
Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 65–72,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Design of a Rule-based Stemmer for Natural Language Text in Bengali

Sandipan Sarkar
IBM India

sandipan.sarkar@in.ibm.com,
sandipansarkar@gmail.com

Sivaji Bandyopadhyay
Computer Science and Engineering Department

Jadavpur University, Kolkata
sbandyopadhyay@cse.jdvu.ac.in

Abstract

This paper presents a rule-based approach
for finding out the stems from text in Ben-
gali, a resource-poor language. It starts by
introducing the concept of orthographic
syllable, the basic orthographic unit of
Bengali. Then it discusses the morphologi-
cal structure of the tokens for different
parts of speech, formalizes the inflection
rule constructs and formulates a quantita-
tive ranking measure for potential candi-
date stems of a token. These concepts are
applied in the design and implementation
of an extensible architecture of a stemmer
system for Bengali text. The accuracy of
the system is calculated to be ~89% and
above.

1 Introduction

While stemming systems and algorithms are being
studied for European, Middle Eastern and Far
Eastern languages for sometime, such studies in
Indic scripts are quite limited. Ramanathan and
Rao (2003) reported a lightweight rule-based
stemmer in Hindi. Garain et. al. (2005) proposed a
clustering-based approach to identify stem from
Bengali image documents. Majumdar et. al. (2006)
accepted the absence of rule-based stemmer in
Bengali and proposed a statistical clustering-based
approach to discover equivalence classes of root
words from electronic texts in different languages
including Bengali. We could not find any publica-
tion on Bengali stemmer following rule-based ap-
proach.

Our approach in this work is to identify and
formalize rules in Bengali to build a stemming sys-
tem with acceptable accuracy. This paper deals
with design of such a system to stem Bengali

words tokens tagged with their respective parts of
speech (POS).

2 Orthographic Syllable

Unlike English or other Western-European lan-
guages, where the basic orthographic unit is a
character, Bengali uses syllable. A syllable is typi-
cally a vowel core, which is preceded by zero or
more consonants and followed by an optional dia-
critic mark.

However, the syllable we discuss here is ortho-
graphic and not phonological, which can be differ-
ent. As for example, the phonological syllables of
word কতর্ া [kartaa] are কr [kar_] and তা [taa].
Whereas, the orthographic syllables will be ক [ka]
and তর্ া [rtaa] respectively. Since the term 'syllable'
is more used in phonological context, we use 'o-
syllable' to refer orthographic syllables, which will
be a useful tool in this discussion.

Formally, using regular expression syntax, an o-
syllable can be represented as where C
is a consonant, V is a vowel and D is a diacritic
mark or halant. If one or more consonants are pre-
sent, the vowel becomes a dependent vowel sign
[maatraa].

* ? ?C V D

We represent the o-syllables as a triple (C, V, D)
where C is a string of consonant characters, V is a
vowel character and D is a diacritic mark. All of
these elements are optional and their absence will
be denoted by Ø. V will be always represented in
independent form.

We define o-syllabic length |τ| of token (τ) as
the number of o-syllables in τ.

Few examples are provided below:

Token (τ) O-syllable Form |τ|
মা [maa] (ম,আ,Ø) 1
চঁাদ [chaa`nd] (চ,আ,◌ঁ)(দ,a,Ø) 2
aগs্য [agastya] (Ø,a,Ø)(গ,a,Ø)(সতয,a,Ø) 3

65

Token (τ) O-syllable Form |τ|
আট্কা [aaT_kaa] (Ø,আ,Ø) (ট,Ø,◌্) (ক,আ,Ø) 3

Table 1: O-syllable Form Examples

3 Morphological Impact of Inflections

Like English, the inflections in Bengali work as a
suffix to the stem. It typically takes the following
form:
<token> ::= <stem><inflections>
<inflections> ::= <inflection> |

<inflection><inflections>
Typically Bengali word token are formed with

zero or single inflection. Example: মােয়র [maayer]
< মা [maa] (stem) + েয়র [yer] (inflection)

However, examples are not rare where the token
is formed by appending multiple inflections to the
stem: করেলo [karaleo] < কr [kar_] (stem) + েল [le]
(inflection) + o [o] (inflection), ভাiেদরেকi [bhaaid-
erakei] < ভাi [bhaai] (stem) + েদর [der] (inflec-
tion) + েক [ke] (inflection) + i [i] (inflection).

3.1 Verb

Verb is the most complex POS in terms of in-
flected word formation. It involves most number of
inflections and complex formation rules.

Like most other languages, verbs can be finite
and non-finite in Bengali. While inflections for
non-finite verbs are not dependent on tense or per-
son; finite verbs are inflected based on person (first,
second and third), tense (past, present and future),
aspect (simple, perfect, habitual and progressive),
honour (intimate, familiar and formal), style (tradi-
tional [saadhu], standard colloquial [chalit] etc.)
mood (imperative etc.) and emphasis. Bengali verb
stems can yield more than 100 different inflected
tokens.

Some examples are: করািতস [karaatis] < করা
[karaa] (stem) + িতস [tis] (inflection representing
second person, past tense, habitual aspect, intimate
honour and colloquial style), খাiব [khaaiba] < খা
[khaa] (stem) +iব [iba] (inflection representing
first person, future tense, simple aspect and tradi-
tional style) etc.

A verb token does not contain more than two in-
flections at a time. Second inflection represents
either emphasis or negation.

Example: আসবi [aasabai] < আs [aas_] (stem) + ব
[ba] (inflection representing first person, future

tense, simple aspect and colloquial style) + i [i]
(inflection representing emphasis).

While appended, the inflections may affect the
verb stem in four different ways:

1. Inflections can act as simple suffix and do not
make any change in the verb stem. Examples: করা
(stem) + িc [chchhi] (inflection) > করািc [karaach-
chhi], খা (stem) + ব (inflection) > খাব [khaaba] etc.

2. Inflections can change the vowel of the first
o-syllable of the stem. Example (the affected vow-
els are in bold and underlined style): শধু্ রা
[shudh_raa] (stem) + স [sa] (inflection) > (শ,u,Ø)
(ধ,Ø,◌্) (র,আ,Ø) + স > (শ,o,Ø) (ধ,Ø,◌্) (র,আ,Ø) + স >
েশাধ্ রা [shodh_raa] + স > েশাধ্ রাস [shodh_raasa].

3. Inflections can change the vowel of the last o-
syllable of the stem. Example: আট্ কা [aaT_kaa]
(stem) + িছ [chhi] (inflection) > (Ø,আ,Ø) (ট,Ø,◌্)
(ক,আ,Ø) + িছ > (Ø,আ,Ø) (ট,Ø,◌্) (ক,e,Ø) + িছ > আট্
েক [aaT_ke] + িছ > আট্েকিছ [aaT_kechhi].

4. Inflections can change the vowel of both first
and last o-syllable of the stem. Example: েঠাk রা
[Thok_raa] (stem) + o [o] (inflection) > (ঠ,o,Ø)
(ক,Ø,◌্) (র,আ,Ø) + o > (ঠ,u,Ø) (ক,Ø,◌্) (র,i,Ø)
+ o > ঠুkির [Thuk_ri] + o > ঠুkিরo [Thuk_rio].

3.2 Noun

Noun is simpler in terms of inflected token forma-
tion. Zero or more inflections are applied to noun
stem to form the token. Nouns are inflected based
on number (singular, plural), article and case [kā-
raka] (nominative, accusative, instrumental, dative,
ablative, genitive, locative and vocative). Unlike
verbs, stems are not affected when inflections are
applied. The inflections applicable to noun is a dif-
ferent set than verb and the number of such inflec-
tions also less in count than that of verb.

Example: বািড়টারi [baarhiTaarai] < বািড় [baarhi]
(stem) + টা [Taa] (inflection representing article) +
র [ra] (inflection representing genitive case) + i [i]
(inflection representing emphasis), মানষুগেুলােক
[maanushhaguloke] < মানষু [maanushha] (stem) +
গেুলা [gulo] (inflection representing plural number) +
েক [ke] (inflection representing accusative case) etc.

3.3 Pronoun

Pronoun is almost similar to noun. However, there
are some pronoun specific inflections, which are
not applicable to noun. These inflections represent
location, time, amount, similarity etc.

66

Example: েসথা [sethaa] < েস [se] (stem) + থা [thaa]
(inflection representing location). This inflection is
not applicable to nouns.

Moreover, unlike noun, a pronoun stem may
have one or more post-inflection forms.

Example: stem আিম [aami] becomes আমা [aamaa]
(আমােক < আমা + েক) or েমা [mo] (েমােদর < েমা + েদর) once
inflected.

3.4 Other Parts of Speeches

Other POSs in Bengali behave like noun in their
inflected forms albeit the number of applicable
inflections is much less comparing to that of noun.

Example: েƽɵতম [shreshhThatama] < েƽɵ
[shreshhTha] (adjective stem) + তম [tama] (inflec-
tion representing superlative degree), মেধয্ [madhye]
< মধয্ [madhya] (post-position stem) + ে◌ [e]
(inflection) etc.

4 Design

4.1 Context

As we identified in the previous section, the impact
of inflections on stem are different for different
POSs. Also the applicable list of inflections varies
a lot among the POSs. Hence, if the system is POS
aware, it will be able to generate more accurate
result. This can be achieved by sending POS
tagged text to the stemmer system, which will ap-
ply POS specific rules to discover stems. This
proposition is quite viable as statistical POS tag-
gers like TnT (Brants, 2000) are available.

The context of the proposed system is provided
below:

Figure 1: Context of Proposed Stemmer

4.2 Inflection Rule Observations

To discover the rules, we took the help of the
seminal work by Chatterji (1939). For this work
we limited our study within traditional and stan-
dard colloquial styles (dialects) of Bengali. For
each of the POSs, we prepared the list of applica-
ble inflections considering these dialects only. We

studied these inflections and inflected tokens and
framed the rules inspired by the work of Porter
(1981). We had following observations:

1. To find out the stem, we need to replace the
inflection with empty string in the word token.
Hence all rules will take the following form:
 <inflection> → ""

2. For rules related to verbs, the conditionals are
present but they are dependent on the o-syllables
instead of 'm' measure, as defined and described in
Porter (1981).

3. For pronouns the inflection may change the
form of the stems. The change does not follow any
rule. However, the number of such changes is
small enough to handle on individual basis instead
of formalizing it through rules.

4. A set of verb stems, which are called incom-
plete verbs, take a completely different form than
the stem. Such verbs are very limited in number.
Examples: যা [Jaa] (েগলাম [gelaam] etc. are valid
tokens for this verb), আs (eলাম [elaam] etc. are
valid tokens), আছ্ [aachh_] (থাকলাম [thaakalaam],
িছল [chhila] etc. are valid tokens)

5. For non-verb POSs, there is no conditional.
6. Multiple inflections can be applied to a token.
7. The inflections may suggest mutually contra-

dictory results. As for example token েখিল [kheli]
can be derived by applying two legitimate inflec-
tions িল [li] and ি◌ [i] on two different stems খা
[khaa] and েখl [khel_] respectively. Finding out the
correct stem can be tricky.

8. Because of contradictory rules and morpho-
logical similarities in different stems there will be
ambiguities.

Tagged
Text

Plain Text Stemmed Text

POS Tagger Stemmer

4.3 Analysis and Design Decisions

Based on the observations above we further ana-
lyzed and crafted a few design decisions, which are
documented below:

POS Group Specific Inflection Sets: It is ob-
served that multiple POSs behave similarly while
forming inflected word tokens. We decided to
group them together and keep a set of inflections
for each such group. By separating out inflection
sets, we are minimizing the ambiguity.

We identified following inflection sets based on
the tagset developed by IIIT Hyderabad for Indic
languages. The tags not mentioned in the table be-
low do not have any inflected forms. Size indicates
the number of inflections found for that set.

67

Set Comment Size
IN The inflection set for noun group. It

covers NN, NNP, NVB, NNC and
NNPC tags.

40

IP The inflection set for pronoun group.
It covers PRP and QW tags. This is a
superset of IN.

54

IV The inflection set for verb group. It
covers VFM, VAUX, VJJ, VRB and
VNN tags.

184

IJ The inflection set for adjective
group. It covers JJ, JVB, QF and
QFNUM tags.

14

IR The inflection set for adverb, post-
position, conjunction and noun-
location POSs. It covers RB, RBVB,
PREP, NLOC and CC tags.

6

Table 2: POS Groups

Pronoun – Post-inflection vs. Actual Stem
Map: For pronoun we decided to keep a map of
post-inflection stems and actual stems. After in-
flection stripping, this map will be consulted to
discover the stem. Since number of pronouns in
Bengali is limited in number, this approach will
provide the most effective and performance
friendly mechanism.

Verb – Morphological Rules: Based on obser-
vation 2, we further studied the verb POS and iden-
tified four classes of stems that exhibits own char-
acteristics of morphological changes when inflec-
tions are applied. These classes can be identified
for a stem σ based on the following two meas-
ures:

n = |σ| and
2

n

j
j

cλ
=

= ∑

where cj is the number of consonants in j-th o-
syllable of the stem.

Class Identification Characteristics
I If n = 1. Example: খা [khaa], েদ [de] etc.
II If n > 1 and the n-th o-syllable has halant

as diacritic mark. Only this class of verb
stems can have halant at the last o-
syllable. Example: কr, িশখ্ [shikh_] etc.

III If n > 1, λ = 1 and vowel of the n-th o-
syllable is 'আ'. Example: করা, িশখা [shik-
haa], েদৗড়া [dourhaa] etc.

IV If n > 1, λ > 1 and vowel of the n-th o-

Class Identification Characteristics
syllable is 'আ'. Example: আট্কা, ধmকা
[dham_kaa] etc.

Table 3: Verb Stem Classes

Since the verb inflections may affect the stems
by changing the vowels of first and last o-syllable,
a rule related to verb inflection is presented as a 5-
tuple:

(L1, R1, Ln, Rn, i)
where

• L1 is the vowel of the first o-syllable of post-
inflection stem

• R1 is the vowel of the first o-syllable of ac-
tual stem

• Ln is the vowel of the last (n-th) o-syllable of
post-inflection stem

• Rn is the vowel of the last (n-th) o-syllable of
actual stem

• i is the inflection
The vowels are always presented in their inde-

pendent form instead of maatraa. This is because,
we are going to apply these rules in the context of
o-syllables, which can deterministically identify,
which form a vowel should take. However, for in-
flection, we decided to differentiate between de-
pendent and independent forms of vowel to mini-
mize the ambiguity.

As for example, for the token ঠুk িরo, inflection is
o, post-inflection stem is ঠুk ির, and the actual stem
is েঠাk রা. Hence the rule for this class IV verb will
be (u, o, i, আ, o).

Absence of an element of the 5-tuple rule is rep-
resented by 'Ø'. Example: for token েখেয় [kheye],
which is derived from stem খা, a class I verb stem;
the rule will be (e, আ, Ø, Ø, েয়).

After completion of analysis, we captured 731
such rules. The distribution was 261, 103, 345 and
22 for class I, II, III & IV combined and IV respec-
tively.

Map for Incomplete Verbs: For incomplete
verbs, we decided to maintain a map. This data
structure will relate the tokens to an imaginary to-
ken, which can be generated from the stem using a
5-tuple rule. Taking the example of token েগলাম,
which is an inflected form of stem যা, will be
mapped to েযলাম [Jelaam], which can be generated
by applying rule (e, আ, Ø, Ø, লাম). The system
will consult this map for each input verb token. If

68

it is found, it will imply that the token is an incom-
plete verb. The corresponding imaginary token will
be retrieved to be processed by rules.

Recursive Stem Discovery Process: Since mul-
tiple inflections can be applied to a token, we de-
cided to use a stack and a recursive process to dis-
cover the inflections and the possible stems for a
token. However, we do special processing for verb
tokens, which cannot have more than two inflec-
tions attached at a time and require extra morpho-
logical rule processing.

Ranking: Since there will be ambiguity, we de-
cided to capture all candidate stems discovered and
rank them. The client of the system will be ex-
pected to pick up the highest ranked stem.

Our observation was – stems discovered by
stripping a lengthier inflection are more likely to
be correct. We decided to include the o-syllabic
length of the inflection as a contributing factor in
rank calculation.

Additionally, for verb stems, the nature of the 5-
tuple rule will play a role. There is a degree of
strictness associated with these rules. The strict-
ness is defined by the number of non-Ø elements
in the 5-tuple. The stricter the rule, chances are
more that the derived stem is accurate.

Taking an example – token েখেয় [kheye] can be
derived from two rules: খা [khaa] + েয় [ye] is de-
rived from (e, আ, Ø, Ø, েয়) and খা̫ [khaay_]+ ে◌ [e]
is derived from (Ø, Ø, Ø, Ø, ে◌). Since rule (e, আ,
Ø, Ø, েয়) is stricter, খা should be the correct stem,
and that matches with our knowledge also.

Let τ be a token and σ is one of the candidate
stem derived from inflection ω.

For non-verb cases the rank of σ will be:
Rσ ω=

For verb, the strictness of the rule that generated
σ has to be considered. Let that rule be

1 1(, , , ,)n nL R L R iρ =
The strictness can be measured as the number of

non-Ø elements in the 5-tuple. Element i always
demands an exact match. Moreover, (L1, R1) and
(Ln, Rn) always come in pair. Hence the strictness
Sρ of rule ρ can be calculated as

1 n

1 n

1 n

1 n

1, if L L
2, if L L
2, if L = L
3, if L L

and
S

and
and

ρ

φ

Hence for verb stems the rank of σ will be:
R Sσ ρω= +

Overchanged Verb Stems and Compensation:
Because of the rule strictness ranking some verb
stems might be overchanged. As for example, to-
ken েভজালাম [bhejaalaam] is an inflected form of
stem েভজা [bhejaa]. This is a class III stem. There
are two relevant rules ρ1 = (Ø, Ø, Ø, Ø, লাম) and ρ2
= (e, i, Ø, Ø, লাম) which identifies the candidate
stems েভজা and িভজা [bhijaa] respectively. Since the
ρ2 has higher strictness, িভজা will rank better, which
is wrong.

This type of situation only happens if the ap-
plied rule satisfies following condition:

(L1, R1) χ ((i, e), (e, i), (u, o), (o, u)).
This effect comes because the verbs with first
vowel of these pairs at first o-syllable exhibits
morphologically similar behaviour with such verbs
for the last vowel of the pair once inflected.

িশখা and েভজা are example of such behaviour.
With inflection লাম, both of them produce similar
morphological structure (েশখালাম [shekhaalaam] and
েভজালাম) even though their morphology is different
at their actual stem.

To compensate that, we decided to include a
stem to the result set without changing the first o-
syllable, with same calculated rank, once such rule
is encountered. Going back to example of েভজালাম,
even though we identified িভজা as the stem with
highest rank, since ρ2 satisfies the above condition,
েভজা will be included with same rank as compensa-
tion.

Dictionary: To reduce ambiguity further, we
decided to introduce a stem dictionary, which will
be compared with potential stems. If a match
found, the rank of that stem will be increased with
a higher degree, so that they can take precedence.

Bengali word can have more than one correct
spelling. As for example, জnম [jan_ma] and জn
[janma] are both correct. Similarly, গজর্ া [garjaa]
and গr জা [gar_jaa], বrষা [bar_shhaa] and বষর্া [bar-
shhaa] etc.

To take care of the above problem, instead of
exact match in the dictionary, we decided to intro-
duce a quantitative match measure, so that some
tolerance threshold can be adopted during the
search in the dictionary.

φ φ
φ φ
φ φ

= =⎧
⎪ ≠ =⎪= ⎨ ≠⎪
⎪ ≠ ≠⎩

Edit-distance measure (Levenshtein, 1966) was
a natural choice for this. However direct usage of

69

this algorithm may not be useful because of the
following. For any edit operation the cost is always
calculated 1 in edit-distance algorithm. This may
mislead while calculating the edit-distance of a
pair of Bengali tokens. As for example: The edit-
distance for (বষর্া, বr ষা) and (বষর্া, বশর্া [barshaa])
pairs are same, which is 1. However, intuitively we
know that বr ষা should be closer to বষর্া than বশর্া.

To address the above problem we propose that
the edit cost for diacritic marks, halant and de-
pendent vowel marks should be less than that of
consonants or independent vowels. Similarly, edit
cost for diacritic marks and halant should be less
than that of dependent vowel marks.

Formally, let VO, CO, VS and DC be the set of
vowels, consonants, dependent vowel signs and
diacritic marks (including halant) in Bengali al-
phabet.

We define the insertion cost Ci and deletion cost
Cd of character γ as:

1, if () or ()
0.5, if ()

() ()
0.25, if ()
0, otherwise

i d

CO VO
VS

C C
DC

γ γ
γ

γ γ
γ

∈ ∈⎧
⎪ ∈⎪= = ⎨ ∈⎪
⎪⎩

We also define the substitution cost Cs of char-
acter γ1 by character γ2 as:

1 2
1 2

1 2

0, if ()
(,)

((), ()), otherwises
i i

C
Min C C

γ γ
γ γ

γ γ
=⎧

= ⎨
⎩

We refer this modified distance measure as
weighted edit-distance (WED) hereafter.

Going back to the previous example, the WED
between বষর্া and বশর্া is 1 and between বষর্া and বr ষা
is 0.25. This result matches our expectation.

We proposed that the discovered stems will be
compared against the dictionary items. If the WED
is below the threshold value θ, we enhance the
previous rank value of that stem.

Let D = (w1, w2, ... wM) be the dictionary of size
M. Let us define ση for stem σ as below:

1
(, ((,)))

M

kk
Min Min WED wση θ σ

=
=

The modified rank of σ is:
100() , if is verb

100() , otherwise

S
R

σ
ρ

σ
σ

θ ηω
θ

θ ηω
θ

−⎧ + +⎪⎪= ⎨ −⎪ +
⎪⎩

The match score is raised by a factor of 100 to
emphasise the dictionary match and dampen the
previous contributing ranking factors, which are
typically in the range between 0 - 20.

5 System Architecture

The proposed system structure is provided below
using Architecture Description Standard notation
(Youngs et. al., 1999):

«system»
POS Tagger

StemmingEngine

OrthosyllableHandler

«stack»
InflectionTracker

«set»
InflectionSets

«map»
PostinflectionPronouns

«map»
IncompleteVerbs

«set»
Lexicon

Stemmer system boundary

«table»
VerbRules

Figure 2: Stemmer Architecture
The components of the system are briefly de-

scribed below:
StemmingEngine: It receives a tagged token

and produces a set of candidate stems with their
assigned ranks and associated inflection.

OrthosyllableHandler: This component is re-
sponsible for converting a token into o-syllables
and vice-versa. It also allows calculating the WED
between two Bengali tokens.

InflectionTracker: While discovering the in-
flections recursively, this stack will help the
Stemming Engine to keep track of the inflections
discovered till now.

InflectionSets: Contains the POS group specific
inflection sets (IN, IP, IV, IJ and IR).

PostinflectionPronouns: A map of post-
inflection pronoun stems against their correspond-
ing actual stem form.

VerbRules: A table of 5-tuple verb rules along
with their verb stem class association.

σ

IncompleteVerbs: A map of incomplete verb
tokens against their formal imaginary forms.

Lexicon: The dictionary where a discovered
stem will be searched for rank enhancement.

As presented, the above design is heavily de-
pendent on persisted rules, rather than hard-coded

70

logic. This will bring in configurability and
adaptability to the system for easily accommodat-
ing other dialects to be considered in future.

The high level algorithm to be used by the Stem-
mingEngine is provided below:

global stems;

Stem(token, pos) {

Search(token, pos);
return stems;

}

Search(token, pos) {
if (pos is verb and token χ IncompleteVerbs)
 token ← IncompleteVerbs[token];

for (i = 1; i < token.length; i++) {
 candidate ← first i characters of token;
 inflection ← remaining characters of token;

 if (inflection ϖ InflectionSets)
 continue;

 if (pos is verb) {
 if (inflection is representing emphasis or negation) {
 InflectionTracker.push(inflection);
 Search(candidate, pos);
 InflectionTracker.pop(inflection);
 }

 class ← verb stem class of candidate;

 for each matching rule R in VerbRules for
 candidate and class {
 modify candidate by applying R;
 a ← inflection + inflections in InflectionTracker;
 r ← rank of the candidate based on |inflection|,
 strictness of R and match in Lexicon;
 Add candidate, a and r to stems;

 if (R is an overchanging rule)
 Modify candidate by compensation logic;
 Add candidate, a and r to stems;
 } // for each
 } // if pos is verb
 else {
 a ← inflection + inflections in InflectionTracker;

 if (pos is pronoun and
 candidate χ Postinflection Pronouns) {
 candidate ← PostinflectionPronouns[candidate];
 }

 r ← rank of the candidate based on |inflection|
 and match in Lexicon;
 Add candidate, a and r to stems;

 if (inflection != "") {
 InflectionTracker.push(inflection);

 Search(candidate, pos);
 InflectionTracker.pop(inflection);
 }
 } // else
} // for

}

6 Evaluation

Based on the above mentioned approach and de-
sign, we developed a system using C#, XML
and .NET Framework 2.0. We conducted the fol-
lowing experiment on it.

The goal of our experiment was to calculate the
level of accuracy the proposed stemmer system can
achieve. Since the system can suggest more than
one stems, we sorted the suggested stems based on
ranking in descending order and picked up the first
(s'i) and the next (s''i) stems. We compared these
stems against truthed data and calculated the accu-
racy measures A' and A'' as below:

Let T = (t1, t2, ... tN) be the set of tokens in a cor-
pus of size N, S = (σ1, σ2, ... σN) be the set of
truthed stems for those tokens. Let s'i and s''i be the
best and second-best stems suggested by the pro-
posed stemmer system for token ti. Then we define

1
'()

'

N

i
f i

A
N

==
∑

, where i i1, if = s'
'()

0, otherwise
f i

σ⎧
= ⎨

⎩
and

1
''()

''

N

i
f i

A
N

==
∑

, where i i1, if (s' , s'')
''()

0, otherwise
f i

σ ∈⎧
=⎨

⎩
i

A' and A'' will be closer to 1 as the system accu-
racy increases.

Initially we ran it for three classic short stories
by Rabindranath Tagore1. Since the proposed sys-
tem accuracy will also depend upon the accuracy
of the POS tagger and the dictionary coverage, to
rule these factors out we manually identified the
POS of the test corpus to emulate a 100% accurate
POS tagger and used an empty dictionary. Apart
from calculating the individual accuracies, we also
calculated overall accuracy by considering the
three stories as a single corpus:

1 iঁদেুরর েভাজ [i`ndurer bhoj], েদনাপাoনা [denaapaaonaa],
and রামকানাiেয়র িনবুর্িdতা [raamakaanaaiyer nirbuddhitaa]
respectively

71

Corpus N A' A''
RT1 519 0.888 0.988
RT2 1865 0.904 0.987
RT3 1416 0.903 0.999
Overall 3800 0.902 0.992

Table 4: Accuracies for Short Stories by Tagore

As shown above, while A'' is very good, A' is
also quite satisfactory. We could not compare this
result with other similar Bengali stemmer systems
due to unavailability. The closest stemmer system
we found is the Hindi stemmer by Ramanathan et.
al. (2003). It did not use a POS tagger and was run
on a different corpus. The recorded accuracy of
that stemmer was 0.815.

To check whether we can further improve on A',
we introduced lexicon of 352 verb stems, ran it on
the above three pieces with θ = 0.6 to tolerate
only the changes in maatraa and diacritic mark.
We calculated A' for verbs tokens only with and
without lexicon scenarios. We received the follow-
ing result:

0.969

0.997

0.955

0.973

0.957

0.907

0.9900.991

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

RT1 (Verb) RT2 (Verb) RT3 (Verb) Overall

A
c
c
u

ra
c
y

A' (w/o Lexicon) A' (w/ Lexicon)

Figure 3: Comparison of Accuracies with and

without Verb Lexicon

Above graph suggests that a lexicon can im-
prove the accuracy significantly.

7 Conclusion

This paper proposed a system and algorithm for
stripping inflection suffixes from Bengali word
tokens based on a rule-based approach. The con-
ducted experiments produced encouraging results.

Currently, our work is limited to the traditional
and standard colloquial dialects of Bengali. Future
works can be carried out to include other dialects
by including more inflections in the respective data
structure of this system.

The system suggests a set of ranked stems for a
word token. The client of this system is expected to

choose the highest ranked stem. This can be mis-
leading for some of the cases where tokens derived
from different stems share low or zero edit-
distance among each other. As for example, when
the verb token েখিল can be derived from both খা and
েখl, the system will suggest খা over েখl.

This problem can be addressed by taking hints
from word sense disambiguation (WSD) compo-
nent as an input. Further studies can be devoted
towards this idea. Moreover, a blend of rule-based
and statistical approaches may be explored in fu-
ture to improve the resultant accuracy of the stem-
mer.

While input from POS tagger helped to achieve
a good performance of this system, it is yet to be
studied how the system will perform without a
POS tagger.

References
S. Chatterji. 1939. Bhasha-prakash Bangla Vyakaran.

Rupa & Co. New Delhi, India

M. F. Porter. 1980. An algorithm for suffix stripping.
Program 14(3):130-137.

U. Garain and A. K. Datta. 2005. An Approach for
Stemming in Symbolically Compressed Indian Lan-
guage Imaged Documents. Proceedings of the 2005
Eight International Conference on Document Analy-
sis and Recognition (ICDAR’05). IEEE Computer
Society

P. Majumder, M. Mitra, S. Parui, G. Kole, P. Mitra, and
K. Datta. 2006. YASS: Yet Another Suffix Stripper.
ACM Transactions on Information Systems.

T. Brants . 2000. TnT: a statistical part-of-speech tag-
ger. Proceedings of the sixth conference on Applied
natural language processing: 224-231. Morgan Kauf-
mann Publishers Inc. San Francisco, CA, USA

V. I. Levenshtein. 1966. Binary codes capable of cor-
recting deletion, insertions and reversals. Cybernet-
ics and Control Theory, 10:707-710.

R. Youngs, D. Redmond-Pyle, P. Spaas, and E. Kahan.
1999. A standard for architecture description. IBM
System Journal 38(1).

A. Ramanathan and D. D. Rao. 2003. A lightweight
stemmer for hindi. In Proc. Workshop of Computa-
tional Linguistics for South Asian Languages -
Expanding Synergies with Europe, EACL-2003: 42–
48. Budapest, Hungary.

72

