategies for scalable training
and compare them in terms of running time and accuracy. Our results
show that contrastive divergence (Hinton 2002)–based MCMC sampling
can dramatically improve the speed of the training, while achieving
comparable accuracy.r We extend the contrastive divergence method to sample entire sentences,
rather than bigram pairs, allowing more context to be used in
reconstructing latent translations.r Finally, we extend the model to exploit parallel as well as monolingual
data, for situations in which limited amounts of parallel data may be
available.

The remainder of the article is organized as follows. In Section 2, we introduce the
general problem formulation for monolingual decipherment, and present our notations.
We discuss the background literature on different decipherment models for machine
translation in Section 3. Section 4 describes the proposed feature-based decipherment
model. A detailed discussion of MCMC sampling–based approximations follows in
Section 5. We extend the fully monolingual model to exploit parallel data in Section 6.
Our orthographic features are described in Section 7. Finally, we present our detailed
results in Section 8 and conclude with our findings and discuss our future work in
Section 9.

2. Problem Formulation

Given a source text F and an independent target corpus E , our goal is to translate the
source text F by learning the mapping between the words in the source and the target
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Table 1
Our notations and symbols.

Symbol Meaning

NF Number of unique source bigrams
NE Number of unique target bigrams
VF Source vocabulary
VE Target vocabulary
V max(|VF|, |VE|)
N Number of samples
K Beam size for precomputed lists
φ Unigram level feature function
ΦΦΦ Bigram level feature function: ΦΦΦ = φ1 +φ2

language. Although the sentences in the source and target corpus are independent of
each other, there exist distributional and lexical similarities among the words of the
two languages. We aim to automatically learn the translation probabilities p( f |e) for all
source words f and target words e by exploiting the similarities between the bigrams in
F and E .

As a simplification step, we break down the sentences in the source and target
corpus as a collection of bigrams. Let F contain a collection of source bigrams f1 f2,
and E contain a collection of target bigrams e1e2. Let the source and target vocabulary
be VF and VE, respectively. Let NF and NE be the number of unique bigrams in F and E ,
respectively. We assume that the corpus F is an encrypted version of a plaintext in the
target language. Each source word f ∈ VF is obtained by substituting one of the words
e ∈ VE in the plaintext. However, the mappings between the words in the two languages
are unknown, and are learned as latent variables. Table 1 summarizes the notations
and symbols used in this article.

3. Background Research

Existing decipherment models assume that each source bigram f1 f2 in F is generated by
first generating a target bigram e1e2 according to the target language model, and then
substituting e1 and e2 with f1 and f2, respectively. The generative process is typically
modeled via a hidden Markov model (HMM), as shown in Figure 1(a). The target
bigram language model p(e1e2) is trained from the given monolingual target corpus E .
The unknown translation probabilities p( f |e) are learned by maximizing the likelihood
of the observed source corpus F :

P(F ) =
∏

f1 f2∈F
p( f1 f2) (1)

=
∏

f1 f2∈F

∑
e1e2

p(e1e2)p( f1|e1)p( f2|e2),

where e1 and e2 are the latent variables, indicating the target words in VE corresponding
to f1 and f2, respectively. The log-likelihood function with latent variables is non-convex,
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a) b)

e1P(e1) e2

f1 f2

P(e2|e1)

P( f1|e1) P( f2|e2)

e1 e2

f1 f2

P(e1, e2)

exp wTφ( f1, e1) exp wTφ( f2, e2)

Figure 1
The graphical models for the existing directed HMM (a) and the proposed undirected MRF (b).

and several methods have been proposed for maximizing it. In this work, we seek to
combine a number of them for improved performance.

3.1 Expectation Maximization (EM)

The expectation maximization (EM) (Dempster, Laird, and Rubin 1977) algorithm has
been widely applied for solving the decipherment problem (Knight and Graehl 1998;
Knight and Yamada 1999; Koehn and Knight 2000). In the E-step, for each source bigram
f1 f2, we estimate the expected counts of the latent variables e1 and e2 over all the target
words in VE. In the M-step, the expected counts are normalized to obtain the translation
probabilities p( f |e). The computational complexity of the EM algorithm is O(NFV2) and
the memory complexity is O(V2), where NF is the number of unique bigrams in F and
V = max(|VF|, |VE|). As a result, the regular EM algorithm does not scale well to large
vocabulary sizes, both in terms of running time and memory.

To address this challenge, Ravi and Knight (2011) proposed the iterative EM algo-
rithm, which starts with the K most frequent words from F and E and performs EM-
based decipherment. Next, the source and target vocabularies are iteratively extended
by K new words, while pruning low-probability entries from the probability table. The
computational complexity of each iteration becomes O(NFK2).

3.2 Bayesian Decipherment Using Gibbs Sampling

Ravi and Knight (2011) proposed a Gibbs sampling–based Bayesian decipherment
strategy. For each observed source bigram f1 f2, the Gibbs sampling approach starts
with an initial target bigram e1e2, and alternately fixes one of the target words and
replaces the other with a randomly chosen sample. When e1 is fixed, a new sample
enew

2 is drawn with probability proportional to p(e1enew
2 )p( f2|enew

2 ). Next, we fix e2 and
sample enew

1 , and continue alternating until n samples are collected. Bayesian decipher-
ment reduces memory consumption via Gibbs sampling. The probability table remains
sparse, because only a small number of word pairs ( f, e) will be observed together in the
samples.
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3.3 Slice Sampling

Each Gibbs sampling operation requires estimating the probability of choosing every
target word e ∈ VE, which requires O(V) operations. To address this issue, Dou and
Knight (2012) proposed a slice sampling approach with precomputed top-K lists for
p(e| f ) and p(e1e2). Slice sampling involves selecting a threshold T between 0 and the
probability of the current sample, and then uniformly picking a random new sample
from all candidates with probability greater than T. Using sorted top-K lists makes
this faster than Gibbs sampling on average, although sometimes the top-K lists fail to
provide all the candidates, in which case the method has to fall back to sampling from
the entire vocabulary, which requires O(V) operations.

3.4 Beam Search

Nuhn and colleagues (Nuhn, Schamper, and Ney 2013; Nuhn and Ney 2014; Nuhn,
Schamper, and Ney 2015) showed that beam search can significantly improve the
speed of EM-based decipherment, while providing comparable or even slightly better
accuracy. Beam search prunes less-promising latent states by maintaining two constant-
sized beams, one for the translation probabilities p( f |e) and one for the target bigram
probabilities p(e1e2)—reducing the computational complexity to O(NF). Furthermore, it
saves memory because many of the word pairs ( f, e) are never considered because they
are not in the beam.

3.5 Feature-Based Generative Models

Haghighi, Berg-Kirkpatrick, and Klein (2008) proposed a canonical correlation analysis–
based model for automatically learning the mapping between the words in two lan-
guages from monolingual corpora only. They used orthographic information (character
substring features) and context information (co-occurrence statistics within a window)
for their features; we use edit distance as our orthographic information, and we op-
erate on bigrams for our context information. Although their model uses an EM-style
algorithm, it does not iterate over the corpus data.

Ravi (2013) proposed a Bayesian decipherment model based on hash sampling,
which takes advantage of feature-based similarities between source and target words.
However, the feature representation was not integrated with their decipherment model,
and was only used for efficiently sampling candidate target translations for each source
word. Furthermore, the feature-based hash sampling included only contextual features
(in the form of n-gram co-occurrence information), and did not consider orthographic
features. In contrast, our log-linear model integrates both type-level orthographic fea-
tures and token-level bigram frequencies.

3.6 Embedding-Based Models

Recent work has explored the possibility of finding a mapping between word embed-
ding spaces using monolingual data. Artetxe, Labaka, and Agirre (2017) use a small
set of seed translations to learn this mapping. Zhang et al. (2017) do not use seed
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translations, but do use document-aligned Wikipedia data, and only consider words
appearing at least 1,000 times. Both methods train word embeddings using data sets
with millions of words, limiting their applicability to low resource languages, even more
so for languages with the small amount of data that we experiment with in this work.

4. Feature-Based Decipherment

Our feature-based decipherment model is based on a chain structured Markov random
field (MRF; Figure 1(b)), which jointly models the observed source bigrams f1 f2 and
corresponding latent target bigram e1e2. For each source word f ∈ VF, we have a latent
variable e ∈ VE indicating the corresponding target word. The joint probability distri-
bution is:

p( f1 f2, e1e2) = 1
Zw

p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

where ΦΦΦ( f1 f2, e1e2) is the feature function for the given source and the target bigrams,
w is the model parameters, and Zw is the normalization term. We assume that the fea-
ture function decomposes into features of aligned word pairs (motivated by the obser-
vation in Section 1 that word order is generally preserved across bigram translations):

ΦΦΦ( f1 f2, e1e2) = φ( f1, e1) +φ( f2, e2) (2)

The features φ, which will be described in more detail in Section 7, include features
for orthographic similarity as well as indicator features φf,e for each word pair. The
normalization term is defined as:

Zw =
∑
f1 f2

∑
e1e2

p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

This gives our model the conditional random field (CRF)–like dependency structure
shown in Figure 1. In our model, however, the term p(e1, e2) is estimated from a mono-
lingual target corpus, and is held constant when training the weights w.

We train the model on a monolingual source corpus, treating the target words
as latent variables. This gives us a latent variable CRF model (Quattoni, Collins, and
Darrell 2004), where the likelihood of our monolingual source corpus is:

L = 1
|F |

∑
f1 f2∈F

log
∑
e1e2

p( f1 f2, e1e2) (3)
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The gradient of the log-likelihood can be written as the difference of two expectations
of feature vectors:

∂L
∂w = ∂

∂w
1
|F |

∑
f1 f2∈F

log
∑
e1e2

p( f1 f2, e1e2) (4)

= ∂
∂w

1
|F |

∑
f1 f2∈F

log
∑
e1e2

1
Zw

p(e1e2) exp wTΦΦΦ( f1 f2, e1e2) (5)

= 1
|F |

∑
f1 f2∈F

[
∂
∂w log

∑
e1e2

p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)− ∂
∂w log Zw

]
(6)

= 1
|F |

∑
f1 f2∈F

[
1

Zw( f1 f2)
∂
∂w

∑
e1e2

p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

]
− ∂
∂w log Zw (7)

= 1
|F |

∑
f1 f2∈F

[
1

Zw( f1 f2)

∑
e1e2

ΦΦΦ( f1 f2, e1e2)p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

]
− Zw

∂
∂wZw

= 1
|F |

∑
f1 f2∈F

[∑
e1e2

ΦΦΦ( f1 f2, e1e2)p( f1 f2|e1e2)

]
− 1

Zw

∂
∂w

∑
f1 f2

∑
e1e2

p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

= 1
|F |

∑
f1 f2∈F

Ee1e2|f1 f2

[
ΦΦΦ( f1 f2, e1e2)

]
− 1

Zw

∑
f1 f2

∑
e1e2

ΦΦΦ( f1 f2, e1e2)p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

= 1
|F |

∑
f1 f2∈F

Ee1e2|f1 f2

[
ΦΦΦ( f1 f2, e1e2)

]
− Ef1 f2,e1e2

[
ΦΦΦ( f1 f2, e1e2)

]
(8)

= EForced − EFull (9)

Here, the first term is the expectation with respect to the empirical data distribution.
We refer to it as the “forced expectation,” as the source text is assumed to be given. The
second term is the expectation with respect to our model distribution, and referred to
as “full expectation.”

4.1 Estimating Forced Expectation (EForcedForcedForced)

We first estimate the forced expectation, which we defined in Equation (8) to be:

EForced =
∑

f1 f2∈F

1
Zw( f1 f2)

∑
e1e2∈V2

E

[
p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

]
ΦΦΦ( f1 f2, e1e2) (10)

where Z( f1 f2) is the normalization term given f1 f2:

Zw( f1 f2) =
∑

e1e2∈V2
E

p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)
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For each observed f1 f2 ∈ F , we sum over all possible e1e2 ∈ V2
E, which requires O(NFV2)

computations.

4.2 Estimating Full Expectation (EFullFullFull)

For the full expectation, we assume that both the source text and latent variables are
unknown, resulting in a sum over all the possible source bigrams f1 f2, and associated
latent variables e1e2:

EFull = 1
Zg

∑
f1 f2∈V2

F

∑
e1e2∈V2

E

[
p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

]
ΦΦΦ( f1 f2, e1e2)

where Zg is the global normalization term:

Zg =
∑

f1 f2∈V2
F

∑
e1e2∈V2

E

p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

The computational complexity is O(V4).

5. MCMC Sampling for Faster Training

The overall computational complexity of estimating the exact gradient is O(NFV2 + V4),
which is impractical even for a modest-sized vocabulary. We apply several MCMC
sampling methods to approximate the forced and full expectations. We first propose
using Gibbs sampling for both the forced and full expectation terms. We then propose
a faster approximation using independent Metropolis Hastings sampling for just the
forced expectation term. We then propose an even faster approximation using con-
trastive divergence for estimating both terms. We then extend this method to sam-
ple at the sentence level rather than at the bigram level, with the goal of increasing
accuracy.

Computation times for the methods presented are summarized in Table 2.

5.1 Gibbs Sampling
5.1.1 Gibbs Sampling for Forced Expectation. Rather than summing over all target bigrams
e1e2, we approximate the forced expectation by taking N samples of e1e2 for each

Table 2
The worst case computational complexities per iteration for different decipherment algorithms.
Note that we observed that NF tended to scale linearly with V.

Method Complexity

EM O(NFV2)
Feature HMM O(NFV2)
Log-linear/MRF Exact O(NFV2 + V4)
Log-linear + Gibbs O(NFVN + VN2)
Log-linear + IMH O(NFN + VN2)
Log-linear + CD O(NFN + VN2)
Log-linear + CD, Sentence O(|F |N)
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observed f1 f2, and take an average of the features for these samples. For each observed
f1 f2, the following steps are taken:r Start with an initial target bigram e1e2.r Fix e2 and sample e1 according to the following probability distribution:

P(e1|e2, f1 f2) = 1
Zgibbs

[
p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

]
where Zgibbs is the normalization term over all possible e1 in the target
vocabulary.r Next, fix e1 and draw a new sample e2 similarly according to P(e2|e1, f1 f2),
and continue sampling e1 and e2 alternately until N samples are drawn.

Drawing each sample requires O(V) operations, as we need to estimate the normal-
ization term Zgibbs. The computational complexity of estimating the forced expectation
becomes O(NFVN), which is expensive as V can be large (and NF generally scales
with V).

5.1.2 Gibbs Sampling for Full Expectation. To efficiently estimate the full expectation, we
sample N source bigrams f1 f2 from our model. The Gibbs sampling procedure is:r Start with an initial random f1 f2.r Fix f2, and sample a new f1 according to p( f1| f2):

p( f1| f2) = 1
Z′gibbs

∑
e1

∑
e2

[
p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

]

where

Z′gibbs =
∑

f1

∑
e1

∑
e2

[
p(e1e2) exp wTΦΦΦ( f1 f2, e1e2)

]
r Next fix f1 and sample f2 according to P( f2| f1). Continue alternating until

N samples are drawn.

The computational complexity of exactly estimating p( f1| f2) is O(V3), resulting in the
computational complexity O(V3N), which is impractical for all but the smallest vocab-
ularies. However, rather than summing over all possible e1e2, we can approximate via
sampling. For each f1 f2, we first sample N samples e1e2 according to p(e1e2). Let S be the
set of N samples of target bigrams. Next, we approximate p( f1| f2) as

p( f1| f2) = 1
Zapprox

∑
e1e2∈S

exp wTΦΦΦ( f1 f2, e1e2)

where Zapprox =
∑

f1

∑
e1e2∈S exp wTΦΦΦ( f1 f2, e1e2). This reduces the computational com-

plexity to O(VN2).
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5.2 Independent Metropolis Hastings (IMH)

In our experiments, the Gibbs sampling for our log-linear model was still somewhat
slow, and will not scale well to larger experimental settings. To address this challenge,
we apply IMH sampling, which relies on a proposal distribution and does not require
normalization. However, finding an appropriate proposal distribution can sometimes
be challenging, as it needs to be close to the true distribution for faster mixing and must
be easy to sample from.

For the forced expectation, one possibility is to use the bigram language model
p(e1e2) as a proposal distribution. However, the bigram language model did not work
well in practice. Because p(e1e2) does not depend on f1 f2, it resulted in slow mixing and
exhibited a bias toward highly frequent target words.

Instead, we chose an approximation of p(e1e2| f1 f2) as our proposal distribution. To
simplify sampling, we assume e1 and e2 to be independent of each other for any given
f1 f2. Therefore, the proposal distribution q(e1e2| f1 f2) = qu(e1| f1)qu(e2| f2), where qu(e| f )
is a probability distribution over target unigrams for a given source unigram. We define
qu(e| f ) as follows:

qu(e| f ) = (1− pb)qs(e| f ) + pb
1
V

where pb is a small back-off probability with which we fall back to the uniform distribu-
tion over target unigrams. The other term qs(e| f ) is a distribution over the target words
e for which the weight wf,e of the word pair feature φf,e is non-zero:

qs(e| f ) =

{
1

Zimh
exp wTφ( f, e), if wf,e 6= 0

0, otherwise

Here, Zimh is a normalization term over all the e such that wf,e 6= 0. The weight vector w
is sparse, as only a small number of translation features ( f, e) (Section 7) are observed
during sampling. Furthermore, we update qs only once every five iterations of gradient
descent.

The actual target distribution is:

p(e1e2| f1 f2) ∝ p(e1e2) exp wTΦΦΦ( f1 f2, e1e2) (11)

For each f1 f2 ∈ F , we take the following steps during sampling:

r Start with an initial English bigram: 〈e1e2〉0.r Let the current sample be 〈e1e2〉i. Next, sample 〈e1e2〉i+1 from the proposal
distribution q(e1e2| f1 f2).r Accept the new sample with the probability:

Pa =
p(〈e1e2〉i+1| f1 f2)

p(〈e1e2〉i| f1 f2)
q(〈e1e2〉i| f1 f2)

q(〈e1e2〉i+1| f1 f2)
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The IMH sampling reduces the complexity of the forced expectation estimation to
O(NFN),1 which is significantly less than the complexity of O(NFVN) in the case of
Gibbs sampling. However, we could not apply IMH while estimating the full expec-
tation, as finding a suitable proposal distribution is more complicated. Therefore, the
overall complexity remains: O(NFN + VN2).

5.3 Contrastive Divergence-Based Sampling

The main reason for the slow training of the proposed log-linear MRF model is the
high computational cost of estimating the partition function Zg when estimating the
full expectation. A similar problem arises while training deep neural networks. An
increasingly popular technique to address this issue is to perform contrastive diver-
gence (Hinton 2002), which allows us to avoid estimating the partition function.

For each observed source bigram f1 f2 ∈ F , contrastive divergence sampling works
as follows:r Sample a target bigram e1e2 according to the distribution p(e1e2| f1 f2).

We perform this step using IMH, as discussed in the previous section.r Sample a reconstructed source bigram 〈 f1 f2〉recon by sampling from the
distribution p( f1 f2|e1e2), again via IMH.

We take n such samples of e1e2 and corresponding 〈 f1 f2〉recon. For each sample and
reconstruction pair, we update the weight vector by an approximation of the gradient:

∂L
∂w ≈ ΦΦΦ(〈 f1 f2〉data, e1e2)−ΦΦΦ(〈 f1 f2〉recon, e1e2)

5.4 Sentence-Level Sampling

Up to this point, we have considered parallel source/target bigram pairs in isolation,
but it may be helpful to take larger contexts into account in decipherment. In this
section, we extend the sampling procedures to resample an entire source/target sen-
tence pair at each iteration. Although our features are functions of individual bigrams,
sentence-level sampling gives us the benefit of looking at an individual word’s left
and right context when considering alternative translations. More generally, the HMM-
like feature structure also allows information to flow through the entire sentence from
beginning to end.

Mathematically, we assume, as we did in the bigram case, that our features can be
written as a function φ( f, e) of a pair of French and English words. We use the notation

ΦΦΦ(f, e) =

|f|∑
i=0

φ( fi, ei)

to denote the feature vector for an entire sentence pair; we will assume that the French
and English sequences have the same length. Analogously to Equation (4), the gradient

1 Ignoring the cost of estimating qs(e| f ), which occurs only once every five iterations.
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of the log-likelihood can be written as the difference between a forced expectation and
full expectation, now at the level of sentences rather than bigrams:

∂L
∂w = Ee|f [ΦΦΦ(f, e)]− Ee,f [ΦΦΦ(f, e)]

= EForced − EFull

We estimate these two terms with a sentence-level sampling algorithm based on
contrastive divergence. At a high level, given an observed French sentence, it samples a
hidden English sequence according to p(e|f) in order to estimate the forced expectation
term of the update, and then samples a French sentence according to p(f|e) to estimate
the full expectation, as shown in Algorithm 1. However, because the individual English
words are not independent, due to the bigram language model, the sampling of p(e|f)
is itself broken down into a sequence of Gibbs sampling steps, sampling one word at a
time while holding the others fixed, as shown in Algorithm 2. This process is iterated
to produce a total of N samples of the English sequence, with each sample initialized
with the previous sample (line 4 of Algorithm 1). The entire process is initialized with
a Viterbi decoding of the best English sequence under the current parameters (line 2 of
Algorithm 1). Empirically, we found that this initialization sped up training by reducing
the number of samples necessary.

Algorithm 1 Sentence-level contrastive divergence algorithm
1: procedure SENTCONTRASTIVEDIVERGENCE(f)
2: e(0) ← VITERBI(f, w)
3: for n in 1, . . . , N do
4: (e(n), f(n)) = SAMPLESENTENCEPAIR(e(n−1), f)
5: w← w + 1

N
∑

n
(
ΦΦΦ(f, e(n))−ΦΦΦ(f(n), e(n))

)

Algorithm 2 Sentence-level sampling algorithm
procedure SAMPLESENTENCEPAIR(e,f)

for i← 1, . . ., |f| do
ei ∼ 1

Z p(ei−1ei)p(eiei+1) exp wTφ(ei, fi)
for i← 1, . . . , |f| do

fi ∼ 1
Z exp wTφ(ei, fi)

return (e, f)

6. Exploiting Parallel Data

We now turn to consider the setting in which a small amount of parallel data may be
available for the two languages in question, along with a larger amount of monolingual
data for each of the languages. Our hope is that even a small amount of parallel data
may allow the model to learn the correspondence between very frequent words, such
as function words. For many language pairs, including French–English, function words
do not exhibit orthographic similarity, despite the high proportion of orthographically
similar content words. Reducing errors among function words that are observed in the
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parallel data may help prevent the decipherment model from aligning words that are
spuriously similar “false friends” when analyzing the monolingual data.

Mathematically, we wish to define a single probability model that can apply to both
parallel and monolingual data, and choose feature weights w that optimize the total
likelihood of the parallel and monolingual data together. Probability models for word
alignment of parallel data are one of the original problems studied in statistical machine
translation (Brown et al. 1993). We wish to apply our log-linear feature-based model
to parallel data, making the problem setting similar to that of Dyer et al. (2011). For
simplicity, we assume a bag of words model that does not take into account the order of
the words in the English sentence, resulting in a log-linear feature-based version of IBM
Model 1.

We implement training for this model by modifying our sentence-level contrastive
divergence method described in Section 5.4. We constrain the sampling of the English
words eforced used to approximate the EForced term by allowing only English words that
appear in the English side of the parallel sentence pair. We sample a separate sequence
of English words e for the EFull term as before. The algorithm for parallel data is shown
in Algorithm 3, where the English side of the parallel sentence pair is provided as an
additional argument ê. This set of words is used to constrain the choices of the Viterbi
initialization of eforced (line 2). The observed English sentence ê is also used to constrain
the choice of sample in Algorithm 4; the indicator function I(ei ∈ ê) ensures that any
English words not present in ê have zero probability of being sampled.

Algorithm 3 Constrained contrastive divergence algorithm
1: procedure CONSTRAINEDSENTCONTRASTIVEDIVERGENCE(f, ê)
2: e(0)

forced ← CONSTRAINEDVITERBI(f, w, ê)

3: e(0) ← VITERBI(f, w)
4: for n in 1, . . . , N do
5: e(n)

forced = CONSTRAINEDSAMPLESENTENCE(e(n−1)
forced , f, ê)

6: (e(n), f(n)) = SAMPLESENTENCEPAIR(e(n−1), f)
7: w← w + 1

N
∑

n

(
ΦΦΦ(f, e(n)

forced)−ΦΦΦ(f(n), e(n))
)

Algorithm 4 Constrained sentence-level sampling algorithm
1: procedure CONSTRAINEDSAMPLESENTENCE(e, f, ê)
2: for i← 1, . . . , |f| do
3: ei ∼ 1

Z I(ei ∈ ê)p(ei−1ei)p(eiei+1) exp wTφ(ei, fi)
4: return e

Although our algorithm does not take into account the order of the observed
English sentence ê, we note that, unlike the training procedure for IBM Model 1, our
algorithm does take advantage of the English bigram language model in constructing
the alignment between the English and French sentences. Thus, whereas an English
word pair is not more likely to align to adjacent French words if it is adjacent in the
English sentence, it is more likely to align to adjacent French words if the English words
are frequently adjacent in general; the motivation is that, as mentioned in Section 1,
n-gram frequencies between the two languages are assumed to be similar. This is
beneficial both because it provides the model with more information than is available
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to IBM Model 1, and because it allows us to use a unified probability model for parallel
and monolingual data.

7. Feature Design

We included the following unigram-level features:r Translation Features: Each ( f, e) word pair, where f ∈ VF and e ∈ VE, is a
potential feature in our model. Although there are O(V2) such possible
features, we only include the ones that are observed during sampling.
Therefore, our feature weights vector w is sparse, with most of the entries
equal to zero.r Orthographic Features: We incorporated an orthographic feature based on
the normalized edit-distance between two words. The normalized edit
distance between a word pair ( f, e) is defined as follows:

NED( f, e) =
ED(e, f )

max(|e|, | f |)

where ED(e, f ) is their string edit distance (minimum total number of
required insertions, deletions, and substitutions) and |e| and | f | represent
their lengths. When normalized edit distance between two words is larger
than a threshold, it usually indicates that the words are orthographically
dissimilar, and the exact value of the normalized edit distance does not
carry much information. Based on this intuition, we chose our
orthographic features to be boolean-valued features. For a word pair ( f, e),
the orthographic feature is triggered if the normalized edit distance
NED( f, e) is less than a threshold (set to 0.3 in our experiments).r Length Difference: Because source words and their target translations often
tend to have similar lengths, we added the absolute value of their length
difference as a feature.

The set of features can further be extended by including context window–based fea-
tures (Haghighi, Berg-Kirkpatrick, and Klein 2008; Ravi 2013) and topic model and word
embedding features. Character rewriting features could be used to model when the two
languages use different characters for the same sound; these could be coupled with the
edit distance feature to approximate phonetic distance. Additionally, in this work we
did not perform any character normalization; a simple extension of this system could
treat similar characters (é, e, è) as identical for edit distance calculations.

8. Experiments and Results

8.1 Data Sets

We experimented with two closely related language pairs: (1) Spanish and English and
(2) French and English. For Spanish–English, we experimented with a subset of the
OPUS Subtitle corpus (Tiedemann 2009). For French–English, we used the Hansard
corpus (Brown, Lai, and Mercer 1991), containing parallel French and English text from
the proceedings of the Canadian Parliament. In order to have a non-parallel set-up,
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Table 3
Statistics on the data sets used in our experiments.

Data set Num. Sentences |VE| |VF|

OPUS 9.89K (997 unique) 375 530
Hansard-100 100 358 371
Hansard-1000 1,000 2,957 3,082

we extracted monolingual text from different sections of the French and English text.
A detailed description of the two data sets is now provided.

OPUS Subtitle Data set: the OPUS data set is a smaller pre-processed subset of the
original larger OPUS Spanish–English parallel corpora. The data set consists of short
sentences in Spanish and English, each of which is a movie subtitle. The same data set
has been used in several previous decipherment experiments (Ravi and Knight 2011;
Nuhn and Ney 2014). We use the first 9,885 French sentences and the second 9,885
English sentences.

Hansard Data set: The Hansard data set contains parallel text from the Canadian
Parliament Proceedings. We experimented with two data sets:r Hansard-100: The French text consists of the first 100 sentences and the

English text consists of the second 100 sentences.r Hansard-1000: The French text consists of the first 1,000 sentences and the
English text consists of the second 1,000 sentences.

Table 3 provides some statistics on the three data sets used in our experiments.
The OPUS and Hansard-100 data sets have relatively smaller vocabularies, whereas the
Hansard-1000 data set has a significantly larger vocabulary.

For each data set, we draw parallel data from a section that is disjointed from the
monolingual sections. This data is only used in the “X% Parallel” settings, for which X%
of the total data is drawn from the parallel section instead of the monolingual sections;
for example, the “10% Parallel” setting for Hansard-1000 consists of 900 monolingual
sentences in each language and 100 parallel sentence pairs.

8.2 Evaluation

We evaluate the accuracy of decipherment by the percentage of source words that are
mapped to the correct target translation. We find the maximum-probability mapping
for all source words; precision could be increased at the expense of recall by imposing
some threshold, below which no mapping would be made for a given source word. The
correct translation for each source word was determined automatically using the Google
Translation API. Although the Google Translation API did a fair job of translating the
French and Spanish words to English, it returned only a single target translation. We
noticed occasional cases where the decipherment algorithm retrieved a correct transla-
tion, but it did not get credit because of not matching the translation from the API.

Additionally, we performed Viterbi decoding on the sentences in a small held-out
test corpus from the OPUS data set, and compared the BLEU scores with the previously
published results on the same test set as Ravi and Knight (2011) and Nuhn and Ney
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(2014). Our training set, however, was different: Their data were parallel, so we split
the data set into two disjoint sections, one for each language. This reduced our model’s
performance (as expected), but we still achieve a higher BLEU score than the baselines.

8.3 Results

We experimented with three versions of our log-linear MRF decipherment models: (1)
Gibbs sampling, (2) IMH sampling, and (3) contrastive divergence (CD). We also tested
the effect of exploiting parallel data under the CD model. To determine the impact of the
orthographic and length features, the contrastive divergence–based log-linear model
was tested both with and without these features. In addition to the proposed undirected
MRF models, we also explored the directed Feature-HMM model (Berg-Kirkpatrick
et al. 2010), which is trained via an EM-style algorithm, and has the same computa-
tional complexity as EM. We compared the feature-based models with the exact EM
algorithm (Koehn and Knight 2000; Ravi and Knight 2011). We used Kneser-Ney
smoothing (Kneser and Ney 1995) for training bigram language models. The number
of iterations was fixed to 15 for all five methods; we did not see improvement beyond
roughly 10 iterations during development. For the sampling based methods, we set the
number of samples N = 50, which seemed to strike a good balance between accuracy
and speed during our small-scale experiments during development.

For the log-linear model with no orthographic/length features, we initialized all
the feature weights to zero. When we included the orthographic features, we initialized
the weight of the orthographic match feature to 1.0 to encourage translation pairs
with high orthographic similarity. Furthermore, for each word pair ( f, e) with high
orthographic similarity, we assigned a small positive weight (0.1). This initialization
allowed the proposal distribution to sample orthographically similar target words for
each source word. The value 0.1 seemed to work well in initial small-scale experiments.
For exact EM, we initialized the translation probabilities uniformly and stored the entire
probability table.

Table 4 reports the accuracy and running time per iteration for exact EM, Feature
HMM, and our log-linear models on the OPUS, Hansard-100, and Hansard-1000 data
sets. However, on the Hansard-1000 data set, we only applied the contrastive diver-
gence and IMH based log-linear models because of its large vocabulary size. Table 2
summarizes the computational complexity of each method; recall that NF scales with
V (theoretically NF ∈ O(V2), although empirically we found NF ∈ O(V)). From this, we

Table 4
The running time per iteration and accuracy of decipherment.

Method OPUS Hansard-100 Hansard-1000
Time (sec) Acc (%) Time (sec) Acc (%) Time (sec) Acc (%)

EM 417.2 2.63 188.0 2.96 – –
Feature HMM 379.6 7.71 189.9 14.17 – –
Log-linear + Gibbs 738.1 6.77 357.9 14.01 – –
Log-linear + IMH 75.7 6.77 53.0 13.10 605.5 12.45
Log-linear + CD 19.1 6.13 10.6 11.53 324.1 11.19
Log-linear + CD, Sentence 21.6 8.08 12.7 12.60 458.3 12.02
Log-linear + CD, Sentence,

No ortho/len 22.4 0.56 11.9 1.88 492.2 0.36
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Table 5
The effect on accuracy of incorporating parallel data for our model (first three columns) and
IBM Model 1 and Model 4 (on Hansard-1000 parallel data).

Accuracy (%) Opus Hansard-100 Hansard-1000 IBM Model 1 IBM Model 4

Monolingual-Only 8.08 12.60 12.02 0.00 0.00
10% Parallel 9.45 16.81 13.58 6.74 7.29
20% Parallel 10.81 17.62 13.41 9.67 10.75
50% Parallel 15.04 18.83 18.55 20.03 20.40

Table 6
Comparison of MT performance on the OPUS data set.

Method BLEU (%)

EM (Ravi and Knight, 2011) 15.3
EM + Beam (Nuhn and Ney, 2014) 15.7

Feature HMM 18.90
Log-linear + Gibbs 21.43
Log-linear + IMH 21.46
Log-linear + CD 21.36
Log-linear + CD, Sentence 20.71
Log-linear + CD, Sentence, No ortho/len 19.36
Log-linear + CD, Sentence, 10% Parallel 20.83
Log-linear + CD, Sentence, 20% Parallel 21.18
Log-linear + CD, Sentence, 50% Parallel 29.30

can loosely estimate that the Gibbs sampling would take roughly a week to execute 15
iterations, whereas the EM and Feature HMM methods would take roughly a month.

Table 5 reports the accuracy for the methods that utilize parallel data on the three
data sets. For comparison, the final two columns of Table 5 report the accuracy of IBM
Model 1 and Model 4 (Brown et al. 1993) when trained on the parallel data used in
the corresponding Hansard-1000 experiment; to allow for direct comparison, both were
evaluated over the same vocabulary as in the Hansard-1000 experiment. Because our
training procedure includes random sampling, the results of each run on a given data
set can vary. We observe only very small variations between executions, but all reported
results for sampling-based methods are the average of 10 separate executions of the
system. A bigram language model was used for all the models.

The BLEU scores for translation on the OPUS data set are reported in Table 6. We
outperform previous approaches on this data set that use no parallel data. Although
we are not aware of any work on the OPUS data set using small amounts of parallel
data, Zoph et al. (2016) describe one recent alternative approach to translation with
very limited parallel data for Urdu–English. Their hybrid system using a string-to-tree
statistical translation model combined with a neural model achieved a BLEU score of
19.1. This result utilized three times as much data as in our experiments; 100% of it was
parallel, and the model was pre-trained with a much larger corpus of parallel French–
English data.

Table 7 shows a few examples for which the log-linear model performed better
because of orthographic features.
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Table 7
A few examples for which orthographic features helped.

OPUS Hansard-1000

Spanish English French English

excelente excellent criminel criminal
minuto minute particulier particular
silencio silence sociaux social
perfecto perfect secteur sector

9. Discussion and Future Work

We notice that all the feature-based models (both directed Feature-HMM and undi-
rected log-linear models) with orthographic and length features outperformed the EM-
based decipherment approach. The only log-linear model that performed much worse
was the one which lacked the orthographic and length features. This result emphasizes
the importance of orthographic features for decipherment between closely related lan-
guage pairs. The margin of improvement due to orthographic features was bigger for
the Hansard data sets than that for the OPUS data set. This is expected, as French has
had a much larger historical influence on English than Spanish has, largely through the
Norman Conquest; this is a major cause for the higher lexical similarity between French
and English than between Spanish and English. Quantitatively, 42.72% of the pairs in
our English–French gold dictionary were within the normalized edit distance threshold
used for our corresponding feature, whereas only 20.97% of the English–Spanish pairs
were. The contrastive divergence-based log-linear model achieved overall comparable
accuracy to the two other sampling approaches (Gibbs and IMH + Gibbs), despite being
orders of magnitude faster. Sentence-level sampling was slightly slower, but achieved
higher accuracy than bigram-only sampling. Furthermore, the feature-based models
resulted in better translations, as they obtained a higher BLEU score on the OPUS data
set (Table 6).

Although the orthographic features provide huge improvements in decipherment
accuracy, they also introduce new errors. For example, the Spanish word “madre”
means “mother” in English, but our model gave the highest score to the English word
“made” due to the high orthographic similarity. However, such error cases are rare
compared with the improvement.

The contrastive divergence model that was modified to incorporate parallel data
generally showed significant gains in accuracy as the proportion of parallel data was
increased. This is expected: Parallel data provide a stronger signal for translation than
monolingual data. We notice that, even when parallel data are provided, the model still
learns additional information from the monolingual data. This is illustrated in Table 5,
where we compare IBM Model 1 and Model 4 (which can only make use of parallel
data) against our model and observe that more correct word translations are learned
when additional monolingual data is provided. The exception to this trend is in the
50% Parallel setting, where the addition of monolingual data results in fewer correct
translations. This may be because monolingual data is a noisy signal for translation,
and incorporating too little with the parallel data actually confuses the model. Given
that our technique is most applicable for low- and no-resource languages, for which
having 50% parallel data is less realistic, we do not believe that this is a serious concern.
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The accuracies reported here are significantly lower than those achieved by modern
supervised methods (and unsupervised methods with large corpora). However, our
results required no more than 1,000 lines of data from each language, and preserved
accuracy with as little as 100 lines of data. Thus, this method in its current form is most
applicable to languages with extremely limited available data. This can include “lost”
languages and any of the numerous modern languages that do not have much data
easily accessible online. Our model is also very scalable, and can be applied to settings
with more data than we experiment with here but still insufficient data for modern
embedding-based unsupervised methods.

For understudied languages, our system can also be used to infer the similarity
of two languages. The final weight of the edit distance feature can be interpreted as
the model’s estimate of similarity. In our experiments, the edit distance weight for the
Hansard experiments was roughly four times that of the OPUS experiments, which
matches our expectations, given the increased lexical similarity between French and
English. For future work, our feature-based models can be extended by allowing local
reordering of neighboring words and considering word fertilities (Ravi 2013). We would
also like to extend the features to handle languages with different alphabets or sys-
tematically different use of certain characters, perhaps using transliteration techniques
such as in Knight and Graehl (1998). Finally, we would like to incorporate more flexible
non-local features in MRF, which may not be supported by the directed Feature-HMM
model.

10. Conclusion

We presented a feature-based decipherment system using latent variable log-linear
models. The proposed models take advantage of the orthographic similarities between
closely related languages, and outperform the existing EM-based models. The con-
trastive divergence–based variant with sentence-level sampling provided the best trade-
off between speed and accuracy. We also showed that it can be modified to incorporate
parallel data when available, resulting in increased accuracy.
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