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Abstract

In this paper, we study domain adap-
tation with a state-of-the-art hierarchical
neural network for document-level senti-
ment classification. We first design a new
auxiliary task based on sentiment scores
of domain-independent words. We then
propose two neural network architectures
to respectively induce document embed-
dings and sentence embeddings that work
well for different domains. When these
document and sentence embeddings are
used for sentiment classification, we find
that with both pseudo and external senti-
ment lexicons, our proposed methods can
perform similarly to or better than sev-
eral highly competitive domain adaptation
methods on a benchmark dataset of prod-
uct reviews.

1 Introduction

Sentiment classification is a fundamental task in
opinion mining (Pang et al., 2002; Hu and Liu,
2004; Choi and Cardie, 2008; Nakagawa et al.,
2010). Recently, with the advances of deep learn-
ing techniques for many NLP applications, various
kinds of neural network (NN)-based models have
been proposed for this task (Socher et al., 2013;
Lei et al., 2015; Yang et al., 2016).

As with any supervised learning method, the
NN-based models also suffer from the domain
adaptation problem, where training data and test
data come from different domains. The reason
for this is that sentiments are often expressed with
domain-specific words and expressions. For ex-
ample, in the Book domain, expressions like an
insider’s look and a must read are usually posi-
tive, but they may not be useful for the Kitchen
domain. Similarly, words such as sharp and clean,

which are positive in the Kitchen domain, can
rarely be seen in the Book domain. Due to the
high cost of obtaining labeled data, it would be
very attractive if we can adapt a model trained on
a source domain to a target domain.

A number of different models have been pro-
posed for cross-domain sentiment classification,
and the core idea of them is to learn a shared la-
tent representation that is general across domains.
Most of these studies can be categorized into two
lines. The first line of work focuses on carefully
designing some auxiliary prediction tasks to in-
duce a robust cross-domain representation (Blitzer
et al., 2007; Pan et al., 2010; Bollegala et al., 2015,
2016). With the trend of deep learning, another
line of work centers on employing denoising auto-
encoders to learn hidden representations across
domains in a purely unsupervised learning man-
ner (Glorot et al., 2011; Chen et al., 2012; Zhou
et al., 2016).

However, most of the two lines of research are
based on traditional discrete feature representa-
tions, and the induced shared representations are
not necessarily specific to sentiment classification.
In our recent work, we designed two simple aux-
iliary tasks, which are closely related to the ac-
tual end task, for sentence-level cross-domain sen-
timent classification (Yu and Jiang, 2016). Fur-
thermore, we proposed to jointly learn domain-
independent sentence embeddings based on the
two auxiliary tasks together with the classifier for
the end task in a unified NN framework. Al-
though our joint learning model has been shown
to outperform previous domain adaptation meth-
ods in sentence-level sentiment classification, it is
unclear how to extend this to document-level sen-
timent classification since the two auxiliary tasks
will become much less useful for documents.

In this paper, we aim to propose a domain adap-
tation method for document-level sentiment clas-
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sification based on our earlier joint model (Yu
and Jiang, 2016). Specifically, instead of predict-
ing the occurrence of pivot words as in previous
work (Blitzer et al., 2007; Yu and Jiang, 2016),
we introduce a new auxiliary task based on senti-
ment scores of pivot words. Moreover, we propose
two different architectures to incorporate the aux-
iliary task into a state-of-the-art hierarchical NN
model for document-level sentiment classification,
in which we respectively induce a shared docu-
ment embedding for each document in both do-
mains and a shared sentence embedding for each
sentence in all documents. Evaluation on a widely
used dataset about product reviews from four dif-
ferent domains shows that our methods can signif-
icantly outperform a number of baselines and are
able to achieve comparable or even better results
compared with a strong baseline proposed by us.

2 Related Work

Domain Adaptation: Domain adaptation has
been extensively studied in recent years (Pan and
Yang, 2010). In NLP, it has also attracted much
attention, where most domain adaptation methods
can be categorized into two groups: instance re-
weighting (Jiang and Zhai, 2007; Xia et al., 2014)
and shared representation learning (Blitzer et al.,
2006; Daumé III, 2007; Titov, 2011). In this work,
we follow the latter line of work, and focus on in-
ducing a domain-independent feature space based
on a recently proposed NN architecture.
Neural Networks for Sentiment Classification:
With the recent trend of deep learning, a large
amount of NN models, including Convolutional
Neural Network (Kim, 2014), Recursive Neural
Network (Irsoy and Cardie, 2014) and Recurrent
Neural Network (Tai et al., 2015), have been pro-
posed for sentiment classification. Although these
models have achieved highly competitive results
on different benchmarks, most of them are tar-
geted at sentence-level sentiment classification.
Considering that the relations between sentences
are important for predicting the sentiment polar-
ity of any document, Tang et al. (2015) proposed
a hieararchical NN model to encode the relations
between sentences for document-level sentiment
classification. Since it has been shown to signifi-
cantly outperform standard non-hierarchical mod-
els on several benchmarks, we try to apply this
model to domain adaptation settings in this work.
Cross-Domain Sentiment Classification: For

sentiment classification, most existing domain
adaptation methods focus on inducing shared rep-
resentations across domains. One line of work
tries to leverage the co-occurrences of domain-
specific and domain-independent features to learn
a general low-dimensional cross-domain represen-
tation (Blitzer et al., 2007; Pan et al., 2010; He
et al., 2011; Bollegala et al., 2015; Bhatt et al.,
2015). Another line of work is based on a purely
unsupervised learning method, denoising auto-
encoders, where the hidden layers in multi-layer
neural networks are believed to be robust against
domain shift (Glorot et al., 2011; Chen et al., 2012;
Zhou et al., 2016). However, all these methods are
still based on traditional discrete representations,
and the shared representations are learned sepa-
rately from the final classifier and therefore not
directly related to sentiment classification. More
recently, we proposed a unified neural model to
jointly learn the shared sentence embeddings and
the final classifier together for sentence-level sen-
timent domain adaptation (Yu and Jiang, 2016).
But the auxiliary task in this earlier work is only
designed for sentences; it will be less useful for
documents. Moreover, the neural model is based
on CNNs, which fail to achieve satisfactory results
in document-level sentiment classification. Hence
in this work, we focus on proposing a new auxil-
iary task for documents, followed by incorporating
it into a state-of-the-art hierarchical NN model for
document-level sentiment domain adaptation.

3 Methodology

In this section we present our domain adaptation
method for document-level sentiment classifica-
tion.

3.1 Problem Definition and Notation

Our task is sentiment classification at the docu-
ment level. We assume that each input d is a
document containing n sentences, and the ith sen-
tence contains a sequence of mi words. Let us use
wi,j ∈ V to denote the jth word of the ith sentence,
where V is the vocabulary. Let y ∈ {+,−} de-
note the sentiment label of input d, where + and
− denote the positive sentiment and the negative
sentiment, respectively.

We consider a cross-domain setting, in which
we assume that we have a set of labeled training
documents from a source domain, denoted by Ds.
In addition, we have a set of unlabeled documents
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from a target domain, denoted byDt,u. Our goal is
to train a good document-level sentiment classifier
using Ds and Dt,u so that the classifier can gener-
ally work well in the target domain. To evaluate
the trained classifier, we test its performance on a
set of labeled documents from the target domain,
denoted by Dt,l.

3.2 Method Overview
The core of our domain adaptation method is to
use a domain-independent auxiliary task to help
induce a cross-domain hidden representation that
is useful for both source and target domains. The
idea of learning cross-domain hidden represen-
tations by leveraging auxiliary tasks for domain
adaptation is not new (Blitzer et al., 2006, 2007;
Yu and Jiang, 2016; Ding et al., 2017). These
previous studies essentially follow the multi-task
learning framework (Ando and Zhang, 2005). The
rationale behind them is that if there are some aux-
iliary tasks related to the actual prediction task
and the labels of the auxiliary tasks can be easily
obtained for both source and target domains, the
induced low-dimensional feature space is a good
representation for domain adaptation.

Our work follows this line of research and aims
to extend our recently proposed domain adapta-
tion method for sentence-level sentiment classi-
fication (Yu and Jiang, 2016). Our method is
based on an existing hierarchical neural network
(HNN) model for document-level sentiment clas-
sification proposed by Tang et al. (2015), which
encodes each sentence in the input document into
a sentence embedding vector through a CNN, fol-
lowed by combining all sentence embeddings into
a document embedding vector with a gated RNN.
Different from Tang et al. (2015), however, we
use the sentence embeddings or document embed-
dings for predicting not only the actual sentiment
labels but also the labels of a carefully designed
auxiliary task. Since the auxiliary task is domain-
independent, we expect the sentence embeddings
and document embeddings learned by our method
to work well in both domains.

3.3 A Hierarchical Neural Network for
Document-level Sentiment Classification

We first describe our baseline method for
document-level sentiment classification. This is a
HNN model proposed by Tang et al. (2015) that
has been shown to significantly outperform sim-
pler, non-hierarchical models. We re-implement

this model with some minor modifications.
Recall that an input document d is represented

by a sequence of sentences, each containing a se-
quence of words, and wi,j ∈ V is the jth word
of the ith sentence in d. We use xi,j ∈ Rl to
denote an l-dimensional dense embedding vector
for word wi,j , which is retrieved from a lookup
table X ∈ Rl×|V| for all words. We first ap-
ply a one-layer CNN (Kim, 2014) to obtain an
embedding vector zi ∈ Rp for the ith sentence:
zi = CNNΘ1(xi), where Θ1 denotes all the pa-
rameters in this CNN.

After obtaining the sentence embeddings for all
the n sentences in d, we then apply an LSTM to
sequentially combine all sentences together: hi =
LSTMΘ2(hi−1, zi), where hi ∈ Rq is the ith hid-
den state, and Θ2 denotes all the parameters in
the LSTM1. Note that Tang et al. (2015) used bi-
directional gated RNN to chain the sentences into
a document embedding, but we did not observe
any significant gain over LSTM based on our pre-
liminary experiments.

Finally, a softmax classifier is learned to map
the document representation hn to a label y:

p(y | hn) = softmax(Whn + b),

where W ∈ R2×q is a weight matrix and b ∈ R2

is a bias vector.
In the following sections, we will present two

NN architectures built on top of the baseline
method that leverages an auxiliary task for domain
adaptation of document-level sentiment classifica-
tion. The first architecture uses a document-level
auxiliary task to help induce a document-level hid-
den representation, while the second architecture
uses a sentence-level auxiliary task to help induce
a sentence-level hidden representation.

3.4 Document-level Shared Representation
Learning for Domain Adaptation

Document-level Auxiliary Task
We first introduce an auxiliary task that is closely
related to the original task of document-level sen-
timent classification. Our auxiliary task is in-
spired by our recent work for sentence-level cross-
domain sentiment classification (Yu and Jiang,
2016). In this recently proposed method, we
used two auxiliary tasks to induce shared sen-
tence embeddings across domains. Considering

1To simplify the discussion, we will not give the details
of CNN and LSTM here. Interested readers can refer to Kim
(2014) and Hochreiter and Schmidhuber (1997).
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that an input sentence containing a positive (or
negative) domain-independent sentiment word is
more likely to express an overall positive (or neg-
ative) sentiment, the two auxiliary tasks are about
whether an input sentence contains at least one
positive or one negative domain-independent sen-
timent word, respectively.

Although the two auxiliary tasks have been
shown to benefit sentence-level cross-domain sen-
timent classification, they may not work well in
document-level sentiment classification. The rea-
son is the following. In sentence-level sentiment
classification, since sentences are short, a sen-
tence is more likely about only one aspect of the
topic being discussed, and it tends to express a
consistent sentiment polarity towards that aspect.
However, in document-level sentiment classifica-
tion, a document may contain mixed opinions to-
wards different aspects of the topic, and the sen-
timent polarities towards different aspects may
differ. Moreover, at document level, there may
also be comparison and contrast among different
topics, and the sentiment polarities towards them
could be different. In summary, it is highly pos-
sible for a document to contain both positive and
negative domain-independent sentiment words. In
this case, the two auxiliary tasks would not be of
much use because most documents would have the
same labels for both these two tasks2.

To address this limitation, we propose an alter-
native auxiliary task based on sentiment scores of
the domain-independent sentiment words. The in-
tuition is as follows. Assume that we have an ex-
ternal sentiment lexicon, where each word is as-
signed a general sentiment score. For an input
document, if it contains more domain-independent
words with high positive sentiment scores, the
document is more likely to express an overall pos-
itive sentiment, regardless of the domain the docu-
ment is from. More importantly, the remainder of
the document without domain-independent words
may also contain domain-specific positive words
or expressions.

Take the following review as an example.

One of the best! You will go wrong if you read this
as an intro to deep learning. Truly an insider’s look.
A must read for everyone who loves neural networks.

2Based on our observation on a benchmark dataset
collected by Blitzer et al. (2007), for almost all the 12
source/target pairs, over 90% of the reviews contained both
positive and negative domain-independent sentiment words.

We can see that the document contains three
words with high positive sentiment scores (shown
in italic), and one word with a high negative sen-
timent score (shown in bold). But overall, its sen-
timent polarity is positive, which correlates with
the sum of all the domain-independent words’ sen-
timent scores. Then, if we hide all the domain-
independent sentiment words and use the remain-
ing domain-specific words to predict the overall
sentiment score of the domain-independent senti-
ment words, it should be helpful for identifying
some important domain-specific sentiment expres-
sions such as an insiders’ look and a must read in
the example above.

Hence, we propose a new auxiliary task by
predicting whether the sum of all the domain-
independent sentiment words’ sentiment scores is
larger than, equal to or less than 0. It is worth
noting that (1) given any sentiment lexicon, we
can automatically derive the label of the auxiliary
task3, and (2) the auxiliary task is closely related
to the main binary sentiment classification task.

Formally, let us assume that we have a senti-
ment lexicon, which can be either directly taken
from an external resource or derived from the la-
beled source domain data. Details of how the sen-
timent lexicon is obtained will be given in Sec-
tion 3.7.1. Following SCL (Blitzer et al., 2007),
we choose the words which frequently occur in
both domains and have a high (positive or nega-
tive) sentiment score as the domain-independent
sentiment words, and refer to them as pivot words.
For each input document d, we use a special to-
ken UNK to substitute these pivot words, which
follows the practice in our earlier work (Yu and
Jiang, 2016). To be consistent with the notation
before, let us use d′ to denote the new document
with UNK tokens and w′i,j the jth token in the ith

sentence in d′. Let x′i,j ∈ Rl denote the embed-
ding vector of w′i,j . x′i,j is the same as xi,j when
w′i,j is not UNK. When w′i,j is UNK, x′i,j is set to
be a special embedding vector for UNK. We then
introduce an auxiliary label y′ for d′, which indi-
cates whether the sum of the sentiment scores of
the pivot words in the original document d is larger
than, equal to or less than 0. We further useDa,d to
denote documents with the document-level auxil-
iary labels derived from both Ds and Dt,u.

3For any sentiment lexicon, we can rescale its original
sentiment scores to [-K, K], where K can be any positive inte-
ger, and -K and K respectively denote the most negative and
the most positive sentiments. In this paper, we set K to 2.
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Figure 1: Overview of our proposed methods.

Document-level Shared Representation (DSR)
Now that we have defined the auxiliary task, we
can present the NN architecture. Figure 1(a) gives
the outline of this method, which essentially tries
to directly learn an auxiliary hidden layer for each
input document. For the ith sentence in d′, we first
use a CNN to obtain its auxiliary embedding vec-
tor z′i = CNNΘ′

1
(x′i). These sentence embeddings

are further combined together with an LSTM pa-
rameterized by Θ′2, and the final hidden state h′n is
fed to predict the auxiliary label y′:

p(y′ | h′n) = softmax(W′h′n + b′).

Besides, we also apply another CNN and LSTM
to obtain the standard document representation
hn, and concatenate it with the auxiliary hidden
vector h′n to predict the sentiment label y:

p(y | hn,h′n) = softmax
(
W(hn ⊕ h′n) + b

)
.

3.5 Sentence-level Shared Representation
Learning for Domain Adaptation

Unlike the first architecture, our second proposal
focuses on learning an auxiliary hidden layer for
each sentence in a given document. As illustrated
in Figure 1(b), instead of using an overall auxil-
iary label for the whole document, we will have an
auxiliary label for each sentence in the document.

Sentence-level Auxiliary Task
Although the auxiliary task in Section 3.4 is de-
signed for documents, it is also suitable for sen-
tences since if a sentence contains more domain-
independent words with high positive sentiment
scores, the rest of the sentence excluding these
words may still express a positive sentiment.

To facilitate the discussion, let us use si to de-
note the ith sentence in the original document d

and s′i the ith sentence in the modified document
d′. We then introduce an auxiliary label u′i for s′i,
which indicates whether the sum of the sentiment
scores of the pivot words in si is larger than, equal
to or less than 0. We further use u′ ∈ Rn to denote
the auxiliary labels for all the n sentences in d′.
LetDa,s denote documents with the sentence-level
auxiliary labels derived from both Ds and Dt,u.

Sentence-level Shared Representation (SSR)
Based on the sentence-level auxiliary task, we use
two CNNs to obtain sentence embeddings zi and
z′i, respectively for si and s′i. Next, the auxiliary
hidden layer z′i will be used for predicting the aux-
iliary label u′i:

p(u′i | z′i) = softmax(W′z′i + b′).

Besides, we also concatenate zi and z′i together as
a combined sentence embedding for the i-th sen-
tence. Then, all the n combined sentence embed-
dings are further combined together via an LSTM:

hi = LSTMΘ2

(
hi−1, (zi ⊕ z′i)

)
.

Finally, we feed the last hidden representation
hn to predict the label of our main task:

p(y | hn) = softmax(Whn + b).

3.6 Parameter Learning

Since our two NN architectures consist of the main
task and the auxiliary task, we jointly optimize
them in a single loss function. For space limita-
tion, here we only show the objective function for
the first model, and the objective function for the
latter one can be derived similarly. Using cross-
entropy loss, we can learn Θ1, Θ2, Θ′1, Θ′2, W, b,
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W′ and b′ by minimizing the following function:

J(Θ1,Θ2,Θ′1,Θ
′
2,W,b,W′,b′)

= −
( ∑

(d,y)∈Ds

log p(y | d)

+
∑

(d′,y′)∈Da,d

log p(y′ | d′)
)
.

3.7 Implementation Details

3.7.1 Sentiment Lexicons
We use two kinds of sentiment lexicons, which we
refer to as WN and MI.

WN is extracted from a well-known sentiment
lexicon called SentiWordNet (Baccianella et al.,
2010). Since the original sentiment scores in Sen-
tiWordNet are probabilities for each word being
positive or negative, we rescale them to [−2, 2].
Also, for the same words with different part-of-
speech tags, we only keep the sentiment score with
the highest absolute value.

To reduce the reliance on external resources,
we also experiment with another method based
on mutual information (MI) on the source labeled
dataDs to automatically derive a pseudo sentiment
lexicon. Specifically, we first extract only adjec-
tives, adverbs and verbs from the documents inDs,
and measure each remaining word’s MI with the
positive and the negative classes:

r(wi, y) = log
p̃(wi, y)
p̃(wi)p̃(y)

,

where wi denotes the ith word in V , y ∈ {+,−}
is a sentiment label, and p̃(wi, y) is the empirical
probability of observing wi and y together. Then,
we only keep those words with positive MI, i.e.,
r(wi, y) > 0, and obtain two lists R+ and R−.
Moreover, for each word w ∈ R+, we use its MI
score as its sentiment score, while for each word
w ∈ R−, we reverse its MI score as its sentiment
score. Finally, we merge the two word lists to form
the pseudo sentiment lexicon, and rescale the sen-
timent scores into [−2, 2].

3.7.2 Pivot Words Selection
Recall that pivot words should frequently occur in
both domains and be sentiment sensitive. Hence,
we first choose those words occurring at least 10
times in Ds and at least 30 times in Dt,u as pivot
candidates4, and remove negation and stop words.

4The ratio between |Ds| and |Dt,u| is 1:3 in our dataset.

Then, we only keep those candidates with high
sentiment scores ([−2,−1] and [1, 2] for WN or
[−2,−0.9] and [0.9, 2] for MI) as the pivot words.

3.7.3 Training Details
In our domain adaptation setting, for the labeled
data Ds from the source domain, we have la-
bels for both the main task and the auxiliary task,
while for the unlabeled data Dt,u from the tar-
get domain, we only have labels for the auxiliary
task. Hence, we adopted an alternating training
approach, where in each epoch we first optimize
all the model parameters givenDs, and then switch
to only optimizing the parameters corresponding
to the auxiliary task (including Θ′1, Θ′2, W′ and
b′) given Dt,u. During the training stage, we share
the word embeddings of the actual task and our
auxiliary task, and never update the word embed-
ding of UNK by setting it as a zero vector.

4 Experiments

4.1 Experiment Settings

Datasets: To evaluate our proposed method, we
conduct experiments on a benchmark dataset re-
leased by Blitzer et al. (2007). This dataset con-
sists of Amazon product reviews from four dif-
ferent domains: Book, DVD, Electronics and
Kitchen. Each domain has 1000 positive and 1000
negative reviews as well as 17547 unlabeled re-
views on average. Since the number of unlabeled
reviews in each domain is different, we randomly
choose 6000 unlabeled reviews for each domain.

Following previous studies (Pan et al., 2010;
Zhou et al., 2016), we consider 12 pairs of source-
target domain pairs. For each pair, all the 2000 la-
beled reviews from the source domain are treated
as training data. We randomly choose 200 posi-
tive and 200 negative reviews from the target do-
main as development data, and the remainder (i.e.,
800 + 800 reviews) from the target domain as test
data. Moreover, for domain adaptation methods,
we also use the 6000 unlabeled reviews from the
target domain during the training stage.
Methods for comparison:

• Naive is a non-domain-adaptive baseline
based on traditional discrete representations.
• SCL is the Structural Correspondence Learn-

ing method, which uses all the non-pivot fea-
tures to predict the occurrence of each pivot
feature, and employs SVD on the learned
weight vectors.

659



• mDA is one of the state-of-the-art methods,
marginalized denoising auto-encoders (Chen
et al., 2012), which learns a shared hidden
representation by reconstructing pivot fea-
tures.
• HNN is another non-domain-adaptive NN-

based baseline as detailed in Section 3.3.
• H-WN simply combines HNN with our aux-

iliary task, which represents each label de-
rived from our auxiliary task using WN as
a three-dimensional one-hot vector and ap-
pends it to the document embedding hn in
HNN, followed by a softmax classifier.
• H-SCL is a naive combination of SCL with

HNN, which appends the induced represen-
tation from SCL to the document embedding
in HNN, followed by a softmax classifier.
• H-mDA is similar to H-SCL but uses the hid-

den representation from mDA, and this can
be considered as a strong baseline.

Meanwhile, to show the effectiveness of the
proposed auxiliary tasks, we also use the two aux-
iliary tasks in our earlier work as the auxiliary task
of our two architectures for comparison, respec-
tively denoted by DSRE and SSRE (Yu and Jiang,
2016).

Besides, we consider four variants of our pro-
posed methods, where the auxiliary tasks in DSR
and SSR are derived from the pseudo sentiment
lexicon, while the auxiliary tasks in DSRW and
SSRW are based on SentiWordNet.

• DSRE, DSR and DSRW are based on our
first NN architecture to learn document-level
shared representations, as introduced in 3.4.
• SSRE, SSR and SSRW are based on our sec-

ond NN architecture to induce sentence-level
shared representations, as introduced in 3.5.

Hyperparameters: For Naive, we train linear
classifiers with LibLinear5 by using unigrams and
bigrams with a frequency of at least 5 as features.
For SCL and mDA, we use mutual information
to select pivot features, and the number of chosen
pivots is tuned from {500, 1000, 1500, 2000} on
the development set. In SCL, we tune the num-
ber of induced features K in {25, 50, 100}, and
also use normalization and rescaling. In mDA, we
employ the dropout noise strategy used by Yang
and Eisenstein (2014) without any parameter. In

5http://www.csie.ntu.edu.tw/cjlin/liblinear/

all the neural network models, we set the dimen-
sion of word embeddings l to 300, and initialize
the lookup table X with word2vec6. We set the
non-linear activation function in CNN as ReLU,
and set the sizes of hidden layers in both CNN and
LSTM as 150, i.e., p = q = 150. All the models
were trained using AdaGrad with a learning rate of
0.05 and a minibatch size of 5. Also, the dropout
rate α equals 0.5, and all the model parameters
are regularized with a L2 regularization strength
of 10−4.

4.2 Results

In Table 1, we report the results of all the meth-
ods. It is easy to see that the performance of Naive
is very limited. SCL and mDA can outperform
the baseline model respectively by 2.7 and 3.7
percentage points on average, which shows that
these two methods are useful for domain adapta-
tion based on discrete representations. However,
we can also see that the performance of these do-
main adaptation methods is much lower than the
hierarchical neural network model (HNN) based
on continuous representations. This demonstrates
that HNN is more robust against domain shift. But
comparing the performance of HNN in standard
in-domain and our cross-domain settings, we find
that the in-domain performance still outperforms
the cross-domain performance by 6.2 percentage
points on average. This indicates that it will be
more challenging and useful to develop domain
adaptation methods based on such a competitive
baseline.

Moreover, we can easily see that the perfor-
mance of simply appending three-dimensional
one-hot vector from the auxiliary task to HNN
(i.e., H-WN) is close to the performance of HNN
in most cases. In addition, although SCL can out-
perform Naive with a large margin on almost all
the data set pairs, the performance of H-SCL is
not satisfactory, which can only improve the base-
line by 0.5 percentage point on average. But for H-
mDA, although the shared hidden representations
are also derived from discrete representations, it
can improve the performance of HNN on all data
set pairs except one. This implies that the derived
shared hidden representations by mDA can gen-
eralize better across domains, and are generally
useful for domain adaptation. Furthermore, it is
easy to observe that by simply incorporating the

6https://code.google.com/p/word2vec/
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Task In-D Compared Methods (Cross-Domain) Proposed Methods (Cross-Domain)

HNN Naive SCL mDA HNN H-WN H-SCL H-mDA DSRE SSRE DSR SSR DSRW SSRW

E2D 0.680 0.700 0.727 0.805 0.806 0.820 0.811 0.798 0.814 0.810 0.823† 0.821 0.816
B2D 0.845 0.773 0.771 0.806 0.814 0.832 0.813 0.829 0.823 0.832 0.832 0.822 0.840† 0.837†
K2D 0.698 0.721 0.741 0.791 0.796 0.799 0.796 0.788 0.803 0.798 0.808† 0.805† 0.801
E2B 0.693 0.704 0.728 0.786 0.790 0.780 0.789 0.789 0.781 0.790 0.792 0.790 0.794†
D2B 0.843 0.751 0.780 0.802 0.805 0.810 0.796 0.818 0.809 0.826 0.835† 0.822 0.825† 0.822
K2B 0.690 0.740 0.725 0.766 0.773 0.772 0.774 0.781 0.773 0.774 0.784† 0.781 0.776†
B2E 0.701 0.746 0.753 0.755 0.751 0.751 0.786 0.758 0.758 0.760 0.773 0.771 0.786
D2E 0.858 0.706 0.743 0.746 0.772 0.768 0.771 0.786 0.774 0.782 0.787 0.790† 0.810† 0.799†
K2E 0.799 0.818 0.830 0.836 0.837 0.847 0.839 0.837 0.843 0.830 0.835 0.850† 0.846
E2K 0.828 0.829 0.833 0.852 0.848 0.865 0.859 0.864 0.862 0.859 0.874† 0.867 0.858
B2K 0.883 0.724 0.763 0.754 0.780 0.788 0.785 0.798 0.784 0.791 0.785 0.783 0.796 0.794
D2K 0.716 0.758 0.742 0.778 0.774 0.786 0.773 0.793 0.809 0.809† 0.806 0.800† 0.803

AVG 0.857 0.729 0.756 0.766 0.795 0.798 0.799 0.805 0.800 0.806 0.806 0.809 0.813 0.811

Table 1: Comparison of classification accuracies of different methods. † indicates that DSR and DSRW (or SSR and SSRW)
are significantly better than HNN, H-WN, H-SCL and H-mDA, DSRE (or SSRE) with p < 0.05 based on McNemar’s paired
significance test. In-D denotes the in-domain setting by splitting each target domain’s labeled reviews into 1400/200/400 as
training, development and test sets.

two auxiliary tasks in our earlier work into our
two architectures, the performance of DSRE is
not satisfactory, but SSRE can perform the best
on average among all the compared systems. This
demonstrates that the two auxiliary tasks are more
suitable in sentence level, but become less useful
in document level, which agrees with the intuition
behind our auxiliary task.

Finally, we observe that (1) all of our proposed
methods can significantly outperform the baseline
HNN in almost all the data set pairs, and per-
form better than H-WN and H-SCL in most cases,
which shows that the idea of learning a hidden
representation using our proposed auxiliary tasks
is generally effective; (2) even compared with H-
mDA, DSR can achieve comparable results while
SSR, DSRW and SSRW can still achieve signifi-
cantly better performance in most cases. We con-
jecture that the gains of our methods may come
from the sharing between two word embedding
lookup tables and joint learning of our auxiliary
task and the actual task; (3) in comparison with
DSRE and SSRE, DSR and SSR can bring im-
provements in both sentence level and document
level on average, which shows the effectiveness of
the proposed auxiliary task; (4) among our pro-
posed models, we find that the performance of
DSR and SSR is not stable: sometimes they can
achieve the best result, but sometimes they per-
form even worse than or similar to the baseline
HNN. In contrast, DSRW and SSRW can always
outperform HNN, and perform better than DSR
and SSR on average. This is intuitive since the
sentiment scores in MI, derived from source la-

beled data, are specific to the source domain, while
the sentiment scores in SentiWordNet are general
across domains. Besides, we can also see that
the gap between SSR and SSRW is much smaller
than the gap between DSR and DSRW. This sug-
gests that our document-level shared representa-
tion learning method is more sensitive to the qual-
ity of sentiment lexicons, and with a high quality
sentiment lexicon, it can perform best on average.

4.3 Case Study

Finally, to explore how our proposed models help
to improve the performance of HNN in the test
data set, we conduct a case study on B2D to get
a deeper insight of our model DSR.

Specifically, we sample several samples from
the test data set, i.e., DVD. As shown in Table 2,
HNN only correctly predicts the sentiment of the
first document but gives wrong predictions on an-
other two documents, since worth watching only
occurs once in the source Book domain. However,
our model DSR can make correct predictions for
all of them. The reason is as follows. In Table
2, we can observe that in the unlabeled data from
the the DVD domain, worth watching often co-
occur with some general positive sentiment words
like good, great, wonderful and fantastic. Based
on these unlabeled documents, DSR can implic-
itly learn that worth watching are highly corre-
lated with the positive sentiment via our auxil-
iary task, and ultimately make correct predictions
for the two test samples. This further indicates
that compared with HNN, our models can identify
more domain-specific sentiment words, and there-
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B2D Review HNN DSR

Definitely a great movie, rules ...... It is a movie definitely worth watching ...... Strongly
recommended along with black hawk down, a few good men, and courage under fire . 1 1

Test If your not already hooked on the story of these interns you have some catching up to do.
Its not your typical medical drama and certainly worth watching. 0 1

This film gets 4 stars because the child actors shine so much in it. The plot is not very
intriguing, and ...... So no wonder you can not compete with him. Anyway, this film
is certainly worth watching as a family entertainment! 0 1

Very good film with a great cast. Reese and wahlberg are wonderful in their roles and
play them to perfection, walhberg especially. Very much worth watching / owning. - -

Unlabel A great movie! What an all star cast! This movie is worth watching over and over again. - -

I found this dvd to be well produced and engaging to go along with the powerful content.
Fantastic. Loads of deleted scenes that are very worth watching. - -

Table 2: Examples drawn from B2D whose sentiment labels are incorrectly predicted by the baseline model (HNN) but
correctly inferred by our model (DSR). The sentiment words specific to the target domain are in bold and italic, and the pivot
sentiment words are only in bold. 0 and 1 denote the negative and positive sentiments respectively.

fore improve the performance.

5 Conclusions

We presented a domain adaptation method for
document-level sentiment classification. We first
devised a new auxiliary task based on sentiment
scores of pivot words. Then, we proposed two
neural network architectures to respectively in-
duce shared document embeddings and sentence
embeddings across domains. Experiment results
show that with a pseudo sentiment lexicon, our
methods can achieve comparable results compared
with several highly competitive domain adaptation
methods; and with an external sentiment lexicon,
we can further boost the performance of both ar-
chitectures to achieve the state-of-the-art result.
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