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Abstract 

This research is aimed at the problem of 
disambiguating toponyms (place names) 
in terms of a classification derived by 
merging information from two publicly 
available gazetteers. To establish the dif-
ficulty of the problem, we measured the 
degree of ambiguity, with respect to a 
gazetteer, for toponyms in news. We 
found that 67.82% of the toponyms found 
in a corpus that were ambiguous in a gaz-
etteer lacked a local discriminator in the 
text. Given the scarcity of human-
annotated data, our method used unsuper-
vised machine learning to develop disam-
biguation rules. Toponyms were 
automatically tagged with information 
about them found in a gazetteer. A 
toponym that was ambiguous in the gazet-
teer was automatically disambiguated 
based on preference heuristics. This 
automatically tagged data was used to 
train a machine learner, which disambigu-
ated toponyms in a human-annotated 
news corpus at 78.5% accuracy.  

1 Introduction 

Place names, or toponyms, are ubiquitous in natu-
ral language texts. In many applications, including 
Geographic Information Systems (GIS), it is nec-
essary to interpret a given toponym mention as a 
particular entity in a geographical database or gaz-
etteer. Thus the mention “Washington” in “He vis-
ited Washington last year” will need to be 
interpreted as a reference to either the city Wash-
ington, DC or the U.S. state of Washington, and 
“Berlin” in “Berlin is cold in the winter” could 

mean Berlin, New Hampshire or Berlin, Germany, 
among other possibilities. While there has been a 
considerable body of work distinguishing between 
a toponym and other kinds of names (e.g., person 
names), there has been relatively little work on 
resolving which place and what kind of place given 
a classification of kinds of places in a gazetteer. 
Disambiguated toponyms can be used in a GIS to 
highlight a position on a map corresponding to the 
coordinates of the place, or to draw a polygon rep-
resenting the boundary. 

In this paper, we describe a corpus-based method 
for disambiguating toponyms. To establish the dif-
ficulty of the problem, we began by quantifying 
the degree of ambiguity of toponyms in a corpus 
with respect to a U.S. gazetteer. We then carried 
out a corpus-based investigation of features that 
could help disambiguate toponyms. Given the 
scarcity of human-annotated data, our method used 
unsupervised machine learning to develop disam-
biguation rules. Toponyms were automatically 
tagged with information about them found in a 
gazetteer. A toponym that was ambiguous in the 
gazetteer was automatically disambiguated based 
on preference heuristics. This automatically tagged 
data was used to train the machine learner. We 
compared this method with a supervised machine 
learning approach trained on a corpus annotated 
and disambiguated by hand. 

Our investigation targeted toponyms that name 
cities, towns, counties, states, countries or national 
capitals.   We sought to classify each toponym as a 
national capital, a civil political/administrative 
region, or a populated place (administration un-
specified). In the vector model of GIS, the type of 
place crucially determines the geometry chosen to 
represent it (e.g., point, line or polygon) as well as 
any reasoning about geographical inclusion. The 
class of the toponym can be useful in “grounding” 
the toponym to latitude and longitude coordinates,  
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Entry 
Number 

Topony
m 

U.S. 
County 

U.S. State Lat-Long 
(dddmmss) 

Elevation (ft. 
above sea 
level) 

Class 

110 Acton     
 

Middlesex Massachu-
setts 

422906N-
0712600W 

260 
 

Ppl (popu-
lated place) 

111 Acton Yellow-
stone 

Montana 455550N-
1084048W 

3816 Ppl 

112 Acton Los Ange-
les 

California 342812N-
1181145W 

2720 Ppl 

Table 1. Example GNIS entries for an ambiguous toponym 
 

but it can also go beyond grounding to support spa-
tial reasoning. For example, if the province is 
merely grounded as a point in the data model (e.g., 
if the gazetteer states that the centroid of a prov-
ince is located at a particular latitude-longitude) 
then without the class information, the inclusion of 
a city within a province can’t be established. Also, 
resolving multiple cities or a unique capital to a 
political region mentioned in the text can be a use-
ful adjunct to a map that lacks political boundaries 
or whose boundaries are dated. 

It is worth noting that our classification is more 
fine-grained than efforts like the EDT task in 
Automatic Content Extraction1 program (Mitchell 
and Strassel 2002), which distinguishes between 
toponyms that are a Facility “Alfredo Kraus Audi-
torium”, a Location “the Hudson River”, and Geo-
Political Entities that include territories “U.S. 
heartland”, and metonymic or other derivative 
place references “Russians”, “China (offered)”, 
“the U.S. company”, etc. Our classification, being 
gazetteer based, is more suited to GIS-based appli-
cations. 

2 Quantifying Toponym Ambiguity  

2.1 Data 

We used a month’s worth of articles from the New 
York Times (September 2001), part of the English 
Gigaword (LDC 2003).  This corpus consisted of 
7,739 documents and, after SGML stripping, 6.51 
million word tokens with a total size of 36.4MB).  
We tagged the corpus using a list of place names 
from the USGS Concise Gazetteer (GNIS). The 
resulting corpus is called MAC1, for “Machine 
Annotated Corpus 1”. GNIS covers cities, states, 

                                                           
1 www.ldc.upenn.edu/Projects/ACE/ 

and counties in the U.S., which are classified as 
“civil” and “populated place” geographical enti-
ties.  A geographical entity is an entity on the 
Earth’s surface that can be represented by some 
geometric specification in a GIS; for example, as a 
point, line or polygon. GNIS also covers 53 other 
types of geo-entities, e.g., “valley,” “summit”, 
“water” and “park.” GNIS has 37,479 entries, with 
27,649 distinct toponyms, of which 13,860 
toponyms had multiple entries in the GNIS (i.e., 
were ambiguous according to GNIS). Table 1 
shows the entries in GNIS for an ambiguous 
toponym. 
2.2 Analysis 

Let E be a set of elements, and let F be a set of fea-
tures. We define a feature g in F to be a disam-
biguator for E iff for all pairs <ex, ey> in E X E, 
g(ex) ≠ g(ey) and neither g(ex) nor g(ey) are null-
valued.  As an example, consider the GNIS gazet-
teer in Table 1, let F = {U.S. County, U.S. State, 
Lat-Long, and Elevation}. We can see that each 
feature in F is a disambiguator for the set of entries 
E = {110, 111, 112}.  

Let us now characterize the mapping between 
texts and gazetteers. A string s1 in a text is said to 
be a discriminator within a window w for another 
string s2 no more than w words away if s1 matches 
a disambiguator d for s2 in a gazetteer. For exam-
ple, “MT” is a  discriminator within a window 5 
for the toponym “Acton” in “Acton, MT,” since 
“MT” occurs within a ±5-word window of “Acton” 
and matches, via an abbreviation, “Montana”, the 
value of a GNIS disambiguator U.S. State (here the 
tokenized words are “Acton”, “,”, and “MT”).  

A trie-based lexical lookup tool (called LexScan) 
was used to match each toponym in GNIS against 
the corpus MAC1. Of the 27,649 distinct toponyms 
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in GNIS, only 4553 were found in the corpus (note 
that GNIS has only U.S. toponyms). Of the 4553 
toponyms, 2911 (63.94%) were “bare” toponyms, 
lacking a local discriminator within a ±5-word 
window that could resolve the name.  

Of the 13,860 toponyms that were ambiguous 
according to GNIS, 1827 of them were found in 
MAC1, of which only 588 had discriminators 
within a ±5-word window (i.e., discriminators 
which matched gazetteer features that disambigu-
ated the toponym). Thus, 67.82% of the 1827 
toponyms found in MAC1 that were ambiguous in 
GNIS lacked a discriminator.    

This 67.82% proportion is only an estimate of 
true toponym ambiguity, even for the sample 
MAC1. There are several sources of error in this 
estimate: (i) World cities, capitals and countries 
were not yet considered, since GNIS only covered 
U.S. toponyms. (ii) In general, a single feature 
(e.g., County, or State) may not be sufficient to 
disambiguate a set of entries. It is of course possi-
ble for two different places named by a common 
toponym to be located in the same county in the 
same state. However, there were no toponyms with 
this property in GNIS. (iii) A string in MAC1 
tagged by GNIS lexical lookup as a toponym may 
not have been a place name at all (e.g., “Lord Ac-
ton lived …”). Of the toponyms that were spurious, 
most were judged by us to be common words and 
person names.  This should not be surprising, as 
5341 toponyms in GNIS are also person names 
according to the U.S. Census Bureau2 (iv) LexScan 
wasn’t perfect, for the following reasons. First, it 
sought only exact matches. Second, the matching 
relied on expansion of standard abbreviations. Due 
to non-standard abbreviations, the number of true 
U.S. toponyms in the corpus likely exceeded 4553.  
Third, the matches were all case-sensitive: while 
case-insensitivity caused numerous spurious 
matches, case-sensitivity missed a more predict-
able set, i.e. all-caps dateline toponyms or lower-
case toponyms in Internet addresses. 

Note that the 67.82% proportion is just an esti-
mate of local ambiguity. Of course, there are often 
non-local discriminators (outside the ±5-word 
windows); for example, an initial place name ref-
erence could have a local discriminator, with sub-

                                                           
                                                          2 www.census.gov/genealogy/www/freqnames.html 

 

sequent references in the article lacking local dis-
criminators while being coreferential with the ini-
tial reference. To estimate this, we selected cases 
where a toponym was discriminated on its first 
mention.  In those cases, we counted the number of 
times the toponym was repeated in the same 
document without the discriminator. We found that 
73% of the repetitions lacked a local discriminator, 
suggesting an important role for coreference (see 
Sections 4 and 5). 

3 Knowledge Sources for Automatic Dis-
ambiguation  

To prepare a toponym disambiguator, we required 
a gazetteer as well as corpora for training and test-
ing it.  

3.1 Gazetteer 

To obtain a gazetteer that covered worldwide 
information, we harvested countries, country capi-
tals, and populous world cities from two websites 
ATLAS3 and GAZ4, to form a consolidated gazet-
teer (WAG) with four features G1,..,G4 based on 
geographical inclusion, and three classes, as shown 
in Table 2. As an example, an entry for Aberdeen 
could be the following feature vector: G1=United 
States, G2=Maryland, G3=Harford County, 
G4=Aberdeen, CLASS=ppl.  

We now briefly discuss the merging of ATLAS 
and GAZ to produce WAG. ATLAS provided a 
simple list of countries and their capitals.  GAZ 
recorded the country as well as the population of 
700 cities of at least 500,000 people.  If a city was 
in both sources, we allowed two entries but or-
dered them in WAG to make the more specific 
type (e.g. “capital”) the default sense, the one that 
LexScan would use. Accents and diacritics were 
stripped from WAG toponyms by hand, and aliases 
were associated with standard forms. Finally, we 
merged GNIS state names with these, as well as 
abbreviations discovered by our abbreviation ex-
pander.  

3.2 Corpora 

We selected a corpus consisting of 15,587 articles 
from the complete Gigaword Agence France 

 
3 . www.worldatlas.com 
4 www.worldgazetteer.com 
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Presse, May 2002.  LexScan was used to tag, in-
sensitive to case, all WAG toponyms found in this 
corpus, with the attributes in Table 2.  If there were 

multiple entries in WAG for a toponym, LexScan 
only tagged the preferred sense, discussed below. 
The resulting tagged corpus, called MAC-DEV, 

 
Tag At-
tribute 

Description 

CLASS Civil (Political Region or Administrative Area, e.g. Country, Province, County), Ppl 
(Populated Place, e.g. City, Town), Cap (Country Capital, Provincial Capital, or County 
Seat) 

G1 Country 
G2 Province (State) or Country-Capital 
G3 County or Independent City 
G4 City, Town (Within County) 

Table 2: WAG Gazetteer Attributes 
 

Corpus Size Use How Annotated 
MAC1 6.51 million words with 

61,720 place names (4553 
distinct) from GNIS 

Ambiguity Study (Gigaword NYT Sept. 
2001) (Section 2) 

LexScan of all 
senses, no attributes 
marked  

MAC-
DEV 

5.47 million words with 
124,175 place names 
(1229 distinct) from 
WAG 

Development Corpus (Gigaword AFP 
May 2002) (Section 4) 

LexScan using at-
tributes from WAG, 
with heuristic pref-
erence 

MAC-
ML 

6.21 million words with 
181,866 place names 
(1322 distinct) from 
WAG 

Machine Learning Corpus (Gigaword AP 
Worldwide January 2002) (Section 5) 

LexScan using at-
tributes from WAG, 
with heuristic pref-
erence 

HAC 83,872 words with 1275 
place names (435 distinct) 
from WAG.   

Human Annotated Corpus (from Time-
Bank 1.2,  and Gigaword NYT Sept. 2001 
and June 2002) (Section 5) 

LexScan using 
WAG, with attrib-
utes and sense being 
manually corrected 

Table 3.  Summary of Corpora 
 

Term found 
with Cap 

T-test 
Civil 

T-
test 
Ppl 

Term found 
with Ppl 

T-test 
Civil 

T-test 
Cap 

Term found 
with Civil 

T-
test 
Ppl 

T-test 
Cap 

‘stock’ 4 4 ‘winter’ 3.61 3.61 ‘air’ 3.16 3.16 
‘exchange’ 4.24 4.24 ‘telephone’ 3.16 3.16 ‘base’ 3.16 3.16 
‘embassy’ 3.61 3.61 ‘port’ 3.46 3.46 ‘accuses’ 3.61 3.61 
‘capital’ 1.4 2.2 ‘midfielder’ 3.46 3.46 ‘northern’ 5.57 5.57 
‘airport’ 3.32 3.32 ‘city’ 1.19 1.19 ‘airlines’ 4.8 4.8 
‘summit’ 4 4 ‘near’ 2.77 3.83 ‘invaded’ 3.32 3.32 
‘lower’ 3.16 3.16 ‘times’ 3.16 3.16 ‘southern’ 3.87 6.71 
‘visit’ 4.61 4.69 ‘southern’ 3.87 3.87 ‘friendly’ 4 4 
‘conference’ 4.24 4.24 ‘yen’ 4 0.56 ‘state-run’ 3.32 3.32 
‘agreement’ 3.16 3.16 ‘attack’ 0.18 3.87 ‘border’ 7.48 7.48 

Table 4. Top 10 terms disambiguating toponym classes

was used as a development corpus for feature 
exploration. To disambiguate the sense for a 

toponym that was ambiguous in WAG, we used 
two preference heuristics. First, we searched 
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MAC1 for two dozen highly frequent ambiguous 
toponym strings (e.g., “Washington”, etc.), and 
observed by inspection which sense predomi-
nated in MAC1, preferring the predominant 
sense for each of these frequently mentioned 
toponyms. For example, in MAC1, “Washing-
ton” was predominantly a Capital. Second, for 
toponyms outside this most frequent set, we 
used the following specificity-based preference: 
Cap. > Ppl > Civil. In other words, we prefer 
the more specific sense; since there are a smaller 
number of Capitals than Populated places, we 
prefer Capitals to Populated Places.  

For machine learning, we used the Gigaword 
Associated Press Worldwide January 2002 
(15,999 articles), tagged in the same way by 
LexScan as MAC-DEV was. This set was called 
MAC-ML. Thus, MAC1, MAC-DEV, and 
MAC-ML were all generated automatically, 
without human supervision. 

For a blind test corpus with human annotation, 
we opportunistically sampled three corpora: 
MAC1, TimeBank 1.25 and the June 2002 New 
York Times from the English Gigaword, with 
the first author tagging a random 28, 88, and 49 
documents respectively from each. Each tag in 
the resulting human annotated corpus (HAC) 
had the WAG attributes from Table 2 with man-
ual correction of all the WAG attributes. A 
summary of the corpora, their source, and anno-
tation status is shown in Table 3.  

4 Feature Exploration 

We used the tagged toponyms in MAC-DEV to 
explore useful features for disambiguating the 
classes of toponyms.  We identified single-word 
terms that co-occurred significantly with classes 
within a k-word window (we tried k= ±3, and 
k=±20). These terms were scored for pointwise 
mutual information (MI) with the classes. Terms 
with average tf.idf of less than 4 in the collection 
were filtered out as these tended to be personal 
pronouns, articles and prepositions.  

To identify which terms helped select for par-
ticular classes of toponyms, the set of 48 terms 
whose MI scores were above a threshold (-11, 
chosen by inspection) were filtered using the 
student’s t-statistic, based on an idea in (Church 

                                                           
5 www.timeml.org 

and Hanks 1991). The t-statistic was used to 
compare the distribution of the term with one 
class of toponym to its distribution with other 
classes to assess whether the underlying distri-
butions were significantly different with at least 
95% confidence. The results are shown in Table 
4, where scores for a term that occurred jointly 
in a window with at least one other class label 
are shown in bold. A t-score > 1.645 is a signifi-
cant difference with 95% confidence. However, 
because joint evidence was scarce, we eventu-
ally chose not to eliminate Table 4 terms such as 
‘city’ (t =1.19) as features for machine learning.  
Some of the terms were significant disambigua-
tors between only one pair of classes, e.g. ‘yen,’ 
‘attack,’ and ‘capital,’ but we kept them on that 
basis.  

 
Feature 

Name 
Description 

Abbrev Value is true iff the 
toponym  is abbreviated. 

AllCaps Value is true iff the 
toponym is all capital let-
ters.  

Left/Right 
Pos{1,.., k} 

Values are the ordered 
tokens up to k positions to 
the left/right 

WkContext Value is the set of MI 
collocated terms found in 
windows of ± k tokens (to 
the left and right) 

TagDis-
course 

 Value is the set of 
CLASS values represented 
by all toponyms from the 
document:  e.g., the set 
{civil, capital, ppl} 

CorefClass Value is the CLASS if 
any for a prior mention of 
a toponym in the docu-
ment, or none 

 Table 5. Features for Machine Learning 
 
Based on the discovered terms in experiments 

with different window sizes, and an examination 
of MAC1 and MAC-DEV, we identified a final 
set of features that, it seemed, might be useful 
for machine learning experiments. These are 
shown in Table 5.  The features Abbrev and All-
caps describe evidence internal to the toponym: 
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an abbreviation may indicate a state (Mass.), 
territory (N.S.W.), country (U.K.), or some other 
civil place; an all-caps toponym might be a capi-
tal or ppl in a dateline.  The feature sets LeftPos 
and RightPos target the ±k positions in each 
window as ordered tokens, but note that only 
windows with a MI term are considered.  The 
domain of WkContext is the window of ±k to-
kens around a toponym that contains a MI collo-
cated term.     
   We now turn to the global discourse-level fea-
tures. The domain for TagDiscourse is the whole 
document, which is evaluated for the set of 
toponym classes present: this information may 
reflect the discourse topic, e.g. a discussion of 
U.S. sports teams will favor mentions of cities 
over states or capitals.  The feature CorefClass 

implements a one sense per discourse strategy, 
motivated by our earlier observation (from Sec-
tion 2) that 73% of subsequent mentions of a 
toponym that was discriminated on first mention 
were expressed without a local discriminator. 

5 Machine Learning 

The features in Table 5 were used to code fea-
ture vectors for a statistical classifier. The results 
are shown in Table 6.  As an example, when the 
Ripper classifier (Cohen 1996) was trained on 
MAC-ML with a window of k= ±3 word tokens, 
the predictive accuracy when tested using cross-
validation MAC-ML was 88.39% ±0.24 (where 
0.24 is the standard deviation across 10 folds).

 
Accuracy on Test Set   

Window = ±3 Window = ±20 

Training 

Set 

Test Set Predictive 

Accuracy 

Recall,  Preci-

sion, F-measure 

Predictive 

Accuracy 

Recall, Precision, 

F-measure 

MAC-ML  MAC-ML 
(cross-
validation) 

88.39 ± 
0.24 (Civ. 
65.0)  

Cap r70 p88 f78 
Civ. r94 p90 f92 
Ppl r87 p82 f84 
Avg. r84 p87 f85 

80.97 ± 
0.33 (Civ. 
57.1) 

Cap r61 p77 f68 
Civ. r83 p86 f84 
Ppl r81 p72 f76 
Avg. r75 p78 f76 

MAC-DEV  MAC-DEV 
(cross-
validation) 

87.08 ± 
0.28 (Civ. 
57.8) 

Cap r74 p87 f80 
Civ. r93 p88 f91 
Ppl r82 p80 f81 
Avg. r83 p85 f84 

81.36 ± 
0.59 (Civ. 
59.3) 

Cap r49 p78 f60 
Civ. r92 p81 f86 
Ppl r56 p70 f59 
Avg. r66 p77 f68 

MAC-DEV HAC 68.66 (Civ. 
59.7) 

Cap r50 p71 f59 
Civ. r93 p70 f80 
Ppl r24 p57 f33 
Avg. r56 p66 f57  

65.33 
(Civ. 50.7) 

Cap r100 p100 
f100 
Civ. r84 p62 f71 
Ppl r43 p71 f54 
Avg. r76 p78 f75 

HAC 
  

HAC 
 (cross-
validation) 

77.5 ± 2.94  
(Ppl 72.9) 

Cap r70 p97 f68 
Civ. r34 p94 f49 
Ppl r98 p64 f77 
Avg. r67 p85 f65 

73.12 ± 
3.09 (Ppl 
51.3) 

Cap r17 p90 f20 
Civ. r63 p76 f68 
Ppl r84 p73 f77 
Avg. r54 p79 f55 

MAC-
DEV+MAC-
ML 

MAC-
DEV+MAC-
ML (cross-
validation) 

86.76 ± 
0.18 (Civ. 
60.7) 

Cap r70 p89 f78 
Civ. r94 r88 f91 
Ppl r81 p80 f80 
Avg. r82 p86 f83 

79.70 ± 
0.30 (Civ. 
59.7) 

Cap r56 p73 f63 
Civ. r83 p86 f84 
Ppl r80 p68 f73 
Avg. r73 p76 f73 

MAC-
DEV+MAC-
ML 

HAC 73.07 (Civ. 
51.7) 

Cap r71 p83 f77 
Civ. r91 p69 f79 
Ppl r45 f81 f58 
Avg. r69 p78 f71 

78.30 
(Civ. 50) 

Cap r100 p63 f77 
Civ. r91 p75 f82 
Ppl r63 p88 f73 
Avg. r85 p75 f77 

Table 6. Machine Learning Accuracy 
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The majority class (Civil) had the predictive accu-
racy shown in parentheses.  (When tested on a dif-
ferent set from the training set, cross-validation 
wasn’t used). Ripper reports a confusion matrix for 
each class; Recall, Precision, and F-measure for 
these classes are shown, along with their average 
across classes.  

In all cases, Ripper is significantly better in pre-
dictive accuracy than the majority class. When 
testing using cross-validation on the same ma-
chine-annotated corpus as the classifier was trained 
on, performance is comparable across corpora, and 
is in the high 80%, e.g., 88.39 on MAC-ML 
(k=±3). Performance drops substantially when we 
train on machine-annotated corpora but test on the 
human-annotated corpus (HAC) (the unsupervised 
approach), or when we both train and test on HAC 
(the supervised approach). The noise in the auto-
generated classes in the machine-annotated corpus 
is a likely cause for the lower accuracy of the un-
supervised approach. The poor performance of the 
supervised approach can be attributed to the lack of 
human-annotated training data: HAC is a small, 
83,872-word corpus.  

 
Rule Description  
(Window = ±3) 

Coverage 
of Examples 
in Testing 
(Accuracy) 

If not AllCaps(P) and  Right-
Pos1(P,‘SINGLE_QUOTE’) 
and Civil ∈ TagDiscourse Then 
Civil(P). 

5/67 
(100%) 

If not AllCaps(P) and  Left-
Pos1(P, southern) and Civil ∈ 
TagDiscourse Then Civil(P). 

13/67 
(100%) 

Table 7. Sample Rules Learnt by Ripper 

TagDiscourse was a critical feature; ignoring it 
during learning dropped the accuracy nearly 9 per-
centage points. This indicates that prior mention of 
a class increases the likelihood of that class. (Note 
that when inducing a rule involving a set-valued 
feature, Ripper tests whether an element is a mem-
ber of that set-valued feature, selecting the test that 
maximizes information gain for a set of examples.) 
Increasing the window size only lowered accuracy 
when tested on the same corpus (using cross-
validation); for example, an increase from ±3 
words to ±20 words (intervening sizes are not 
shown for reasons of space) lowered the PA by 5.7 

percentage points on MAC-DEV. However, in-
creasing the training set size was effective, and this 
increase was more substantial for larger window 
sizes: combining MAC-ML with MAC-DEV im-
proved accuracy on HAC by about 4.5% for k= ±3, 
but an increase of 13% was seen for k =±20.  In 
addition, F-measure for the classes was steady or 
increased. As Table 6 shows, this was largely due 
to the increase in recall on the non-majority 
classes. The best performance when training Rip-
per on the machine-annotated MAC-DEV+MAC-
ML and testing on the human-annotated corpus 
HAC was 78.30.  

Another learner we tried, the SMO support-
vector machine from WEKA (Witten and Frank 
2005), was marginally better, showing 81.0 predic-
tive accuracy training and testing on MAC-
DEV+MAC-ML (ten-fold cross-validation, k=±20) 
and 78.5 predictive accuracy training on MAC-
DEV+MAC-ML and testing on HAC (k=±20). 
Ripper rules are of course more transparent: exam-
ple rules learned from MAC-DEV are shown in 
Table 7, along with their coverage of feature vec-
tors and accuracy on the test set HAC.  

6 Related Work 

Work related to toponym tagging has included 
harvesting of gazetteers from the Web (Uryupina 
2003), hand-coded rules to place name disam-
biguation, e.g., (Li et al. 2003) (Zong et al. 2005), 
and machine learning approaches to the problem, 
e.g., (Smith and Mann 2003). There has of course 
been a large amount of work on the more general 
problem of word-sense disambiguation, e.g., 
(Yarowsky 1995) (Kilgarriff and Edmonds 2002). 
We discuss the most relevant work here.  

While (Uryupina 2003) uses machine learning to 
induce gazetteers from the Internet, we merely 
download and merge information from two popular 
Web gazetteers. (Li et al. 2003) use a statistical 
approach to tag place names as a LOCation class. 
They then use a heuristic approach to location 
normalization, based on a combination of hand-
coded pattern-matching rules as well as discourse 
features based on co-occurring toponyms (e.g., a 
document with “Buffalo”, “Albany” and “Roches-
ter” will likely have those toponyms disambiguated 
to New York state). Our TagDiscourse feature is 
more coarse-grained. Finally, they assume one 
sense per discourse in their rules, whereas we use it 
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as a feature CorefClass for use in learning. Overall, 
our approach is based on unsupervised machine 
learning, rather than hand-coded rules for location 
normalization. 

(Smith and Mann 2003) use a “minimally super-
vised” method that exploits as training data 
toponyms that are found locally disambiguated, 
e.g., “Nashville, Tenn.”; their disambiguation task 
is to identify the state or country associated with 
the toponym in test data that has those disambigua-
tors stripped off. Although they report 87.38% ac-
curacy on news, they address an easier problem 
than ours, since: (i) our earlier local ambiguity es-
timate suggests that as many as two-thirds of the 
gazetteer-ambiguous toponyms may be excluded 
from their test on news, as they would lack local 
discriminators (ii) the classes our tagger uses (Ta-
ble 3) are more fine-grained.  Finally, they use one 
sense per discourse as a bootstrapping strategy to 
expand the machine-annotated data, whereas in our 
case CorefClass is used as a feature. 

Our approach is distinct from other work in that 
it firstly, attempts to quantify toponym ambiguity, 
and secondly, it uses an unsupervised approach 
based on learning from noisy machine-annotated 
corpora using publicly available gazetteers.  

7 Conclusion 

This research provides a measure of the degree of 
of ambiguity with respect to a gazetteer for 
toponyms in news. It has developed a toponym 
disambiguator that, when trained on entirely ma-
chine annotated corpora that avail of easily avail-
able Internet gazetteers, disambiguates toponyms 
in a human-annotated corpus at 78.5% accuracy.  

Our current project includes integrating our dis-
ambiguator with other gazetteers and with a geo-
visualization system. We will also study the effect 
of other window sizes and the combination of this 
unsupervised approach with minimally-supervised 
approaches such as (Brill 1995) (Smith and Mann 
2003). To help mitigate against data sparseness, we 
will cluster terms based on stemming and semantic 
similarity.  

The resources and tools developed here may be 
obtained freely by contacting the authors.  
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