
Generic Plan Recognition for Dialogue Systems
George Ferguson , J a m e s F. A l l en

U n i v e r s i t y o f R o c h e s t e r

Roches t e r , NY, 1 4 6 2 7 - 0 2 2 6

A B S T R A C T

We describe a general framework for encoding rich domain mod-
els and sophisticated plan reasoning capabilities. The approach uses
graph-basedreasoning to address a wide range of tasks that typically
arise in dialogue systems. The graphical plan representation is inde-
pendent of but connected to the underlying representation of action
and time. We describe types of plan recognition that are needed,
illustrating these with examples from dialogues collected as part of
the TRAINS project. The algorithms for the tasks are presented, and
issues in the formalization of the reasoning processes are discussed.

1. Introduction
Plan recognition is an essential part of any dialogue system.
Traditional approaches to plan recognition are inadequate in
one of two ways. Those that are formally well-specified tend
to be highly restricted in the phenomena they can accomo-
date and are therefore unsuitable for a general purpose dia-
logue system. On the other hand, the heuristically-motivated
systems have been difficult to formalize and hence to under-
stand. In both cases, the representation of plans is insufficient
for a collaborative dialogue-based system.

The research reported here is part of the TRAINS project [1].
The goal of this project is an intelligent planning assistant
that is conversationally proficient in natural language. In this
paper we concentrate on the plan recognition procedures of
the domain plan reasoner component of the system.

As examples of the phenomena that arise in discourse and af-
fect plan recognition, consider the following utterances gath-
ered from TRAINS dialogues:

1. Utterances that suggest courses of action, e.g.,

(a) Send engine E3 to Dansville.

(b) Move the oranges to Avon and unload them.

This is the prototypical case studied in the literature, and
most systems are limited to handling only this case.

2. Utterances that identify relevant objects to use, e.g.,

(a) Let's use engine E3.

(b) There's an OJ factory at Dansville.

The second sentence is an example of an indirect sug-
gestion to use the OJ factory.

3. Utterances that identify relevant constraints, e.g.,

(a) We must get the oranges there by 3 PM.

(b) Engine E2 cannot pull more than 3 carloads at a
time.

4. Utterances that identify relevant lines of inference, e.g.,

(a) The car will be there because is it attached to en-
gine El.

5. Utterances that identify goals of the plan, e.g.,

(a) We have to make OJ.

6. Utterances that introduce complex relations, e.g., pur-
pose clauses such as

(a) Use E3 to pick up the car.

(b) Send engine E3 to Dansville to pick up the oranges.

Our approach to plan reasoning is motivated by examples
such as these. It is a generic approach because the details
of the algorithms do not depend directly on properties of the
underlying knowledge representation. Rather, the approach
assumes that certain operations are exported by the under-
lying reasoner (such as entailment, ~), and it uses these to
validate plan reasoning steps.

We first describe our representation of plans and its connec-
tion to the underlying knowledge representation scheme. We
then present plan recognition algorithms for the dialogue phe-
nomena and we discuss how they interact with other modules
of the system. Finally, we discuss related and future work.

2. Plan Graphs
We assume that the underlying knowledge representation for-
malism can be effectively partitioned into two types of for-
mulas:

• Event formulas state that something happened that (pos-
sibly) resulted in a change in the world.

• Fact formulas are everything else, but typically describe
properties of the world (possibly temporally qualified).

171

In our temporal logic, 1 the former are of the form Occurs(e)
and the latter are, for example, At(eng3, dansville, now). For
formalisms where there are no explicit events (e.g., the situ-
ation calculus), we can extend the language--an example of
this is given below.

We then define a graphical notion of plans, based on viewing
them as arguments that a certain course of events under cer-
tain explicit conditions will achieve certain explicit goals. A
plan graph is a graph over two types of nodes: event nodes
are labelled with event formulas,fact nodes are labeled with
fact formulas. These can be connected by four types of arcs:

event-fact: Achievement

fact-event: Enablement

event-event: Generation

fact-fact: Inferential

The link types correspond roughly to an intuitive classifi-
cation of the possible relations between events and facts
(cf., [5]). The goal nodes of a plan graph are its sinks, the
premise nodes are its sources.

For example, using the temporal logic, we might have a plan
graph like that shown in Figure l(a). The functions blkl and
blk2 are role functions that denote objects participating in the
event; the functions prel and effl are temporal role functions
denoting intervals related to the time of the event. In a for-
realism such as the situation calculus, actions are terms and
there is no equivalent of the Occurs predicate. However, we
can introduce one as a placeholder, and then we might get a
plan graph like that shown in Figure l(b).

A plan graph makes no claim to either correctness or com-
pleteness. It represents an argument from its premises to its
goals, and as such can be "correct," "incorrect," or neither.
The previous examples are intuitively correct, for example,
but are incomplete since they don't specify that the block be-
ing stacked must also be clear for the stacking to be success-
ful.

A translation of plan graphs into a first-order logic with quo-
tation is straightforward. With this, one can declaratively de-
fine properties of plans represented by plan graphs (such as
"correct") relative to the underlying representation's entail-
ment relation. For example, a node n in a plan graph P might
be supported if its preconditions (nodes with arcs incident on
n) are sufficient to ensure the truth of n, formally:

supported(n, P) =-

A {rc 13n'.(n',n) ~ P ^ rc = Label(n')} ~ Label(n)

ZSpace precludes a detailed description of this representation, see [2, 3,
4]. In what follows, we will rely on intuitive descriptions of the relevant
aspects of the logic.

The antecent of the entailment must, of course, also be con-
sistent.

Unfortunately, such an analysis is not particularly illuminat-
ing in the case of plans arising from dialogue since such plans
are often too poorly specified to meet such criteria. In par-
Ocular, they are often based on assumptions that the system
makes in the course of its interpretation of the manager's
statements. We feel that making such assumptions explicit is
crucial since they often drive the discourse. To illustrate this,
we will present the algorithms used by the TRAINS plan rea-
soner to reason with plan graphs. We will return to the issue
of axiomatizing them in the final section.

3. Plan Graph Algorithms
We characterize plan reasoning for dialogue systems as search
through a space of plan graphs. The termination criterion for
the search depends on the type of recognition being done, as
will be described presently. Since the plan graph formalism
sanctions arbitrarily complex graphs labelled with arbitrarily
complex formulas, searching all possible plan graphs is im-
possible. We therefore rely on additional properties of the
underlying representation to restrict the search.

First, we assume the ability to test whether two objects (in-
cluding events and facts) unify and, optionally, to determine
assumptions under which they would unify. Simple objects
use simple equality. In the temporal logic, two events are
equal if their roles are equal. Two facts unify if there are as-
sumptions that make them logically equivalent. This use of
equality and inequality corresponds to the posting of codes-
ignation constraints in traditional planners.

Second, we assume that events be defined using relations cor-
responding to enablers, effects, and generators. This should
not be controversial. In the temporal logic, these descrip-
tions can be obtained from the event definition axioms. For
a STRIPS system, they correspond to the add- and delete-
lists. Existing plan recognition systems use an event taxon-
omy, which corresponds to the generators slot. There can be
multiple definitions of an event type, thereby allowing alter-
native decompositions or conditional effects.

The search then only considers plan graphs that reflect the
structure of the event definitions, we call such plan graphs
acceptable. In this respect, the search will only find plan
graphs that agree with the assumed-shared "event library."
However, information returned from failed searches can be
used to guide the repair of apparent incompatibilities at the
discourse level.

3.1. Incorporation

Plan recognition using plan graphs operates by searching the
space of acceptable plan graphs breadth-first. The search

172

On(blkl(el), blk2(el), efffl(el))

achieves
Occurs(el)

enables

Clear(blk2(e 1),pre 1 (el))

(a) Temporal logic plan graph

On(a, b, do(stack(a, b), sO))

' achieves

Occurs(do(stack(a, b), sO))

I enables
Clear(b, sO)

(b) Situation calculus plan graph

Figure 1: Simple example plan graphs

frontier is expanded by the function expand-graph, shown
in Figure 2. The use of breadth-first search implements a
"shortest-path" heuristic--we prefer the simplest connection
to the existing plan. The plan reasoner exports several inter-
faces to the basic search routine, each motivated by the dis-
course phenomena noted at the outset. The discourse module
of the system invokes these procedures to perform domain
reasoning.

The procedure i n c o r p - e v e n t takes as parameters a plan
graph and an event (a term or a lambda expression repre-
senting an event type). For example, sentence (la) results in
the following call:

(incorp-event
(lambda ?e'Move-Engine

(And (Eq (eng ?e) ENG3)
(Eq (dst ?e) DANSVILLE)))

THE-PLAN)

where ?e'Move-Engine is an event variable of type
Move-Engine.

The plan reasoner first checks if the given event unifies with
an event already in the plan. If so, the plan reasoner signals
that nothing needed to be added to the plan (except possibly
unifying assumptions, which are also indicated). Otherwise,
it attempts to add an event node to the plan graph labelled
with (an instance of) the event. The search continues until
one or more unifying event nodes are found. 2 An example
of the search in progress for the previous call is given in Fig-
ure 3, assuming that the plan already includes moving some
oranges to Dansville (event el) . At this point (two levels of
search), the given Move-Engine event unties uniquely with a
leaf node, so the search terminates successfully. The connect-
ing path (double arrows) indicates that moving the engine is
done to move a car that will contain the oranges, thus moving
them. Note that we do not know yet which car this will be.

Zln fact. we also use a depth bound, based on the intuition that if the
connection is not relatively short, the user's utterance has probably been
misinterpreted.

If more than one match is found at the same depth, the plan
reasoner signals the ambiguity to the discourse module for
resolution. Otherwise the connecting path is returned as a list
of things that need to be added to the plan to incorporate the
given event. These are usually interpreted by the discourse
module as being implicatures of the user's utterance. They
are added to a plan context and are used both for subsequent
planning and plan recognition steps and to generate utterances
when the system gets the turn.

The procedure ineorp-role-filler is used for statements
that mention objects to be used in the plan (example (2) pre-
viously). In this case, the termination criterion for the search
is an event node labelled by an event that has a role that uni-
ties with the given object (a term or lambda expression). For
example, the sample sentences result in the following calls:

(2a) (ineorp-role-filler ENG3 THE-PLAN)

(2b) (incorp-role-filler
(lambda ?x*OJ-Factory (At ?x DANSVILLE NOW)
THE-PLAN)

Finally, there is the procedure i n c o r p - f a c t that searches
for a fact node that would unify with the given one. This
is used for utterances like the examples (3) and (4), since
the plan graph representation supports inferential (fact-fact)
links. Again however, the search space of potential unifying
formulas is infinite. We therefore only consider certain candi-
dates, based on syntactic considerations. These include facts
that the underlying reasoning system is particularly good at,
such as temporal constraints or location reasoning. Contin-
ued use of the system will identify which inferences need to
be made at this level, and which are best left to management
by higher-level discourse manager routines.

3.2. G o a l s

These i n c o r p - routines all take an existing plan graph as ar-
gument and expand it. This could come from an initial speec-
ification, but utterances like example (5) require that the plan
reasoner be able to incorporate goals, There is therefore an
i n c o r p - g o a l procedure that takes a sentence and a (possibly

173

function expand-graph (g p)
foreach n E leaf nodes ofg
if n is an event node
then e ~ Label(n)

fo reach f ~ Enablers(Type(e))
add (p l a n - e n a b l e r f , e p) t o g

fo reach e" e Generators(Type(e))
add (plan-generates e" e p) to g

else f <-- Label(n)
foreach event type T

fo reaeh f" e Effects(T) s.t. Uni fy(f , f ' , ~)
add (plan-enables (lambda T ~) f p) to g

Figure 2: Function expand-graph (subscript e indicates substitution)

empty) plan graph as arguments. If the sentence is Occurs(e),
then the plan graph is searched for a matching event node.
If one is found, then the plan reasoner returns relevant as-
sumptions and marks the node as a goal. Otherwise, a new
event node is added to the plan and marked as a goal. Similar
processing is done for fact goals. In our dialogues, the user
often begins by communicating a goal that the rest of the dia-
logue is concerned with achieving. There is no point in doing
much work for goals (beyond checking consistency) since it
is likely to be immediately elaborated upon in subsequent ut-
terances. Proper treatment of subgoals expressed as goals is
part of our current work on subplans.

3.3. Purpose clauses

One construction that uses subgoals and subplans and that
arises repeatedly in collaborative dialogue is the use of pur-
pose clauses, such as example sentences (6). To accomodate
these, the i n c o r p - functions all accept an optional "purpose"
argument (an event). For example, the sample sentences re-
sult in the following calls:

(6a) (incorp-role-filler ENG3 THE-PLAN
:purpose (lambda ?e'Move-Car

(Eq (car ?e) THE-CAR)))

(6b) (incorp-event
(lambda ?el*Move-Engine
(And (Eq (eng ?el) ENG3)

(Eq (dst ?el) DANSVILLE)))
THE-PLAN
:purpose (lambda ?e2*Load

(Eq (obj ?e2) THE-ORANGES)))

If the purpose argument is present, it is first incorporated us-
ing i n c o r p - e v e n t . If this fails, then the discourse module
is notified--presumably this is some kind of presupposition
failure requiring discourse-level action. If it succeeds, then
the original item is incorporated but with the search restricted
to the (sub-)plan graph rooted at the purpose event.

This simple modification of the basic plan recognition algo-
rithms is effective at reducing the ambiguity that would oth-

erwise be detected if the entire plan graph were searched. It
is likely not adequate for all types of purpose or rationale
clause, in particular those that involve the mental state of the
agent rather than domain events. However, the generality of
the plan graph formalism does allow it to handle many of the
cases arising in our dialogues.

4. Example
To further illustrate our approach to plan reasoning, we
present a sample TRAINS dialogue and describe how it is
processed by the system. This dialogue was gathered from
simulations where a person played the role of the system. A
previous version of the TRAINS system processed the dia-
logue correctly--the current implementation will also once it
is completed.

The manager starts by communicating her goals, making sev-
eral statements, and asking a question. The system replies
and makes a proposal, which is then accepted by the man-
ager. The complete transcript is as follows:

1. M: We have to make OL
2. M: There are oranges at Avon and an OJ factory at Bath.
3. M: Engine E3 is scheduled to arrive at Avon at 3pm.
4. M: Shall we ship the oranges?
5. S:Ok.
6. S: Shall I start loading the oranges into the empty car at

Avon?
7. S:Ok.

The manager's first utterance results in the following call to
the plan reasoner:

(incorp-goal (lambda ?e*Make-OJ
(Eq (agent ?e) SYSHUM))

THE-PLAN)

As described above, this results in an event node begin added
to the (formerly empty) plan.

Utterance (2) could be intelpreted simply as statements about
the world. However, since the system already knows these

174

(Occurs el*Move-Oranges)

1~ (oranges el) (In (oranges el) (Occurs
(src el) (prel el)) (car el) (pre2 el)) (lamb~ ?e'Move-Car

I (~d (Eq (car ?e) (car el))
effect e f f~ t (Eq (sre ?e) (dst el))

(Occurs (Occurs (Eq (dst ?e) (dst el))))

(la~da ?e'Move ...)) (la~da ?e'Load . . .)) ~ I I

,care ° ,Ocoor
(src e21 (prel e21) / (lambda ?e Move-Engine

/ (~d (Eq (eng ?e) (eng e2))
(Coupled (car e2) (Eq (src ?e) (dst e2))

(eng e2) (prel e2)) (Eq (dst ?e) (dst e2))))

Figure 3: Incorporating moving the engine

facts (and assumes the manager knows it knows, etc.), the
utterance is interpreted as suggesting use of the objects, re-
suiting in the following calls:

(incorp-role-filler ol THE-PLAN)
(incorp-role-filler fl THE-PLAN)

The constants ol and f l are determined by the scope and
reference module.

For the first call, the Make-0J event has a role for some or-
anges, but there is a constraint that they must be at the location
of the factory. While the system does not yet know which fac-
tory this will be, it can deduce that Avon cannot be that city
since there is no factory there. Since the system knows only
that the oranges are at Avon now (by assumption), they cannot
be used directly for the Make-0J. The plan reasoner therefore
searches the space of acceptable plan graphs breadth-first, as
described above. A connection is found by assuming that the
oranges will be moved from Avon to the factory (wherever it
turns out to be) via a Move-0ranges event. A description of
this path (with assumptions) is returned to the discourse mod-
ule. For the second call, the factory is acceptable as a role of
the Make-0J event, so only the required equality assumption
is returned. This has the additional effect of determining to
where the oranges are shipped (Bath).

Utterance (3) is also non-trivial to connect to the plan. We
presume that the system already knows of E3's imminent ar-
rival in the form of a sentence like (Occurs e0*Arr ive) .
Again therefore, the statement is therefore taken to suggest
the use of E3 in the plan. The system can reason about the
effects of the Ar r ive event, in this case that E3 will be at
Avon at 3pro. Even so, there is no event with a role for an en-
gine in the plan yet, so the space of acceptable plans is again

searched breadth-first. In this case, a connection is possible
by postulating a MoveCar event that generates the previously-
added Move-0ranges event, and a Move-Engine event that
generates the Move-Car.

The manager then makes the query (4), thereby relinquishing
the turn. The dialogue module evaluates the query by calling
the plan reasoner with:

(incorp-event (lambda ?e'Move-Oranges
(Eq? (oranges ?e) oi)) THE-PLAN)

The plan reasoner finds the Move-0ranges event added a re-
sult of utterance (2), and indicates this to the discourse mod-
ule. The system therefore replies with utterance (5), implic-
itly accepting the rest of the plan as well.

The plan reasoner is then called to elaborate the plan, dur-
ing which it performs fairly traditional means-ends planning
to attempt to flesh out the plan. In so doing, it attempts to
satisfy or assume preconditions and bind roles to objects in
order to generate a supported plan. It freely makes consistent
persistence assumptions by assuming inclusion of one uncon-
strained temporal interval within another known one. It can
ignore some details of the plan, for example the exact route
an engine should take. These can be reasoned about if neces-
sary (i.e., if the human mentions them) but can be left up to
the agents otherwise.

In the example scenario, many things can be determined un-
ambiguously. For example, the oranges should be unloaded
at Bath at the appropriate time, leading to an event of type
Unload. The choice of car for transporting the oranges, how-
ever, is ambiguous: in the scenario, there is an empty car at
Avon as well as one attached to E3. The plan reasoner sig-

175

nals the ambiguity to the discourse module, which chooses
one alternative and proposes it, leading to utterance (6).

At this point the manager regains the turn and the dialogue
continues until the system believes it has a mutually agreed
upon plan. In this example, the manager accepts the system's
suggestion, and the plan reasoner determines that the plan is
ready for execution by the agents in the simulated TRAINS
world.

5. Discussion

Graph-based approaches to representing plans date back to
the very beginnings of work on automated planning, from
Sacerdoti's procedural nets [6] to SIPE's representation of
plans [7]. Often these representations reflected a combina-
tion of temporal information and knowledge about the plan.
In our view, the temporal reasoning is provided by the un-
derlying knowledge representation and the plan graph repre-
sents an argument that a certain course of action under condi-
tions will achieve certain explicit goals. The earlier systems'
inability to separate the plan representations from their use
as data structures in planners made it difficult to predict and
explain their behaviour. The plan graph formalism achieves
such a separation, but the price we pay is the inability to use
directly the efficient algorithms developed previously. Some
of the results from the planning community on efficient al-
gorithms can be adapted to the temporally explicit logic of
events (c.f., [2]). We are developing a theory of plan graphs
that will provide a formal basis for many of the heuristic pro-
cedures developed previously.

With respect to plan recognition, Kautz's work [8, 9] pro-
vides a formal basis for plan recognition but only dealt with
observed events fitting into a hierarchy of event types. Pol-
lack [10] uses a formalism similar to our underlying temporal
logic, but includes representations of belief and intention that
are not the focus of this paper. We believe that there is a struc-
ture to plans independent of the intentions of agents, and that
plan graphs seen as arguments provide the proper perspective
for reasoning about them at that level.

Carberry [11] describes a model for incremental plan infer-
ence in task-related information-seeking dialogues. It uses a
"context model" consisting of a tree of goals, with associated
plans. Since we see the overall structure of a plan as an argu-
ment, there is no such separation in our approach, although
we do treat goals specially as described previously. Her "cur-
rent focused" goal and plan are analogous to our :purpose
mechanism and to the techniques used by the language and
discourse modules for determining focus. The system also
uses breadth-first search with "focusing heuristics," several
of which correspond to our heuristics described previously.
However, the approach lacks a formal description that we be-
lieve can be provided by the plan graph formalism.

Several recent approaches to plan recognition [12, 13] rely on
the use of a powerful terminological reasoner to place event
types in a virtual lattice. This has the advantage that sub-
sumption relationships (corresponding to our unification pro-
cedure) can be automatically and incrementally computed.
Existing terminological reasoners, however, typically either
do not allow complex objects (roles) and equality, or draw
only the conclusions about subsumption that are deductively
(necessarily) entailed. Neither do they compute the assump-
tions that would unify facts.

No existing system is as ambitious as the TRAINS domain
plan reasoner in providing services required to support dia-
logue, from representing complex, partial and incorrect plans
to providing incremental and interleaved planning and plan
recognition. We are currently completing a new implemen-
tation of the procedures based on this paper. It is part of our
current research to apply work on argument systems directly
to justifying these plan graph algorithms in terms of a formal
theory of plan graphs.

References
1. JamesEAllenandLenhartK. Schubert. TbeTRAINS project.

TRAINS Technical Note 91-1, Dept. of Computer Science,
University of Rochester, Rochester, NY, 1991.

2. James E Allen. Temporal reasoning and planning. In Reason-
ing about Plans, pages 1-68. Morgan Kaufmann, 1991.

3. George Ferguson. Explicit representation of events, actions,
and plans for assumption-based plan reasoning. Technical Re-
port 428, Dept. of Computer Science, University of Rochester,
Rochester, NY, June 1992.

4. James E Allen and George Ferguson. Action in interval tem-
poral logic. In Proceedings of the Second Symposium on Logi-
cal Formalizations of Commonsense Reasoning, pages 12-22,
Austin, TX, 11-13 January 1993.

5. A.I. Goldman. A Theory of Human Action. Prentice-Hall,
1970.

6. E.D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier,
North-Holland, 1977.

7. D.E. Wilkins. Praetical Planning: Extending the ClassicaI Al
Planning Paradigm. Morgan Kaufmann, 1988.

8. Henry A. Kautz. A Formal Theory of Plan Recognition. PhD
thesis, Dept. of Computer Science, University of Rochester,
Rochester, NY, May 1987. Available as TR 215.

9. Henry A. Kautz. A formal theory of plan recognition and its
implementation. In Reasoning about Plans, pages 69-126.
Morgan Kaufmann, 1991.

10. Martha E. Pollack. Plans as complex mental attitudes. In
P.R. Cohen, J. Morgan, and M.E. Pollack, editors, Intentions
in Communication. M1T Press, 1990.

11. Sandra Carberry. Plan Recgnition in Natural Language. MIT
Press, 1990.

12. Barbara Di Eugenio and Bonnie Webber. Plan recognition in
understanding instructions. In Proceedings of the First Intl.
Conf. on AI Planning Systems, pages 52-61, 15-17 June 1992.

13. Robert Weida and Diane Litman. Terminological reasoning
with constraint networks and an application to plan recogni-
tion. In Proceedings of KR92, pages 282-293, Boston, MA,
25-29 October 1992.

176

