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Periods, Capitalized Words, etc.
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In this article we present an approach for tackling three important aspects of text normaliza-
tion: sentence boundary disambiguation, disambiguation of capitalized words in positions where
capitalization is expected, and identification of abbreviations. As opposed to the two dominant
techniques of computing statistics or writing specialized grammars, our document-centered ap-
proach works by considering suggestive local contexts and repetitions of individual words within
a document. This approach proved to be robust to domain shifts and new lexica and produced per-
formance on the level with the highest reported results. When incorporated into a part-of-speech
tagger, it helped reduce the error rate significantly on capitalized words and sentence boundaries.
We also investigated the portability to other languages and obtained encouraging results.

1. Introduction

Disambiguation of sentence boundaries and normalization of capitalized words, as
well as identification of abbreviations, however small in comparison to other tasks
of text processing, are of primary importance in the developing of practical text-
processing applications. These tasks are usually performed before actual “intelligent”
text processing starts, and errors made at this stage are very likely to cause more errors
at later stages and are therefore very dangerous.

Disambiguation of capitalized words in mixed-case texts has received little atten-
tion in the natural language processing and information retrieval communities, but in
fact it plays an important role in many tasks. In mixed-case texts capitalized words
usually denote proper names (names of organizations, locations, people, artifacts, etc.),
but there are special positions in the text where capitalization is expected. Such manda-
tory positions include the first word in a sentence, words in titles with all significant
words capitalized or table entries, a capitalized word after a colon or open quote, and
the first word in a list entry, among others. Capitalized words in these and some other
positions present a case of ambiguity: they can stand for proper names, as in White
later said . . . , or they can be just capitalized common words, as in White elephants are
. . . . The disambiguation of capitalized words in ambiguous positions leads to the
identification of proper names (or their derivatives), and in this article we will use
these two terms and the term case normalization interchangeably.

Church (1995, p. 294) studied, among other simple text normalization techniques,
the effect of case normalization for different words and showed that “sometimes case
variants refer to the same thing (hurricane and Hurricane), sometimes they refer to
different things (continental and Continental) and sometimes they don’t refer to much
of anything (e.g., anytime and Anytime).” Obviously these differences arise because
some capitalized words stand for proper names (such as Continental, the name of an
airline) and some do not.
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Proper names are the main concern of the named-entity recognition subtask (Chin-
chor 1998) of information extraction. The main objective of this subtask is the identi-
fication of proper names and also their classification into semantic categories (person,
organization, location, etc.).1 There the disambiguation of the first word in a sentence
(and in other ambiguous positions) is one of the central problems: about 20% of named
entities occur in ambiguous positions. For instance, the word Black in the sentence-
initial position can stand for a person’s surname but can also refer to the color. Even
in multiword capitalized phrases, the first word can belong to the rest of the phrase
or can be just an external modifier. In the sentence Daily, Mason and Partners lost their
court case, it is clear that Daily, Mason and Partners is the name of a company. In the
sentence Unfortunately, Mason and Partners lost their court case, the name of the company
does not include the word Unfortunately, but the word Daily is just as common a word
as Unfortunately.

Identification of proper names is also important in machine translation, because
usually proper names are transliterated (i.e., phonetically translated) rather than prop-
erly (semantically) translated. In confidential texts, such as medical records, proper
names must be identified and removed before making such texts available to people
unauthorized to have access to personally identifiable information. And in general,
most tasks that involve text analysis will benefit from the robust disambiguation of
capitalized words into proper names and common words.

Another important task of text normalization is sentence boundary disambigua-
tion (SBD) or sentence splitting. Segmenting text into sentences is an important aspect
in developing many applications: syntactic parsing, information extraction, machine
translation, question answering, text alignment, document summarization, etc. Sen-
tence splitting in most cases is a simple matter: a period, an exclamation mark, or a
question mark usually signals a sentence boundary. In certain cases, however, a period
denotes a decimal point or is a part of an abbreviation, and thus it does not necessarily
signal a sentence boundary. Furthermore, an abbreviation itself can be the last token
in a sentence in which case its period acts at the same time as part of this abbreviation
and as the end-of-sentence indicator (fullstop). A detailed introduction to the SBD
problem can be found in Palmer and Hearst (1997).

The disambiguation of capitalized words and sentence boundaries presents a
chicken-and-egg problem. If we know that a capitalized word that follows a period is
a common word, we can safely assign such period as sentence terminal. On the other
hand, if we know that a period is not sentence terminal, then we can conclude that
the following capitalized word is a proper name.

Another frequent source of ambiguity in end-of-sentence marking is introduced by
abbreviations: if we know that the word that precedes a period is not an abbreviation,
then almost certainly this period denotes a sentence boundary. If, however, this word
is an abbreviation, then it is not that easy to make a clear decision. This problem is
exacerbated by the fact that abbreviations do not form a closed set; that is, one can-
not list all possible abbreviations. Moreover, abbreviations can coincide with regular
words; for example, “in” can denote an abbreviation for “inches,” “no” can denote an
abbreviation for “number,” and “bus” can denote an abbreviation for “business.”

In this article we present a method that tackles sentence boundaries, capitalized
words, and abbreviations in a uniform way through a document-centered approach.
As opposed to the two dominant techniques of computing statistics about the words
that surround potential sentence boundaries or writing specialized grammars, our ap-

1 In this article we are concerned only with the identification of proper names.
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proach disambiguates capitalized words and abbreviations by considering suggestive
local contexts and repetitions of individual words within a document. It then applies
this information to identify sentence boundaries using a small set of rules.

2. Performance Measure, Corpora for Evaluation, and Intended Markup

A standard practice for measuring the performance of a system for the class of tasks
with which we are concerned in this article is to calculate its error rate:

error rate =
incorrectly assigned

all assigned by system

This single measure gives enough information, provided that the system does not
leave unassigned word tokens that it is intended to handle. Obviously, we want the
system to handle all cases as accurately as possible. Sometimes, however, it is beneficial
to assign only cases in which the system is confident enough, leaving the rest to be
handled by other methods. In this case apart from the error rate (which corresponds
to precision or accuracy as 1−error rate) we also measure the system’s coverage or
recall

coverage =
correctly assigned
all to be assigned

2.1 Corpora for Evaluation
There are two corpora normally used for evaluation in a number of text-processing
tasks: the Brown corpus (Francis and Kucera 1982) and the Wall Street Journal (WSJ)
corpus, both part of the Penn Treebank (Marcus, Marcinkiewicz, and Santorini 1993).
The Brown corpus represents general English. It contains over one million word tokens
and is composed from 15 subcorpora that belong to different genres and domains,
ranging from news wire texts and scientific papers to fiction and transcribed speech.
The Brown corpus is rich in out-of-vocabulary (unknown) words, spelling errors, and
ungrammatical sentences with complex internal structure. Altogether there are about
500 documents in the Brown corpus, with an average length of 2,300 word tokens.

The WSJ corpus represents journalistic news wire style. Its size is also over a
million word tokens, and the documents it contains are rich in abbreviations and
proper names, but they are much shorter than those in the Brown corpus. Altogether
there are about 2,500 documents in the WSJ corpus, with an average length of about
500 word tokens.

Documents in the Penn Treebank are segmented into paragraphs and sentences.
Sentences are further segmented into word tokens annotated with part-of-speech (POS)
information. POS information can be used to distinguish between proper names and
common words. We considered proper nouns (NNP), plural proper nouns (NNPS), and
proper adjectives2 (JJP) to signal proper names, and all other categories were consid-
ered to signal common words or punctuation. Since proper adjectives are not included
in the Penn Treebank tag set, we had to identify and retag them ourselves with the
help of a gazetteer.

Abbreviations in the Penn Treebank are tokenized together with their trailing pe-
riods, whereas fullstops and other sentence boundary punctuation are tokenized as
separate tokens. This gives all necessary information for the evaluation in all our three

2 These are adjectives derived from proper nouns (e.g. “American”).
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tasks: the sentence boundary disambiguation task, the capitalized word disambigua-
tion task, and the abbreviation identification task.

2.2 Tokenization Convention and Corpora Markup
For easier handling of potential sentence boundary punctuation, we developed a new
tokenization convention for periods. In the traditional Penn Treebank schema, abbrevi-
ations are tokenized together with their trailing periods, and thus stand-alone periods
unambiguously signal the end of a sentence. We decided to treat periods and all other
potential sentence termination punctuation as “first-class citizens” and adopted a con-
vention always to tokenize a period (and other punctuation) as a separate token when
it is followed by a white space, line break, or punctuation. In the original Penn Tree-
bank format, periods are unambiguous, whereas in our new convention they can take
on one of the three tags: fullstop (.), part of abbreviation (A) or both (*).

To generate the new format from the Penn Treebank, we had to split final periods
from abbreviations, mark them as separate tokens and assign them with A or * tags
according to whether or not the abbreviation was the last token in a sentence. We
applied a similar tokenization convention to the case in which several (usually three)
periods signal ellipsis in a sentence. Again, sometimes such constructions occur within
a sentence and sometimes at a sentence break. We decided to treat such constructions
similarly to abbreviations, tokenize all periods but the last together in a single token,
and tokenize the last period separately and tag it with A or * according to whether
or not the ellipsis was the last token in a sentence. We treated periods in numbers
(e.g., 14.534) or inside acronyms (e.g., Y.M.C.A.) as part of tokens rather than separate
periods.

In all our experiments we treated embedded sentence boundaries in the same way
as normal sentence boundaries. An embedded sentence boundary occurs when there
is a sentence inside a sentence. This can be a quoted direct-speech subsentence inside a
sentence, a subsentence embedded in brackets, etc. We considered closing punctuation
of such sentences equal to closing punctuation of normal sentences.

We also specially marked word tokens in positions where they were ambiguously
capitalized if such word tokens occurred in one of the following contexts:

• the first token in a sentence

• following a separately tokenized period, question mark, exclamation
mark, semicolon, colon, opening quote, closing quote, opening bracket,
or closed bracket

• occurring in a sentence with all words capitalized

All described transformations were performed automatically by applying a simple
Perl script. We found quite a few infelicities in the original tokenization and tagging,
however, which we had to correct by hand. We also converted both our corpora from
their original Penn Treebank format into an XML format where each word token is
represented as an XML element (W) with the attribute C holding its POS information
and attribute A set to Y for ambiguously capitalized words. An example of such a
markup is displayed in Figure 1.

3. Our Approach to Sentence Boundary Disambiguation

If we had at our disposal entirely correct information on whether or not each word
preceding a period was an abbreviation and whether or not each capitalized word
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...<W C=RB>soon</W><W C=’.’>.</W> <W A=Y C=NNP>Mr</W><W C=A>.</W>...

...<W C=VBN>said</W> <W C=NNP>Mr</W><W C=A>.</W>

<W A=Y C=NNP>Brown</W>...

...<W C=’,’>,</W> <W C=NNP>Tex</W><W C=’*’>.</W>

<W A=Y C=JJP>American</W>...

Figure 1
Example of the new tokenization and markup generated from the Penn Treebank format.
Tokens are represented as XML elements W, where the attribute C holds POS information.
Proper names are tagged as NNP, NNPS and JJP. Periods are tagged as . (fullstop), A (part of
abbreviation), * (a fullstop and part of abbreviation at the same time). Ambiguously
capitalized words are marked with A = Y.

that follows a period was a proper name, we could apply a very simple set of rules
to disambiguate sentence boundaries:

• If a period follows a nonabbreviation, it is sentence terminal (.).

• If a period follows an abbreviation and is the last token in a text passage
(paragraph, document, etc.), it is sentence terminal and part of the
abbreviation (*).

• If a period follows an abbreviation and is not followed by a capitalized
word, it is part of the abbreviation and is not sentence terminal (A).

• If a period follows an abbreviation and is followed by a capitalized word
that is not a proper name, it is sentence terminal and part of the
abbreviation (*).

It is a trivial matter to extend these rules to allow for brackets and quotation marks
between the period and the following word. To handle other sentence termination
punctuation such as question and exclamation marks and semicolons, this rule set
also needs to include corresponding rules. The entire rule set for sentence boundary
disambiguation that was used in our experiments is listed in Appendix A.

3.1 Ideal Case: Upper Bound for Our SBD Approach
The estimates from the Brown corpus and the WSJ corpus (section 3) show that the
application of the SBD rule set described above together with the information on
abbreviations and proper names marked up in the corpora produces very accurate
results (error rate less than 0.0001%), but it leaves unassigned the outcome of the case
in which an abbreviation is followed by a proper name. This is a truly ambiguous case,
and to deal with this situation in general, one should encode detailed information
about the words participating in such contexts. For instance, honorific abbreviations
such as Mr. or Dr. when followed by a proper name almost certainly do not end a
sentence, whereas the abbreviations of U.S. states such as Mo., Cal., and Ore., when
followed directly by a proper name, most likely end a sentence. Obviously encoding
this kind of information into the system requires detailed analysis of the domain lexica,
is not robust to unseen abbreviations, and is labor intensive.

To make our method robust to unseen words, we opted for a crude but simple
solution. If such ambiguous cases are always resolved as “not sentence boundary” (A),
this produces, by our measure, an error rate of less than 3%. Estimates from the Brown
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Table 1
Estimates of the upper and lower bound error rates on the SBD task for our method. Three
estimated categories are sentence boundaries, ambiguously capitalized words, and
abbreviations.

Brown Corpus WSJ Corpus

SBD Amb. Cap. Abbreviations SBD Amb. Cap. Abbreviations

Number of 59,539 58,957 4,657 53,043 54,537 16,317
resolved instances

A Upper Bound: 0.01% 0.0% 0.0% 0.13% 0.0% 0.0%
All correct proper
names
All correct abbrs.

B Lower Bound: 2.00% 7.4% 10.8% 4.10% 15.0% 9.6%
Lookup proper
names
Guessed abbrs.

C Lookup proper 1.20% 7.4% 0.0% 2.34% 15.0% 0.0%
names
All correct abbrs.

D All correct proper 0.45% 0.0% 10.8% 1.96% 0.0% 9.6%
names
Guessed abbrs.

corpus and the WSJ corpus showed that such ambiguous cases constitute only 5–7%
of all potential sentence boundaries. This translates into a relatively small impact of
the crude strategy on the overall error rate on sentence boundaries. This impact was
measured at 0.01% on the Brown corpus and at 0.13% on the WSJ corpus, as presented
in row A of Table 1. Although this overly simplistic strategy extracts a small penalty
from the performance, we decided to use it because it is very general and independent
of domain-specific knowledge.

The SBD handling strategy described above is simple, robust, and well perform-
ing, but it relies on the assumption that we have entirely correct information about
abbreviations and proper names, as can be seen in row A of the table. The main dif-
ficulty is that when dealing with real-world texts, we have to identify abbreviations
and proper names ourselves. Thus estimates based on the application of our method
when using 100% correctly disambiguated capitalized words and abbreviations can be
considered as the upper bound for the SBD approach, that is, the top performance we
can achieve.

3.2 Worst Case: Lower Bound for Our SBD Approach
We can also estimate the lower bound for this approach applying very simple strategies
to the identification of proper names and abbreviations.

The simplest strategy for deciding whether or not a capitalized word in an ambigu-
ous position is a proper name is to apply a lexical-lookup strategy (possibly enhanced
with a morphological word guesser, e.g., Mikheev [1997]). Using this strategy, words
not listed as known common words for a language are usually marked as proper
names. The application of this strategy produced a 7.4% error rate on the Brown
corpus and a 15% error rate on the WSJ corpus. The difference in error rates can be
explained by the observation that the WSJ corpus contains a higher percentage of orga-
nization names and person names, which often coincide with common English words,



295

Mikheev Periods, Capitalized Words, etc.

and it contains more words in titles with all important words capitalized, which we
also consider as ambiguously capitalized.

The simplest strategy for deciding whether a word that is followed by a period
is an abbreviation or a regular word is to apply well-known heuristics based on the
observation that single-word abbreviations are short and normally do not include
vowels (Mr., Dr., kg.). Thus a word without vowels can be guessed to be an abbreviation
unless it is written in all capital letters and can stand for an acronym or a proper name
(e.g., BBC). A span of single letters separated by periods forms an abbreviation too
(e.g., Y.M.C.A.). A single letter followed by a period is also a very likely abbreviation.
There is also an additional heuristic that classifies as abbreviations short words (with
length less than five characters) that are followed by a period and then by a comma, a
lower-cased word, or a number. All other words are considered to be nonabbreviations.

These heuristics are reasonably accurate. On the WSJ corpus they misrecognized
as abbreviations only 0.2% of tokens. On the Brown corpus the misrecognition rate was
significantly higher: 1.6%. The major source for these errors were single letters that
stand for mathematical symbols in the scientific subcorpora of the Brown Corpus (e.g.,
point T or triangle F). The major shortcoming of these abbreviation-guessing heuristics,
however, comes from the fact that they failed to identify about 9.5% of abbreviations.
This brings the overall error rate of the abbreviation-guessing heuristics to about 10%.

Combining the information produced by the lexical-lookup approach to proper
name identification with the abbreviation-guessing heuristics feeding the SBD rule set
gave us a 2.0% error rate on the Brown corpus and 4.1% on the WSJ corpus on the
SBD task. This can be interpreted as the lower bound to our SBD approach. Here we
see how errors in the identification of proper names and abbreviations propagated
themselves into errors on sentence boundaries. Row B of Table 1 displays a summary
for the lower-bound results.

3.3 Major Findings
We also measured the importance of each of the two knowledge sources (abbreviations
and proper names) separately. First, we applied the SBD rule set when all abbreviations
were correctly identified (using the information presented in the corpus) but applying
the lexical lookup strategy to proper-name identification (row C of Table 1). Then, we
applied the SBD rule set when all proper names were correctly identified (using the
information presented in the corpus) but applying the guessing heuristics to handle
abbreviations (row D of the table). In general, when a knowledge source returned
100% accurate information this significantly improved performance on the SBD task
measured against the lower-bound error rate. We also see that proper names have a
higher impact on the SBD task than abbreviations.

Since the upper bound of our SBD approach is high and the lower bound is far
from being acceptable, our main strategy for sentence boundary disambiguation will be to
invest in the disambiguation of capitalized words and abbreviations that then feed our SBD
rule set.

4. Document-Centered Approach to Proper Name and Abbreviation Handling

As we discussed above, virtually any common word can potentially act as a proper
name or part of a multiword proper name. The same applies to abbreviations: there is
no fixed list of abbreviations, and almost any short word can be used as an abbrevia-
tion. Fortunately, there is a mitigating factor too: important words are typically used
in a document more than once and in different contexts. Some of these contexts create
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ambiguity, but some do not. Furthermore, ambiguous words and phrases are usually
unambiguously introduced at least once in the text unless they are part of common
knowledge presupposed to be possessed by the readers.

This observation can be applied to a broader class of tasks. For example, people
are often referred to by their surnames (e.g., Black) but are usually introduced at least
once in the text either with their first name (John Black) or with their title/profession
affiliation (Mr. Black, President Bush), and it is only when their names are common
knowledge that they do not need an introduction (e.g., Castro, Gorbachev). Thus our
suggestion is to look at the unambiguous usages of the words in question in the entire document.

In the case of proper name identification, we are not concerned with the semantic
class of a name (e.g., whether it is a person’s name or a location), but rather we simply
want to distinguish whether a capitalized word in a particular occurrence acts as a
proper name (or part of a multiword proper name). If we restrict our scope to a single
sentence, we might find that there is just not enough information to make a reliable
decision. For instance, Riders in the sentence Riders rode all over the green is equally likely
to be a proper noun, a plural proper noun, or a plural common noun. But if in the
same text we find John Riders, this sharply increases the likelihood that the proper noun
interpretation is the correct one, and conversely if we find many riders, this suggests
the plural-noun interpretation.

The above reasoning can be summarized as follows: if we detect that a word is
used capitalized in an unambiguous context, this increases the chances that this word
acts as a proper name in ambiguous positions in the same document. And conversely
if a word is seen only lower-cased, this increases the chances that it should be treated
as a common word even when used capitalized in ambiguous positions in the same
document. (This, of course, is only a general principle and will be further elaborated
elsewhere in the article.)

The same logic applies to abbreviations. Although a short word followed by a
period is a potential abbreviation, the same word occurring in the same document
in a different context can be unambiguously classified as a regular word if it is used
without a trailing period, or it can be unambiguously classified as an abbreviation if
it is used with a trailing period and is followed by a lower-cased word or a comma.
This information gives us a better chance of assigning these potential abbreviations
correctly in nonobvious contexts.

We call such style of processing a document-centered approach (DCA), since in-
formation for the disambiguation of an individual word token is derived from the
entire document rather than from its immediate local context. Essentially the system
collects suggestive instances of usage for target words from each document under
processing and applies this information on the fly to the processing of the document,
in a manner similar to instance-based learning. This differentiates DCA from the tradi-
tional corpus-based approach, in which learning is applied prior to processing, which
is usually performed with supervision over multiple documents of the training corpus.

5. Building Support Resources

Our method requires only four word lists. Each list is a collection of words that belong
to a single type, but at the same time, a word can belong to multiple lists. Since we
have four lists, we have four types:

• common word (as opposed to proper name)

• common word that is a frequent sentence starter
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• frequent proper name

• abbreviation (as opposed to regular word)

These four lists can be acquired completely automatically from raw (unlabeled) texts.
For the development of these lists we used a collection of texts of about 300,000 words
derived from the New York Times (NYT) corpus that was supplied as training data for
the 7th Message Understanding Conference (MUC-7) (Chinchor 1998). We used these
texts because the approach described in this article was initially designed to be part
of a named-entity recognition system (Mikheev, Grover, and Moens 1998) developed
for MUC-7. Although the corpus size of 300,000 words can be seen as large, the fact
that this corpus does not have to be annotated in any way and that a corpus of similar
size can be easily collected from on-line sources (including the Internet) makes this
resource cheap to obtain.

The first list on which our method relies is a list of common words. This list
includes common words for a given language, but no supplementary information such
as POS or morphological information is required to be present in this list. A variety
of such lists for many languages are already available (e.g., Burnage 1990). Words in
such lists are usually supplemented with morphological and POS information (which
is not required by our method). We do not have to rely on pre-existing resources,
however. A list of common words can be easily obtained automatically from a raw
(unannotated in any way) text collection by simply collecting and counting lower-
cased words in it. We generated such list from the NYT collection. To account for
potential spelling and capitalization errors, we included in the list of common words
only words that occurred lower-cased at least three times in the NYT texts. The list
of common words that we developed from the NYT collection contained about 15,000
English words.

The second list on which our method relies is a frequent-starters list, a list of
common words most frequently used in sentence-starting positions. This list can also
be obtained completely automatically from an unannotated corpus by applying the
lexical-lookup strategy. As discussed in Section 3.2, this strategy performs with a
7–15% error rate. We applied the list of common words over the NYT text collec-
tion to tag capitalized words in sentence-starting positions as common words and as
proper names: if a capitalized word was found in the list of common words, it was
tagged as a common word: otherwise it was tagged as a proper name. Of course, such
tagging was far from perfect, but it was good enough for our purposes. We included in
the frequent-starters list only the 200 most frequent sentence-starting common words.
This was more than a safe threshold to ensure that no wrongly tagged words were
added to this list. As one might predict, the most frequent sentence-starting common
word was The. This list also included some adverbs, such as However, Suddenly, and
Once; some prepositions, such as In, To, and By; and even a few verbs: Let, Have, Do, etc.

The third list on which our method relies is a list of single-word proper names that
coincide with common words. For instance, the word Japan is much more likely to be
used as a proper name (name of a country) rather than a verb, and therefore it needs to
be included in this list. We included in the proper name list 200 words that were most
frequently seen in the NYT text collection as single capitalized words in unambiguous
positions and that at the same time were present in the list of common words. For
instance, the word The can frequently be seen capitalized in unambiguous positions,
but it is always followed by another capitalized word, so we do not count it as a
candidate. On the other hand the word China is often seen capitalized in unambiguous
positions where it is not preceded or followed by other capitalized words. Since china
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Table 2
Error rates for different combinations of the abbreviation identification methods, including
combinations of guessing heuristics (GH), lexical lookup (LL), and the document-centered
approach (DCA).

Abbreviation Identification Method WSJ Brown

A GH 9.6% 10.8%
B LL 12.6% 11.9%
C GH + LL 1.2% 2.1%
D GH + DCA 6.6% 8.9%
E GH + DCA + LL 0.8% 1.2%

is also listed among common words and is much less frequently used in this way, we
include it in the proper name list.

The fourth list on which our method relies is a list of known abbreviations.
Again, we induced this list completely automatically from an unannotated corpus.
We applied the abbreviation-guessing heuristics described in Section 6 to our NYT
text collection and then extracted the 270 most frequent abbreviations: all abbrevi-
ations that appeared five times or more. This list included honorific abbreviations
(Mr, Dr), corporate designators (Ltd, Co), month name abbreviations (Jan, Feb), ab-
breviations of names of U.S. states (Ala, Cal), measure unit abbreviations (ft, kg), etc.
Although we described these abbreviations in groups, this information was not en-
coded in the list; the only information this list provides is that a word is a known
abbreviation.

Among these four lists the first three reflect general language regularities and
usually do not require modification for handling texts from a new domain. The ab-
breviation list, however, is much more domain dependent and for better performance
needs to be reinduced for a new domain. Since the compilation of all four lists does not
require data preannotated in any way, it is very easy to specialize the above-described
lists to a particular domain: we can simply rebuild the lists using a domain-specific
corpus. This process is completely automatic and does not require any human labor
apart from collecting a raw domain-specific corpus. Since all cutoff thresholds that
we applied here were chosen by intuition, however, different domains might require
some new settings.

6. Recognizing Abbreviations

The answer to the question of whether or not a particular word token is an abbreviation
or a regular word largely solves the sentence boundary problem. In the Brown corpus
92% of potential sentence boundaries come after regular words. The WSJ corpus is
richer with abbreviations, and only 83% of sentences in that corpus end with a regular
word followed by a period. In Section 3 we described the heuristics for abbreviation
guessing and pointed out that although these heuristics are reasonably accurate, they
fail to identify about 9.5% of abbreviations. Since unidentified abbreviations are then
treated as regular words, the overall error rate of the guessing heuristics was measured
at about 10% (row A of Table 2). Thus, to improve this error rate, we need first of all
to improve the coverage of the abbreviation-handling strategy.

A standard way to do this is to use the guessing heuristics in conjunction with a
list of known abbreviations. We decided to use the list of 270 abbreviations described
in Section 5. First we applied only the lexical-lookup strategy to our two corpora (i.e.,
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only when a token was found in the list of 270 known abbreviations was it marked
as an abbreviation). This gave us an unexpectedly high error rate of about 12%, as
displayed in row B of Table 2. When we investigated the reason for the high error
rate, we found that the majority of single letters and spans of single letters sepa-
rated by periods (e.g. Y.M.C.A.) found in the Brown corpus and the WSJ corpus were
not present in our abbreviation list and therefore were not recognized as abbrevia-
tions.

Such cases, however, are handled well by the abbreviation-guessing heuristics.
When we applied the abbreviation list together with the abbreviation-guessing heuris-
tics (row C of Table 2), this gave us a very strong performance on the WSJ corpus:
an error rate of 1.2%. On the Brown corpus, the error rate was higher: 2.1%. This can
be explained by the fact that we collected our abbreviation list from a corpus of news
articles that is not too dissimilar to the texts in the WSJ corpus and thus, this list con-
tained many abbreviations found in that corpus. The Brown corpus, in contrast, ranges
across several different domains and sublanguages, which makes it more difficult to
compile a list from a single corpus to cover it.

6.1 Unigram DCA
The abbreviation-guessing heuristics supplemented with a list of abbreviations are
accurate, but they still can miss some abbreviations. For instance, if an abbreviation
like sec or Okla. is followed by a capitalized word and is not listed in the list of
abbreviations, the guessing heuristics will not uncover them. We also would like to
boost the abbreviation handling with a domain-independent method that enables the
system to function even when the abbreviation list is not much of a help. Thus, in
addition to the list of known abbreviations and the guessing heuristics, we decided to
apply the DCA as described below.

Each word of length four characters or less that is followed by a period is treated as
a potential abbreviation. First, the system collects unigrams of potential abbreviations
in unambiguous contexts from the document under processing. If a potential abbre-
viation is used elsewhere in the document without a trailing period, we can conclude
that it in fact is not an abbreviation but rather a regular word (nonabbreviation). To
decide whether a potential abbreviation is really an abbreviation, we look for contexts
in which it is followed by a period and then by a lower-cased word, a number, or a
comma.

For instance, the word Kong followed by a period and then by a capitalized word
cannot be safely classified as a regular word (nonabbreviation), and therefore it is a
potential abbreviation. But if in the same document we detect a context lived in Hong
Kong in 1993, this indicates that Kong in this document is normally written without
a trailing period and hence is not an abbreviation. Having established that, we can
apply this information to nonevident contexts and classify Kong as a regular word
throughout the document. However, if we detect a context such as Kong., said, this
indicates that in this document, Kong is normally written with a trailing period and
hence is an abbreviation. This gives us grounds for classifying Kong as an abbreviation
in all its occurrences within the same document.

6.2 Bigram DCA
The DCA relies on the assumption that there is a consistency in writing within the
same document. Different authors can write Mr or Dr with or without a trailing period,
but we assume that the same author (the author of a particular document) writes
it in the same way consistently. A situation can arise, however, in which the same
potential abbreviation is used as a regular word and as an abbreviation within the same
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document. This is usually the case when an abbreviation coincides with a regular word,
for example Sun. (meaning Sunday) and Sun (the name of a newspaper). To tackle
this problem, the system can collect from a document not only unigrams of potential
abbreviations in unambiguous contexts but also their bigrams with the preceding
word. Of course, as in the case with unigrams, the bigrams are collected on the fly
and completely automatically.

For instance, if the system finds a context vitamin C is, it stores the bigram vita-
min C and the unigram C with the information that C is a regular word. If in the
same document the system also detects a context John C. later said, it stores the bi-
gram John C and the unigram C with the information that C is an abbreviation. Here
we have conflicting information for the word C: it was detected to act as a regu-
lar word and as an abbreviation within the same document, so there is not enough
information to resolve ambiguous cases purely using the unigram. Some cases, how-
ever, can still be resolved on the basis of the bigrams. The system will assign C as a
regular word (nonabbreviation) in an ambiguous context such as vitamin C. Research
because of the stored vitamin C bigram. Obviously from such a short context, it is
difficult even for a human to make a confident decision, but the evidence gathered
from the entire document can influence this decision with a high degree of confi-
dence.

6.3 Resulting Approach
When neither unigrams nor bigrams can help to resolve an ambiguous context for a
potential abbreviation, the system decides in favor of the more frequent category for
that abbreviation. If the word In was detected to act as a regular word (preposition) five
times in the current document and two times as abbreviation (for the state Indiana), in
a context in which neither of the bigrams collected from the document can be applied,
In is assigned as a regular word (nonabbreviation). The last-resort strategy is to assign
all nonresolved cases as nonabbreviations.

Row D of Table 2 shows the results when we applied the abbreviation-guessing
heuristics together with the DCA. On the WSJ corpus, the DCA reduced the error rate
of the guessing heuristics alone (row A) by about 30%; on the Brown corpus its impact
was somewhat smaller, about 18%. This can be explained by the fact that abbreviations
in the WSJ corpus have a much higher repetition rate, which is very important for
the DCA.

We also applied the DCA together with the lexical lookup and the guessing heuris-
tics. This reduced the error rate on abbreviation identification by about 30% in com-
parison with the list and guessing heuristics configuration, as can be seen in row E of
Table 2.

7. Disambiguating Capitalized Words

The second key task of our approach is the disambiguation of capitalized words that
follow a potential sentence boundary punctuation sign. Apart from being an important
component in the task of text normalization, information about whether or not a
capitalized word that follows a period is a common word is crucial for the SBD task,
as we showed in Section 3. We tackle capitalized words in a similar fashion as we
tackled the abbreviations: through a document-centered approach that analyzes on
the fly the distribution of ambiguously capitalized words in the entire document. This
is implemented as a cascade of simple strategies, which were briefly described in
Mikheev (1999).
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7.1 The Sequence Strategy
The first DCA strategy for the disambiguation of ambiguous capitalized words is to
explore sequences of words extracted from contexts in which the same words are used
unambiguously with respect to their capitalization. We call this the sequence strategy.
The rationale behind this strategy is that if there is a phrase of two or more capitalized
words starting from an unambiguous position (e.g., following a lower-cased word),
the system can be reasonably confident that even when the same phrase starts from an
unreliable position (e.g., after a period), all its words still have to be grouped together
and hence are proper nouns. Moreover, this applies not just to the exact replication of
the capitalized phrase, but to any partial ordering of its words of size two characters
or more preserving their sequence.

For instance, if a phrase Rocket Systems Development Co. is found in a document
starting from an unambiguous position (e.g., after a lower-cased word, a number, or a
comma), the system collects it and also generates its partial-order subphrases: Rocket
Systems, Rocket Systems Co., Rocket Co., Systems Development, etc. If then in the same
document Rocket Systems is found in an ambiguous position (e.g., after a period), the
system will assign the word Rocket as a proper noun because it is part of a multiword
proper name that was seen in the unambiguous context.

A span of capitalized words can also internally include alpha-numerals, abbrevia-
tions with internal periods, symbols, and lower-cased words of length three characters
or shorter. This enables the system to capture phrases like A & M and The Phantom of
the Opera. Partial orders from such phrases are generated in a similar way, but with
the restriction that every generated subphrase should start and end with a capitalized
word.

The sequence strategy can also be applied to disambiguate common words. Since
in the case of common words the system cannot determine boundaries of a phrase,
only bigrams of the lower-cased words with their following words are collected from
the document. For instance, from a context continental suppliers of Mercury, the sys-
tem collects three bigrams: continental suppliers, suppliers of, and of Mercury. When the
system encounters the phrase Continental suppliers after a period, it can now use the
information that in the previously stored bigram continental suppliers, the word token
continental was written lower-cased and therefore was unambiguously used as a com-
mon word. On this basis the system can assign the ambiguous capitalized word token
Continental as a common word.

Row A of Table 3 displays the results obtained in the application of the sequence
strategy to the Brown corpus and the WSJ corpus. The sequence strategy is extremely
useful when we are dealing with names of organizations, since many of them are
multiword phrases composed of common words. For instance, the words Rocket and
Insurance can be used both as proper names and common words within the same
document. The sequence strategy maintains contexts of the usages of such words
within the same document, and thus it can disambiguate such usages in the ambiguous
positions matching surrounding words. And indeed, the error rate of this strategy
when applied to proper names was below 1%, with coverage of about 9–12%.

For tagging common words the sequence strategy was also very accurate (error
rate less than 0.3%), covering 17% of ambiguous capitalized common words on the
WSJ corpus and 25% on the Brown corpus. The higher coverage on the Brown corpus
can be explained by the fact that the documents in that corpus are in general longer
than those in the WSJ corpus, which enables more word bigrams to be collected from
a document.

Dual application of the sequence strategy contributes to its robustness against po-
tential capitalization errors in the document. The negative evidence (not proper name)
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Table 3
First part: Error rates of different individual strategies for capitalized-word disambiguation.
Second part: Error rates of the overall cascading application of the individual strategies.

Strategy Word Class Error Rate Coverage
WSJ Brown WSJ Brown

A Sequence strategy Proper Names 0.12% 0.97% 12.6% 8.82%
Sequence strategy Common Words 0.28% 0.21% 17.68% 26.5%

B Frequent-list lookup strategy Proper Names 0.49% 0.16% 2.62% 6.54%
Frequent-list lookup strategy Common Words 0.21% 0.14% 64.62% 61.20%

C Single-word assignment strategy Proper Names 3.18% 1.96% 18.77% 34.13%
Single-word assignment strategy Common Words 6.51% 2.87% 3.07% 4.78%

D Cascading DCA Proper/Common 1.10% 0.76% 84.12% 91.76%
E Cascading DCA Proper/Common 4.88% 2.83% 100.0% 100.0%

and lexical lookup

is used together with the positive evidence (proper name) and blocks assignment when
conflicts are found. For instance, if the system detects a capitalized phrase The President
in an unambiguous position, then the sequence strategy will treat the word the as part
of the proper name The President even when this phrase follows a period. If in the
same document, however, the system detects alternative evidence (e.g., the President,
where the is not part of the proper name), it then will block as unsafe the assignment
of The as a proper name in ambiguous usages of The President.

7.2 Frequent-List Lookup Strategy
The frequent-list lookup strategy applies lookup of ambiguously capitalized words
in two word lists. The first list contains common words that are frequently found
in sentence-starting positions, and the other list contains the most frequent proper
names. Both these lists can be compiled completely automatically, as explained in
section 5. Thus, if an ambiguous capitalized word is found in the list of frequent
sentence-starting common words, it is assigned as a common word, and if it is found
in the list of frequent proper names, it is assigned as a proper name. For instance,
the word token The when used after a period will be recognized as a common word,
because The is a frequent sentence-starting common word. The Word token Japan in a
similar context will be recognized as a proper name, because Japan is a member of the
frequent-proper-name list.

Note, however, that this strategy is applied after the sequence strategy and thus, a
word listed in one of the lists will not necessarily be marked according to its list class.
The list lookup assignment is applied only to the ambiguously capitalized words that
have not been handled by the sequence strategy.

Row B of Table 3 displays the results of the application of the frequent-list lookup
strategy to the Brown corpus and the WSJ corpus. The frequent-list lookup strategy
produced an error rate of less than 0.5%. A few wrong assignments came from phrases
like Mr. A and Mrs. Someone and words in titles like I’ve Got a Dog, where A, Someone,
and I were recognized as common words although they were tagged as proper nouns
in the text. The frequent-list lookup strategy is not very effective for proper names,
where it covered under 7% of candidates in the Brown corpus and under 3% in the
WSJ corpus, but it is extremely effective for common words: it covered over 60% of
ambiguous capitalized common words.
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7.3 Single-Word Assignment
The sequence strategy is accurate, but it covers only 9–12% of proper names in ambigu-
ous positions. The frequent-list lookup strategy is mostly effective for common words.
To boost the coverage on the proper name category, we introduced another DCA
strategy. We call this strategy single-word assignment, and it can be summarized as
follows: if a word in the current document is seen capitalized in an unambiguous po-
sition and at the same time it is not used lower-cased anywhere in the document, this
word in this particular document is very likely to stand for a proper name even when
used capitalized in ambiguous positions. And conversely, if a word in the current
document is used only lower-cased (except in ambiguous positions), it is extremely
unlikely that this word will act as a proper name in an ambiguous position and thus,
such a word can be marked as a common word.

Note that by the time single-word assignment is implemented, the sequence strat-
egy and the frequent-list lookup strategy have been already applied and all high-
frequency sentence-initial words have been assigned. This ordering is important, be-
cause even if a high-frequency common word is observed in a document only as a
proper name (usually as part of a multiword proper name), it is still not safe to mark
it as a proper name in ambiguous positions.

Row C of Table 3 displays the results of the application of the single-word assign-
ment strategy to the Brown corpus and the WSJ corpus. The single-word assignment
strategy is useful for proper-name identification: although it is not as accurate as the
sequence strategy, it still produces a reasonable error rate at the same time boosting the
coverage considerably (19–34%). On common words this method is not as effective,
with an error rate as high as 6.61% on the WSJ corpus and a coverage below 5%.

The single-word-assignment strategy handles well the so-called unknown-word
problem, which arises when domain-specific lexica are missing from a general vocab-
ulary. Since our system is not equipped with a general vocabulary but rather builds a
document-specific vocabulary on the fly,” important domain-specific words are iden-
tified and treated similarly to all other words.

A generally difficult case for the single-word assignment strategy arises when a
word is used both as a proper name and as a common word in the same document, es-
pecially when one of these usages occurs only in an ambiguous position. For instance,
in a document about steel, the only occurrence of Steel Company happened to start
a sentence. This produced an erroneous assignment of the word Steel as a common
word. Another example: in a document about the Acting Judge, the word acting in a
sentence Acting on behalf. . . was wrongly classified as a proper name. These difficulties,
however, often are compensated for by the sequence strategy, which is applied prior
to the single-word assignment strategy and tackles such cases using n-grams of words.

7.4 Quotes, Brackets, and “After Abbr.” Heuristic
Capitalized words in quotes and brackets do not directly contribute to our primary
task of sentence boundary disambiguation, but they still present a case of ambiguity
for the task of capitalized-word disambiguation. To tackle them we applied two simple
heuristics:

• If a single capitalized word is used in quotes or brackets it is a proper
noun (e.g., John (Cool) Lee).

• If there is a lowercased word, a number, or a comma that is followed by
an opening bracket and then by a capitalized word, this capitalized word
is a proper noun (e.g., . . . happened (Moscow News reported yesterday) but. . . ).
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These heuristics are reasonably accurate: they achieved under 2% error rate on our
two test corpora, but they covered only about 6–7% of proper names.

When we studied the distribution of capitalized words after capitalized abbrevi-
ations, we uncovered an interesting empirical fact. A capitalized word that follows
a capitalized abbreviation is almost certainly a proper name unless it is listed in the
list of frequent sentence-starting common words (i.e., it is not The, However, etc.). The
error rate of this heuristic is about 0.8% and, not surprisingly, in 99.5% of cases the
abbreviation and the following proper name belonged to the same sentence. Naturally,
the coverage of this “after abbr.” heuristic depends on the proportion of capitalized
abbreviations in the text. In our two corpora this heuristic disambiguated about 20%
of ambiguous capitalized proper names.

7.5 Tagging Proper Names: The Overall Performance
In general, the cascading application of the above-described strategies achieved an
error rate of about 1%, but it left unclassified about 9% of ambiguous capitalized
words in the Brown corpus and 15% of such words in the WSJ corpus. Row D of
Table 3 displays the results of the application of the cascading application of the
capitalized-word disambiguation strategies to the Brown corpus and the WSJ corpus.

For the proper-name category, the most productive strategy was single-word as-
signment, followed by the “after abbr.” strategy, and then the sequence strategy. For
common words, the most productive was the frequent-list lookup strategy, followed
by the sequence strategy.

Since our system left unassigned 10–15% of ambiguous capitalized words, we have
to decide what to do with them. To keep our system simple and domain independent,
we opted for the lexical-lookup strategy that we evaluated in Section 3. This strategy,
of course, is not very accurate, but it is applied only to the unassigned words. Row E
of Table 3 displays the results of applying the lexical-lookup strategy after the DCA
methods. We see that the error rate went up in comparison to the DCA-only method
by more than three times (2.9% on the Brown corpus and 4.9% on the WSJ corpus),
but no unassigned ambiguous capitalized words are left in the text.

8. Putting It All Together: Assigning Sentence Boundaries

After abbreviations have been identified and capitalized words have been classified
into proper names and common words, the system can carry out the assignments
of sentence boundaries using the SBD rule set described in Section 3 and listed in
Appendix A. This rule set makes use of the observation that if we have at our dis-
posal unambiguous (but not necessarily correct) information as to whether a particular
word that precedes a period is an abbreviation and whether the word that follows
this period is a proper name, then in mixed-case texts we can easily assign a pe-
riod (and other potential sentence termination punctuation) as a sentence break or
not.

The only ambiguous outcome is generated by the configuration in which an ab-
breviation is followed by a proper name. We decided to handle this case by applying
a crude and simple strategy of always resolving it as “not sentence boundary.” On one
hand, this makes our method simple and robust, but on the other hand, it imposes
some penalty on its performance.

Row A of Table 4 summarizes the upper bound for our SBD approach: when we
have entirely correct information on the abbreviations and proper names, as explained
in Section 3.1. There the erroneous assignments come only from the crude treatment
of abbreviations that are followed by proper names.
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Table 4
Error rates measured on the SBD, capitalized-word disambiguation, and abbreviation
identification tasks achieved by different methods described in this article.

Method Brown Corpus WSJ Corpus

SBD Capitalized Abbreviations SBD Capitalized Abbreviations
words words

A Upper bound 0.01% 0.0% 0.0% 0.13% 0.0% 0.0%
B Lower bound 2.00% 7.40% 10.8% 4.10% 15.0% 9.6%
C Best quoted 0.20% 3.15% — 0.50% 4.72% —
D DCA 0.28% 2.83% 0.8% 0.45% 4.88% 1.2%
E DCA (no abbreviations 0.65% 2.89% 8.9% 1.41% 4.92% 6.6%

lexicon)
F POS tagger 0.25% 3.15% 1.2% 0.39% 4.72% 2.1%
G POS tagger + DCA 0.20% 1.87% 0.8% 0.31% 3.22% 1.2%

Row B of Table 4 summarizes the lower-bound results. The lower bound for our
approach was estimated by applying the lexical-lookup strategy for capitalized-word
disambiguation together with the abbreviation-guessing heuristics to feed the SBD
rule set, as described in Section 3.2. Here we see a significant impact of the infelicities
in the disambiguation of capitalized words and abbreviations on the performance of
the SBD rule set.

Row C of Table 4 summarizes the highest results known to us (for all three tasks)
produced by automatic systems on the Brown corpus and the WSJ corpus. State-of-the-
art machine learning and rule-based SBD systems achieve an error rate of 0.8–1.5%
measured on the Brown corpus and the WSJ corpus. The best performance on the
WSJ corpus was achieved by a combination of the SATZ system (Palmer and Hearst
1997) with the Alembic system (Aberdeen et al. 1995): a 0.5% error rate. The best
performance on the Brown corpus, a 0.2% error rate, was reported by Riley (1989), who
trained a decision tree classifier on a 25-million-word corpus. In the disambiguation of
capitalized words, the most widespread method is POS tagging, which achieves about
a 3% error rate on the Brown corpus and a 5% error rate on the WSJ corpus, as reported
in Mikheev (2000). We are not aware of any studies devoted to the identification of
abbreviations with comprehensive evaluation on either the Brown corpus or the WSJ
corpus.

In row D of Table 4, we summarized our main results: the results obtained by the
application of our SBD rule set, which uses the information provided by the DCA to
capitalized word disambiguation applied together with lexical lookup (as described
in Section 7.5), and the abbreviation-handling strategy, which included the guessing
heuristics, the DCA, and the list of 270 abbreviations (as described in Section 6). As
can be seen in the table, the performance of this system is almost indistinguishable
from the best previously quoted results. On proper-name disambiguation, it achieved
a 2.83% error rate on the Brown corpus and a 4.88% error rate on the WSJ corpus.
On the SBD task, it achieved a 0.28% error rate on the Brown corpus and a 0.45%
error rate on the WSJ corpus. If we compare these results with the upper bound
for our SBD approach, we can see that the infelicities in proper-name and abbrevia-
tion identification introduced an increase of about 0.3% in the error rate on the SBD
task.

To test the adaptability of our approach to a completely new domain, we applied
our system in a configuration in which it was not equipped with the list of 270 abbre-
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viations, since this list is the only domain-sensitive resource in our system. The results
for this configuration are summarized in row E of Table 4. The error rate increase of
5–7% on the abbreviation handling introduced about a twofold increase in the SBD
error rate on the Brown corpus (a 0.65% error rate) and about a threefold increase on
the WSJ corpus (1.41%). But these results are still comparable to those of the majority
of currently used sentence splitters.

9. Detecting Limits for the DCA

Since our DCA method relies on the assumption that the words it tries to disam-
biguate occur multiple times in a document, its performance clearly should depend
on the length of the document: very short documents possibly do not provide enough
disambiguation clues, whereas very long documents possibly contain too many clues
that cancel each other.

As noted in Section 2.1, the average length of the documents in the Brown corpus
is about 2,300 words. Also, the documents in that corpus are distributed very densely
around their mean. Thus not much can be inferred about the dependency of the perfor-
mance of the method on document length apart from the observation that documents
2,000–3,000 words long are handled well by our approach. In the WSJ corpus, the aver-
age length of the document is about 500 words, and therefore we could investigate the
effect of short documents on the performance. We divided documents into six groups
according to their length and plotted the error rate for the SBD and capitalized-word
disambiguation tasks as well as the number of documents in a group, as shown in
Figure 2. As can be seen in the figure, short documents (50 words or less) have the
highest average error rate both for the SBD task (1.63) and for the capitalized-word
disambiguation task (5.25). For documents 50 to 100 words long, the error rate is still
a bit higher than normal, and for longer documents the error rate stabilizes around
1.5 for the capitalized-word disambiguation task and 0.3 for the SBD task. The error
rate on documents 2,000 words long and higher is almost identical to that registered
on the Brown corpus on documents of the same length.

Thus here we can conclude that the proposed approach tends not to be very
effective for documents shorter than 50 words (one to three sentences), but it handles
well documents up to 4,000 words long. Since our corpora did not contain documents
significantly longer than that, we could not estimate whether or when the performance
of our method significantly deteriorates on longer documents. We also evaluated the
performance of the method on different subcorpora of the Brown corpus: the most
difficult subdomains proved to be scientific texts, spoken-language transcripts, and
journalistic texts, whereas fiction was the easiest genre for the system.

10. Incorporating DCA into a POS Tagger

To test our hypothesis that DCA can be used as a complement to a local-context
approach, we combined our main configuration (evaluated in row D of Table 4) with
a POS tagger. Unlike other POS taggers, this POS tagger (Mikheev 2000) was also
trained to disambiguate sentence boundaries.

10.1 Training a POS Tagger
In our markup convention (Section 2), periods are tokenized as separate tokens re-
gardless of whether they stand for fullstops or belong to abbreviations. Consequently
a POS tagger can naturally treat them similarly to any other ambiguous words. There
is, however, one difference in the implementation of such a tagger. Normally, a POS
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Figure 2
Distribution of the error rate and the number of documents across the document length
(measured in word tokens) in the WSJ corpus.

tagger operates on text spans that form a sentence. This requires resolving sentence
boundaries before tagging. We see no good reason, however, why such text spans
should necessarily be sentences, since the majority of tagging paradigms (e.g., Hidden
Markov Model [HMM] [Kupiec 1992], Brill’s [Brill 1995a], and MaxEnt [Ratnaparkhi
1996]) do not attempt to parse an entire sentence and operate only in the local win-
dow of two to three tokens. The only reason why taggers traditionally operate on
the sentence level is that a sentence naturally represents a text span in which POS
information does not depend on the previous and following history.

This issue can be also addressed by breaking the text into short text spans at
positions where the previous tagging history does not affect current decisions. For
instance, a bigram tagger operates within a window of two tokens, and thus a se-
quence of word tokens can be terminated at an unambiguous word token, since this
unambiguous word token will be the only history used in tagging of the next token.
At the same time since this token is unambiguous, it is not affected by the history.
A trigram tagger operates within a window of three tokens, and thus a sequence of
word tokens can be terminated when two unambiguous words follow each other.

Using Penn Treebank with our tokenization convention (Section 2), we trained a
trigram HMM POS tagger. Words were clustered into ambiguity classes (Kupiec 1992)
according to the sets of POS tags they can take on. The tagger predictions were based
on the ambiguity class of the current word, abbreviation/capitalization information,
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and trigrams of POS tags:

P(t1 . . . tnO1 . . .On) = argmax
i=n∏

i=1

P(Oi | ti) ∗ P(ti | ti−1ti−2ai−1)

where ti is a disambiguated POS tag of the ith word, ai is the abbreviation flag of
the ith word, and Oi is the observation at the ith position, which in our case is
the ambiguity class the word belongs to, its capitalization, and its abbreviation flag
(AmbClassi, ai, Capi). Since the abbreviation flag of the previous word strongly influ-
ences period disambiguation, it was included in the standard trigram model.

We decided to train the tagger with the minimum of preannotated resources. First,
we used 20,000 tagged words to “bootstrap” the training process, because purely un-
supervised techniques, at least for the HMM class of taggers, yield lower precision.
We also used our DCA system to assign capitalized words, abbreviations, and sen-
tence breaks, retaining only cases assigned by the strategies with an accuracy not less
than 99.8%. This was done because purely unsupervised techniques (e.g., Baum-Welch
[Baum and Petrie 1966] or Brill’s [Brill 1995b]) enable regularities to be induced for
word classes which contain many entries, exploiting the fact that individual words that
belong to a POS class occur in different ambiguity patterns. Counting all possible POS
combinations in these ambiguity patterns over multiple patterns usually produces the
right combinations as the most frequent. Periods as many other closed-class words
cannot be successfully covered by such technique.

After bootstrapping we applied the forward-backward (Baum-Welch) algorithm
(Baum and Petrie 1966) and trained our tagger in the unsupervised mode, that is, with-
out using the annotation available in the Brown corpus and the WSJ corpus. For
evaluation purposes we trained (and bootstrapped) our tagger on the Brown corpus
and applied it to the WSJ corpus and vice versa. We preferred this method to tenfold
cross-validation because it allowed us to produce only two tagging models instead of
twenty and also enabled us to test the tagger in harsher conditions, that is, when it is
applied to texts that are very distant from the ones on which it was trained.

The overall performance of the tagger was close to 96%, which is a bit lower
than the best quoted results. This can be accounted for by the fact that training and
evaluation were performed on two very different text corpora, as explained above.
The performance of the tagger on our target categories (periods and proper names)
was very close to that of the DCA method, as can be seen in row F of Table 4.

10.2 POS Tagger and the DCA
We felt that the DCA method could be used as a complement to the POS tagger, since
these techniques employ different types of information: in-document distribution and
local context. Thus, a hybrid system can deliver at least two advantages. First, 10–15%
of the ambiguous capitalized words unassigned by the DCA can be assigned using
a standard POS-tagging method based on the local syntactic context rather than the
inaccurate lexical-lookup approach. Second, the local context can correct some of the
errors made by the DCA.

To implement this hybrid approach we incorporated the DCA system into the
POS tagger. We modified the tagger model by incorporating the DCA predictions
using linear interpolation:

P(combined) = λ ∗ P(tagger) + (1 − λ) ∗ P(DCA Strategy)

where P(DCA Strategy) is the accuracy of a specific DCA strategy and P(tagger) is the
probability assigned by the tagger’s model. Although it was possible to estimate an



309

Mikheev Periods, Capitalized Words, etc.

optimal value for λ from the tagged corpus, we decided simply to set it to be 0.5 (i.e.,
giving similar weight to both sources of information). Instead of using the SBD rule
set described in Section 3, in this configuration, period assignments were handled by
the tagger’s model.

Row G of Table 4 displays the results of the application of the hybrid system. We
see an improvement on proper-name recognition in comparison to the DCA or POS-
tagging approaches (rows D and F) by about a 30–40% cut in the error rate: an overall
error rate of 1.87% on the Brown corpus and of 3.22% on the WSJ corpus. In turn this
enabled better tagging of sentence boundaries: a 0.20% error rate on the Brown corpus
and a 0.31% error rate on the WSJ corpus, which corresponds to about a 20% cut in
the error rate in comparison to the DCA or the POS-tagging approaches alone.

Thus, although for applications that rely on POS tagging it probably makes more
sense to have a single system that assigns both POS tags and sentence boundaries,
there is still a clear benefit in using the DCA method because

• the DCA method incorporated into the POS tagger significantly reduced
the error rate on the target categories (periods and proper names).

• the DCA method is domain independent, whereas taggers usually need
to be trained for each specific domain to obtain best results.

• the DCA system was used in resource preparation for training the tagger.

• the DCA system is significantly faster than the tagger, does not require
resource development, and for tasks that do not require full POS
information, it is a preferable solution.

So in general, the DCA method can be seen as an enhancer for a POS tagger and
also as a lightweight alternative to such a tagger when full POS information is not
required.

11. Further Experiments

11.1 The Cache Extension
One of the features of the method advocated in this article is that the system collects
suggestive instances of usage for target words from each document, then applies this
information during the second pass through the document (actual processing), and
then “forgets” what it has learned before handling another document. The main rea-
son for not carrying over the information that has been inferred from one document
to process another document is that in general we do not know whether this new
document comes from the same corpus as the first document, and thus the regular-
ities that have been identified in the first document might not be useful, but rather
harmful, when applied to that new document. When we are dealing with documents
of reasonable length, this “forgetful” behavior does not matter much, because such
documents usually contain enough disambiguation clues. As we showed in Section 8,
however, when short documents of one to three sentences are being processed, quite
often there are not enough disambiguation clues within the document itself, which
leads to inferior performance.

To improve the performance on short documents, we introduced a special caching
module that propagates some information identified in previously processed docu-
ments to the processing of a new one. To propagate features of individual words from
one document to processing another one is a risky strategy, since words are very
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ambiguous. Word sequences, however, are much more stable and can be propagated
across documents. We decided to accumulate in our cache all multiword proper names
and lower-cased word bigrams induced by the sequence strategy (Section 7.1). These
word sequences are used by the sequence strategy exactly as are word sequences in-
duced on the fly, and then the induced on-the-fly sequences are added to the cache.
We also add to the cache the bigrams of abbreviations and regular words induced by
the abbreviation-handling module, as explained in Section 6. These bigrams are used
together with the bigrams induced on the fly. This strategy proved to be quite useful:
it covered another 2% of unresolved cases (before applying the lexical lookup), with
an error rate of less than 1%.

11.2 Handling Russian News
To test how easy it is to apply the DCA to a new language, we tested it on a corpus
of British Broadcasting Corporation (BBC) news in Russian. We collected this corpus
from the Internet 〈http://news.bbc.co.uk/hi/russian/world/default.htm〉 over a period of 30
days. This gave us a corpus of 300 short documents (one or two paragraphs each).
We automatically created the supporting resources from 364,000 documents from the
Russian corpus of the European Corpus Initiative, using the method described in
section 5.

Since, unlike English, Russian is a highly inflected language, we had to deal with
the case normalization issue. Before using the DCA method, we applied a Russian
morphological processor (Mikheev and Liubushkina 1995) to convert each word in
the text to its main form: nominative case singular for nouns and adjectives, infinitive
for verbs, etc. For words that could be normalized to several main forms (polysemy),
when secondary forms of different words coincided, we retained all the main forms.
Since the documents in the BBC news corpus were rather short, we applied the cache
module, as described in Section 11.1. This allowed us to reuse information across the
documents.

Russian proved to be a simpler case than English for our tasks. First, on average,
Russian words are longer than English words: thus the identification of abbreviations
is simpler. Second, proper names in Russian coincide less frequently with common
words; this makes the disambiguation of capitalized words in ambiguous positions
easier. The overall performance reached a 0.1% error rate on sentence boundaries and
a 1.8% error rate on ambiguous capitalized words, with the coverage on both tasks
at 100%.

12. Related Research

12.1 Research in Nonlocal Context
The use of nonlocal context and dynamic adaptation have been studied in language
modeling for speech recognition. Kuhn and de Mori (1998) proposed a cache model
that works as a kind of short-term memory by which the probability of the most re-
cent n words is increased over the probability of a general-purpose bigram or trigram
model. Within certain limits, such a model can adapt itself to changes in word frequen-
cies, depending on the topic of the text passage. The DCA system is similar in spirit
to such dynamic adaptation: it applies word n-grams collected on the fly from the
document under processing and favors them more highly than the default assignment
based on prebuilt lists. But unlike the cache model, it uses a multipass strategy.

Clarkson and Robinson (1997) developed a way of incorporating standard n-grams
into the cache model, using mixtures of language models and also exponentially de-
caying the weight for the cache prediction depending on the recency of the word’s last
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occurrence. In our experiments we applied simple linear interpolation to incorporate
the DCA system into a POS tagger. Instead of decaying nonlocal information, we opted
for not propagating it from one document for processing of another. For handling very
long documents with our method, however, the information decay strategy seems to
be the right way to proceed.

Mani and MacMillan (1995) pointed out that little attention had been paid in the
named-entity recognition field to the discourse properties of proper names. They pro-
posed that proper names be viewed as linguistic expressions whose interpretation
often depends on the discourse context, advocating text-driven processing rather than
reliance on pre-existing lists. The DCA outlined in this article also uses nonlocal dis-
course context and does not heavily rely on pre-existing word lists. It has been applied
not only to the identification of proper names, as described in this article, but also to
their classification (Mikheev, Grover, and Moens 1998).

Gale, Church, and Yarowsky (1992) showed that words strongly tend to exhibit
only one sense in a document or discourse (“one sense per discourse”). Since then
this idea has been applied to several tasks, including word sense disambiguation
(Yarowsky 1995) and named-entity recognition (Cucerzan and Yarowsky 1999). Gale,
Church, and Yarowsky’s observation is also used in our DCA, especially for the iden-
tification of abbreviations. In capitalized-word disambiguation, however, we use this
assumption with caution and first apply strategies that rely not just on single words
but on words together with their local contexts (n-grams). This is similar to “one sense
per collocation” idea of Yarowsky (1993).

The description of the EAGLE workbench for linguistic engineering (Baldwin et al.
1997) mentions a case normalization module that uses a heuristic in which a capitalized
word in an ambiguous position should be rewritten without capitalization if it is found
lower-cased in the same document. This heuristic also employs a database of bigrams
and unigrams of lower-cased and capitalized words found in unambiguous positions.
It is quite similar to our method for capitalized-word disambiguation. The description
of the EAGLE case normalization module provided by Baldwin et al. is, however, very
brief and provides no performance evaluation or other details.

12.2 Research in Text Preprocessing

12.2.1 Sentence Boundary Disambiguation. There exist two large classes of SBD sys-
tems: rule based and machine learning. The rule-based systems use manually built
rules that are usually encoded in terms of regular-expression grammars supplemented
with lists of abbreviations, common words, proper names, etc. To put together a few
rules is fast and easy, but to develop a rule-based system with good performance is
quite a labor-consuming enterprise. For instance, the Alembic workbench (Aberdeen et
al. 1995) contains a sentence-splitting module that employs over 100 regular-expression
rules written in Flex. Another well-acknowledged shortcoming of rule-based systems
is that such systems are usually closely tailored to a particular corpus or sublanguage
and are not easily portable across domains.

Automatically trainable software is generally seen as a way of producing sys-
tems that are quickly retrainable for a new corpus, for a new domain, or even for
another language. Thus, the second class of SBD systems employs machine learning
techniques such as decision tree classifiers (Riley 1989), neural networks (Palmer and
Hearst 1994), and maximum-entropy modeling (Reynar and Ratnaparkhi 1997). Ma-
chine learning systems treat the SBD task as a classification problem, using features
such as word spelling, capitalization, suffix, and word class found in the local con-
text of a potential sentence-terminating punctuation sign. Although training of such



312

Computational Linguistics Volume 28, Number 3

systems is completely automatic, the majority of machine learning approaches to the
SBD task require labeled examples for training. This implies an investment in the data
annotation phase.

The main difference between the existing machine learning and rule-based meth-
ods for the SBD task and our approach is that we decomposed the SBD task into
several subtasks. We decided to tackle the SBD task through the disambiguation of
the period preceding and following words and then feed this information into a very
simple SBD rule set. In contrast, the standard practice in building SBD software is to
disambiguate configurations of a period with its ambiguous local context in a single
step, either by encoding disambiguation clues into the rules or inferring a classifier
that accounts for the ambiguity of the words on the left and on the right of the period.

Our approach to SBD is closer in spirit to machine learning methods because its
retargeting does not require rule reengineering and can be done completely automat-
ically. Unlike traditional machine learning SBD approaches, however, our approach
does not require annotated data for training.

12.2.2 Disambiguation of Capitalized Words. Disambiguation of capitalized words
is usually handled by POS taggers, which treat capitalized words in the same way
as other categories, that is, by accounting for the immediate syntactic context and
using estimates collected from a training corpus. As Church (1988) rightly pointed
out, however, “Proper nouns and capitalized words are particularly problematic: some
capitalized words are proper nouns and some are not. Estimates from the Brown
Corpus can be misleading. For example, the capitalized word ‘Acts’ is found twice in
the Brown Corpus, both times as a proper noun (in a title). It would be misleading to
infer from this evidence that the word ‘Acts’ is always a proper noun.”

In the information extraction field, the disambiguation of ambiguous capitalized
words has always been tightly linked to the classification of proper names into seman-
tic classes such as person name, location, and company name. Named-entity recogni-
tion systems usually use sets of complex hand-crafted rules that employ a gazetteer
and a local context (Krupa and Hausman 1998). In some systems such dependencies
are learned from labeled examples (Bikel et al. 1997). The advantage of the named-
entity approach is that the system not only identifies proper names but also determines
their semantic class. The disadvantage is in the cost of building a wide-coverage set of
contextual clues manually or producing annotated training data. Also, the contextual
clues are usually highly specific to the domain and text genre, making such systems
very difficult to port.

Both POS taggers and named-entity recognizers are normally built using the local-
context paradigm. In contrast, we opted for a method that relies on the entire distri-
bution of a word in a document. Although it is possible to train some classes of POS
taggers without supervision, this usually leads to suboptimal performance. Thus the
majority of taggers are trained using at least some labeled data. Named-entity recog-
nition systems are usually hand-crafted or trained from labeled data. As was shown
above, our method does not require supervised training.

12.2.3 Disambiguation of Abbreviations. Not much information has been published
on abbreviation identification. One of the better-known approaches is described in
Grefenstette and Tapanainen (1994), which suggested that abbreviations first be ex-
tracted from a corpus using abbreviation-guessing heuristics akin to those described
in Section 6 and then reused in further processing. This is similar to our treatment of
abbreviation handling, but our strategy is applied on the document rather than corpus
level. The main reason for restricting abbreviation discovery to a single document is
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that this does not presuppose the existence of a corpus in which the current document
is similar to other documents.

Park and Byrd (2001) recently described a hybrid method for finding abbrevia-
tions and their definitions. This method first applies an “abbreviation recognizer” that
generates a set of “candidate abbreviations” for a document. Then for this set of can-
didates the system tries to find in the text their definitions (e.g., United Kingdom for
UK). The abbreviation recognizer for these purposes is allowed to overgenerate signif-
icantly. There is no harm (apart from the performance issues) in proposing too many
candidate abbreviations, because only those that can be linked to their definitions will
be retained. Therefore the abbreviation recognizer treats as a candidate any token of
two to ten characters that contains at least one capital letter. Candidates then are fil-
tered through a set of known common words and proper names. At the same time
many good abbreviations and acronyms are filtered out because not for all of them
will definitions exist in the current document.

In our task we are interested in finding all and only abbreviations that end with
a period (proper abbreviations rather than acronyms), regardless of whether they can
be linked to their definitions in the current document or not. Therefore, in our method
we cannot tolerate candidate overgeneration or excessive filtering and had to develop
more selective methods for finding abbreviations in text.

13. Discussion

In this article we presented an approach that tackles three important aspects of text nor-
malization: sentence boundary disambiguation, disambiguation of capitalized words
when they are used in positions where capitalization is expected, and identification of
abbreviations. The major distinctive features of our approach can be summarized as
follows:

• We tackle the sentence boundary task only after we have fully
disambiguated the word on the left and the word on the right of a
potential sentence boundary punctuation sign.

• To disambiguate capitalized words and abbreviations, we use
information distributed across the entire document rather than their
immediate local context.

• Our approach does not require manual rule construction or data
annotation for training. Instead, it relies on four word lists that can be
generated completely automatically from a raw (unlabeled) corpus.

In this approach we do not try to resolve each ambiguous word occurrence individu-
ally. Instead, the system scans the entire document for the contexts in which the words
in question are used unambiguously, and this gives it grounds, acting by analogy, for
resolving ambiguous contexts.

We deliberately shaped our approach so that it largely does not rely on precom-
piled statistics, because the most interesting events are inherently infrequent and hence
are difficult to collect reliable statistics for. At the same time precompiled statistics
would be smoothed across multiple documents rather than targeted to a specific docu-
ment. By collecting suggestive instances of usage for target words from each particular
document on the fly, rather than relying on preacquired resources smoothed across the
entire document collection, our approach is robust to domain shifts and new lexica
and closely targeted to each document.
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A significant advantage of this approach is that it can be targeted to new domains
completely automatically, without human intervention. The four word lists that our
system uses for its operation can be generated automatically from a raw corpus and
require no human annotation. Although some SBD systems can be trained on relatively
small sets of labeled examples, their performance in such cases is somewhat lower than
their optimal performance. For instance, Palmer and Hearst (1997) report that the SATZ
system (decision tree variant) was trained on a set of about 800 labeled periods, which
corresponds to a corpus of about 16,000 words. This is a relatively small training set
that can be manually marked in a few hours’ time. But the error rate (1.5%) of the
decision tree classifier trained on this small sample was about 50% higher than that
when trained on 6,000 labeled examples (1.0%).

The performance of our system does not depend on the availability of labeled
training examples. For its “training,” it uses a raw (unannotated in any way) corpus
of texts. Although it needs such a corpus to be relatively large (a few hundred thousand
words), this is normally not a problem, since when the system is targeted to a new
domain, such a corpus is usually already available at no extra cost. Therefore there is no
trade-off between the amount of human labor and the performance of the system. This
not only makes retargeting of such system easier but also enables it to be operational
in a completely autonomous way: it needs only to be pointed to texts from a new
domain, and then it can retarget itself automatically.

Although the DCA requires two passes through a document, the simplicity of the
underlying algorithms makes it reasonably fast. It processes about 3,000 words per
second using a Pentium II 400 MHz processor. This includes identification of abbre-
viations, disambiguation of capitalized words, and then disambiguation of sentence
boundaries. This is comparable to the speed of other preprocessing systems.3 The oper-
ational speed is about 10% higher than the training speed because, apart from applying
the system to the training corpus, training also involves collecting, thresholding, and
sorting of the word lists—all done automatically but at extra time cost. Training on
the 300,000-word NYT text collection took about two minutes.

Despite its simplicity, the performance of our approach was on the level with
the previously highest reported results on the same test collections. The error rate
on sentence boundaries in the Brown corpus was not significantly worse than the
lowest quoted before (Riley 1989: 0.28% vs. 0.20% error rate). On the WSJ corpus
our system performed slightly better than the combination of the Alembic and SATZ
systems described in Palmer and Hearst (1997) (0.44% vs. 0.5% error rate). Although
these error rates seem to be very small, they are quite significant. Unlike general POS
tagging, in which it is unfair to expect an error rate of less than 2% because even human
annotators have a disagreement rate of about 3%, sentence boundaries are much less
ambiguous (with a disagreement of about 1 in 5,000). This shows that an error rate
of 1 in 200 (0.5%) is still far from reaching the disagreement level. On the other hand,
one error in 200 periods means that there is one error in every two documents in the
Brown corpus and one error in every four documents in the WSJ corpus.

With all its strong points, there are a number of restrictions to the proposed ap-
proach. First, in its present form it is suitable only for processing of reasonably “well-
behaved” texts that consistently use capitalization (mixed case) and do not contain
much noisy data. Thus, for instance, we do not expect our system to perform well
on single-cased texts (e.g., texts written in all capital or all lower-cased letters) or on

3 Palmer and Hearst (1997) report a speed of over 10,000 sentences a minute, which with their average
sentence length of 20 words equals over 3,000 words per second, but on a slower machine (DEC Alpha
3000).
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optical character reader–generated texts. We noted in Section 8 that very short doc-
uments of one to three sentences also present a difficulty for our approach. This is
where robust syntactic systems like SATZ (Palmer and Hearst 1997) or the POS tagger
reported in Mikheev (2000), which do not heavily rely on word capitalization and are
not sensitive to document length, have an advantage.

Our DCA uses information derived from the entire document and thus can be
used as a complement to approaches based on the local context. When we incorpo-
rated the DCA system into a POS tagger (Section 8), we measured a 30–35% cut in the
error rate on proper-name identification in comparison to DCA or the POS-tagging
approaches alone. This in turn enabled better tagging of sentence boundaries: a 0.20%
error rate on the Brown corpus and a 0.31% error rate on the WSJ corpus, which corre-
sponds to about a 20% cut in the error rate in comparison to DCA or the POS-tagging
approaches alone.

We also investigated the portability of our approach to other languages and ob-
tained encouraging results on a corpus of news in Russian. This strongly suggests that
the DCA method can be applied to the majority of European languages, since they
share the same principles of capitalization and word abbreviation. Obvious exceptions,
though, are German and some Scandinavian languages in which capitalization is used
for things other than proper-name and sentence start signaling. This does not mean,
however, that the DCA in general is not suitable for preprocessing of German texts—it
just needs to be applied with different disambiguation clues.

Initially the system described in this article was developed as a text normalization
module for a named-entity recognition system (Mikheev, Grover, and Moens 1998) that
participated in MUC-7. There the ability to identify proper names with high accuracy
proved to be instrumental in enabling the entire system to achieve a very high level of
performance. Since then this text normalization module has been used in several other
systems, and its ability to be adapted easily to new domains enabled rapid develop-
ment of text analysis capabilities in medical, legal, and law enforcement domains.

Appendix A: SBD Rule Set

In this section we present the rule set used by our system to assign potential sentence
boundary punctuation as

FS Punctuation that signals end of sentence
AP Period that is part of abbreviation
AFS Period that is part of abbreviation and signals end of sentence

This rule set operates over tokens that are disambiguated as to whether or not they
are abbreviations and whether or not they are proper names. Tokens are categorized
into overlapping sets as follows:

NONE No token (end of input)
ANY Any token
ANY-OR-NONE Any token or no token at all
ABBR Token that was disambiguated as “abbreviation”

(Note: . . .Ellipsis is treated as an abbreviation too)
Not ABBR Nonpunctuation token that was disambiguated as “not

abbreviation”
CLOSE PUNCT Closing quotes, closing brackets
OPEN PUNCT Opening quotes, opening brackets
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PUNCT Punctuation token not CLOSE PUNCT or OPEN PUNCT
or [.!?;]

NUM Number
LOW COMMON Lower-cased common word
CAP COMMON Capitalized word that was disambiguated as a common word
CAP PROP Capitalized word that was disambiguated as a proper name
PROPER NAME Proper name

Rule Set

word-2 word-1 FOCAL word+1 word+2 Assign Example

ANY Not ABBR [.?!] ANY-OR-NONE ANY-OR-NONE FS book.
ANY CLOSE PUNCT [.?!] ANY-OR-NONE ANY-OR-NONE FS ).
ABBR . [.?!] ANY-OR-NONE ANY-OR-NONE FS Tex.!
ANY ANY ; CAP COMMON ANY-OR-NONE FS ; The

ABBR . NONE NONE AFS Tex.EOF
ABBR . CAP COMMON ANY-OR-NONE AFS Tex. The
ABBR . CLOSE PUNCT CAP COMMON AFS kg.) This
ABBR . OPEN PUNCT CAP COMMON AFS kg. (This
ABBR . CLOSE PUNCT CAP COMMON AFS kg.) (This

OPEN PUNCT
ABBR . PUNCT ANY-OR-NONE AP kg.,
ABBR . [.?!] ANY-OR-NONE AP Tex.!
ABBR . LOW COMMON ANY-OR-NONE AP kg. this
ABBR . CLOSE PUNCT LOW COMMON AP kg.) this
ABBR . OPEN PUNCT LOW COMMON AP kg. (this
ABBR . CLOSE PUNCT LOW COMMON AP kg.) (this

OPEN PUNCT
ABBR . ABBR . AP Sen. Gen.
ABBR . NUM ANY-OR-NONE AP kg. 5
ABBR . PROPER NAME ANY-OR-NONE AP Dr. Smith
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