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Abstract
Word lists have become available for most
of the world’s languages, but only a small
fraction of such lists contain cognate in-
formation. We present a machine-learning
approach that automatically clusters words
in multilingual word lists into cognate sets.
Our method incorporates a number of di-
verse word similarity measures and fea-
tures that encode the degree of affinity be-
tween pairs of languages. The output of
the classification algorithm is then used to
generate cognate groups. The results of
the experiments on word lists representing
several language families demonstrate the
utility of the proposed approach.

1 Introduction

Cognates are words with a shared linguistic origin,
such as English father and French père. Identifi-
cation of cognates is essential in historical linguis-
tics, and cognate information has been success-
fully applied to natural language processing tasks,
such as sentence alignment in bitexts (Simard
et al., 1993), and statistical machine transla-
tion (Kondrak et al., 2003). The problem of au-
tomatically identifying pairs of cognates has been
addressed previously (Frunza and Inkpen, 2009;
Kondrak, 2009). The process of identification is
usually based on the combination of the following
three types of evidence: phonetic similarity, se-
mantic similarity, and recurrent sound correspon-
dences. The input data include dictionaries, mul-
tilingual word lists, and bitexts. The objective can
be finding pairs of cognates among two related
languages, or finding groups of cognates among
multiple languages.

In this paper, we focus on the task of identi-
fying cognate groups (clusters) in word lists on
the basis of word similarity and language relation-
ships. Word lists are now available for most of the

world’s languages (Wichmann et al., 2011). How-
ever, only a fraction of such lists contain cognate
information. Methods proposed for pairwise cog-
nate identification are of limited utility for such
data because they fail to consider the transitivity
property of the cognation relationship. Cognate
groups are also more useful than cognate pairs as
the input to algorithms for reconstructing phyloge-
netic trees (Bouchard-Côté et al., 2007).

A number of word similarity measures have
been applied to the problem of cognate identifi-
cation (Frunza et al., 2005). Kondrak and Dorr
(2004) report that a simple average of various
measures outperforms any individual measure of
phonetic similarity. We propose to combine mea-
sures using a machine-learning approach based on
support vector machines (SVMs). The SVMs are
trained on both positive and negative examples,
and allow for a seamless combination of a num-
ber of diverse similarity measures.

In addition to word similarity features, we in-
clude a set of language-pair features that incor-
porate information regarding the degree of relat-
edness between languages. We develop a way
to self-train these features in the absence of pre-
existing cognate information. We also present
a novel clustering algorithm for defining cognate
groups, which utilizes the classification decisions
generated by the SVM classifier. We evaluate our
method on two sets of word lists representing sev-
eral language families. The results demonstrate
the utility of the proposed techniques.

This paper is structured as follows. In Section 2,
we define the task that we address in this work.
In Section 3, we discuss relevant previous work.
In Section 4, we describe our method of cluster-
ing cognates. Section 5 explains our evaluation
methodology. Sections 6 and 7 report the results
of our experiments. We conclude with a discus-
sion of our work, its implications, and the poten-
tial for further research.
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2 Problem definition

There are over five thousand languages in the
world, which are grouped into dozens of language
families (Lewis, 2009). Some language fami-
lies, such as Indo-European and Austronesian, are
very well documented. There are many languages,
however, for which the only available data are rel-
atively short vocabulary lists. For example, most
languages in the Automated Similarity Judgement
Program database (Wichmann et al., 2011) are
represented by word list composed of only 40
meanings. Other lists of the most stable meanings
range from 15 to 200 (Dyen et al., 1992).

ALL AND ANIMAL ...
Irish uile agus ainhme ...
Welsh pob a anifail ...
Breton holl hag aneval ...
Rumanian toti iar animal ...
Italian tutto ed animale ...
... ... ... ... ...

Table 1: A sample of the Indo-European Database
used in our experiments.

Table 1 visualizes a small part of the typ-
ical dataset as a two-dimensional m × n ta-
ble, in which rows represent n individual lan-
guages and columns represent m distinct mean-
ings. The meanings are limited to the basic vo-
cabulary that is relatively resistant to lexical re-
placement, and present in most of the world’s lan-
guages (Swadesh, 1952). The task that we ad-
dress in this paper is the identification of cognate
groups (clusters) within each column. The num-
ber of clusters can range between 1 and n. Since
many datasets contain either orthographic forms
or use an approximate phonetic encoding, we do
not require the words to be fully phonetically tran-
scribed. If the data contains multiple words per
language/meaning slot, we randomly pick one of
the forms and discard the others. We will evalu-
ate our methods by comparing the generated clus-
ters to cognate judgements made by linguists that
are experts in language families represented by the
datasets.

3 Previous work

Frunza et al. (2005) experiment with several Weka
classifiers (Hall et al., 2009) that combine various
orthographic similarity measures for the pairwise

identification of cognates and false friends1 as aids
to second-language learners. Datasets were ex-
tracted from various sources: a manually aligned
bitext, lists of cognates and false friends, and ex-
ercises for language learners. No single classifier
is reported as the most accurate on all tasks. Our
approach differs in the focus on identifying cog-
nate groups for the purpose of classifying related
languages.

Mulloni (2007) applies the SVMTool tag-
ger (Giménez and Màrquez, 2004) to automati-
cally generate words in one language from their
cognates in a related language. He reports a 30-
35% accuracy on an English-German cognate list.
A relatively large list of cognates (1683 entries)
was used for training the SVMTool. This un-
derlines the inherent problem with the proposed
methods: in order to identify or generate cognates
between languages, a substantial number of cog-
nates must have already been identified. We are
interested in a more realistic scenario where no
cognate pairs are available.

Bouchard-Côté et al. (2007) present a unified
stochastic model of diachronic phonology aimed
at the automatic reconstruction of proto-forms and
deriving phylogenetic trees. They assume the cog-
nate groups to be the input to their model. In
the actual experiments on four closely-related Ro-
mance languages they filtered out non-cognates by
thresholding the normalized edit distance scores.
They consider the joint modelling of phonology
with the determination of cognates as “an inter-
esting direction for future work.” We include edit
distance as one of the features in our SVM model.

Hall and Klein (2010) point out the limitations
of pairwise cognate identification, and present
a generative phylogenetic model for determining
cognate groups from unaligned word lists. How-
ever, their method requires the language family
tree to be known beforehand. This is a difficult
prerequisite to satisfy as phylogenetic trees are
rarely uncontroversial even in the case of well-
studied families. In their experiments, they also
disregard the semantic information, instead apply-
ing their method to randomly scrambled cognate
groups from three closely related Romance lan-
guages. In contrast, our experimental setup em-
ulates a much more realistic scenario.

1False friends are words that are orthographically similar
but historically unrelated, such as English dinner and Spanish
dinero.
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4 Clustering cognates

We propose a discriminative approach to cluster-
ing cognates. We start by formulating cognate
identification as a binary classification task on
pairs of words that have the same meaning in dif-
ferent languages. Our model is trained on anno-
tated data from a subset of the dataset, and applied
to a different, disjoint subset. The classification
results are then used to cluster words into cognate
sets. In this section we discuss various features
used for training the binary classifier, as well as
the details of our clustering approach.

The principal idea for cognate identification fol-
lows from the observation that, on average, cog-
nate pairs display higher word similarity that non-
cognates. Since no single word similarity measure
may be sufficient, we want to utilize a combination
of measures. We opt for a feature-based approach
because it is more principled and flexible than a
simple average or a linear combination of scores.
It also allows us to seamlessly incorporate a set of
language-pair features that provide additional con-
text for the classification.

We considered various software packages,
including Weka (Hall et al., 2009), SVM-
light (Joachims, 1999), Liblinear (Fan et al.,
2008), and LibSVM (Chang and Lin, 2011). We
ultimately selected LibSVM for our experiments
due to its higher overall performance in develop-
ment.

4.1 Word similarity features

We selected the following word similarity features
on the basis of the results of our preliminary de-
velopment experiments:

• minimum edit distance

• the longest common prefix length

• number of common bigrams

• the length of each word (2 separate features)

• the difference in length between the longer
and the shorter word

During development, we also experimented
with other features, but decided not to include
them in the final system for various reasons. The
longest common subsequence length was consid-
ered redundant with edit distance; longest com-
mon substring length and the number of common

trigrams were mostly subsumed by bigrams; and
shared first letter was generalized by the prefix
length.

We decided to exclude features based on pho-
netic similarity in order to ensure the applicability
to datasets that contain only orthographic forms.

4.2 Language-pair features

A limitation of the word similarity features is their
strictly local application to pairs of words. How-
ever, it is useful to consider not only the words, but
also the languages they come from. Intuitively, if
we observe that two language lists contain a large
number of similar word pairs, we would expect
the languages to be closely related, and therefore
share many cognates. Conversely, if there is little
overall similarity, we may suspect that that cog-
nates will be rare or non-existent.

As an example, consider the average value of
the normalized minimum edit distance computed
between semantically equivalent words across
pairs of word lists. For French and Italian, which
are closely related Romance languages, the value
is 0.44. In contrast, for French and German, which
are more remotely related, the value is only 0.18.
Indeed, among 199 word pairs each, there are 155
cognate pairs between French and Italian, and only
48 between French and German. The similarity
between cognates is also expected to be greater be-
tween strongly related languages, as there would,
on average, have been less divergence due to the
more recent linguistic split. Once again, our ex-
ample supports this idea: the average similarity
between French/Italian cognates is 0.52, while the
average similarity between French/German cog-
nates is 0.22. We would like our classifier to take
advantage of this tendency.

Our solution is to introduce a set of binary lan-
guage pair features, one for each pair of languages
in the data. For example, any instance consist-
ing of a German word and an English word has
a feature corresponding to that language pair set
to ‘1’, and all other language-pair features set to
’0’. The language-pair features elevate the learned
classification model from a local model to a global
one, allowing it to make connections between lan-
guages, rather than words alone. For example,
if relatively many training instances that have the
German-English feature set to ’1’ are cognate, this
information is expected to increase cognate recog-
nition accuracy for this language pair at test time.
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Figure 1: A cognate clustering of of the words with the meaning “to live”. The boxed numbers are the
total number of words in that cluster.

4.3 Self-training the language-pair features

As with any features, the weights for language-
pair features must be derived from annotated train-
ing data. For example, in order to derive a useful
weight for the German-English feature, we need
training instances consisting of English and Ger-
man words, which are annotated either as cognates
or as non-cognates. However, in a realistic sce-
nario of our approach being applied to a previously
unanalyzed family of languages, no cognate infor-
mation may be available. Thus we are faced with a
circular problem: language-pair features are likely
to improve cognate identification accuracy, but we
need to have at least some cognates already iden-
tified in order to train the language-pair features.

Our proposed solution to the problem is to train
the weights of the language-pair features on our
own classifications. We adopt a two-pass ap-
proach. We first train a model and classify the
data without the language-pair features; language
information from the training data is not used in
any way. These initial classifications of the test
data are then treated as correct, thus providing
a ‘best guess’ at what the cognate classifications
would be, were they available. Next, we re-train
the model using the initial classification, but this
time utilizing the language-pair features. The sec-
ond and final classification is obtained with the
new model, which is expected to be more accurate.
This method allows the language-pair features to
be used to good effect on any set of languages, us-
ing only information locally available in the data
to be classified.

4.4 Clustering

After the pairwise cognate classification is com-
pleted, the final task is the formation of cognate
groups, or clusters. An example of such a cluster-
ing is shown in Figure 1, wherein words from vari-
ous languages for the meaning “to live” have been
correctly placed in cognate groups. Each ellipse is
a cluster; two words are cognate if and only if they
are in the same cluster. Obtaining clusterings such
as these for arbitrary data is one objective of our
research.

Because of the transitivity property of cognates,
there is often no clustering that is completely con-
sistent with the pairwise classification decisions.
Each triple of words x, y, and z involves three bi-
nary classification instances: x − y, y − z, and
x − z. The contradiction arises if two instances
are classified as positive, and the remaining one
is classified as negative. Consider, for example,
the words beva, bivi, and vivir, all of which mean
“to live” in Breton, Sardinian, and Spanish, re-
spectively. It is reasonable to expect that beva
and bivi will be identified as cognate, as will bivi
and vivir, due to the similarity between these two
pairs. The remaining pair, beva and vivir, have
much lower similarity, and could reasonably be
identified as non-cognate. In fact, all three of
these words are cognate with each other. A clus-
tering approach would first put two of the words
into a single cluster; the remaining word would be
added due to its similarity with one of the first two
words. Thus, even though the cognate relationship
between beva and vivir may not be found directly,
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the links beva-bivi and bivi-vivir are enough; our
clustering method finds a cognate pair that would
otherwise have been overlooked.

In order to come up with a clustering, we typ-
ically need to override some of the binary classi-
fications. Blindly following the transitivity prop-
erty is likely to result in clusters that are exces-
sively large, since some positive classifications
are caused by accidental similarities between non-
cognate words. Consider another pair of words
with the meaning “to live”: Breton beva and
Swedish leva. While obviously similar (differing
by only a single letter substitution), they are, in
fact, not cognate. This presents a challenge: find-
ing a proper additional condition that should be
satisfied before merging clusters, in order to avoid
such accidental merges.

The solution employed by our clustering
method is based on the notion of average simi-
larity between clusters. Initially, each word cor-
responding to a particular meaning is placed in its
own cluster. We then consider each word pair that
has been classified as cognate, and for each pair
decide whether the corresponding clusters should
be merged. We compute the average value of cog-
nate judgements between the two clusters, which
is a measure of how similar the two clusters are.
If this value is less than a certain threshold (opti-
mized during development), the merge is aborted,
and clustering continues as it would had the two
words been judged non-cognate. Otherwise, the
clusters containing each word are merged.

5 Evaluation of clustering quality

Pairwise classification is typically evaluated by
some combination of the following four well-
known measures: accuracy (correct classifications
divided by all classifications), precision (true pos-
itives divided by all positive classifications), recall
(true positives divided by actual positives), and F-
score (the harmonic average of precision and re-
call). However, evaluating clustering is a more
complex problem than evaluating pairwise classi-
fications. Pairwise metrics have significant weak-
nesses when applied to clustering, where a word is
proposed to be cognate with all words in its cluster.
Incorrectly assigning a word to a large cluster will
generate a large number of false positives, while
incorrectly assigning a word to a smaller cluster
would generate fewer false positives. On the other
hand, incorrectly positing two clusters instead of

one is penalized proportionally to the square of the
size of the cluster. In short, the number of false
positives and false negatives an error creates may
not be balanced or consistent.

We considered a number of alternative metrics,
eventually deciding on the B-Cubed measure. B-
Cubed metrics assign a precision and recall to each
item in a set of clusters — in our case, to each
word. The item precision is the ratio of the num-
ber of its cognates in its cluster to the number of
items in its cluster. The item recall is the ratio
of the number of cognates in its cluster to the to-
tal number of its cognates. A B-Cubed F-score
is computed from the B-Cubed precision and re-
call, analogously to pairwise F-score. Amigó et
al. (2009) show that B-Cubed metrics satisfy four
constraints deemed critical to a valid clustering
evaluation metric, while all other metrics investi-
gated, including pairwise metrics, fail at least one
of these criteria.

For an illustrative example, consider again the
words shown in Figure 1. The gold standard in-
dicates one large cluster (53 words), one medium
sized cluster (15 words), and several smaller clus-
ters. In this case, incorrectly assigning (or fail-
ing to assign) a single word to the large clus-
ter produces many false positives (or false neg-
atives), while exchanging a word between two
smaller clusters has a minimal effect. In order
to verify the inconsistency of pairwise metrics on
clustering, we analyzed two different clusterings
of these words; one was an excessively aggres-
sive clustering, in which the medium-sized clus-
ter was almost entirely subsumed into the larger
cluster. The other was a more conservative cluster-
ing which formed the medium-sized cluster com-
paratively well, and generally better recovered the
overall structure of the actual clusters. The pair-
wise metrics reported the more aggressive cluster-
ing to be significantly better than the more conser-
vative result; the B-Cubed metrics did not display
this anomalous behavior.

The above example demonstrates that pairwise
metrics can, under realistic conditions, report a
much worse clustering to be significantly better,
demonstrating their intrinsic volatility: a single er-
ror can have dramatic, unpredictable effects that
depend more on chance similarities than on the
quality of the clustering or classification process.
B-Cubed metrics do not have this problem; be-
ing an average of item-based measurements, er-
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rors will have consistent effects, balanced against
the resulting quality of the clusters. We therefore
adopt B-Cubed metrics as the preferred measure
of clustering performance.

6 The Indo-European experiments

Our first experiment involves an extremely well-
studied family, for which we also have access to
relatively long and complete lists of basic words.
We divide the data into training and test sets along
different sets of meanings. The same languages
appear in both sets.

6.1 Data
The publicly-available Comparative Indo-
European Database (Dyen et al., 1992) contains
words for 200 different meanings in 95 languages
of the Indo-European family. The words in each
meaning are grouped in cognate sets. We used
a pre-processed version of the data which places
each meaning in an individual file, for a total
of 200 files. Each word is labelled with the
number of the cognate set that it belongs to.2 We
randomly selected 20 out of 200 meanings data
as a development set. We also created a separate
held-out test set of 20 meanings, roughly 10%
of the data. We performed two tests: one with
a small 20-meaning training set, and the other
with a large 180-meaning training set, which also
included the development set. In both cases, the
test set was the same. We made sure that the sets
of meanings in the training and test data were
disjoint.

6.2 Classification methods
We tested three methods of classification, each
making different use of language-pair features
(LPF):

• NO LPF: a strictly “local” method that consid-
ers only the pair of words in question, and
utilizes no language-pair features.

• SUPERVISED LPF: the weights of language-
pair features are trained on the annotated in-
stances in the training set.

• SELF-TRAINED LPF: the two-pass approach de-
scribed in section 4.3. No cognate informa-
tion for the language pairs in the test set is
assumed to be in the training set.

2This processed data is available on request.

Method Size of Training Set
20 180

Baseline 0.623 0.623
NO LPF 0.642 0.687
SELF-TRAINED LPF 0.656 0.687
SUPERVISED LPF 0.677 0.677

Table 2: Average B-Cubed F-Scores for the Indo-
European data.

For the baseline, we adopt a simple but surpris-
ingly effective method of grouping words accord-
ing to their first letter or phoneme. Two cognates
maintaining their common initial sound are as-
signed to the same cluster by this baseline. How-
ever, unrelated words that accidentally share the
same first letter are also marked as cognate. In
the example shown in Figure 1, the baseline cor-
rectly identifies the middle-sized cluster of words
from 15 Germanic languages, but splits the largest
cluster into several smaller ones, containing words
starting with b, d, g, j, and z, respectively.

6.3 Results

Table 2 shows the results in terms of average B-
Cubed F-score. Our methods consistently outper-
form the first-letter baseline regardless of the size
of the training set. When the 20 meaning training
subset was used, the results rank the SELF-TRAINED

LPF method between the SUPERVISED LPF and NO

LPF methods. When the 180 meaning training
set was used, the NO LPF and SELF-TRAINED LPF

models achieved substantial improvement voer the
baseline; however, somewhat surprisingly, the SU-

PERVISED LPF model obtained a smaller improve-
ment. This suggests that the SUPERVISED LPF

model may have issues with overspecialization,
or may not be able to make use of data past a
certain point. The improvement exhibited by the
SELF-TRAINED LPF model suggest that the two-pass
method makes greater use of additional training
data, and is capable of producing even better clus-
ters than the SUPERVISED LPF model.

7 The ASJP experiments

This set of experiments involved some of the rel-
atively short lists from a comprehensive database
that contains most of the world’s languages. This
time, we divided the data into the training and test
sets by languages, rather than by meanings.
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Baseline 0.653
NO LPF 0.662
SELF-TRAINED LPF 0.714
SUPERVISED LPF 0.703

Table 3: Average B-Cubed F-Scores for ASJP
data, with languages grouped by family.

7.1 Data

Our second dataset consists of word lists from the
Automated Similarity Judgement Program (ASJP)
project, which represent 92 languages belonging
to 5 language families: Austro-Asiatic, Hmong-
Mien, Mixe-Zoque, Sino-Tibetan, and Tai-Kadai.
Each list contains 40 basic meanings transcribed
in a phonetic notation devised for the ASJP.

We performed two experiments on this data. In
each experiment, the first 46 languages were used
for training, and the other 46 were used for test-
ing. For the first experiments, the languages were
grouped according to language families, ensuring
that most families appeared exclusively either in
the training or the test set (one group was split be-
tween the two sets). For the second test, we sorted
the languages alphabetically, essentially shuffling
different language families. One of our objectives
was to determine how the distribution of the lan-
guages affects the results. The first experiment
adopts natural divisions between language fami-
lies, emulating a realistic scenario where a model
is trained on well-studied families and applied to
the data representing less-studied families. The
second experiment represents the situation where
we have annotation for some of the languages in a
family, and aim to discover cognates among other
languages in the same family. The alphabetic or-
dering is akin to random shuffling of languages,
but has the advantage of being easy to replicate.

7.2 Results on the data grouped by family

In this experiment, languages were naturally ar-
ranged into language families. That is, all lan-
guages in the same language family, such as
Sino-Tibetan and Tai-Kadai, are adjacent in the
data. This provides a realistic testing environment,
wherein one set of language families (with known
cognate data) is used to obtain cognate informa-
tion for another set of language families.

Table 3 shows that the SELF-TRAINED LPF model
obtains the best results in this experiment. The
model appears able to generalize well, though it is

Baseline 0.660
NO LPF 0.724
SELF-TRAINED LPF 0.701
SUPERVISED LPF 0.665

Table 4: Average B-Cubed F-Scores for ASJP
data, with languages ordered alphabetically.

not trained on any of the language pairs it is tested
on. The NO LPF method and the baseline method
are less effective. The SUPERVISED LPF method
is again less effective that the SELF-TRAINED LPF

method. This is likely caused by the lack of train-
ing data that contains the information for the lan-
guage pairs that it encounters in the test set.

7.3 Results on the data sorted alphabetically
This experiment is based on the same ASJP
dataset, with the exception that the languages are
sorted alphabetically. This strengthens the rela-
tionship between the training and test sets (as lan-
guages from all families can be found in each),
while reducing the similarities within them.

The results of this test are presented in Table 4.
The NO LPF approach was a surprise winner this
time. It appears that the presence of more linguis-
tic relationships between the training and testing
sets was the deciding factor. We conjecture that
the relationship between the training and test sets
was sufficiently strong for a locally trained model
to provide very good results.

On the other hand, the SUPERVISED LPF approach
performed much worse, only barely exceeding the
baseline results. This likely occurs for the same
reason that the NO LPF method does better — there
are not enough similarities between the training
and the test data to use global features accurately.

Notably, the SELF-TRAINED LPF approach still
does quite well, even with fewer similarities to
use. This demonstrates high reliability, as all other
methods do poorly on at least one test; only the
SELF-TRAINED LPF method provides high quality
clusterings throughout all experiments.3

8 Discussion

Based on our results, we are able to conclude
that our methods can consistently and accurately

3We also considered training on the Indo-European data
and testing on ASJP data, but unfortunately the two datasets
use entirely different notations: Romanized orthography ver-
sus specialized phonetic encoding. No simple method exists
for converting between the two.
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identify and cluster cognates, exceeding the per-
formance of a strong baseline method. We have
shown how SVMs can produce accurate cognate
classifications; we have also shown how these
classifications can be systematically used to cre-
ate cognate groups. Evaluated with the B-Cubed
metrics, these clusters are demonstrated to be of
high quality compared to known cognate groups.

Language pairs appear to be most useful as bi-
nary features in a supervised SVM model if the
data to be classified are from a small number of
language families. In cases where there are fewer
similarities in the data, fewer connections between
languages can be learned. Relying on the cognate
annotations substantially lowers the quality of the
results in such situations, as the data it requires
is not available. We thus find the SUPERVISED LPF

method not only impractical, but also rather unre-
liable.

In contrast, our SELF-TRAINED LPF approach
has been demonstrated to be a reliable, high-
performing method, which produces good clas-
sifications in all of our experiments, throughout
which the size of the training data and the dis-
tribution of the languages to be classified varies
significantly. While not always yielding the best
clusters overall, the SELF-TRAINED LPF method has
been shown to consistently yield very good results
across all tests. It functions well under realistic
conditions, as it does not require cognate infor-
mation on the languages to be classified. Further-
more, it can find global connections between lan-
guages that do not have cognate information avail-
able. We thus take our results as a recommenda-
tion for the use of the SELF-TRAINED LPF approach,
and for the further investigation of language-pair
features in cognate identification in general.

9 Conclusion

We have proposed an effective new method of
identifying cognates that can make useful global
connections from local data. Our demonstration
that SVMs can make use of language information
to improve cognate classifications lays a founda-
tion for the use of cognate judgements in language
classification and provides insight into how ma-
chine learning methods can be used successfully
for the purposes of cognate identification.

Further work in this area might process lan-
guage pairs directly using a method similar to
our own, developing a machine learning, cognate

based method for language classification. Brown
et al. (2008) notes that cognate judgements could
be used to compare and classify languages, but
that this is yet to be done. Our use of relationships
between language pairs to assist in classification
sets a strong precedent for cognate-based language
classification. In addition, other machine learning
algorithms, such as Bayesian classifiers, as well
as sophisticated phonetic similarity measures, may
produce more accurate cognate classifications and
clusters, and could be tested in future studies.
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