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Abstract

The task of implicit discourse relation
classification has received increased atten-
tion in recent years, including two CoNNL
shared tasks on the topic. Existing ma-
chine learning models for the task train
on sections 2-21 of the PDTB and test on
section 23, which includes a total of 761
implicit discourse relations. In this paper,
we’d like to make a methodological point,
arguing that the standard test set is too
small to draw conclusions about whether
the inclusion of certain features constitute
a genuine improvement, or whether one
got lucky with some properties of the test
set, and argue for the adoption of cross val-
idation for the discourse relation classifi-
cation task by the community.

1 Introduction

Discourse-level relation analysis is relevant to
a variety of NLP tasks such as summarization
(Yoshida et al., 2014), question answering (Jansen
et al., 2014) and machine translation (Meyer et al.,
2015). Recent years have seen more and more
works on this topic, including two CoNNL shared
tasks (Xue et al., 2015; Xue et al., 2016). The
community most often uses the Penn Discourse
Treebank (PDTB) (Prasad et al., 2008) as a re-
source, and has adopted the usual split into train-
ing and test data as used for other tasks such as
parsing. Because discourse relation annotation is
at a higher level than syntactic annotation, this
however means that the test set is rather small,
and with the amount of alternative features and,
more recently, neural network architectures being
applied to the problem, we run a serious risk as a
community of believing in features that are suc-
cessful in getting some improvement on the spe-

cific test set but don’t generalize at all.
In discourse relation parsing, we usually distin-

guish between implicit and explicit discourse re-
lations. Explicit relations are marked with a dis-
course connective such as “because”, “but”, “if”,
while implicit discourse relations are not marked
with any discourse connective. The connective
serves as a strong cue for the discourse relation,
as the example below demonstrates:

“ Typically, money-fund yields beat compara-
ble short-term investments because portfolio man-
agers can vary maturities and go after the highest
rates” (Explicit, Contingency.Cause)

“ They desperately needed somebody who
showed they cared for them, who loved them.
(But) The last thing they needed was an-
other drag-down blow.” (Implicit, Compari-
son.Contrast)

Previous studies show that the presence of con-
nectives can greatly help with classification of the
relation and can be disambiguated with 0.93 accu-
racy (4-ways) solely on the discourse relation con-
nectives (Pitler et al., 2008). In implicit relations,
no such strong cue is available and the discourse
relation instead needs to be inferred based on the
two textual arguments.

In recent studies, various classes of features
are explored to capture lexical and semantic reg-
ularities for identifying the sense of implicit re-
lations, including linguistically informed features
like polarity tags, Levin verb classes, length of
verb phrases, language model based features, con-
textual features, constituent parse features and de-
pendency parse features (Lin et al., 2009; Pitler et
al., 2009; Zhou et al., 2010; Zhang et al., 2015;
Chen et al., 2016). For some of second-level rela-
tions (a level of granularity that should be much
more meaningful to downstream tasks than the
four-way distinction), there are only a dozen in-
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stances, so that it’s important to make maximal
use of both the data set for training and testing.
The test set that is currently most often used for 11
way classification is section 23 (Lin et al., 2009;
Ji and Eisenstein, 2015; Rutherford et al., 2017),
which contains only about 761 implicit relations.
This small size implies that a gain of 1 percentage
point in accuracy corresponds to just classifying
an additional 7-8 instances correctly.

This paper therefore aims to demonstrate the
degree to which conclusions about the effective-
ness of including certain features would depend on
whether one evaluates on the standard test section
only, or performs cross validation on the whole
dataset for second-level discourse relation classi-
fication. The model that we use is a neural net-
work that takes the words occurring in the rela-
tion arguments as input, as well as traditional fea-
tures mentioned above, to make comparisons with
most-used section splits. To our knowledge, this is
the first paper that systematically evaluates the ef-
fect of the train/test split for the implicit discourse
relation classification task on PDTB. We report the
classification performances on random and con-
ventional split sections.

As a model, we use a neural network that also
includes some of the surface features that have
been shown to be successful in previous work. Our
model is competitive with the state of the art. The
experiments here are exemplary for what kind of
conclusions we would draw from the cross valida-
tion vs. from the usual train-test split. We find that
results are quite different in the different splits of
dataset, which we think is a strong indication that
cross validation is important to adopt as a stan-
dard practice for the discourse relation classifica-
tion community. We view cross validation as an
important method in case other unseen datasets are
not available (note that at least for English, new
datasets have recently been made available as part
of the shared task (Xue et al., (2015; 2016); as well
as Rehbein et al., (2016)).

2 Background on Discourse Relation
Parsing

Soricut and Marcu (2003) firstly addressed the
task of parsing discourse structure within the same
sentence. Many of the useful features proposed
by them, syntax in particular, revealed that both
arguments of the connectives are found in the
same sentence. The release of PDTB, the largest

available annotated corpora of discourse relations,
opened the door to machine learning based dis-
course relation classification.

Feature-based methods exploit discriminative
features for implicit relation classification. Pitler
et al. (2009) demonstrated that features developed
to capture word polarity, verb classes and orienta-
tion, as well as some lexical features are strong
indicator of the type of discourse relation. Lin
et al. (2009) further introduced contextual, con-
stituent and dependency parse features. They
achieved an accuracy of 40.2% for 11-way classi-
fication, a 14.1% absolute improvement over the
baseline. With these features, Park and Cardie
(2012) provided a systematic study of previously
proposed features and identified feature combina-
tions. Additional features proposed later include
relation specific word similarity (Biran and McK-
eown, 2013), Brown clusters and Coreference Pat-
terns (Rutherford and Xue, 2014).

Data selection and extension is another main
aspect for discourse relation classification, given
that the number of training instances is limited and
only from a single domain. Wang et al. (2012) pro-
posed a novel single centroid clustering algorithm
to differentiate typical and atypical examples for
each discourse relation. Mihil et al. (2014) and
Hernault et al. (2010) proposed semi-supervised
learning methods to recognise relations. Ruther-
ford and Xue (2015) collected additional training
data from unannotated data, selecting instances
based on two criteria (the degree to which a con-
nective can generally be omitted and the degree
to which a connective typically changes the inter-
pretation of the relation) improved the inference
of implicit discourse relation. Hidey and McK-
eown (2016), Quirk and Poon (2016) extended
training data with weakly labeled data which are
cheaply obtained by distant-supervised learning.

Recently the distributed word representations
(Bengio et al., 2003; Mikolov et al., 2013) have
shown an advantage in dealing with data sparsity
problem (Braud and Denis, 2015). Many deep
learning methods have been proved to be helpful
in discourse relation parsing and achieved some
significant progresses. Zhang et al. (2015) pro-
posed a shallow convolutional neural network for
implicit discourse recognition to alleviate the over-
fitting problem and help preserve the recognition
and generalization ability with the model. Ji et
al. (2015) computed distributed meaning represen-
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tations for each discourse argument with recur-
sive neural network. Ji et al. (2016) introduced
a latent variable to recurrent neural network and
outperformed in two tasks. Chen et al. (2016)
adopted a gated relevance network to capture the
semantic interaction between word pairs. Zhang
et al. (2016) proposed a neural discourse relation
recognizer with a semantic memory and attention
weights for implicit discourse relation recognition.

The model we use in this paper is most closely
related to the neural network model proposed in
Rutherford et al. (2017). The model also has
access to the traditional features, which are con-
catenated to the neural representations of the argu-
ments in the output layer. In order to simulate what
conclusions we would be drawing from comparing
the contributions of the handcrafted surface fea-
tures, we calculate accuracy for each of the hand-
crafted features.

3 Corpora

The Penn Discourse Treebank (PDTB) We use
the Penn Discourse Treebank (Prasad et al., 2008),
the largest available manually annotated corpora
of discourse on top of one million word tokens
from the Wall Street Journal (WSJ). The PDTB
provides annotations for explicit and implicit dis-
course relations. By definition, an explicit relation
contains an explicit discourse connective while the
implicit one does not. The PDTB provides a three
level hierarchy of relation tags for its annotation.
Previous work in this task has been done over two
schemes of evaluation: first-level 4-ways classi-
fication (Pitler et al., 2009; Rutherford and Xue,
2014; Chen et al., 2016), second-level 11-way
classification (Lin et al., 2009; Ji and Eisenstein,
2015). The distribution of second-level relations
in PDTB is illustrated in Table 1.

We follow the preprocessing method in (Lin et
al., 2009; Rutherford et al., 2017). If the instance
is annotated with two relations, we adopt the first
one shown up, and remove those relations with
too few instances. We treat section 2-21 as train-
ing set, section 22 as development set and section
23 as test set for our results reported as “most-
used split”. In order to investigate whether the re-
sults for benefit of including a certain feature to
the model are stable, we conduct 10-fold cross-
validation on the whole corpus including sections
0-24. Note that we here included also the valida-
tion section for our experiments, to have maximal

data for our demonstration of variability between
folds. For best practice when testing new mod-
els, we instead recommend to keep the validation
set completely separate and do cross-validation for
the remaining data. Also note that you might want
to choose repeated cross-validation (which simply
repeats the cross-validation step several times with
the data divided up into different folds) as an alter-
native to simple cross-validation performed here.
For a more in-detail discussion of cross validation
methods, see (Kim, 2009; Bengio and Grandvalet,
2005).

In Table 1, we can see that the different re-
lations’ proportions on the training and test set
are quite different in the most-used split. For in-
stance, temporal relations are under-represented
which may lead to a misestimation of the useful-
ness of features that are relevant for classifying
temporal relations. For our cross validation ex-
periments, we evenly divided all the instances in
section 0-24 into 10 balanced folds1. The propor-
tions of each class in the training and testing set are
identical. With the same distribution of each class,
we here avoid having an unbalanced number of in-
stances per class among training and testing set.

4 Model

The task is to predict the discourse relation given
the two arguments of an implicit instance. As a la-
bel set, we use 11-way distinction as proposed in
Lin et al., (2009); Ji and Eisenstein (2015). Word
Embeddings are trained with the Skip-gram archi-
tecture in Word2Vec (Mikolov et al., 2013), which
is able to capture semantic and syntactic patterns
with an unsupervised method, on the training sec-
tions of WSJ data.

Our model is illustrated in Figure 1. Each
word is represented as a vector, which is found
through a look-up word embedding. Then we get
the representations of argument 1 and argument 2
separately after transforming semantic word vec-
tors into distributed continuous-value features by
LSTM recurrent neural network. With concate-
nating feature vector and the instance’s representa-
tion, we classify it with a softmax layer and output
its label.
Implementation All the models are implemented

1While we here chose balanced distributions, other de-
signs of splitting up the data into folds such that different
folds have organically different distributions of classes can
alternatively be argued for, on the basis of more accurately
representing new in-domain data distributions.
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Figure 1: Long Short-Term Memory Model with surface features.

Relation
Most-used Split Cross Validation *

Train Test Train Test
Temporal.Asynchronous 542 (4.25%) 12 (1.58%) 583 65
Temporal.Synchrony 150 (1.18%) 5 (0.66%) 155 18
Contingency.Cause 3259 (25.53%) 193 (25.36%) 3581 398
Contingency.Pragmatic cause 55 (0.43%) 5 (0.66%) 61 7
Comparison.Contrast 1600 (12.54%) 126 (16.56%) 1843 205
Comparison.Concession 189 (1.48%) 5 (0.66%) 194 22
Expansion.Conjunction 2869 (22.48%) 116 (15.24%) 3075 342
Expansion.Instantiation 1130 (8.85%) 69 (9.07%) 1254 140
Expansion.Restatement 2481 (19.44%) 190 (24.97%) 2792 311
Expansion.Alternative 151 (1.18%) 15 (1.97%) 160 18
Expansion.List 337 (2.64%) 25 (3.29%) 347 39
Total 12763 761 14045 1565
* Numbers are averaged over different folds

Table 1: The distribution of training and test sets in Most-used Split and Cross Validation
on level 2 relations in PDTB. Five types that have only have very few training instances are
removed.

Models Most-used Split Cross Validation
Most common class 25.36 25.59
Lin et al. (2009) 40.20 -1

Ji & Eisenstein (2015) (surface features only) 40.66 -
Rutherford et al. (2017) 39.56 -

N
eu

ra
lN

et
w

or
k No additional surface features 37.68 34.44 (±1.37)

Inquirer Tags 40.46 33.58 (±1.36) (2+,8-)
BrownCluster 38.77 33.83 (±1.59) (3+,7-)
Levin Class 40.92 34.17 (±1.48) (4+,6-)
Verbs 40.21 34.26 (±1.22) (5+,5-)
Modality 40.82 37.65 (±1.83) (6+,4-)
All Features above 38.56 35.90 (±1.32) (2+,8-)

1 “-” means no result currently.

Table 2: Performance comparison of different features in Most-used Split and Cross Validation on
second-level relations. Numbers for cross validation indicate the mean accuracy across folds, the
standard deviation, and the number of folds that show better vs. worse performance when including
the feature.
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in Keras2, which runs on top of Theano. The archi-
tecture of the model we use is illustrated in Figure
1. Regarding the initialization, regularization and
learning algorithm, we follow all the settings in
(Rutherford et al., 2017). We adopt cross-entropy
as our cost function, adagrad as the optimization
algorithm, initialized all the weights in the model
with uniform random and set dropout layers after
the embedding and output layer with a drop rate of
0.2 and 0.5 respectively.

5 Features

For the sake of our cross-validation argument,
we choose five kinds of most popular features in
discourse relation classification, namely Inquirer
Tags (semantic classification tags), Brown Clus-
ters, Verb features, Levin classes and Modality.

6 Results

We tested five frequently-used surface features
with our model. Results are shown in Table 2. We
can see that our implemented model is comparable
with state of the art models. Our main point here is
however not to argue that we outperform any par-
ticular model, but rather we’d like to discuss what
conclusions we’d be drawing from adding surface
features to our NN model if using the standard test
set vs. doing cross validation.

For each cross validation with different features,
the separation into train and test sets are identical.
We can see that the performances on Most-used
Split section is generally 3-7% better than the re-
sults for the rest of the corpus. While we would
also conclude from our model when evaluated on
the standard test set that each of these features
contribute some useful information, we can also
see that we would come to very different conclu-
sions if actually running the cross-validation ex-
periment.

Cross Validation is primarily a way of measur-
ing the predictive performance of a model. With
such a small test set, improvements on the classifi-
cation could be the results of many factors. For
instance, take a look at the effectiveness of in-
cluding Inquirer Tags: these lead to an increase
in performance by 2.8% in Most-used Split, but
actually only helped on two out of 10-fold in the
cross-validation set, overall leading to a small de-
crease in performance of the classifier. Similarly,

2https://keras.io/

the verb features seem to indicate a substantial im-
provement in relation classification accuracy on
the standard test set, but there is no effect at all
across the folds.

Other works, such as Berg-Kirkpatrick et
al. (2012) strongly recommend significance test-
ing to validate metric gains in NLP tasks, even
though the relationship between metric gain and
statistical significance is complex. We observed
that recent papers in discourse relation parsing
do not always perform significance testing, and if
they do report significance, then oftentimes they
do not report the test that was used. We would
here like to argue in favour of significance testing
with cross validation, as opposed to boot strapping
methods that only use the standard test set. Due to
the larger amount of data, calculating significance
based on the cross validation will give us substan-
tially better estimates about the robustness of our
results, because it can quantify more exactly the
amount of variation with respect to transferring to
a new (in-domain) dataset.

7 Conclusion

We have argued that the standard test section of
the PDTB is too small to draw conclusions about
whether a feature is generally useful or not, espe-
cially when using a larger label set, as is the case
in recent work using second level labels. While
these ideas are far from new and apply also to
other NLP tasks with small evaluation sets, we
think it is important to discuss this issue, as recent
work in the field of discourse relation analysis has
mostly ignored the issue of small test set sizes in
the PDTB. Our experiments support our claim by
showing that features that may look like they im-
prove performance on the 11-way classification on
the standard test set, did not always show a consis-
tent improvement when the training / testing was
split up differently. This means that we run a large
risk of drawing incorrect conclusions about which
features are helpful if we only stick out our small
standard test set for evaluation.
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