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Abstract

One key property of word embeddings
currently under study is their capacity to
encode hypernymy. Previous works have
used supervised models to recover hyper-
nymy structures from embeddings. How-
ever, the overall results do not clearly
show how well we can recover such struc-
tures. We conduct the first dataset-centric
analysis that shows how only the Baroni
dataset provides consistent results. We
empirically show that a possible reason for
its good performance is its alignment to di-
mensions specific of hypernymy: general-
ity and similarity.

1 Introduction

Word embeddings have been widely used as fea-
tures in NLP tasks like parsing and textual entail-
ment. One key aspect that has been investigated is
their capacity to encode hypernymy; this semantic
relation denotes a taxonomical order of objects in
the world; for example, a dog is a canine which
is a vertebrate. To test the ability of embeddings
to encode hypernymy, previous work has proposed
supervised models to learn whether a given pair of
embeddings (wi, wj) are in the hypernymy rela-
tion (Roller et al., 2014; Necsulescu et al., 2015;
Fu et al., 2014).

Results from previous work suggest that word
embeddings indeed capture hypernymy informa-
tion. This observation is relatively general and
robust across several choices of datasets, mod-
els and embeddings. For example, Levy et al.
(2015) achieve up to 0.85 F1, while Roller and Erk
(2016) achieve up to 0.90 F1. Both of these results
are achieved on the Baroni dataset (Baroni et al.,
2012). For most other datasets, models achieve
promising scores above 0.60 F1 points; e.g. Roller

and Erk (2016) report 0.66 F1 points for a linear
model on the balanced Turney dataset (Turney and
Mohammad, 2015).

On closer look, however, we find that the cur-
rent F1-based results may be somewhat mislead-
ing. In particular, several papers report F1 scores
in the higher 60% level on balanced datasets—on
such datasets a baseline that predicts each pair to
be in the hypernym relation already achieves 66%
F1. And when calculating accuracy instead of F1
scores we observe accuracies around 50%-60% for
state of the art models, often barely above chance
level (Table 3).

There is one striking exception when it comes
to accuracy results. On the Baroni dataset, accu-
racy is as high as 81%. These observations lead us
to the following questions regarding the datasets
and overall results: Are the scores on the Baroni
dataset high because it is an easy dataset? Or are
they high because it is easier to learn hypernymy
from the Baroni training set due to its design? To
what extent can the Baroni dataset help us to pre-
dict hypernyms from word embeddings?

In this work we conduct the first dataset-centric
analysis across 6 datasets to empirically answer
the questions above. We take inspiration from the
work of (Torralba and Efros, 2011) in the com-
puter vision domain where a set of datasets are
compared and biases are exposed. In the same
spirit, we compare a set of datasets by evaluating
the ability of models trained on such datasets to
generalize to different test distributions.

We show how the Baroni dataset outperforms
the other datasets. In particular, we find that mod-
els trained on Baroni’s data can outperform other
models even on their home turf. For example, a
model trained on Baroni’s data can do better on the
Kotlerman (Kotlerman et al., 2010) test set than
models trained on the Kotlerman training set with
the same size.
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Furthermore, we show that the Baroni dataset
seems to exhibit a pronounced behaviour along
two dimensions known to be relevant for hyper-
nymy: generality and similarity. This behaviour
appears to be important for the success of Baroni’s
dataset: if we filter and resample other training
datasets with respect to this behaviour, we gener-
ally achieve better results.

2 Background

We first give a brief overview of hypernymy detec-
tion, important findings in this domain, and then
relevant work on dataset analysis.

2.1 Supervised Hypernym Detection

The task is posed as a binary classification prob-
lem. An instance pair is composed of two em-
beddings, e.g. (wcat, wanimal, positive). A vector
operation such as concatenation (concat) or dif-
ference (diff ) is then applied to both embeddings.
Vylomova et al. (2016) learned a range of seman-
tic relations, including hypernymy, using the diff
operator and achieved positive results. Roller and
Erk (2016) showed that concat with a logistic re-
gression classifier learns to extract Hearst patterns
(such as, including, etc.) from distributional vec-
tors.

Weeds et al. (2014) and Vylomova et al. (2016)
described the lexical memorization phenomenon:
a classifier learns that a word wi is hyponym of
a word wj based on the frequency of wj appear-
ing in the hypernym slot in positive pairs. In order
to avoid high scores at test time due to this effect,
Weeds et al. (2014) suggest having disjoint vocab-
ularies between training and test sets.

2.2 Dataset Analysis

Torralba and Efros (2011) compared a set of ob-
ject recognition datasets by testing each of them
across different test distributions. In order to fairly
compare these datasets, Torralba and Efros (2011)
first eliminated some visible biases such as sample
size by normalizing the datasets. In this way, other
biases in the datasets were exposed such as the
photographer’s shooting position, or the labellers’
perception, that may not be easily observable and
may harm the classifier performance. Torralba and
Efros (2011) concluded that some datasets are a
better representation of the problem domain.

3 Materials

We describe both the datasets that we compare and
the word embedding model that we use as features.

3.1 Datasets
We pick the datasets used by Levy et al. (2015) and
Weeds et al. (2014) which have disjoint training
and test sets.

Dataset Size Ratio pos/neg

Baroni 791 0.97
Bless 3225 0.12

Kotlerman 739 0.45
Levy 2932 0.08

Turney 539 1.06
Weeds 2033 0.98

Table 1: Summary of datasets.

Baroni Baroni et al. (2012) drew instance pairs
from WordNet that were manually checked to dis-
card noisy ones.

Bless The original dataset (Baroni and Lenci,
2011) contains several semantic relations. Levy
et al. (2015) used the hypernymy pairs as positive
instances and the pairs in all the other semantic
relations as negative instances.

Kotlerman Kotlerman et al. (2010) adapted the
lexical entailment dataset of (Zhitomirsky-Geffet
and Dagan, 2009).

Levy From a set of entailing propositions of the
form (subject, verb, object) in (Levy et al., 2014),
Levy et al. (2015) extracted entailing nouns that
shared two arguments to create instance pairs.

Turney Turney and Mohammad (2015) trans-
formed the SemEval-2012 dataset (Jurgens et al.,
2012) to expand from 79 to 158 semantic relations.

Weeds Weeds et al. (2014) drew instance pairs
from WordNet under the constraint that none of
the words in a pair must be seen in any other pair
in the same role (hyponym or hypernym).

3.2 Word Embeddings
We pick what we believe to be one of the most
representative word embedding models.

GloVe Pennington et al. (2014) designed a vec-
tor space model using a log-bilinear regression
function. They learned unsupervised word embed-
dings from a matrix of word co-ocurrences while
maintaining linear sub-structures in such space.

We do not show results on the also widely-used
model of Word2Vec since we get similar results.
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4 Cross-test Evaluation

We evaluate the robustness of the six datasets for
generalising to different test distributions. In or-
der to fairly compare the datasets, we follow Tor-
ralba and Efros (2011) and remove biases such as
sample size and imbalance by sub-sampling with
replacement and uniformly at random the training
sets. We obtain 20 subsets, i.e. samples, from each
of the training sets. Each sample is normalized and
balanced to 400 instances.1

We learn a model for each sample using the
Scikit-learn (Pedregosa et al., 2011) package and
test it on all the six test sets. We try all combi-
nations of vector operator (diff, concat) and clas-
sifier (logistic regression, SVM). Hyperparameter
tuning and model selection are performed using
self-validation sets. We report AUC and accuracy
scores solely for the Glove embeddings of dimen-
sionality 50 given that the results on other embed-
ding models are quite comparable.

4.1 Ranking Pairs: AUC ROC

The Area Under the ROC Curve measures the
ability of a classifier to rank positive instances
with respect to negative ones independently of any
threshold value. Unfortunately, this metric may
throw an overoptimistic value under highly imbal-
anced data: a disproportional number of negative
instances will push the positive ones higher in the
ranking, while false positives will slightly affect
the overall score (Zou et al., 2016). Therefore
we balance the test sets using an under-sampling
scheme.2

In Table 2 we can see that, remarkably, the Ba-
roni dataset surpasses all datasets on their own
self-test sets, except for the Bless test. Interest-
ingly, all the training sets performed better on the
Baroni test set than on their self-test set (except,
for the Bless dataset). This indicates both the ro-
bust generalization and superior performance of
the Baroni dataset.3

We note that no training sample has overlap
with any self or cross test set, except for the Weeds
dataset. On the one hand, the Weeds training sam-

1We sample 200 positive instances since that is the mini-
mum number of positives found in any of the datasets.

2We also try an oversampling scheme, but the results are
comparable.

3We find that the combination of SVM classifier with RBF
kernel and diff vector operator gives the best performance
on validation set for all the 20 samples drawn from Baroni
training set.

ples slightly overlap with the cross-test sets. On
the other hand, the Weeds test set overlaps in at
least 10% of the pairs with the cross-training sam-
ples. This may influence the cross-test scores (Vy-
lomova et al., 2016).

4.2 Detecting Hypernyms: Accuracy

We optimize a threshold, on self-validation sets,
for each model in Section 4.1. In Table 3 we can
see again the superior performance of the Baroni
dataset. While the mean of all the self-test scores
(main diagonal) is 0.606 points, Baroni achieves a
mean of 0.655 points.

Interestingly, in average all the datasets perform
close to a random behavior, with the exception
of the Baroni and Weeds datasets.4 Furthemore,
this poor behavior is observed on self-test sets for
3 datasets (Kotlerman, Levy, and Turney). This
contrasts to the AUC scores obtained before. One
possible cause may be a sensitivity problem in the
threshold optimization.

5 Dataset Analysis

We provide an empirical rationale behind the good
performance of the Baroni dataset: we believe it
aligns to two dimensions specific of hypernymy –
generality and similarity– i.e. the instances in the
dataset form what we believe to be patterns denot-
ing hypernymy. We explain below these patterns.

We use WordNet (Fellbaum, 1998) to com-
pute both generality and similarity levels. We de-
fine generality levels as the absolute difference,
in number of edges, of two words to the root of
the taxonomy: g = |distance(word1, root) −
distance(word2, root)|. We define similarity lev-
els as the similarity score between two words; we
use the Wu-Palmer function.5

We explain now the patterns mentioned above.
In the generality level g = 0, where co-hyponyms
exist, we expect only negative pairs to populate the
dataset. In the rest of the levels, we would expect
a distribution where the number of instance pairs
is inversely proportional to the generality level be-
cause the branching factor at the bottom levels is
greater by a factor α in comparison to the top lev-
els; this means that we are more likely to sam-
ple pairs of words connected by fewer number of

4However, recall that as noted in Sec. 4.1, Weeds scores
on cross-test results may be influenced by lexical memoriza-
tion issues.

5We re-scale from [0.0,1.0] to [-1.0,1.0] for visualization
purposes.
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Train
Test

Baroni Bless Kotlerman Levy Turney Weeds Mean

Baroni 0.916 0.711 0.616 0.702 0.654 0.686 0.714
Bless 0.762 0.850 0.555 0.632 0.600 0.615 0.669

Kotlerman 0.653 0.612 0.543 0.566 0.581 0.544 0.583
Levy 0.716 0.611 0.592 0.698 0.569 0.533 0.619

Turney 0.686 0.646 0.547 0.595 0.646 0.520 0.606
Weeds 0.817 0.645 0.574 0.687 0.637 0.675 0.672

Table 2: Cross-test performance: Mean AUC scores over 20 samples. Self-test score in bold.

Train
Test

Baroni Bless Kotlerman Levy Turney Weeds Mean

Baroni 0.812 0.638 0.587 0.653 0.608 0.636 0.655
Bless 0.578 0.642 0.505 0.526 0.524 0.508 0.547

Kotlerman 0.563 0.546 0.520 0.524 0.528 0.528 0.534
Levy 0.521 0.510 0.507 0.522 0.509 0.496 0.510

Turney 0.546 0.534 0.518 0.540 0.540 0.479 0.526
Weeds 0.736 0.579 0.553 0.626 0.599 0.600 0.615

Table 3: Cross-test performance: Mean accuracy scores over 20 samples. Self-test score in bold.

edges than by higher number of edges.
On the other hand, for the similarity distribu-

tion, as a function of the number of edges, at
large values we expect a dominance of positive in-
stances because the number of edges between the
words in a true hypernym pair is generally fewer
than between a non-hypernym pair. In addition, as
we argued for the generality distribution, we are
more likely to sample shorter hypernym pairs than
longer pairs.

5.1 Exploring the Baroni dataset

In Fig. 1 we see that at level g = 0 only nega-
tive pairs are found in the Baroni dataset. We also
observe that the distribution matches the expected
distribution along generality levels. In Fig. 2 we
see that from the level s = 0.2, towards the high-
est levels, there is a clear dominance of positive
pairs; though we also find negative pairs in these
levels. These negative pairs may be positive pairs
reversed, e.g. (wanimal, wcat, negative), or pairs
with related words, e.g. (wcat, winvertebrate, neg-
ative). We also see that from the level s = 0.1
towards the lowest levels, the negative pairs dom-
inate.

We compare the Baroni distribution with the
Turney distribution. In Fig. 3 we observe that the
shape of the generality distribution roughly fits our
expected distribution; however, we see that pos-
itive pairs populate level g = 0. This seems to
show that around 10% of the positive pairs in the

Turney dataset are spurious pairs.
In Fig. 4 we observe that the similarity distri-

bution from the Turney dataset does not fit the ex-
pected distribution. Even though at high levels the
dominance is mainly of positive pairs, at low lev-
els we also see a strong presence of positive pairs
along with negative pairs. This may imply that a
high number of positive pairs are noisy or incon-
sistent, which may explain the low performance of
the Turney dataset.

Figure 1: Distribution of instance pairs on the Ba-
roni dataset along generality levels.

5.2 Mimicking the Baroni Distribution

We believe that the patterns found in the Baroni
training set may be part of the cause of its good
performance. To corroborate our hypothesis, we
draw a new training set from the union of all the
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Train
Test

Baroni Bless Kotlerman Levy Turney Weeds Mean

New train set 0.794(0.05) 0.664(0.02) 0.580(0.03) 0.644(0.02) 0.596(0.02) 0.629(0.03) 0.651
Baseline 0.775(0.06) 0.655(0.02) 0.566(0.03) 0.641(0.02) 0.596(0.02) 0.598(0.03) 0.638

Table 4: New dataset vs. Baseline: Mean accuracy scores and standard deviation over 20 samples.

Figure 2: Distribution of instance pairs on the Ba-
roni dataset along similarity levels.

Figure 3: Distribution of instance pairs on the Tur-
ney dataset along generality levels.

training sets such that we mimic the Baroni distri-
butions in Fig. 1 and Fig. 2. More specifically,
we allow a pair to populate our new training set
if it fulfils constraints regarding the number of in-
stances along generality and similarity levels.

One example constraint that needs to be fulfilled
for positive pairs is: IF generality level g > 0
AND positive vs. negative pairs ratio is fulfilled
according to ratio rg AND similarity level s >=
0.1 AND positive vs. negative pairs ratio is ful-
filled according to ratio rs THEN accept pair.

We obtain 20 balanced and normalized samples
populated with 400 instances in each of them. We
compare against a dataset baseline where we allow
any pair, chosen uniformly at random, to populate

Figure 4: Distribution of instance pairs on the Tur-
ney dataset along similarity levels.

the baseline. For building the dataset baseline, we
use the same random seeds as those used for build-
ing the samples that mimic the Baroni distribution.
In Table 4 we see how the new training set robustly
outperforms the baseline. These results support
our hypothesis for why the Baroni dataset is able
to outperform all the datasets.

6 Conclusions

We performed the first dataset-centric analysis for
investigating how well we can predict hypernym
pairs from word embeddings. We showed in cross-
test evaluations how –in contrast to what results
from previous work suggest– the Baroni dataset is
the only one that consistently enables us to predict
hypernym pairs. We empirically showed that the
superior performance of the Baroni dataset may
be in part due to its alignment to two dimensions
relevant to of hypernymy: generality and simi-
larity. We empirically corroborated this hypoth-
esis by building a new training set that mimics the
Baroni distribution and outperforms on average a
dataset baseline.
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