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Abstract

We address the problem of automatically
attributing quotations to speakers, which
has great relevance in text mining and me-
dia monitoring applications. While cur-
rent systems report high accuracies for
this task, they either work at mention-
level (getting credit for detecting uninfor-
mative mentions such as pronouns), or as-
sume the coreferent mentions have been
detected beforehand; the inaccuracies in
this preprocessing step may lead to error
propagation. In this paper, we introduce a
joint model for entity-level quotation attri-
bution and coreference resolution, exploit-
ing correlations between the two tasks. We
design an evaluation metric for attribu-
tion that captures all speakers’ mentions.
We present results showing that both tasks
benefit from being treated jointly.

1 Introduction

Quotations are a crucial part of news stories, giv-
ing the perspectives of the participants in the nar-
rated event, and making the news sound objective.
The ability of extracting and organizing these quo-
tations is highly relevant for text mining applica-
tions, as it may aid journalists in fact-checking,
help users browse news threads, and reduce human
intervention in media monitoring. This involves
assigning the correct speaker to each quote—a
problem called quotation attribution (§2).

There is significant literature devoted to this
task, both for narrative genres (Mamede and
Chaleira, 2004; Elson and McKeown, 2010) and
newswire domains (Pouliquen et al., 2007; Sar-
mento et al., 2009; Schneider et al., 2010). While
the earliest works focused on devising lexical and
syntactic rules and hand-crafting grammars, there
has been a recent shift toward machine learning
approaches (Fernandes et al., 2011; O’Keefe et al.,
2012; Pareti et al., 2013), with latest works re-
porting high accuracies for speaker identification

in newswire (in the range 80–95% for direct and
mixed quotes, according to O’Keefe et al. (2012)).
Despite these encouraging results, quotation min-
ing systems are not yet fully satisfactory, even
when only direct quotes are considered. Part of
the problem, as we next describe, has to do with
inaccuracies in coreference resolution (§3).

The “easiest” instances of quotation attribution
problems arise when the speaker and the quote are
semantically connected, e.g., through a reported
speech verb like said. However, in newswire text,
the subject of this verb is commonly a pronoun or
another uninformative anaphoric mention. While
the speaker thus determined may well be correct—
being in most cases consistent with human annota-
tion choices (Pareti, 2012)—from a practical per-
spective, it will be of little use without a corefer-
ence system that correctly resolves the anaphora.
Since the current state of the art in coreference res-
olution is far from perfect, errors at this stage tend
to propagate to the quote attribution system.

Consider the following examples for illustration
(taken from the WSJ-1057 and WSJ-0089 docu-
ments in the Penn Treebank), where we have an-
notated with subscripts some of the mentions:

(a) Rivals carp at “the principle of [Pilson]M1 ,”
as [NBC’s Arthur Watson]M2 once put it –
“[he]M3’s always expounding that rights are
too high, then [he]M4’s going crazy.” But [the
49-year-old Mr. Pilson]M5 is hardly a man to
ignore the numbers.

(b) [English novelist Dorothy L. Sayers]M1 de-
scribed [ringing]M2 as a “passion that finds its
satisfaction in [mathematical completeness]M3

and [mechanical perfection]M4 .” [Ringers]M5 ,
[she]M6 added, are “filled with the solemn intox-
ication that comes of intricate ritual faultlessly
performed.”

In example (a), the pronoun coreference system
used by O’Keefe et al. (2012) erroneously clus-
ters together mentions M2, M3 and M4 (instead
of the correct clustering {M1,M3,M4}). Since it
is unlikely that the speaker is co-referent to a third-
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person pronoun he inside the quote, a pipeline sys-
tem would likely attribute (incorrectly) this quote
to Pilson. In example (b), there are two quotes
with the same speaker entity (as indicated by the
cue she added). This gives evidence that M1 and
M6 should be coreferent. A pipeline approach
would not be able to exploit these correlations.

We argue that this type of mistakes, among
others, can be prevented by a system that per-
forms quote attribution and coreference resolution
jointly (§4). Our joint model is inspired by re-
cent work in coreference resolution that indepen-
dently ranks the possible mention’s antecedents,
forming a latent coreference tree structure (Denis
and Baldridge, 2008; Fernandes et al., 2012; Dur-
rett et al., 2013; Durrett and Klein, 2013). We con-
sider a generalization of these structures which we
call a quotation-coreference tree. To effectively
couple the two tasks, we need to go beyond simple
arc-factored models and consider paths in the tree.
We formulate the resulting problem as a logic pro-
gram, which we tackle using a dual decomposition
strategy (§5). We provide an empirical compari-
son between our method and baselines for each of
the tasks and a pipeline system, defining suitable
metrics for entity-level quotation attribution (§6).

2 Quotation Attribution

The task of quotation attribution can be formally
defined as follows. Given a document containing
a sequence of quotations, 〈q1, . . . , qL〉, and a set
of candidate speakers, {s1, . . . , sM}, the goal is to
a assign a speaker to every quote.

Previous work has handled direct and mixed
quotations (Sarmento et al., 2009; O’Keefe et al.,
2012), easily extractable with regular expressions
for detecting quotation marks, as well as indirect
quotations (Pareti et al., 2013), which are more in-
volved and require syntactic or semantic patterns.
In this work, we resort to direct and mixed quo-
tations. Pareti (2012) defines quotation attribu-
tions in terms of their content span (the quotation
text itself), their cue (a lexical anchor of the attri-
bution relation, such as a reported speech verb),
and the source span (the author of the quote).
The same reference introduced the PARC dataset,
which we use in our experiments (§6) and which
is based on the annotation of a database of attribu-
tion relations from the Penn Discourse Treebank
(Prasad et al., 2008). Several machine learning
algorithms have been applied to this task, either

framing the problem as classification (an indepen-
dent decision for each quote), or sequence label-
ing (using greedy methods or linear-chain condi-
tional random fields); see O’Keefe et al. (2012)
for a comparison among these different methods.

In this paper, we distinguish between mention-
level quotation attribution, in which the candi-
date speakers are individual mentions, and entity-
level quotation attribution, in which they are en-
tity clusters comprised of one or more mentions.
With this distinction, we attempt to clarify how
prior work has addressed this task, and design suit-
able baselines and evaluation metrics. For exam-
ple, O’Keefe et al. (2012) applies a coreference
resolver before quotation attribution, whereas de
La Clergerie et al. (2011) does it afterwards, as a
post-processing stage. An important issue when
evaluating quotation attribution systems is to pre-
vent them from getting credit for detecting unin-
formative speakers such as pronouns; we will get
back to this topic in §6.2.

3 Coreference Resolution

In coreference resolution, we are given a set of
mentions M := {m1, . . . ,mK}, and the goal
is to cluster them into discourse entities, E :=
{e1, . . . , eJ}, where each ej ⊆ M and ej 6= ∅.
We follow Haghighi and Klein (2007) and distin-
guish between proper, nominal, and pronominal
mentions. Each requires different types of infor-
mation to be resolved. Thus, the task involves de-
termining anaphoricity, resolving pronouns, and
identifying semantic compatibility among men-
tions. To resolve these references, one typically
exploits contextual and grammatical clues, as well
as semantic information and world knowledge,
to understand whether mentions refer to people,
places, organizations, and so on. The importance
of coreference resolution has led to it being the
subject of recent CoNLL shared tasks (Pradhan et
al., 2011; Pradhan et al., 2012).

There has been a variety of approaches for
this problem. Early work used local discrimina-
tive classifiers, making independent decisions for
each mention or pair of mentions (Soon et al.,
2001; Ng and Cardie, 2002). Lee et al. (2011)
proposed a competitive non-learned sieve-based
method, which constructs clusters by aglomerat-
ing mentions in a greedy manner. Entity-centric
models define scores for the entire entity clusters
(Culotta et al., 2007; Haghighi and Klein, 2010;
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Rahman and Ng, 2011) and seek the set of enti-
ties that optimize the sum of scores; this can also
be promoted in a decentralized manner (Durrett et
al., 2013). Pairwise models (Bengtson and Roth,
2008; Finkel et al., 2008; Versley et al., 2008), on
the other hand, define scores for each pair of men-
tions to be coreferent, and define the clusters as
the transitive closure of these pairwise relations.
A disadvantage of these two methods is that they
lead to intractable decoding problems, so approx-
imate methods must be used. For comprehensive
overviews, see Stoyanov et al. (2009), Ng (2010),
Pradhan et al. (2011) and Pradhan et al. (2012).

Our joint approach (to be fully described in
§4) draws inspiration from recent work that shifts
from entity clusters to coreference trees (Fernan-
des et al., 2012; Durrett and Klein, 2013). These
models define scores for each mention to link to
its antecedent or to an artifical root symbol $ (in
which case it is not anaphoric). The computation
of the best tree can be done exactly with spanning
tree algorithms, or by independently choosing the
best antecedent (or the root) for each mention, if
only left-to-right arcs are allowed. The same idea
underlies the antecedent ranking approach of De-
nis and Baldridge (2008). Once the coreference
tree is computed, the set of entity clusters E is ob-
tained by associating each entity set to a branch of
the tree coming out from the root. This is illus-
trated in Figure 1 (left).

4 Joint Quotations and Coreferences

In this work, we propose that quotation attribu-
tion and coreference resolution are solved jointly
by treating both mentions and quotations as nodes
in a generalized structure called a quotation-
coreference tree (Figure 1, right). The joint sys-
tem’s decoding process consists in creating such
a tree, from which a clustering of the nodes can
be immediatelly obtained. The clustering is inter-
preted as follows:

• All mention nodes in the cluster are coreferent,
thus they describe one single entity (just like in
a standard coreference tree).

• Quotation nodes that appear together with those
mentions in a cluster will be assigned that entity
as the speaker.

For example, in Figure 1 (right), the en-
tity Dorothy L. Sayers (formed by mentions

{M1,M6}) is assigned as the speaker of quota-
tions Q1 and Q2. We forbid arcs between quotes
and from a quote to a mention, effectively con-
straining the quotes to be leaves in the tree, with
mentions as parents.1 We force a tree with only
left-to-right arcs, by choosing a total ordering of
the nodes that places all the quotations in the right-
most positions (which implies that any arc con-
necting a mention to a quotation will point to the
right). The quotation-coreference tree is obtained
as the best spanning tree that maximizes a score
function, to be described next.

4.1 Basic Model

Our basic model is a feature-based linear model
which assigns a score to each candidate arc linking
two mentions (mention-mention arcs), or linking a
mention to a quote (mention-quotation arcs). Our
basic system is called QUOTEBEFORECOREF for
reasons we will detail in section 4.2.

4.1.1 Coreference features
For the mention-mention arcs, we use the same
coreference features as the SURFACE model of the
Berkeley Coreference Resolution System (Durrett
and Klein, 2013), plus features for gender and
number obtained through the dataset of Bergsma
and Lin (2006). This is a very simple lexical-
driven model which achieves state-of-the-art re-
sults. The features are shown in Table 1.

4.1.2 Quotation features
For the quote attribution features, we use features
inspired by O’Keefe et al. (2012), shown in Ta-
ble 2. The same set of features works for speakers
that are individual mentions (in the model just de-
scribed), and for speakers that are clusters of men-
tions (used in §6 for the baseline QUOTEAFTER-
COREF). These features include various distances
between the mention and the quote, the indication
of the speaker being inside the quote span, and var-
ious contextual features.

4.2 Final Model

While the basic model just described puts quo-
tations and mentions together, it is not more ex-
pressive than having separate models for the two
tasks. In fact, if we just have scores for individual
arcs, the two problems are decoupled: the optimal

1This is implemented by defining −∞ scores for all the
outgoing arcs in a quotation node, as well as incoming arcs
originating from the root.

41



Figure 1: Left: A typical coreference tree for the text snippet in §1, example (b), with mentions M1 and
M6 clustered together and M2 and M3 left as singletons. Right: A quotation-coreference tree for the
same example. Mention nodes are depicted as green circles, and quotation nodes in shaded blue. The
dashed rectangle represents a branch of the tree, containing the entity cluster associated with the speaker
Dorothy L. Sayers, as well as the quotes she authored.

Features on the child mention
[ANAPHORIC (T/F)] + [CHILD HEAD WORD]
[ANAPHORIC (T/F)] + [CHILD FIRST WORD]
[ANAPHORIC (T/F)] + [CHILD LAST WORD]
[ANAPHORIC (T/F)] + [CHILD PRECEDING WORD]
[ANAPHORIC (T/F)] + [CHILD FOLLOWING WORD]
[ANAPHORIC (T/F)] + [CHILD LENGTH]

Features on the parent mention
[PARENT HEAD WORD]
[PARENT FIRST WORD]
[PARENT LAST WORD]
[PARENT PRECEDING WORD]
[PARENT FOLLOWING WORD]
[PARENT LENGTH]
[PARENT GENDER]
[PARENT NUMBER]

Features on the pair
[EXACT STRING MATCH (T/F)]
[HEAD MATCH (T/F)]
[SENTENCE DISTANCE, CAPPED AT 10]
[MENTION DISTANCE, CAPPED AT 10]

Table 1: Coreference features, associated to each
candidate mention-mention arc in the tree. As in
Durrett and Klein (2013), we also include con-
junctions of each feature with the child and parent
mention types (proper, nominal, or, if pronominal,
the pronoun word).

quotation-coreference tree can be obtained by first
assigning the highest scored mention to each quo-
tation, and then building a standard coreference
tree involving only the mention nodes. This cor-
responds to the QUOTEBEFORECOREF baseline,
to be used in §6.

To go beyond separate models, we introduce
a final JOINT model, which includes additional
scores that depend not just on arcs, but also on
paths in the tree. Concretely, we select certain

Features on the quote-speaker pair
[WORD DISTANCE]
[SENTENCE DISTANCE]
[# IN-BETWEEN QUOTES]
[# IN-BETWEEN SPEAKERS]
[SPEAKER IN QUOTE, 1ST PERS. SG. PRONOUN (T/F)]
[SPEAKER IN QUOTE, 1ST PERS. PL. PRONOUN (T/F)]
[SPEAKER IN QUOTE, OTHER (T/F)]

Features on the speaker
[PREVIOUS WORD IS QUOTE (T/F)]
[PREVIOUS WORD IS SAME QUOTE (T/F)]
[PREVIOUS WORD IS ANOTHER QUOTE (T/F)]
[PREVIOUS WORD IS SPEAKER (T/F)]
[PREVIOUS WORD IS PUNCTUATION (T/F)]
[PREVIOUS WORD IS REPORTED SPEECH VERB (T/F)]
[PREVIOUS WORD IS VERB (T/F)]
[NEXT WORD IS QUOTE (T/F)]
[NEXT WORD IS SAME QUOTE (T/F)]
[NEXT WORD IS ANOTHER QUOTE (T/F)]
[NEXT WORD IS SPEAKER (T/F)]
[NEXT WORD IS PUNCTUATION (T/F)]
[NEXT WORD IS REPORTED SPEACH VERB (T/F)]
[NEXT WORD IS VERB (T/F)]

Table 2: Quotation attribution features, associ-
ated to each quote-speaker candidate. These
features are used in the QUOTEONLY, QUOTE-
BEFORECOREF, and JOINT systems (where the
speaker is a mention) and in the QUOTEAFTER-
COREF system (where the speaker is an entity).

pairs of nodes and introduce scores for the event
that both nodes are in the same branch of the tree.
Rather than doing this for all pairs—which es-
sentially would revert to the computationally de-
manding pairwise coreference models discussed
in §3—we focus on a small set of pairs that are
mostly related with the interaction between the
two tasks we address jointly. Namely, we consider
the mention-quotation pairs such that the mention
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Mention-inside-quote features
[MENTION IS 1ST PERSON, SING. PRONOUN (T/F)]
[MENTION IS 1ST PERSON, PLUR. PRONOUN (T/F)]
[OTHER MENTION (T/F)]

Consecutive quote features
[DISTANCE IN NUMBER OF WORDS]
[DISTANCE IN NUMBER OF SENTENCES]

Table 3: Features used in the JOINT system for
mention-quote pairs (only for mentions inside
quotes) and for quote pairs (only for consecutive
quotes). These features are associated to pairs in
the same branch of the quotation-coreference tree.

span is within the quotation span (mention-inside-
quotation pairs), and pairs of quotations that ap-
pear consecutively in the document (consecutive-
quotation pairs). The idea is that, if consecutive
quotations appear on the same branch of the tree,
they will have the same speaker (the entity class
associated with that branch), even though they
are not necessarily siblings. These two pairs are
aligned with the motivating examples (a) and (b)
shown in §1.

4.2.1 Mention-inside-quotation features
The top rows of Table 3 show the features we de-
fined for mentions inside quotes. The features in-
dicate whether the mention is first-person singular
pronominal (I, me, my, myself ), which provides
strong evidence that it co-refers with the quotation
author, whether it is first-person plural pronominal
(we, us, our, ourselves), which provides a weaker
evidence (but sometimes works for colective enti-
ties that are organizations), and whether none of
the above happens—in which case, the speaker is
unlikely to be co-referent with the mention.

4.2.2 Consecutive quotation features
We show our consecutive quote features in the bot-
tom rows of Table 3. We use only distance fea-
tures, measuring both distance in sentences and
in words, with binning. These simple features are
enough to capture the trend of consecutive quotes
that are close apart to have the same speaker.

5 Joint Decoding and Training

While decoding in the basic model is easy—
as pointed out above, it can even be done
by running a mention-level quotation attribu-
tor and the coreference resolver independently
(QUOTEBEFORECOREF)—exact decoding with
the JOINT model is in general intractable, since

this model breaks the independence assumption
between the arcs. However, given the relatively
small amount of node pairs that have scores (only
mentions inside quotations and consecutive quota-
tions), we expect this “perturbation” to be small
enough not to affect the quality of an approxi-
mate decoder. The situation resembles other prob-
lems in NLP, such as non-projective dependency
parsing, which becomes intractable if higher order
interactions between the arcs are considered, but
can still be well approximated. Inspired by work
in parsing (Martins et al., 2009) using linear re-
laxations with multi-commodity flow models, we
propose a similar strategy by defining auxiliary
variables and coupling them in a logic program.

5.1 Logic Formulation

We next derive the logic program for joint decod-
ing of coreferences and quotations. The input is a
set of nodes (including an artificial node), a set of
candidate arcs with scores, and a set of node pairs
with scores. To make the exposition lighter, we
index nodes by integers (starting by the root node
0) and we do not distinguish between mention and
quotation nodes. Only arcs from left to right are
allowed. The variables in our logic program are:

• Arc variables ai→j , which take the value 1 if
there is an arc from i to j, and 0 otherwise.

• Pair variables pi,j , which indicate that nodes i
and j are in the same branch of the tree.

• Path variables πj→∗k, indicating if there is a
path from j to k.

• Common ancestor variables ψi→∗j,k, indicating
that node i is a common ancestor of nodes j and
k in the tree.

Consistency among these variables is ensured by
the following set of constraints:

• Each node except the root has exactly one par-
ent:

j−1∑
i=0

ai→j = 1, ∀j 6= 0 (1)

• There is a path from each node to itself:

πi→∗i = 1, ∀i (2)

• There is a path from i to k iff there is some j
such that i is connected to j and there is path
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from j to k:

πi→∗k =
∨

i<j≤k

(ai→j ∧ πj→∗k), ∀i, k (3)

• Node i is a common ancestor of k and ` iff there
is a path from i to k and from i to `:

ψi→∗k,` = πi→∗k ∧ πi→∗`, ∀i, k, ` (4)

• Nodes k and ` are in the same branch if they
have a common ancestor which is not the root:

pk,` =
∨
i 6=0

ψi→∗k,`, ∀k, l. (5)

The objective to optimize is linear in the arc and
pair variables (hence the problem can be repre-
sented as an integer linear program by turning the
logical constraints into linear inequalities).

5.2 Dual Decomposition
To decode, we employ the alternating direc-
tions dual decomposition algorithm (AD3), which
solves a relaxation of the ILP above. AD3 has
been used successfully in various NLP tasks, such
as dependency parsing (Martins et al., 2011; Mar-
tins et al., 2013), semantic role labeling (Das et al.,
2012), and compressive summarization (Almeida
and Martins, 2013). At test time, if the solution is
not integer, we apply a simple rounding procedure
to obtain an actual tree: for each node j, obtain
the antecedent (or root) i with the highest ai→j ,
solving ties arbitrarily.

5.3 Learning the Model
We train the joint model with the max-loss variant
of the MIRA algorithm (Crammer et al., 2006),
adapted to latent variables (we simply obtain the
best tree consistent with the gold clustering at each
step of MIRA, before doing cost-augmented de-
coding). The resulting algorithm is very similar
to the latent perceptron algorithm in Fernandes
et al. (2011), but it uses the aggressive stepsize
of MIRA. We set the same costs for coreference
mistakes as Durrett and Klein (2013), and a unit
cost for missing the correct speaker of a quota-
tion. For speeding up decoding, we first train a ba-
sic pruner for the coreference system (using only
the features described in §4.1.1), limiting the num-
ber of candidate antecedents to 10, and discarding
scores whose difference with respect to the best
antecedent is below a threshold. We also freeze

the best coreference trees consistent with the gold
clustering using the pruner model, to eliminate the
need of latent variables in the second stage.

6 Experiments

6.1 Dataset

We used the 597 documents of the Wall Street
Journal (WSJ) corpus that were disclosed for the
CoNLL-2011 coreference shared task (Pradhan
et al., 2011) as a dataset for coreference resolu-
tion. This dataset includes train, development and
test partitions, annotated with coreference infor-
mation, as well as gold and automatically gener-
ated syntactic and semantic information.

The CoNLL-2011 corpus does not contain an-
notations of quotation attribution. For that rea-
son, we used the WSJ quotation annotations in the
PARC dataset (Pareti, 2012). We used the same
version of the corpus as O’Keefe et al. (2012),
but with different splits, to match the dataset parti-
tions in the coreference resolution data. This attri-
bution corpus contains 279 documents of the 597
CoNLL-2011 files, having a total of 1199 anno-
tated quotes. As in that work, we only consid-
ered directed speech quotes and the direct part of
mixed quotes (quotes with both direct and undi-
rected speech).

6.2 Metrics for quotation attribution

Previous evaluations of quotation attribution sys-
tems were designed at mention level, and are thus
assessed by comparing the predicted speaker men-
tion span with the gold one. This metric assesses
the amount of speaker mentions that were cor-
rectly identified. For compatibility with previous
assessments, we report this score, which we call
Exact Match (EM): this is the percentage of pre-
dicted speakers with the same span as the gold one.

However, for several quotations (about 30% in
the PARC corpus) this information is of little
value, since the gold mention is a pronoun, which
per se does not give any useful information about
the actual speaker entity. Considering this fact,
we propose two other metrics that capture infor-
mation at the entity level, reflecting the amount of
information a system is able to extract about the
speakers:

• Representative Speaker Match (RSM): for each
annotated quote, we obtain the full gold coref-
erence set of the gold annotated speaker, and
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choose a representative speaker from that clus-
ter. We define this representative speaker as
the proper mention which is the closest to the
quote (if available); if the cluster does not con-
tain proper mentions, we use the closest nom-
inal mention; if only pronominal mentions are
available, we use the original annotated speaker.
The final measure is the percentage of predicted
speakers that match the string of the correspond-
ing representative speakers.

• Entity Cluster F1 (ECF1). Considering that a
system outputs a set of mentions coreferent to
the predicted speakers, we compute the F1 score
between the predicted set and the gold corefer-
ence cluster of the correct speaker.

The entity level metrics are not only useful for
assessing the quality of an quotation attribution
system—they also reflect the quality of the un-
derlying coreference system used to cluster the re-
lated mentions.

6.3 Attribution baselines
To analyze the task of entity-level quotation attri-
bution, we implemented three baseline systems.

• QUOTEONLY: A quotation attribution system
trained on the representative speaker, instead of
the gold speaker. For fairness, this baseline was
trained with an extra feature indicating the type
of the mention (nominal, pronominal or proper).

• QUOTEAFTERCOREF: An attribution system
directly applied to the output of a predicted
coreference chain. This baseline uses a coref-
erence pre-processing, as applied in O’Keefe et
al. (2012).

• QUOTEBEFORECOREF: An attribution system
trained on the gold speaker, and post-combined
with the output of a coreference system. This
system should be able to provide a set of infor-
mative mentions about a quote, post-resolving
the problem of the pronominal speakers. This
kind of post-coreference approach was used by
de La Clergerie et al. (2011).

6.4 Coreference Resolution
We use the coreference results of our basic
QUOTEBEFORECOREF system as a baseline for
coreference resolution. Since this system effec-
tively solves the two problems separately, this can
be considered our implementation of the SURFACE

system of Durrett and Klein (2013) . As reported

in Table 4, the perfromance of our baseline is
comparable with the one of the SURFACE system
of Durrett and Klein (2013), which is denoted as
SURFACE-DK-2013.2

Table 4 also show the CoNLL metrics obtained
for the proposed system of joint coreference reso-
lution and quotation attribution. Our joint system
outperformed the baseline with statistical signifi-
cance (with p < 0.05 and according to a bootstrap
resampling test (Koehn, 2004)) for all metrics ex-
pect for the CEAFE F1 measure, whose value was
only slighty improved. These results confirm that
the coreference resolution task benefits for being
tackled jointly with quotation attribution.

6.5 Quotation attribution
We implemented and trained the three attribution
systems that were described in §6.3 and the system
for joint coreference and author attribution that is
detailed in §4. For each system, Table 5 shows the
mention-based and entity-based metrics that were
described in §6.2.

Training a quotation attribution system using
representative speakers instead of the gold speak-
ers (QUOTEONLY) leads to rather disappointing
results. As expected, we conclude that assigning
the semantically related speaker is considerably
easier than selecting another mention that is coref-
erent with the correct speaker.

Using (predicted) coreference information,
both QUOTEAFTERCOREF and QUOTEBE-
FORECOREF systems considerably increase our
entity-based metrics. This was also expected,
since the coreference chain allows these baselines
to output a set of related mentions. We observed
that, using the coreference resolution clusters as
the attribution entity (QUOTEAFTERCOREF) in-
fluences the results negatively when compared to
a more basic system that runs coreference on top
of attribution result of the QUOTEONLY system
(QUOTEBEFORECOREF). These results indicate
that the quotation attribution task performs better
by looking at the speaker mention that connects
more strongly with the quotation, instead of trying
to match the whole cluster.

Finally, the scores achieved by our JOINT

2To make the systems comparable, we re-trained Durrett
et al.’s coreference system (version 0.9) on the WSJ portion
of the Ontonotes datasets (the portion which has quote anno-
tations from Pareti et al.’s PARC dataset). For this reason, the
values in Table 4 differ from those reported in Durrett and
Klein (2013), which where trained and tested in the entire
Ontonotes.
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MUC F1 BCUB F1 CEAFE F1 Avg.
SURFACE-DK-2013 58.87 62.74 45.46 55.7

SURFACE-OURS [QUOTEBEFORECOREF] 57.89 62.50 45.48 55.3
JOINT 58.78 63.79 45.50 56.0

Table 4: Coreference obtained with the CoNLL scorer (version 5) in the test partition of the WJS cor-
pus, for the SURFACE system of Durrett and Klein (2013), our baseline implementation of the that sys-
tem (SURFACE-OURS), and our JOINT approach. All systems were trained in the WSJ portion of the
Ontonotes.

EM RSM ECF1

QUOTEONLY 49.1% 49.4% 41.2%
QUOTEAFTERCOREF 76.7% 64.6% 70.0%
QUOTEBEFORECOREF 88.7% 74.7% 73.7%
JOINT 88.1% 76.6% 74.1%

Table 5: Attribution results obtained, in the test
set, for the three baseline systems and our joint
system.

model are slightly above the best baseline sys-
tem QUOTEBEFORECOREF, yielding the best per-
formance on the entity-level quotation attribution
task. The differences, however, were not found
statistically significant, probably due to the small
number of quotes (159) in the test set.

The average decoding runtime of the JOINT

model is 1.6 sec. per document, against 0.2 sec.
for the pipeline system. This slowdown is ex-
pectable given the fact that the pipeline system
only needs to make independent decisions, while
the joint version needs to solve a harder combina-
torial problem. Yet, this runtime is within the or-
der of magnitude of the time necessary to prepro-
cess the documents (which includes tagging and
parsing the sentences).

6.6 Error Analysis
To understand the type of errors that are prevented
with the JOINT system, consider the following ex-
ample (from document WSJ-2428):

• [Robert Dow, a partner and portfolio manager
at Lord, Abbett & Co.]M1 , which manages $4
billion of high-yield bonds, says [he]M2 doesn’t
“think there is any fundamental economic ra-
tionale (for the junk bond rout). It was [herd
instinct]M3 .” [He]M4 adds: “The junk market
has witnessed some trouble and now some peo-
ple think that if the equity market gets creamed
that means the economy will be terrible and
that’s bad for junk.”

The basic QUOTEBEFORECOREF system
wrongly clusters together M3 and M4 as corefer-

ent, and wrongly assigns M3 as the representative
speaker. On the other hand, the JOINT system
correctly clusters M1, M2 and M4 as coreferent.
This is due to the presence of the consecutive
quote features which aid in understanding that
both quotes have the same speaker, and the
mention-inside-quote features which prevent herd
instinct, which is inside a quote, from being
coreferent with He, which is very likely the author
of the quotes due to the verb adds.

7 Conclusions

We presented a framework for joint coreference
resolution and quotation attribution. We repre-
sented the problem as finding an optimal spanning
tree in a graph including both quotation nodes and
mention nodes. To couple the two tasks, we intro-
duce variables that look at paths in the tree, indi-
cating if pairs of nodes are in the same branch, and
we formulate decoding as a logic program. Each
branch from the root can then be interpreted as a
cluster containing all coreferent mentions of an en-
tity and all quotes from that entity.

In addition, we designed an evaluation metric
suitable for entity-level quotation attribution that
takes into account informative speakers. Experi-
mental results show mutual improvements in the
coreference resolution and quotation attribution
tasks.

Future work will include extensions to tackle in-
direct quotations, possibly exploring connections
to semantic role labeling.
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