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Abstract

In the past decade, several researchers
have started reinvestigating the use of
sub-phonetic models for lexical represen-
tations within automatic speech recogni-
tion systems. Lest history repeat itself,
it may be instructive to mine the further
past for models of lexical representations
in the lexical access literature. In this
work, we re-evaluate the model of Briscoe
(1989), in which a hybrid strategy of lex-
ical representation between phones and
manner classes is promoted. While many
of Briscoe’s assumptions do not match up
with current ASR processing models, we
show that his conclusions are essentially
correct, and that reconsidering this struc-
ture for ASR lexica is an appropriate av-
enue for future ASR research.

1 Introduction

Almost every state-of-the-art large vocabulary au-
tomatic speech recognition (ASR) system requires
the sharing of sub-word units in order to achieve
the desired vocabulary coverage. Traditionally,
these sub-word units are determined by the phones
or phonemes of a language (depending on desired
detail of representation). However, phonetic (or
phonemic) representation has its pitfalls (cf. (Os-
tendorf, 1999)). Among the problems cited in
the literature are that (1) segments are often dif-
ficult for machines to recognize from the acoustic
cues alone, because the acoustic cues to a particu-
lar phoneme are multi-faceted, and (2) the intended

words and phrases are not always recoverable even
from correctly recognized segments, because speak-
ers themselves will also fail to articulate words with
the dictionary-listed phonemes. The first of these
problems refers to thediscriminability of phonemes
within an inventory; the second to thereliability of
(actual) phone sequences mapping to the canonical
phonemic representations of words. This is partic-
ularly true in conversational speech (such as that
found in the Switchboard corpus), where pragmatic
context and conversational conventions assist human
comprehension (but not current ASR systems).

A common approach for handling pronunciation
variation is to introduce alternative entries into the
lexicon. However, phones that are perceived as non-
canonical (for example, when an /eh/ is heard as
an /ih/ by linguistic transcribers) often are closer
in acoustic space to the Gaussian means of the
canonical phones, rather than the perceived phones
(Saraçlar et al., 2000). This insight suggests that
acoustic models need to be cognizant of potential
pronunciation changes. Thus the lexical and acous-
tic models should work hand in hand.

Another way to model this type of pronunciation
variation is to find the commonalities that the canon-
ical and perceived phone share in terms of a sub-
phonetic representation. In the past decade, a signif-
icant community in acoustic-phonetic ASR research
has been turning to distinctive features (Jakobson et
al., 1952) for building ASR lexica. While an ex-
haustive description of these approaches is beyond
the scope of this paper, estimates of phonological
feature probabilities have been combined to obtain
phone probabilities (Kirchhoff, 1998), or incorpo-
rated into “feature bundles” that allow representa-
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tion of phonological processes (Finke et al., 1999).
More recent work has integrated phonological

features into graphical models (Livescu et al., 2003)
and landmark based systems (Juneja and Espy-
Wilson, 2004). The common thread among this
research is the notion that acoustic models should
be sensitive to sub-phonetic information. With this
trend in phonological representation research, it is
time to re-examine some older hypotheses about lex-
ical access and speech processing in order to gain
some insight in this current featural renaissance.

Sub-phonetic ASR research is also driven by the
fact that deviations from canonical pronunciation
and from correct perception of phones is far from
random; indeed, there have been a number of stud-
ies demonstrating that both of these variations have
defined, modelable trends. Deviations from canon-
ical pronunciation can be described by phonologi-
cal rules, and errors in perception also tend to con-
form to phonological patterns. By and large, con-
fusions occur (at least in humans) between phones
with phonological features in common (e.g., (Miller
and Nicely, 1955)). In particular, three features
(voicing, manner, and place) have been postulated as
relatively invariant (see e.g., (Stevens, 1981), quoted
in (Church, 1987)). It follows from this phonetic de-
tection based on the most reliable features may han-
dle highly variable speech more robustly than sys-
tems which demand full identity over all the features
for a given phone or phone sequence.

Consequently, a number of researchers have pre-
viously suggested using certain broad classes of seg-
ments, rather than full phonemic identification, for a
first pass on recognition. For instance, Shipman and
Zue (1982), working on large-vocabulary isolated
word recognition, used both two-way consonant-
vowel distinctions and a six-way distinction based
on manner in order to divide their 20,000-word dic-
tionary into “cohorts” or groups of words. They
found that this partial specification of segments re-
duced the search space of word candidates signifi-
cantly. Carlson et al. (1985) found similar results
for English and four other languages.

2 A suggested compromise: a hybrid
phone-manner representation

Briscoe (1989) extended this broad-class approach
to address the problem of lexical access on con-
nected speech. However, Briscoe argues against the

use of broad, manner-based classes at all times. He
argues that manner cues provide no particular ad-
vantage for stressed syllables, but that all cues are
sufficiently reliable in stressed syllables to justify
a full segmental analysis. Working with a 30,000-
word lexicon, Briscoe shows that the manner-based
broad classes for weak (reduced) syllables, together
with full identification of strong (unreduced) sylla-
bles constrained the set of possible candidates satis-
factorily. Unfortunately, he only provides results for
one sentence from his corpus.

This approach proposes to adjust the granularity
of recognition dynamically, depending on the stress
level of the current syllable. The details of how this
would be managed are left somewhat vague. As it
stands, it would seem to depend crucially on first de-
tecting the stress of each frame, so as to determine
which alphabet of symbols to apply to incoming in-
put. Alternatively, it could recognize the broad class
as a first pass, and then refine this into a full phone-
mic analysis for stressed syllables in a second pass,
at the cost of multiplying passes through the speech
data. It is not possible in this system to recover from
the miscategorization of stress.

One possible remedy is to bypass a hard decision
on stress and run both a manner-based broad-class
detector and a traditional phonemic system in paral-
lel. These then may be combined according to the
probability of lexical stress, such that those frames
judged less likely to be stressed weight the broad-
class analysis more heavily, and those judged more
likely to be stressed weight the narrow phonemic
analysis more heavily. Its advantage is that a full
phonemic analysis is recoverable for each frame and
phone, but those in weak syllables (and hence less
likely to be accurate) weigh in less heavily.

Briscoe’s analysis is in terms of lexical access ac-
tivations: taking a cue from the lexical access com-
munity, he assumes that any “partially activated”
word (e.g., “boat” and “both” being active after pro-
cessing “bo”) will contribute linearly to the process-
ing time in ASR. However, most large-vocabulary
ASR systems today use a tree-based lexicon where
common phonetic prefixes of words are processed
only once, thus invalidating this conjecture. Briscoe
experimented with several triggers for starting a new
word — at every phone, at the beginnings of sylla-
bles, at the beginnings of syllables with unreduced
vowels, and at the beginnings of word boundaries.
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Category Example (Vietnamese) Cohorts
# of Words 6247
Stress pattern only
(lower bound) 0001 84
Identify phones
in stressed syllables 0001:miy z 4709
+CV pattern of
unstressed syllables 0001:CV:VC:CV:miy z 5609
+manner pattern of
unstressed syllables 0001:FV:CS:NV:miy z 6076
Phonetic prons.
(upper bound) v iy . eh t . n aa . m iy z 6152

Table 1: Cohorts for varied lexical representations

However, the latter three require oracle information
as to where word or syllable boundaries can occur. A
more appropriate measure commensurate with cur-
rent ASR practice would be to only allow words to
start where a previous word hypothesis ends.

In the remainder of the paper, we seek to validate
(or invalidate) Briscoe’s claim that a hybrid phonetic
and feature model is appropriate for ASR process-
ing. In the 15 years since Briscoe’s paper, the ASR
community has developed large phonetically tran-
scribed corpora and more advanced computational
tools (such as the AT&T Finite-State Toolkit (Mohri
et al., 2001)) that we can apply to this problem.

3 Experiment 1: Effective Partitioning by
Manner-based Broad Classes

Our first experiment explores various types of broad
classes to determine the effects of these encodings
on cohort size within a sample 6,000 word dictio-
nary.1 Here we use the lexical stress-marked dictio-
nary provided with the TIMIT database (Garofolo
et al., 1993), which was syllabified using the NIST
Tsylb2 syllabifier (Fisher, 1996).

Rather than calculate cohort size directly, we cal-
culate the number of cohorts into which our dictio-
nary is partitioned, a measure which Carlson et al.
(1985) showed to correlate well with expected co-
hort size. (Note that this is an inverse correlation.)
This describes the staticdiscriminabilityof the lexi-
con: systems that have words with the same lexical
representation will not be able to discriminate be-
tween these two words acoustically and must rely on
the language model to discriminate between them.

1“Cohort size” is used here (as with Shipman and Zue
(1982)) to mean the number of distinct vocabulary items that
match a particular broad-class encoding. It is not intendedto
imply a particular theory of lexical access.

Before proceeding, it may useful to set upper and
lower bounds for this exercise (Table 1). An obvi-
ous upper bound is the full phonemic disambigua-
tion of every word. Of the 6247 words in the dictio-
nary, 6152 unique pronunciations are found (a few
cohorts consisting of sets of homophones). A con-
venient lower bound is the lexical stress pattern of
the word, devoid of any segmental information: e.g.,
“unidirectional” has its stress on the 4th of 6 sylla-
bles; hence, 000100 is its lexical-stress profile. 84
unique lexical-stress profiles exist in the dictionary.

Between these two bounds, three variant broad-
class partitions were explored for isolated word
recognition. All three use the lower-bound stress
profile as a starting place, combined with full phone-
mic information for the syllable with primary stress.
The first, with no additional segmental information,
produces 4709 distinct cohorts. The second adds a
consonant-vowel (CV) profile for the unstressed syl-
lables, which boosts the number of distinct cohorts
to 5609. The final partition replaces the CV pro-
file with a six-class manner-based broad-class par-
tition (Nasals, Stops, Fricatives, Glides, Liquids,
and Vowels). Including a manner-class representa-
tion for unstressed vowels increases the number of
cohorts to 6076, which is very close to the upper
bound. Thus, there is not much loss of lexical dis-
criminability when using this type of representation.

3.1 Caveats

Now, for this scheme to be maximally useful for
recognition, several conditions must obtain. First,
we have assumed that we can reliably detect lex-
ically stressed syllables within the speech signal.
Waibel (Waibel, 1988) has shown that stress cor-
relates with various acoustic cues such as spectral
change. As a side experiment, we have shown
that very basic methods provide encouraging re-
sults (only sketched here due to space constraints).
We re-annotated TIMIT with lexical stress mark-
ings, where all frames of each stressed syllable (in-
cluding onset and coda consonants, not just the nu-
cleus) were marked as stressed. A multi-layer per-
ceptron with 100 hidden units was trained to pre-
dict P (Stress|Acoustics) with a nine-frame context
window. No additional phonetic information be-
sides the binary label stressed/unstressed was used
in training. Frame-by-frame results on the TIMIT
test set were 75% accurate (chance: 52%), and when
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MLP output was greater than 0.9, a precision of 89%
was obtained (recall: 20%). While far from perfect,
this result strongly suggests that even very simple
methods can predict lexical stress fairly reasonably.

A second assumption in the above analysis was
that words occur in isolation. It is clear that in con-
nected speech, there are a larger number of poten-
tial lexical confusions. A third assumption is that
those features we are relying upon in our partitions
(namely, all features within stressed syllables, and
manner of articulation for unstressed syllables) are
perfectly reliable and discriminable. In the next two
sections, we relax these assumptions by applying ex-
tensions of this method to connected speech.

4 Experiment 2: What does a hybrid
representation buy you?

As Experiment 1 shows, the hybrid phone/feature
representation does not drastically decrease the dis-
criminability of the (albeit small) lexicon. It is also
possible that such a representation reduces pronun-
ciation variation, by allowing the canonical repre-
sentation to more closely match actual pronuncia-
tions. For example, we have demonstrated that for
common ASR corpora (Switchboard and TIMIT),
segments in unstressed syllables were much more
likely to deviate from their canonical lexical rep-
resentation (Fosler-Lussier et al., 1999). If phones
that deviate from canonical still keep the same man-
ner class, then a dictionary built with Briscoe-esque
representations should more closely match the ac-
tual pronunciations of words in running speech (as
transcribed by a phonetician).

4.1 Method

In order to test this theory, we used phonetic data
from (Fosler-Lussier et al., 1999) in which the
ICSI phonetic transcripts of the Switchboard corpus
(Greenberg et al., 1996; NIST, 1992) were aligned to
a syllabified version of the Pronlex dictionary (Lin-
guistic Data Consortium (LDC), 1996), which has
71014 entries for 66293 words. In this alignment,
for every canonical phone given by the lexicon, there
were zero or more corresponding realized phones.
From these data we extracted the canonical and real-
ized pronunciation of each word token, for a total of
38,527 tokens. Generally, high-frequency function
words show the most variation, so they may benefit
most from a manner-based representation.

Lexicon type Strict Matching
matching w/ deletion

1) Phonetic units 37.0% 50.1%
2) Manner-based function words 50.2% 69.6%
3) + Manner for unstressed syls 53.4% 74.6%
4) + Manner for secondary stress55.7% 77.9%
5) Manner for all syls 60.7% 85.2%

Table 2: Percent of words pronounced canonically
for phonetic and hybrid lexical representations

Given these word pronunciation data, we can ex-
amine how many word tokens have transcriptions
that match their dictionary-listed pronunciations,
given the broad-class mappings for various sets of
syllables. We built lexica and mapped phonetic tran-
scriptions according to five different criteria:

1. Every segment is phone based (no classes).
2. Function words use manner-based classes.
3. Unstressed syllables and function words use

manner only.
4. Secondary stressed syllables also use manner.

(Primary stressed syllables are phone based.)
5. Every segment uses manner-based classes.

We noted in the data (as others have done) that a
large proportion of the pronunciation variation was
due to phone deletion (29% of words) — which
would not be handled by the manner-based lexicon.
However, it is likely that not every phone deletion
leads to an ASR error (as attested by the fact that
state-of-the-art Switchboard ASR error rates are typ-
ically less than 29%). Often there is enough residual
phonetic evidence of the deleted phone, or enough
phonetic evidence in other parts of the word, to rec-
ognize a word correctly despite the deletion. Thus,
we decided to use a two-part strategy in calculating
canonical pronunciation (Table 2). The first column,
“strict matching”, allows no insertions or deletions
when comparing the canonical and realized pronun-
ciation. “Matching with deletion” reports the ideal
situation where phone deletions were perfectly re-
coverable in their canonical form. Including and ig-
noring deletions provides upper and lower bounds
on the true lexical access results. (Insertions are rel-
atively rare and not anticipated to affect the results
significantly, and hence are not examined.)

4.2 Results and Discussion

In Table 2, we see that a standard ASR lexicon ap-
proach (strict matching 1), does not match the tran-
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scribed data very well, with only 37% of words
pronounced according to the dictionary. The strict
matching hybrid scenario on line 3 most closely re-
sembles Briscoe’s experiment, and shows a marked
improvement in matching the dictionary and real-
ized pronunciations; comparing the two, we see that
using manner-based broad classes reduces mismatch
by 25% of the total error (from 63% error to 47%),
most of which comes from improved modeling of
function words (line 2). Whether this gain in repre-
sentation is worthwhile will depend of course on the
cost in terms of the increased hypothesis space.

By allowing for perfect deletion recovery (which
will of necessity entail another large expansion of
the hypothesis space), a somewhat more optimistic
is obtained. Comparing the “matching with dele-
tion” columns of lines 1 and 3, we see that a little
over half of the non-deletion pronunciation variation
is due to manner changes in unstressed syllables.
Again, a good chunk of this is in function words.
By moving to manner class for stressed syllables as
well would bring the hypothetical error from 25% to
15%, but at the cost of a huge explosion in the hy-
pothesis space (as Briscoe rightly points out and as
discussed in the next section).

One interesting implication of this data is that
over all types of segments (stressed and unstressed),
roughly three-quarters of word pronunciation vari-
ants differ from the canonical only in terms of
within-manner variation and phonetic deletion.

The moral of this story is that manner-based broad
classes may be a useful type of back off from truly
reduced and variable syllables (particularly func-
tion words), but the full benefit of such a maneuver
would only be realized after a reasonable solution
for recovering large-scale deletions is found. This
may come from predicting with increased specificity
where deletions are likely to occur (e.g., complex
codas), and what reduced realizations (e.g., of func-
tion words) are most common.

5 Experiment 3: What is the cost of a
hybrid representation?

Briscoe measured the cost of hybrid representation
in terms of the number of lexical activations that
a partially-completed word creates (see Section 2).
Yet Briscoe’s methodology has several shortcom-
ings when applied to today’s ASR technology; a
summary of the arguments presented above are: (1)

Tree-based lexica now share processing for words
with identical prefixes. (2) New words are acti-
vated only when other word hypotheses end. (3) We
now have a large amount of phonetically transcribed,
spontaneous speech. (4) Perfect stress detection is
not really achievable.

Given criticism 1, a better measure of potential
processing requirements is to generate a lattice of
hypothesized words and count the number of arcs in
the lattice. This lattice can be constructed in such
a way that criticism 2 is satisfied. In the next sec-
tion, we present a finite state machine formalism for
generating such a lattice.

We apply this technique to the phonetic transcrip-
tion of the Switchboard corpus (thus alleviating crit-
icism 3). However, this introduces several problems.
As Experiment 2 shows, many words have pronun-
ciations that do not appear in the dictionary. Thus,
we must find a way to alleviate the mismatch be-
tween the phonetic transcription and the dictionary
in a way that is plausible for ASR processing.

We can address criticism 4 by creating phone-
based and manner-based transcriptions that will run
in parallel; thus, the lattice generator would be
free to choose whichever representation allows the
matching to a dictionary word.

5.1 Method

In this experiment we consider a finite-state trans-
ducer model of the strategy described above. This
corresponds not to the ASR system as a whole, but
rather to the pronunciation model of a traditional
system. We assume that the pronunciation as given
by the transcriber is correct, but we model the trans-
formation of realized phones into canonical dictio-
nary pronunciations. Since we are only investigating
the combined acoustic-phonetic-lexical representa-
tion, we have left out the re-weighting and prun-
ing of hypotheses due to integration of a language
model, discourse model, or any other constraints.

Specifically, this model consists of three finite
state transducers composed. The first FSM,R,
encodes the representation of therealized phonetic
transcription of the spoken corpus. In order to match
this to dictionary pronunciations, we train a confu-
sion matrix on all realized/canonical phone pairs, to
obtain P (dictionary phone|transcribed phone);
these confusion probabilities are encoded as a finite
state transducerC. Thus,C is derived by computing
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the strength of all correspondences between the
phonetic transcription of what was actually said
at the phone level and the canonical pronuncia-
tion of the corresponding words. This confusion
matrix consists of three parts, corresponding to
substitutions, insertions, and deletions.

1. Pairwise substitutions are counted to yield a
standard confusion matrix.

2. Where two or more realized phones correspond
to a single canonical phone (a rare occurrence,
as in e.g.,really /r iy l iy/ → [r ih ax l iy]), each
realized phone is allowed (independently) to be
either deleted or substituted with its pairwise
confusions from (1).

3. Deleted phones are assumed to be potentially
recoverable (as in Experiment 2), so both an
epsilon transition and the canonical pronunci-
ation are preserved in the confusion matrix.

In each of these confusion matrices, we have al-
ways preserved the pathway from each realized ut-
terance to its canonical representation for the whole
corpus. So for this seen corpus, it is always possi-
ble in theory to recover the canonical representation,
such that the right answer is always one of the pos-
sible hypotheses. While this may seem a bit strange,
here we can only overestimate the potential hypoth-
esis space (by adding the correct string and by as-
suming that deletions are recoverable); the point of
this exercise is to see the number of total hypotheses
(the search space) generated under such a system.

The third transducer,D, is the ASR dictionary that
we wish to test. Thus, composingR◦C◦D will give
the graph of all potential complete hypotheses in this
space. Figure 1 shows a pruned hypothesis graph for
the phrase “it’s really sad” (the full hypothesis graph
has 12216 arcs).

5.2 Results and Discussion

By choosing different sub-word representations, we
can test Briscoe’s contention that backing off to
manner-based broad classes for certain (e.g., un-
stressed) syllables will reduce the search space
and/or facilitate recovery of the intended word
string. When a phone is substituted with a manner
class, we constructC so that the generated confu-
sions are over manner classes rather than phones.
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Figure 1: Pruned hypothesis graph forIt’s really sad

Figure 2 shows how the number of hypotheses per
word changes as a function of the number of words
in the hypothesis. Note that if the relationship were
linear, we would expect to see a flat line. The figure
demonstrates that that Briscoe’s conclusions were
correct, given the assumption that one can accu-
rately detect lexical stress (as illustrated by the line
with circles on 2). Across all utterances, the average
number of hypotheses per word for the hybrid dictio-
nary was 510 (roughly 1/3 of the phone-based aver-
age of 1429). However, when one allows for the fact
that stress detection is not perfect, one sees anin-
creasein the amount of necessary computation: the
non-ideal hybrid dictionary has an average of 3322
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hypotheses per word (2.3 times the phone-based av-
erage). Yet this is much lower than the potential
growth of the hypothesis space given with manner-
only dictionaries. This dictionary generated a hy-
pothesis space 12 times as large as a phone based
dictionary (17186 hypotheses/word average); more-
over, the curve grows significantly as a function of
the number of words, so longer utterances will take
disproportionately more space. Thus, Briscoe’s hy-
pothesis that purely manner-based decoding is too
expensive seems to be confirmed.

6 Integration into ASR

This paper has investigated hybrid representations
along computational phonology lines, but we have
also trained an ASR system with a hybrid lexicon for
the Wall Street Journal (WSJ0) corpus. Space does
not permit a full explanation of the experiment here
(for more details, see (Fosler-Lussier et al., 2005)),
but we include the results from this experiment as
evidence of the validity of the approach.

In this experiment, we trained phonetic and
manner-based acoustic models for all segments us-
ing the flat-start recipe of the HTK recognizer
(Young et al., 2002). After a number of itera-
tions of EM-training, we constructed a hybrid set of
acoustic models and lexicon in which phones in un-
stressed syllables were replaced with manner classes
(Hybrid-all). We also derived a lexicon in which the
recognizer could choose whether a manner or pho-
netic representation was appropriate for unstressed
segments (Hybrid-choice). During evaluation, we
found that the Hybrid-choice lexicon degraded only
slightly over a phone-based lexicon (9.9% word er-
ror vs. 9.1%), and in fact improved recognition
in mild (10dB SNR) additive car noise (13.0% vs.
15.4%). The Hybrid-all was worse on clean speech
(13.1% WER) but statistically the same as phone-
based on noisy speech (15.8%). While not conclu-
sive, this suggests that hybrid models may provide
an interesting avenue for robustness research.

7 Conclusion

Our studies verify to some degree Briscoe’s claim
that a hybrid representation for lexical modeling,
with stressed syllables receiving full phonetic rep-
resentation and unstressed syllables represented by
manner classes, can improve ASR processing. How-

ever, our analysis shows that the argument for this
hypothesis plays out along very different lines than
in Briscoe’s study. A hybrid phone-manner lexi-
con can theoretically benefit ASR because (a) the
discriminative power of the lexicon is not reduced
greatly, (b) such a representation is a much better
model of the types of pronunciation variation seen
in spontaneous speech corpora such as Switchboard,
and (c) the theoretical average hypothesis space in-
creases only by a little over a factor of 2. This
last fact is contrary to Briscoe’s finding that the
search space would be reduced because it incorpo-
rates more realistic assumptions about the detection
of stressed versus unstressed syllables.

These experiments were designed primarily to in-
vestigate the validity of Briscoe’s claims, and thus
we attempted to remain true to his model. However,
it is clear that our analysis can be extended in sev-
eral ways. We have begun experimenting with prun-
ing the hypothesis graph to remove unlikely arcs –
this would give a more accurate model of the ASR
processing that would occur. However, this only
makes sense if language model constraints are in-
tegrated into the processing, since some word se-
quences in the graph would be discarded as unlikely.
This analysis could also benefit from a more accu-
rate model of the ASR system’s transformation be-
tween realized phones and lexical representations.
This could be achieved by comparing the Gaussian
acoustic model distributions in an HMM system or
sampling the acoustic model’s space (McAllaster et
al., 1998). Both of these extensions will be consid-
ered in future work.

The results clearly indicate that further investiga-
tion and development of a hybrid lexical strategy in
an ASR system is worthwhile, particularly for spon-
taneous speech corpora where the problem of pro-
nunciation variation is most rampant.
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