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Abstract

We introduce the IMS contribution to the Sur-
face Realization Shared Task 2019. Our sub-
mission achieves the state-of-the-art perfor-
mance without using any external resources.
The system takes a pipeline approach consist-
ing of five steps: linearization, completion, in-
flection, contraction, and detokenization. We
compare the performance of our linearization
algorithm with two external baselines and re-
port results for each step in the pipeline. Fur-
thermore, we perform detailed error analysis
revealing correlation between word order free-
dom and difficulty of the linearization task.

1 Introduction

This paper presents our submission to the Surface
Realization Shared Task 2019 (Mille et al., 2019).
We participate in both shallow and deep track of
the shared task, where the shallow track requires
the recovery of the linear order and inflection of
a dependency tree, and the deep track additionally
requires the completion of function words.

We approach both tasks with very similar
pipelines, consisting of linearizing the unordered
dependency trees, completing function words (for
the deep track only), inflecting lemmata to word
forms, and contracting several words as one token,
and finally detokenizing to obtain the natural writ-
ten text. We use machine learning models for the
first four steps and a rule-based off-the-shelf deto-
kenizer for the final step.

In the evaluation on the tokenized text, our sys-
tem achieves the highest BLEU scores for each in-
dividual treebank in both tracks, with an average
of 79.97 for the shallow track and 51.41 for the
deep track. In the human evaluation on four lan-
guages, we also rank the first in terms of readabil-
ity and adequacy.

2 Surface Realization System

Our system takes a pipeline approach, which
consists of up to five steps to produce the fi-
nal detokenized text. The steps are: lineariza-
tion (§2.2), completion (§2.3), inflection (§2.4),
contraction (§2.5), and detokenization (§2.6),
among which completion is used only in the deep
track. All the steps except for the rule-based deto-
kenization use the same Tree-LSTM encoder ar-
chitecture (§2.1). As the multi-task style training
hurt performance in the preliminary experiments,
all the steps are trained separately.

Since the submission is mostly based on our
system described in Yu et al. (2019b), here we
mainly focus on the changes introduced for this
shared task, and we refer the reader to Yu et al.
(2019b) for more details, especially on the ex-
planation and ablation experiments of the Tree-
LSTM encoder and the linearization decoder.

2.1 Tree-LSTM Encoder

Representation of each token in the tree is based
on its lemma, UPOS, morphological features, and
dependency label. We use embeddings for the
lemma, UPOS and dependency label, and employ
an LSTM to process the list of morphological fea-
tures.1 We then concatenate all of the obtained
vectors as the representation of each token (v◦).

The representation is further processed by a
bidirectional Tree-LSTM to encode the tree struc-
ture information. The encoder is generally the
same as described in Yu et al. (2019b), consisting
of two passes of information: a bottom-up pass
followed by a top-down pass. In the bottom-up
pass, we use a Tree-LSTM (Zhou et al., 2016) to
compose the bottom-up vector of the head from
the vectors of the dependents, attended by the

1There could be better treatment of the morphological fea-
tures, since they are not sequences in nature.
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token-level vector of the head, denoted as v↑. The
bottom-up vectors are then fed into a sequential
LSTM for the top-down pass from the root to each
leaf token, so that every token has access to all the
descendants of all its ancestors, namely all tokens
in the tree. The output vector is denoted as v↓.

For linearization, we use the concatenation of
v↑ and v↓ as the representation of each token. For
the other tasks, where the sequence is already de-
termined, we additionally use a sequential bidi-
rectional LSTM to encode the sequence, with the
tree-based vectors as input.

2.2 Linearization

The linearization algorithm is the same as in Yu
et al. (2019b), which is in turn based on the lin-
earizer described by Bohnet et al. (2010). The
algorithm takes an divide-and-conquer strategy,
which orders each subtree (a head and its depen-
dents) individually, and then combines them into a
fully linearized tree.2

The main improvement of our algorithm to
Bohnet et al. (2010) is that instead of ordering the
subtrees from left to right, we start from the head
(thus called the head-first decoder), and add the
dependents on both sides of the head incremen-
tally. We also train a left-to-right and a right-to-
left decoders to form an ensemble with a shared
encoder, which is shown in Yu et al. (2019b) to
achieve the best performance.

We use beam search to find the best lineariza-
tion order of each subtree, where the best N par-
tial hypotheses are kept to expand at each step.
For the head-first decoder, we use two LSTMs to
track the left and right expansion of the sequence
(only one LSTM is needed for the left-to-right or
right-to-left expansion), and the score of the se-
quence is calculated from the concatenation of the
two LSTM states followed by an MLP.

Note that in the shared task some tokens are
provided with information about the relative word
order to its head.3 We use these constraints in
our decoder so that the hypotheses violating the
constraints are ignored. Preliminary experiments

2This algorithm can only create projective trees. An
method to bypass the projective constraints is described in
Bohnet et al. (2012). However, we did not use this method
and only produce projective trees due to limited time.

3The information are encoded in the morphological fea-
tures, such as lin=+2, which means this token must appear
after the token with the feature lin=+1 after the head. They
are provided for the cases that do not have a unique correct
order, e.g., punctuation or coordinating conjunction.

showed that disregarding this word order informa-
tion would decrease the BLEU score by 2-3 points.

2.3 Completion

The completion model for the deep track takes the
output of the linearization model as input and in-
sert function words into the linearized subtrees.

Similarly to the linearization algorithm, we also
use a head-first strategy to complete each subtree.
We use two pairs of LSTMs to encode the se-
quence: a pair of forward and backward LSTMs
for the left dependents, and a pair for the right de-
pendents, where “forward” means from the head
to the end and “backward” means from the end
towards the head. Since the two pairs are symmet-
rical, we only describe the decoding process to the
right side of the head.

We use a pointer to indicate the current to-
ken, which initially points to the head. We use
the backward LSTM to encode the upcoming
sequence of linearized tokens, and the forward
LSTM to encode the already processed tokens up
to the pointer (which includes both the previously
linearized tokens and the newly generated tokens).

At each decoding step, we concatenate the for-
ward LSTM output of the current pointed token
and the backward LSTM output of the next token,
and calculate a softmax distribution of all possible
function words, as well as a special symbol ⇒ ,
which moves the pointer to the next token. If a new
token is generated, the pointer will point to the
new token. If ⇒ is predicted and the pointer al-
ready reached the last token in the sequence, then
the completion process is terminated.

Figure 1 illustrate an example of the completion
process to the right side of the head, where the lin-
earized tokens are [h, d(+1), d(+2), $], h is the head,
d(+1) and d(+2) are right dependents, and $ indi-
cates the end of the subtree. In step (1) the sym-
bol⇒ is predicted, therefore we move the pointer
from the h to d(+1); in step (2) a new token f1 is
created and attached to d(+1); in step (3) another
token f2 is created and attached to f1; in step (4) the
pointer is moved to d(+2); in step (5) the pointer is
moved again to $, which terminates the process
and outputs the sequence [h, d(+1), f1, f2, d(+2)].

The left and right completion processes are
independent of each other, since both forward
LSTMs are only aware of the initial linearized to-
kens on both sides but not the newly generated to-
kens. We tried several variations in the prelimi-
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Figure 1: An example of the completion process to the
right side, where the right arrows illustrate the forward
LSTM, and the left arrows the backward LSTM.

nary experiments, including joint linearization and
completion, interleaving the left and right comple-
tion processes, and beam-search for completion.
All approaches yielded lower performance than
the described method.4 However, we note that
the completion step seems to have the most po-
tential to benefit from external language models.
We observe that many generated function words
are syntactically correct but semantically implau-
sible, and the language models are generally good
at capturing semantic coherence. We plan to in-
corporate language models in the future work.

4Admittedly, most of the experiments are rather brief,
more careful design and thorough experiments might lead to
different results.

2.4 Inflection

The inflection model is the same as in Yu et al.
(2019b). It generates a sequence of edit opera-
tions that modifies the lemma into the inflected
word form. The model takes the characters in
the lemma as input and encodes through a bidi-
rectional LSTM. A binary feature is concatenated
to the vector of each character which functions as
a pointer to indicate the input character currently
to be processed. At each step, the decoder attends
to the input vectors and predicts an output, which
could be a symbol 3 to copy the current input
character, a symbol 7 to ignore the current input
character, or a character from the alphabet to gen-
erate a new one. When 3 or 7 is predicted, the
input pointer will move one step forward, while if
a character is generated, the input pointer does not
move.

The ground truth of such sequence is calculated
from the Levenshtein edit operations between the
lemma and the word form, where only insertion
and deletion is allowed (no substitution).

Our model is in a way similar to the hard mono-
tonic attention in Aharoni and Goldberg (2017),
but we use a much simpler source-target align-
ment (Levenshtein edit operations), and we use
copy as an edit operation to avoid completion er-
rors while they do not. Furthermore, our edit
operations are associated with the moving of the
pointer, while they treat moving the pointer as an
atomic operation, which lead to longer prediction
sequences. Generally, our model performs on a
par with theirs, see the comparison in Yu et al.
(2019b).

2.5 Contraction

In Yu et al. (2019b) we described a rule-based
contraction method by constructing an automa-
ton from the training data, which works reason-
ably well for most of the languages where the
contraction is trivial. However, it works rather
poorly for Arabic since the contraction is not just
among closed class function words but also con-
tent words, so that the coverage of the rules is very
small. It is also problematic for the verb-pronoun
contraction in Spanish and Portuguese although
they are much less frequent.

We therefore implement a character-based con-
traction model to alleviate this problem. The
model works in two steps. First it predicts BIO
tags to identify the groups of consecutive words
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that need to be contracted. Then it concatenates
the group as a character sequence and predicts the
contracted word form as output. We use a simple
Seq2Seq model for the contraction due to limited
time, although an edit based model similar to the
one for inflection might yield better results.

2.6 Detokenization

The detokenization step is the same as described
in Yu et al. (2019b), namely a rule-based tool
MosesDetokenizer.5 After the submission we real-
ized that the tool removes all empty spaces in Ko-
rean texts, similar to Chinese and Japanese. How-
ever, Korean actually uses empty spaces to sepa-
rate words, thus we expect lower score in the hu-
man evaluation for this language.

2.7 Discussion on Pipeline Order

In our pipeline, we choose the order of lineariza-
tion, completion, and finally inflection. Our ratio-
nale for such order is as follows: (1) the inflec-
tion in some cases depends on the linearized se-
quence of lemmata, e.g., the English determiner
“a/an” depends on whether the following noun be-
gins with an vowel, therefore inflection is the last
of the three steps; (2) the search-based lineariza-
tion model is more reliable than the greedy com-
pletion model, therefore we first perform lineariza-
tion to reduce error propagation.

However, this choice is only based on our intu-
ition, and one could come up with arguments for
the alternative orders. For example, since inflec-
tion is the easiest and most accurate task, perform-
ing it first might further reduce error propagation.
Further experiments are needed to determine the
best order in the pipeline. Alternatively, a care-
fully designed joint prediction might address the
error propagation problem, however, our initial at-
tempts did not yield positive outcome.

2.8 Implementation Details

All the neural models are implemented with the
DyNet library(Neubig et al., 2017), and the full
system is available at the first author’s website.6

We use the embedding size of 64 for lemma and
character, and 32 for UPOS, XPOS, morpholog-
ical features, and dependency labels. The output
dimension of the bottom-up and top-down encoder

5https://pypi.org/project/
mosestokenizer/

6https://www.ims.uni-stuttgart.de/
institut/mitarbeiter/xiangyu/

LSTMs, as well as all the decoder LSTMs, are
equal to the input dimension. The beam size for
the linearization is 32. We train the model up to
100000 steps without batching using the Adam op-
timizer (Kingma and Ba, 2014), test on the devel-
opment set every 2000 steps, and stop training if
there is no improvement 10 times in a row. All the
hyperparameters are only minimally tuned to bal-
ance speed and performance, and kept the same
for all languages.

The training and prediction of each treebank
are run on single CPU cores. Depending on the
treebank size, the training time of linearization
models typically ranges from 1 to 10 hours. The
completion, inflection, and contraction models are
much faster, mostly under 1 hour, since they are
all greedy models.

The prediction speed is around 10 sentence per
second, which is not very fast, however, we did
not perform any optimization toward speed (e.g.
mini-batch, multi-processing, etc.) due to the ex-
perimental nature of our work.

3 Data

The training and test data in the shared task is
based on Universal Dependencies (Nivre et al.,
2016), see the overview paper for the details.

We do not use any external resources for our
system, except that we concatenate the training
treebanks for some languages (see Table 3 and
4). However, not all treebanks benefits from the
concatenation, since the idiosyncrasies in the UD
treebanks can hurt the performance as noted in
Björkelund et al. (2017), where the concatenation
of multiple UD treebanks also hurts parsing per-
formance.

Evaluation in the shared task is also performed
on out-of-domain datasets, namely the automati-
cally parsed trees from some in-domain treebanks
and the unseen PUD treebanks. We use the same
model for the automatically parsed trees as for the
gold ones, and use the model trained on concate-
nated treebanks for the PUD test data.

Some treebanks have XPOS tag set quite dif-
ferent from the UPOS, which could be useful as
complementary information. We used XPOS as
features when the tag set size is at least twice as
large as the UPOS set size and smaller than 500
(to avoid sparsity). In fact, the XPOS tags in some
treebanks could be decomposed as morphologi-
cal features, e.g., Arabic, Indonesian, Korean. In

https://pypi.org/project/mosestokenizer/
https://pypi.org/project/mosestokenizer/
https://www.ims.uni-stuttgart.de/institut/mitarbeiter/xiangyu/
https://www.ims.uni-stuttgart.de/institut/mitarbeiter/xiangyu/
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the submission, we only choose to decompose the
XPOS for Korean because it can be easily split
by the “+” delimiter and both Korean treebanks
do not have morphological features otherwise. We
also use the real stems in the Korean treebanks by
removing the suffixes after the “+” delimiter in the
lemmata, in order to reduce the out-of-vocabulary
problem, and the information on the suffixes are
well preserved in the morphological features de-
rived from the XPOS.

Finally, since contraction appears only in Ara-
bic, Spanish, French and Portuguese, we therefore
only train contraction models for these languages.

4 Evaluation

The automatic evaluation results of our submis-
sion to the shared task are shown in Table 1 and
Table 2 for the shallow and deep tracks, respec-
tively. The first three columns contain the BLEU,
DIST, and NIST scores of our system, and the
fourth column is the difference of BLEU scores
between our system and the best system among
other participants for each treebank.

Our system achieve the best performance for all
treebanks in both tracks. Comparing to the best
scores of other teams, the differences range from
single digits for the English treebanks to about 20
points for most other treebanks and 38 points for
Arabic. In the out-of-domain scenario, our system
performs very stable in most of the cases. How-
ever, comparing to the English and Japanese PUD
treebanks, the performance drop on Russian PUD
treebank is quite notable. Our conjecture is that
the annotation of the PUD treebank is much closer
to the GSD treebank than the SynTagRus treebank.
Since we use both treebanks for training, the much
larger size of SynTagRus might have dominated
the training.

In the human evaluation (see Mille et al. (2019)
for details), we also rank the first in all four lan-
guages (English, Russian, Chinese and Spanish)
both for readability and adequacy.

5 Analysis

5.1 Pipeline Performance

Table 3 and 4 show the results on the develop-
ment sets of the in-domain treebanks for the shal-
low track and deep track, respectively. We also
provide the linearization baselines by Puduppully

BLEU NIST DIST ∆BLEU

ar padt 64.90 12.22 73.71 38.50
en ewt 82.98 13.61 86.72 3.29
en gum 83.84 12.69 83.49 1.45
en lines 81.00 12.71 82.21 5.51
en partut 87.25 11.01 85.68 8.27
es ancora 83.70 14.69 79.82 7.23
es gsd 82.98 12.77 79.45 12.83
fr gsd 84.00 12.45 84.15 23.85
fr partut 83.38 10.36 82.32 17.37
fr sequoia 85.01 12.53 85.13 22.22
hi hdtb 80.56 13.07 79.07 11.33
id gsd 85.34 12.83 83.92 21.63
ja gsd 87.69 12.42 87.17 24.10
ko gsd 74.19 12.27 80.95 28.11
ko kaist 73.93 13.00 78.69 26.70
pt bosque 77.75 12.15 79.80 25.06
pt gsd 75.93 13.07 79.33 23.43
ru gsd 71.23 12.15 73.04 16.14
ru syntagrus 76.95 15.08 78.66 16.96
zh gsd 83.85 12.78 83.18 15.31

en pud 86.61 13.47 87.00 2.54
ja pud 86.64 13.02 84.04 20.12
ru pud 58.38 10.91 77.12 6.01

en ewt-pred 81.80 13.46 85.35 4.59
en pud-pred 82.60 13.26 86.18 1.94
es ancora-pred 83.31 14.61 81.14 6.03
hi hdtb-pred 80.19 13.05 78.88 10.27
ko kaist-pred 74.27 13.02 79.12 27.55
pt bosque-pred 78.97 12.14 81.56 25.33

AVG 79.97 12.79 81.62 15.64

Table 1: Automatic Evaluation Results of the shallow
track (T1) and the BLEU difference with the best sys-
tem among other participants for each treebank.

BLEU NIST DIST ∆BLEU

en ewt 54.75 11.79 76.30 25.17
en gum 52.45 11.04 73.07 25.85
en lines 47.29 10.63 71.93 18.21
en partut 45.89 9.03 67.45 17.04
es ancora 53.13 12.38 68.58 16.15
es gsd 51.17 10.82 68.85 16.52
fr gsd 53.62 10.79 68.82 28.02
fr partut 46.95 8.27 68.99 18.76
fr sequoia 57.41 11.00 72.06 28.85

en pud 51.01 11.45 72.31 24.45

en ewt-pred 53.54 11.55 74.99 24.91
en pud-pred 47.60 11.08 71.65 21.83
es ancora-pred 53.54 12.36 70.02 16.13

AVG 51.41 10.94 71.16 21.68

Table 2: Automatic Evaluation Results of the deep
track (T2) and the BLEU difference with the best sys-
tem among other participants for each treebank.
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P16 B10 lin∗ lin inf con final

ar padt 77.73 82.69 84.24 87.27 95.63 91.59 68.58
en ewt 79.10 82.71 85.11 88.01 98.47 84.50
en gum 74.03 82.36 83.69 87.29 98.23 84.35
en lines(+) 69.47 75.69 78.39 82.40 97.86 79.05
en partut 71.45 80.11 86.38 89.14 97.94 86.25
es ancora 74.57 81.61 83.47 85.33 99.51 99.86 84.43
es gsd(+) 78.28 82.32 83.53 86.18 99.18 99.09 84.04
fr gsd(+) 82.99 85.26 87.02 89.74 98.63 99.47 86.98
fr partut 71.46 83.92 87.07 90.08 96.95 99.44 84.17
fr sequoia 74.16 83.66 87.09 90.39 98.20 99.58 86.51
hi hdtb 79.83 82.03 82.79 85.25 98.11 81.62
id gsd 74.68 78.27 81.23 86.05 99.51 84.62
ja gsd 86.20 89.08 90.41 92.55 98.69 89.49
ko gsd(+) 67.55 69.48 76.05 79.66 96.74 74.25
ko kaist(+) 76.98 77.47 78.73 80.01 97.32 76.04
pt bosque 76.97 80.30 82.48 84.35 99.31 98.23 80.75
pt gsd 83.19 86.53 87.17 89.24 94.99 99.84 76.89
ru gsd 68.32 74.04 74.64 79.09 95.98 73.66
ru syntagrus(+) 73.58 77.01 78.52 80.97 97.84 76.28
zh gsd 68.92 75.60 81.22 84.10 100.00 83.34

AVG 75.47 80.51 82.96 85.86 97.95 81.29

Table 3: Development results in the shallow track, including the linearization baselines.

lin comp inf con final

en ewt 80.17 67.70 97.98 55.27
en gum(+) 76.14 61.44 97.72 50.53
en lines(+) 76.63 60.47 97.16 47.17
en partut(+) 73.80 60.63 97.63 44.59
es ancora 77.88 66.95 98.25 99.85 53.57
es gsd 77.98 69.72 97.85 99.71 53.81
fr gsd(+) 81.36 73.20 97.63 99.26 57.46
fr partut(+) 75.36 65.94 94.64 98.39 48.17
fr sequoia(+) 80.03 73.01 97.04 99.60 58.27

AVG 77.40 66.42 97.24 51.70

Table 4: Development results in the deep track.

et al. (2016) (P16) and Bohnet et al. (2010) (B10).7

The columns show different evaluation metrics on
different targets. Except for the final column, each
one evaluates on only one step assuming all previ-
ous steps are gold.

In Table 3, columns 1-4 are the BLEU scores of
linearization evaluated on the lemmata, column 5
is the accuracy of inflection, column 6 is BLEU
score on the contracted word form (empty cells
means contraction is not applied), column 7 is the
final BLEU score of the full pipeline. The col-
umn lin* shows the models trained on single tree-
banks and without using the word order informa-
tion, which allows a fair comparison to the two
baselines. The models marked with + are trained
with concatenated treebanks for the submission,

7We run the two baseline systems as is, where we only
convert the input format to ensure all systems are using the
same information and keep their default options.

which performs slightly better than the single tree-
bank, typically by 0.5-1 BLEU points. For each
treebank, we either use the concatenated treebank
to train all steps in the pipeline or use the sin-
gle treebank for all steps, depending on the final
BLEU score on the development set.

In Table 4, column 1 is the BLEU score on the
lemmata of the given content words, columns 2
is the BLEU score on the lemmata including gen-
erated tokens, column 3 is the accuracy on word
forms, column 4 is the BLEU score of contracted
word forms, and column 5 is the BLEU score of
the full pipeline. Similar to Table 3, the models
marked with + are trained with concatenated tree-
banks.

In the shallow track, our linearization model
outperforms the best baseline (Bohnet et al., 2010)
by 2.5 BLEU points on average. The inclusion of
word order information (and treebank concatena-
tion to a much smaller extent) brings about 3 addi-
tional points. For the deep track, the BLEU score
of linearization is much higher than completion,
which motivates our decision to perform lineariza-
tion before completion.

5.2 Word Order Preferences

In this section we analyze the relation between
word order preferences of each language and the
errors made by the linearizer,8 characterized by

8Note that an “error” is counted when the predicted order
is different from the original order in the reference, however,
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Figure 2: The correlation of word order freedom and linearization errors. Different language families are marked
with different colors.
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Figure 3: Detailed visualization of head direction freedom vs. linearization errors of the 10 most frequent depen-
dency relations in each treebank, where “x” means no such relation in the treebank.

two types of word order preferences as defined in
Yu et al. (2019a):
head direction – whether the dependent appears
to the left or the right side of the head;
sibling order – the order of a pair of dependents
on the same side of the head.

We then define the freedom of these two types
of word order preferences, namely the entropy of
the word order of each dependency relation, which
is described in details in Yu et al. (2019a)9. In both

this does not mean that the predicted one is incorrect. The
variation of word order in natural languages can not be triv-
ially evaluated by the single reference BLEU score, human
judgement is thus needed for a more accurate evaluation.

9Here we only use the dependency relations to character-
ize the word orders for simplicity of visualization, while Yu
et al. (2019a) additionally use the UPOS tag, which is more

types of word orders, higher freedom means less
constraints on the word order.

We also calculate the error rate of the linearizer
by the dependency relations:
head direction – whether the dependent appears
on the correct side of the head;
sibling order – whether a pair of dependents on
the same side of the head has the correct order.

Figure 2 shows the correlation of freedom and
linearization errors of the two types of word or-
ders. For both head direction (Figure 2a) and sib-
ling ordering (Figure 2b), we can observe quite
strong correlation of the freedom and linearization
errors. For the head direction, both Russian tree-
banks have the highest freedom, and the linearizer

fine-grained.
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Figure 4: Detailed visualization of sibling ordering freedom vs. linearization errors of the 10 most frequent
dependency relations in each treebank, where “x” means no such relation in the treebank.

also makes the most errors. Verb final languages
such as Korean, Japanese and Hindi, on the con-
trary, have the lowest freedom and the least errors.
For the sibling ordering, both Korean treebanks
have the highest freedom and linearization error
rate. However, there are no treebanks with very
low freedom or error rate, which suggests that the
ordering of arguments are generally less strict than
the head direction in all languages.

We then look into the errors of our system in
more details. We take ten most common depen-
dency relations in all the treebanks (we map the
language-specific relation subtypes to their gen-
eral type, e.g., nmod:poss is mapped to nmod)
and calculate their freedom and the linearization
error rate. Figure 3 presents results for the head
direction constraint, where the intensity patterns
of the freedom and error rate align very well. In-
terestingly, the verb-final languages have very low
freedom and error rate across almost all relations,
not only verb arguments. For the most other lan-
guages, obl and advmod are difficult; amod is dif-
ficult for Romance languages; and nsubj is diffi-
cult for Russian.

Figure 4 shows the freedom and error rate for
sibling ordering. The freedom of particular re-
lations (Figure 4a) and their linearization errors
(Figure 4b) also show quite similar patterns, al-
though less clear than the head direction.

In particular, some relations with very high free-

dom do not have high error rate, e.g. many verb
arguments in Japanese. This suggests that the lex-
icalized linearization model can capture more so-
phisticated word order information than the coarse
word order preferences defined by the dependency
relations.

6 Conclusion

We have presented our surface realization system,
which performs both shallow and deep comple-
tion. The system achieves state-of-the-art results
without any external data.

As future work, we plan to focus on improving
the completion model, since it is currently the per-
formance bottleneck of the deep generation task,
which is a more realistic task for NLG applica-
tions. We also plan to incorporate ranking meth-
ods with and without external language models
to further improve the linearization, since the de-
scribed results suggest that there is room for im-
provement.
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