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Preface

The Second Workshop on Multilingual Surface Realisation (MSR 2019) was held as part of EMNLP
2019 in Hong Kong on 3 November 2019. The MSR workshops aim to bring together researchers
interested in surface-oriented Natural Language Generation problems such as word order determination,
inflection, functional word determination, etc. A central part of the MSR workshops is an evolving shared
task on surface realisation (SR). Following a pilot task in 2011 for English only, the SR shared task
went multilingual from 2018, continuing to include both a shallow track (generating from full universal
dependency structures) and a deep track (generating from underspecified UD structures). Workshop and
shared task are endorsed by the ACL Special Interest Group on Natural Language Generation (SIGGEN).

The 2019 edition of the SR task (SR’19) offered 11 different languages (up from 10 in SR’18) and
attracted 33 team registrations from 17 countries (up from 21 registrations for SR’18). 14 teams
submitted systems to SR’19 (up from 8 in SR’18), with two teams withdrawing post submission. Nine
teams participated in the Shallow Track only, one in the Deep Track only, and two teams took part in
both. All submitting teams submitted a system for English, four teams submitted for English only, four
teams submitted for all 11 languages, and four teams submitted for between three and 9 languages.

For English, we evaluated 12 Shallow Track systems and four Deep Track systems in human evaluations
of readability and meaning similarity (to reference sentences). Not only did we have multiple Deep Track
systems (compared to just one in 2018), but the best Deep Track system actually performed equally well
or better than most Shallow Track systems for both readability and meaning similarity. Moreover, the
best Shallow Track systems are beginning to close the gap to human toplines, in particular for English
and Spanish. In terms of progress, the success of the Deep Track systems represents the biggest leap
forward from SR’18, while it looks likely that the shallow systems will catch up with human toplines
in the near future. The SR tasks have clearly demonstrated that generation from structured meaning
representations can be done with impressive success by current neural methods.

MSR 2019 was pleased to host two invited talks, one by Claire Gardent of Nancy University, and one by
the artist Maurice Benayoun, also known as MoBen or莫奔, who is based in Hong Kong. In addition to
papers related to the SR’19 shared task, we accepted one paper on wider surface realisation. Given the
increased interest and progress we are able to report for SR’19, we plan to continue with a third shared
task in 2020, as part of which we plan to investigate ways of linking up to earlier stages of automatic
language generation.

We gratefully acknowledge the hard work put in by the SR’19 participating teams, reviewers and local
organisers, and more generally, the creativity and enthusiasm generated by participants in the MSR
workshops and SR tasks which is of course what keeps them both going.

iii





Organizers:

Simon Mille, Pompeu Fabra University, Spain
Anja Belz, University of Brighton, UK
Bernd Bohnet, Google Research, UK
Yvette Graham, ADAPT Center, Dublin City University, Ireland
Leo Wanner, ICREA and Pompeu Fabra University, Spain

Program Committee:

Jose Maria Alonso, University of Santiago de Compostela, Spain
Miguel Ballesteros, IBM Research, USA
Alberto Bugarín, University of Santiago de Compostela, Spain
Claire Gardent, CNRS, LORIA, France
Kim Gerdes, Sorbonne Nouvelle, France
Yannis Konstas, Heriot Watt University, UK
Emiel Krahmer, Tilburg University, The Netherlands
David McDonald, SIFT, USA
Ryan McDonald, Google Research, USA
Shashi Narayan, University of Edinburgh, UK
Alexis Nasr, University of Aix Marseille, France
Joakim Nivre, Uppsala University, Sweden
Jekaterina Novikova, Heriot Watt University, UK
Stephan Oepen, University of Oslo, Norway
Emily Pitler, Google Research, USA
Ehud Reiter, Aberdeen University, UK
Horacio Saggion, Pompeu Fabra University, Spain
Kees Van Deemter, Utrecht University, The Netherlands
Michael White, Ohio State University, USA
Sina Zarrieß, University of Bielefeld, Germany

Additional Reviewers:

Valerio Basile, Torino University, Italy
Laura Pérez Mayos, Pompeu Fabra University, Spain

Invited Speakers:

Claire Gardent, CNRS-LORIA, France
Maurice Benayoun (a.k.a. MoBen), City University of Hong Kong, China

v





Table of Contents

The Second Multilingual Surface Realisation Shared Task (SR’19): Overview and Evaluation Results
Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham and Leo Wanner . . . . . . . . . . . . . . . . . . . . . . 1

Learning to Order Graph Elements with Application to Multilingual Surface Realization
Wenchao Du and Alan W Black . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

DepDist: Surface realization via regex and learned dependency-distance tolerance
William Dyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

BME-UW at SRST-2019: Surface realization with Interpreted Regular Tree Grammars
Ádám Kovács, Evelin Ács, Judit Ács, Andras Kornai and Gábor Recski . . . . . . . . . . . . . . . . . . . . . . 35

Realizing Universal Dependencies Structures
Guy Lapalme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

IMSurReal: IMS at the Surface Realization Shared Task 2019
Xiang Yu, Agnieszka Falenska, Marina Haid, Ngoc Thang Vu and Jonas Kuhn . . . . . . . . . . . . . . . . 50

Surface Realization Shared Task 2019 (MSR19): The Team 6 Approach
Thiago Castro Ferreira and Emiel Krahmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

The Concordia NLG Surface Realizer at SRST 2019
Farhood Farahnak, Laya Rafiee, Leila Kosseim and Thomas Fevens. . . . . . . . . . . . . . . . . . . . . . . . . .63

The OSU/Facebook Realizer for SRST 2019: Seq2Seq Inflection and Serialized Tree2Tree Linearization
Kartikeya Upasani, David King, Jinfeng Rao, Anusha Balakrishnan and Michael White . . . . . . . . 68

Improving Language Generation from Feature-Rich Tree-Structured Data with Relational Graph Convo-
lutional Encoders

Xudong Hong, Ernie Chang and Vera Demberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

The DipInfoUniTo Realizer at SRST’19: Learning to Rank and Deep Morphology Prediction for Multi-
lingual Surface Realization

Alessandro Mazzei and Valerio Basile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

LORIA / Lorraine University at Multilingual Surface Realisation 2019
Anastasia Shimorina and Claire Gardent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Back-Translation as Strategy to Tackle the Lack of Corpus in Natural Language Generation from Seman-
tic Representations

Marco Antonio Sobrevilla Cabezudo, Simon Mille and Thiago Pardo . . . . . . . . . . . . . . . . . . . . . . . . 94

vii





Conference Program

Sunday, November 3, 2019

8:45–9:00 Opening

Invited talk
9:00–10:00 Invited Talk by Claire Gardent

SR’19 Overview and results
10:00–10:30 The Second Multilingual Surface Realisation Shared Task (SR’19): Overview and

Evaluation Results
Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham and Leo Wanner

10:30–11:00 Coffee break

Oral Presentations
11:00–11:25 Learning to Order Graph Elements with Application to Multilingual Surface Real-

ization
Wenchao Du and Alan W Black

11:25–11:50 DepDist: Surface realization via regex and learned dependency-distance tolerance
William Dyer

11:50–12:15 BME-UW at SRST-2019: Surface realization with Interpreted Regular Tree Gram-
mars
Ádám Kovács, Evelin Ács, Judit Ács, Andras Kornai and Gábor Recski

12:15–12:40 Realizing Universal Dependencies Structures
Guy Lapalme

12:40–14:00 Lunch break

Invited talk
14:00–15:00 Invited Talk by Maurice Benayoun (a.k.a. MoBen)

Oral Presentation
15:00–15:30 IMSurReal: IMS at the Surface Realization Shared Task 2019

Xiang Yu, Agnieszka Falenska, Marina Haid, Ngoc Thang Vu and Jonas Kuhn

Poster Session (including break)
15:30–17:00 Surface Realization Shared Task 2019 (MSR19): The Team 6 Approach

Thiago Castro Ferreira and Emiel Krahmer
15:30–17:00 The Concordia NLG Surface Realizer at SRST 2019

Farhood Farahnak, Laya Rafiee, Leila Kosseim and Thomas Fevens
15:30–17:00 The OSU/Facebook Realizer for SRST 2019: Seq2Seq Inflection and Serialized

Tree2Tree Linearization
Kartikeya Upasani, David King, Jinfeng Rao, Anusha Balakrishnan and Michael
White

15:30–17:00 Improving Language Generation from Feature-Rich Tree-Structured Data with Re-
lational Graph Convolutional Encoders
Xudong Hong, Ernie Chang and Vera Demberg

ix



Sunday, November 3, 2019 (continued)

Poster Session (continued)
15:30–17:00 The DipInfoUniTo Realizer at SRST’19: Learning to Rank and Deep Morphology

Prediction for Multilingual Surface Realization
Alessandro Mazzei and Valerio Basile

15:30–17:00 LORIA / Lorraine University at Multilingual Surface Realisation 2019
Anastasia Shimorina and Claire Gardent

15:30–17:00 Back-Translation as Strategy to Tackle the Lack of Corpus in Natural Language
Generation from Semantic Representations
Marco Antonio Sobrevilla Cabezudo, Simon Mille and Thiago Pardo

17:00–18:00 Round table

x



Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019), pages 1–17
Hong Kong, China, November 3rd, 2019. c©2019 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

The Second Multilingual Surface Realisation Shared Task (SR’19):
Overview and Evaluation Results

Simon Mille
UPF, Barcelona

simon.mille@upf.edu

Anja Belz
University of Brighton

a.s.belz@brighton.ac.uk

Bernd Bohnet
Google Inc.

bohnetbd@google.com

Yvette Graham
ADAPT Research Centre, DCU

graham.yvette@gmail.com

Leo Wanner
ICREA and UPF, Barcelona
leo.wanner@upf.edu

Abstract

We report results from the SR’19 Shared
Task, the second edition of a multilingual sur-
face realisation task organised as part of the
EMNLP’19 Workshop on Multilingual Sur-
face Realisation. As in SR’18, the shared task
comprised two different tracks: (a) a Shallow
Track where the inputs were full UD structures
with word order information removed and to-
kens lemmatised; and (b) a Deep Track where
additionally, functional words and morpholog-
ical information were removed. The Shallow
Track was offered in 11, and the Deep Track
in three languages. Systems were evaluated
(a) automatically, using a range of intrinsic
metrics, and (b) by human judges in terms of
readability and meaning similarity to a refer-
ence. This report presents the evaluation re-
sults, along with descriptions of the SR’19
tracks, data and evaluation methods, as well as
brief summaries of the participating systems.
For full descriptions of the participating sys-
tems, please see the separate system reports
elsewhere in this volume.

1 Introduction and Task Overview

Following the success of the First Multilin-
gual Surface Realisation Shared Task in 2018
(SR’18), which had the goal to stimulate the ex-
ploration of advanced neural models for multi-
lingual sentence generation from Universal De-
pendency (UD) structures,1 the second edition of
the task (SR’19) aims to build on last year’s re-
sults and achieve further progress. While Natural
Language Generation (NLG) has been gaining in-
creasing attention from NLP researchers, it con-
tinues to be a smaller field than e.g. parsing, text
classification, sentiment analysis, etc. Universal
dependencies are also enjoying increasing atten-
tion: the number of UD treebanks is continuously

1http://universaldependencies.org/

growing, as is their size (and thus the volume of
available training material).2

The SR tasks require participating systems to
generate sentences from structures at the level of
abstraction of outputs produced by state-of-the-art
parsing. In order to promote linkage with pars-
ing and earlier stages of generation, participants
are encouraged to explore the extent to which neu-
ral network parsing algorithms can be reversed for
generation. As was the case with its predecessor
tasks SR’11 (Belz et al., 2011) and SR’18 (Mille
et al., 2018), SR’19 comprises two tracks distin-
guished by the level of specificity of the inputs:

Shallow Track (T1): This track starts from UD
structures in which most of the word order infor-
mation has been removed and tokens have been
lemmatised. In other words, it starts from un-
ordered dependency trees with lemmatised nodes
that hold PoS tags and morphological information
as found in the original treebank annotations. The
task in this track therefore amounts to determining
the word order and inflecting words.

Deep Track (T2): This track starts from UD
structures from which functional words (in partic-
ular, auxiliaries, functional prepositions and con-
junctions) and surface-oriented morphological and
syntactic information have additionally been re-
moved. The task in the Deep Track thus also
involves reintroduction of functional words and
morphological features, in addition to what is re-
quired for the Shallow Track.

The training and development data for both tracks
and the evaluation scripts were released on April
5th 2019, the training data on August 3rd 2019
and the outputs were collected two weeks later on
August 19th; the teams had up to 4 months to de-

2UD v2.4 contains 146 treebanks in 83 languages.
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velop their systems.3 Compared to SR’18, SR’19
has a broader variety of languages hence even
more emphasis on multilinguality, with 11 lan-
guages from 9 language families:4 Arabic (Afro-
Asiatic), Chinese (Sino-Tibetan), English (Ger-
manic), French, Portuguese and Spanish (Italic),
Hindi (Indo-Iranian), Indonesian (Austronesian),
Japanese (Japonic), Korean (Koreanic) and Rus-
sian (Balto-Slavic). This reflects a trend in NLP
towards taking into account increasing numbers of
languages for the validation of developed models;
see e.g., SIGMORPHON 2019, which addressed
crosslingual inflection generation in 100 language
pairs.5

In the remainder of this paper, we describe the
Shallow and Deep Track data (Section 2), and the
evaluation methods we used to evaluate submit-
ted systems (Sections 3.1 and 3.2). We then intro-
duce the participating systems briefly (Section 4),
report and discuss evaluation results (Section 5),
and conclude with some discussion and a look to
the future (Section 6).

2 Data

2.1 Overview of datasets and additional
resources

In order to create the SR’19 training, development
and test sets, we used as data sources 20 UD tree-
banks6 for which annotations of reasonable qual-
ity were available, providing PoS tags and mor-
phologically relevant markup (number, tense, ver-
bal finiteness, etc.). Unlike in SR’18, several tree-
banks were available for some languages, enabling
us to use out-of-domain as well as silver standard
datasets as additional test data (for details see Sec-
tion 2.3). Table 1 gives an overview of the variety
and sizes of the datasets.

Teams were allowed to build models trained on
any SR’19 dataset(s) of their choice, but not exter-
nal task-specific data. Other resources were, how-
ever, permissible. For example, available parsers
such as UUParser (Smith et al., 2018) could be
run to create a silver standard versions of provided
datasets and use them as additional or alternative
training material, and publicly available off-the-

3In the case of one team, we agreed to move the two
week window between test data release and submission to
one week earlier.

4At SR’18, there were ten languages from five families.
5https://www.aclweb.org/portal/

content/sigmorphon-shared-task-2019
6universaldependencies.org

shelf language models such as GPT-2 (Radford
et al., 2019), ELMo (Peters et al., 2018), poly-
glot (Al-Rfou et al., 2013) or BERT (Devlin et al.,
2018) could be fine-tuned with publicly available
datasets such as WikiText (Merity et al., 2016)
or the DeepMind Q&A Dataset (Hermann et al.,
2015).

Datasets were created for 11 languages in the
Shallow Track, and for three of those languages,
namely English, French and Spanish, in the Deep
Track. As in 2018, Shallow Track inputs were
generated with the aid of Python scripts from the
original UD structures, this time using all avail-
able input sentences. Deep Track inputs were
then generated by automatically processing the
Shallow Track structures using a series of graph-
transduction grammars covering steps 5–11 in
Section 2.2 below. In the training data, there is
a node-to-node correspondence between the deep
and shallow input structures, and they are both
aligned with the original UD structures. We used
only information found in the UD syntactic struc-
tures to create the deep inputs, and tried to keep
their structure simple. Moreover, words were not
disambiguated, full prepositions may be missing,
and some argument relations may be underspeci-
fied or missing.

Structures for both Shallow and Deep Tracks
are trees, and are released in a slightly modified
CoNLL-U format, comprising the following ten
columns: [1] Position, [2] Lemma, [3] Wordform,
[4] PoS, [5] Fine-grained PoS (if available), [6]
Features (FEATS), [7] governor, [8] dependency
relation, [9] additional dependency information,
and [10] metadata.7 Figure 1 shows a sample orig-
inal UD annotation for English; the corresponding
shallow and deep input structures derived from it
are shown in Figures 2 and 3, respectively (the last
two columns are empty for the task).

2.2 Task data creation

To create the data for the Shallow Track, the orig-
inal UD data was processed as follows:

1. Word order information was removed by ran-
domised scrambling, but in the training data,
the alignment with the original position of
each word in the sentence was maintained via
a feature in the FEATS column;

7http://universaldependencies.org/
format.html
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Data type Dataset Track train dev test

In-domain

arabic padt (ar) T1 6,075 909 680
chinese gsd (zh) T1 3,997 500 500
english ewt (en) T1, T2 12,543 2,002 2,077
english gum (en) T1, T2 2,914 707 778
english lines (en) T1, T2 2,738 912 914
english partut (en) T1, T2 1,781 156 153
french gsd (fr) T1, T2 14,450 1,476 416
french partut (fr) T1, T2 803 107 110
french sequoia (fr) T1, T2 2,231 412 456
hindi hdtb (hi) T1 13,304 1,659 1,684
indonesian gsd (id) T1 4,477 559 557
japanese gsd (ja) T1 7,133 511 551
korean gsd (ko) T1 4,400 950 989
korean kaist (ko) T1 23,010 2,066 2,287
portuguese bosque (pt) T1 8,328 560 477
portuguese gsd (pt) T1 9,664 1,210 1,204
russian gsd (ru) T1 3,850 579 601
russian syntagrus (ru) T1 48,814 6,584 6,491
spanish ancora (es) T1, T2 14,305 1,654 1,721
spanish gsd (es) T1, T2 14,187 1,400 426

Out-of-domain
english pud (en) T1, T2 - - 1,000
japanese pud (ja) T1 - - 1,000
russian pud (ru) T1 - - 1,000

Automatically parsed

english ewt-HIT (en) T1, T2 - - 1,795
english pud-LAT (en) T1, T2 - - 1,032
hindi hdtb-HIT (hi) T1 - - 1,675
korean kaist-HIT (ko) T1 - - 2,287
portuguese bosque-Sta (pt) T1 - - 471
spanish ancora-HIT (es) T1, T2 - - 1,723

Table 1: SR’19 dataset sizes for training, development and test sets (number of sentences).

2. Missing lemmas were added in the file, since
in some cases the lemma value was empty
(e.g. Portuguese-gsd dataset) or generalised
(e.g. @card@ or @ord@ for cardinal and or-
dinal numbers in the English-gum dataset);8

3. The lines corresponding to combined lexi-
cal units (e.g. Spanish “del” <de+el> lit.
’of.the’) and the contents of columns [9] and
[10] were removed;

4. Information about the relative order of com-
ponents of named entities, multiple coordina-
tions and punctuation signs was added in the
FEATS column (dependency relations com-
pound, compound:prt, compound:svc, flat,
flat:foreign, flat:name, fixed, conj, punct);

For the Deep Track, the following steps were ad-
ditionally carried out:

5. Edge labels were generalised into pred-
icate/argument labels, in the Prop-
Bank/NomBank (Palmer et al., 2005;
Meyers et al., 2004) fashion. That is, the

8Thank you to Guy Lapalme for spotting this.

syntactic relations were mapped to core (A1,
A2, etc.) and non-core (AM) labels, applying
the following rules: (i) the first argument is
always labeled A1 (i.e. there is no external
argument A0); (ii) in order to maintain the
tree structure and account for some cases
of shared arguments, there can be inverted
argument relations; (iii) all modifier edges
are assigned the same generic label AM; (iv)
there is a coordinating relation. See also the
inventory of relations in Table 2.

6. Functional prepositions and conjunctions in
argument position (i.e. prepositions and con-
junctions that can be inferred from other lexi-
cal units or from the syntactic structure) were
removed (e.g. about and that in Figure 2);
prepositions and conjunctions retained in the
deep representation can be found under a
A2INV dependency; a dependency path Gov
AM→ Dep A2INV → Prep is equivalent to a
predicate (the conjunction/preposition) with
2 arguments: Gov← A1 Prep A2→ Dep.

7. Definite and indefinite determiners, auxil-
iaries and modals were converted into at-

3



Deep label Description Example

A1, A2, ..., A6 nth argument of a predicate fall→ the ball
A1INV, ..., A6INV nth inverted argument of a predicate the ball→ fall
AM/AMINV (i) none of governor or dependent are argument of the other fall→ last night

(ii) unknown argument slot
LIST List of elements fall→ [and] bounce
NAME Part of a name Tower→ Eiffel
DEP Undefined dependent N/A

Table 2: Deep labels.

tribute/value pairs, as were definiteness fea-
tures, and the universal aspect and mood fea-
tures9, see examples in Figure 3.

8. Subject and object relative pronouns directly
linked to the main relative verb were re-
moved (instead, the verb was linked to the an-
tecedent of the pronoun); a dummy pronoun
node for the subject was added if an origi-
nally finite verb had no first argument and no
available argument to build a passive; for a
pro-drop language such as Spanish, a dummy
pronoun was added if the first argument was
missing.

9. Surface-level morphologically relevant infor-
mation as prescribed by syntactic structure or
agreement (such as verbal finiteness or ver-
bal number) was removed, whereas semantic-
level information such as nominal number
and verbal tense was retained.

10. Fine-grained PoS labels found in some tree-
banks (see e.g. column 5 in Figure 2) were
removed, and only coarse-grained ones were
retained (column 4 in Figures 2 and 3).

11. In the training data, the alignments with the
tokens of the Shallow Track structures were
added in the FEATS column.

Figure 3 shows an example Deep Track input that
corresponds to the original and shallow structures
in Figures 1 and 2.

2.3 Additional test data
For additional test data, we used automatically
produced UD parses, which we then processed in
the same way as the gold-standard structures, us-
ing the best parsers from the CoNLL’18 shared
task on the dataset in question.10 We used the

9http://universaldependencies.org/u/
feat/index.html

10See the rankings per treebanks at https:
//universaldependencies.org/conll18/
results-las.html.

UD2.3 version of the dataset, whereas CoNLL’18
used UD2.2; we selected treebanks that had not
undergone major updates from one version to the
next according to their README files on the UD
site, and for which the best available parse reached
a Labeled Attachment Score of 85 and over.11

There were datasets meeting these criteria for En-
glish (2), Hindi, Korean, Portuguese and Spanish;
the Harbin HIT-SCIR parser (Che et al., 2017) had
best scores on four of these datasets; LATTICE
(Lim et al., 2018) and Stanford (Qi et al., 2019)
had the best scores for the remaining two;12 see
Table 3 for an overview.

As is the case for all test data, in the additional
automatically parsed test data alignments with sur-
face tokens and with Shallow Track tokens are
not provided; however, in the cases described in
4 above, the relative order is provided.

Treebank Best system LAS

english ewt HIT-SCIR 84.57
english pud LATTICE 87.89
hindi hdtb HIT-SCIR 92.41
korean kaist HIT-SCIR 86.91
portuguese bosque Stanford 87.81
spanish ancora HIT-SCIR 90.93

Table 3: The 6 combinations of dataset and parser out-
puts selected for the automatically parsed test set.

2.4 Data formats for evaluations
Unlike in SR’18, where detokenised outputs only
were used, the SR’19 teams were asked to pro-
vide tokenised (for automatic evaluations) as well
as detokenised (for human evaluations) outputs;
if no detokenised outputs were provided, the to-
kenised files were also used for the human evalu-

11The best score on the English-EWT dataset is slightly be-
low this threshold (84.57), but the dataset was selected any-
way because English was expected to be the language most
addressed by the participants.

12The CoNLL’18 shared task submissions were down-
loaded from https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-2885.
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Figure 1: A sample UD structure in English.

Figure 2: Shallow input (T1) derived from UD structure in Figure 1
.

Figure 3: Deep input (T2) derived from UD structure in Figure 1.
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ation. The reason for using tokenised outputs for
automatic evaluation is the inclusion of languages
like Chinese and Japanese where sentences are se-
quences of characters with no white-space separa-
tors. Two of the metrics used in automatic eval-
uations, BLEU and NIST, compute scores based
on matching sequences of characters; if there is
no whitespace, the whole sentence is the sequence
that is used for matching. As a result, one single
different character in a sentence would prevent a
match with the reference sentence, and a null score
would be assigned to the whole sentence. The fol-
lowing example shows a Spanish sentence in its
tokenised and detokenised forms:

• Tokenised sample (Spanish): All tokens are
preceded by a white space.
Elı́as Jaua , miembro del Congresillo , con-
sidera que los nuevos miembros del CNE
deben tener experiencia para “ dirigir pro-
cesos complejos ” .

• Detokenised sample (Spanish): White spaces
before or after some punctuation signs are re-
moved.
Elı́as Jaua, miembro del Congresillo, con-
sidera que los nuevos miembros del CNE
deben tener experiencia para “dirigir proce-
sos complejos”.

In the original UD files, the reference sentences
are by default detokenised. In order to carry out
the evaluations of the tokenised outputs, we built
a tokenised version of the reference sentences by
concatenating the words of the second column of
the UD structures (see Figure 1) separated by a
whitespace.

3 Evaluation Methods

3.1 Automatic methods
We used BLEU, NIST, and inverse normalised
character-based string-edit distance (referred to as
DIST, for short, below) to assess submitted sys-
tems. BLEU (Papineni et al., 2002) is a precision
metric that computes the geometric mean of the
n-gram precisions between generated text and ref-
erence texts and adds a brevity penalty for shorter
sentences. We use the smoothed version and re-
port results for n = 4.

NIST13 is a related n-gram similarity metric
13http://www.itl.nist.gov/iad/mig/

tests/mt/doc/ngram-study.pdf; http://
www.itl.nist.gov/iad/mig/tests/mt/2009/

weighted in favor of less frequent n-grams which
are taken to be more informative.

DIST starts by computing the minimum num-
ber of character inserts, deletes and substitutions
(all at cost 1) required to turn the system output
into the (single) reference text. The resulting num-
ber is then divided by the number of characters in
the reference text, and finally subtracted from 1,
in order to align with the other metrics. Spaces
and punctuation marks count as characters; output
texts were otherwise normalised as for all metrics
(see below).

The figures in the tables below are the system-
level scores for BLEU and NIST, and the mean
sentence-level scores for DIST.

Text normalisation: Output texts were nor-
malised prior to computing metrics by lower-
casing all tokens, removing any extraneous
whitespace characters.

Missing outputs: Missing outputs were scored
0. We only report results for all sentences (incor-
porating the missing-output penalty), rather than
also separately reporting scores for just the in-
coverage items.

Important note: The SR’19 scores are not di-
rectly comparable to the SR’18 ones, since the
SR’18 scores were calculated on detokenised out-
puts, whereas the scores presented in this report
were calculated on tokenised outputs (see Section
2.4). In addition, the method for calculating the
DIST score in SR’18 was different in that it did
not take into account the whole sentence. 14

3.2 Human-assessed methods
For the human evaluation, we selected a sub-
set of language/track combinations based on
number of submissions received and availabil-
ity of evaluators: four Shallow Track in-domain
datasets (Chinese-GSD, English-EWT, Russian-
SynTagRus, Spanish-AnCora), one Shallow Track
dataset coming from parsed data (Spanish-
AnCoraHIT ) and one (in-domain) Deep Track
dataset (English-EWT).

As in SR’11 (Belz et al., 2011) and SR’18
(Mille et al., 2018), we assessed two quality cri-
teria in the human evaluations, in separate evalua-
tion experiments, Readability and Meaning Simi-
larity, and used continuous sliders as rating tools,
the evidence being that raters tend to prefer them

14Thank you to Yevgeniy Puzikov for pointing this out.
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(Belz and Kow, 2011). Slider positions were
mapped to values from 0 to 100 (best). Raters
were first given brief instructions, including the
direction to ignore formatting errors, superfluous
whitespace, capitalisation issues, and poor hy-
phenation. The statement to be assessed in the
Readability evaluation was:

The text reads well and is free from gram-
matical errors and awkward constructions.

The corresponding statement in the Meaning Sim-
ilarity evaluation, in which system outputs (‘the
black text’) were compared to reference sentences
(‘the grey text’), was as follows:

The meaning of the grey text is adequately
expressed by the black text.

Slider design: As in SR’18, and for conformity
with what has emerged as an affordable human
evaluation standard over the past three years in
the main machine translation shared tasks held at
WMT (Bojar et al., 2017, 2018; Barrault et al.,
2019), we used a slider design as follows, with the
pointer starting at 0:

Mechanical Turk evaluations: As in SR’18,
we ran human evaluation on Mechanical Turk us-
ing Direct Assessment (DA) (Graham et al., 2016),
the human evaluation used at WMT campaigns
to produce official ranking of machine translation
systems (Barrault et al., 2019). We ran both mean-
ing similarity and readability evaluations, as sepa-
rate assessments, but using the same method.

Quality assurance: System outputs are ran-
domly assigned to HITs (following Mechanical
Turk terminology) of 100 outputs, of which 20
are used solely for quality assurance (QA) (i.e. do
not count towards system scores): (i) some are re-
peated as-is, (ii) some are repeated in a ‘damaged’
version and (iii) some are replaced by their cor-
responding reference texts. In each case, a mini-
mum threshold has to be reached for the HIT to be
accepted: for (i), scores must be similar enough,
for (ii) the score for the damaged version must be
worse, and for (iii) the score for the reference text
must be high. For full details of how these ad-
ditional texts are created and thresholds applied,
please refer to Barrault et al. (2019). We report
QA figures for the MTurk evaluations below.

Test data sets for human evaluations: Test set
sizes out of the box varied for the different lan-
guages. For the human test sets we selected either
the entire set or a subset of approximately 500,
whichever was the smaller number, for a given lan-
guage, motivated by the power analysis provided
by Graham et al. (2019). For subsets, test set items
were selected randomly.

Reported scores: In keeping with the WMT ap-
proach, we report both average raw scores and
average standardised scores per system. In or-
der to produce standardised scores we simply map
each individual evaluator’s scores to their stan-
dard scores (or z-scores) computed on the set of
all raw scores by the given evaluator using each
evaluator’s mean and standard deviation. For both
raw and standard scores, we compute the mean of
sentence-level scores.

Code: We were able to reuse, with minor adap-
tations, the code produced for the WMT’17 evalu-
ations.15

4 Overview of Submitted Systems

ADAPT is a sequence to sequence model with de-
pendency features attached to word embeddings.
A BERT sentence classifier was used as a reranker
to choose between different hypotheses. The im-
plementation is very similar to ADAPT’s SR’18
submission (Elder and Hokamp, 2018).

The BME-UW system (Kovács et al., 2019)
learns weighted rules of an Interpreted Regu-
lar Tree Grammar (IRTG) to encode the cor-
respondence between word sequences and UD-
subgraphs. For the inflection step, a standard
sequence-to-sequence model with a biLSTM en-
coder and an LSTM decoder with attention is used.

CLaC (Farahnak et al., 2019) is a pointer net-
work trained to find the best order of the input.
A slightly modified version of the transformer
model was used as the encoder and decoder for
the pointer network.

The CMU (Du and Black, 2019) system uses a
graph neural network for end-to-end ordering, and
a character RNN for morphology.

DepDist (Dyer, 2019) uses syntactic embed-
dings and a graph neural network with message
passing to learn the tolerances for how far a de-
pendent tends to be from its head. These directed

15https://github.com/ygraham/
segment-mteval
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dependency distance tolerances form an edge-
weighted directed acyclic graph (DAG) (equiva-
lent to a partially ordered set, or poset) for each
sentence, the topological sort of which generates
a surface order. Inflection is addressed with regex
patterns and substitutions approximating produc-
tive inflectional paradigms.

The DipInfoUnito realiser (Mazzei and Basile,
2019) is a supervised statistical system for surface
realisation, in which two neural network-based
models run in parallel on the same input structure,
namely a list-wise learning to rank network for lin-
earisation and a seq2seq network for morphology
inflection prediction.

IMS (Yu et al., 2019) uses a pipeline approach
for both tracks, consisting of linearisation, com-
pletion (for T2 only), inflection, and contraction.
All models use the same bidirectional Tree-LSTM
encoder architecture. The linearisation model or-
ders each subtree separately with beam search and
then combines them into a full projective tree;
the completion model generates absent function
words in a sequential way given the linearised tree
of content words; the inflection model predicts a
sequence of edit operations to convert the lemma
to word form character by character; the contrac-
tion model predicts BIO tags to group the words
to be contracted, and then generate the contracted
word form of each group with a seq2seq model.

The LORIA submission (Shimorina and Gar-
dent, 2019) presents a modular approach to sur-
face realisation with three subsequent steps: word
ordering, morphological inflection, and contrac-
tion generation (for some languages). For word
ordering, the data is delexicalised, the input tree
is linearised, and the mapping between an input
tree and output lemma sequence is learned using
a factored sequence-to-sequence model. Morpho-
logical inflection makes use of a neural character-
based model, which produces word forms based
on lemmas coupled with morphological features;
finally, a rule-based contraction generation mod-
ule is applied for some languages.

The OSU-FB pipeline for generation (Upasani
et al., 2019) starts by generating inflected word
forms in the tree using character seq2seq mod-
els. These inflected syntactic trees are then lin-
earised as constituent trees by converting the rela-
tions to non-terminals. The linearised constituent
trees are fed to seq2seq models (including models
with copy and with tree-LSTM encoders) whose

outputs also contain tokens marking the tree struc-
ture. N-best outputs are obtained for orderings
and the highest confidence output sequence with
a valid tree is chosen (i.e, one where the input and
output trees are isomorphic up to sibling order, en-
suring projectivity).

The RALI system (Lapalme, 2019) uses a sym-
bolic approach to transform the dependency tree
into a tree of constituents that is transformed into
an English sentence by an existing English re-
aliser, JSrealB (Molins and Lapalme, 2015). This
realiser was then slightly modified for the two
tracks.

Surfers (Hong et al., 2019) first performs delex-
icalisation to obtain a dictionary for proper names
and numbers. A GCN is then used to encode the
tree inputs, and an LSTM encoder-decoder with
copy attention to generate delexicalised outputs.
No part-of-speech tags, universal features or pre-
trained embeddings / language models are used.

The Tilburg approach (Ferreira and Krahmer,
2019), based on Ferreira et al. (2018), realises
multilingual texts by first preprocessing an input
dependency tree into an ordered linearised string,
which is then realised using a rule-based and a sta-
tistical machine translation (SMT) model.

Baseline: In order to set a lower boundary for
the automatic and human evaluations, a simple En-
glish baseline consisting of 7 lines of python code
was implemented16. It generates from a UD file
with an in-order traversal of the tree read by py-
conll and outputting the form of each node.

5 Evaluation results

There were 14 submissions to the task, of which
two were withdrawn; 9 teams participated in the
Shallow Track only, two teams participated in both
tracks, and one team in the Deep Track only. For
the Shallow Track, four teams (BME, IMS, LO-
RIA and Tilburg) generated outputs for all lan-
guages (29 datasets), four teams (ADAPT, CLaC,
RALI and OSU-FB) submitted only for the En-
glish datasets, and three teams (CMU, DepDist
and DipInfo-UniTo) submitted in several but not
all languages. For the Deep Track, two of the three
teams (IMS, Surfers) addressed all languages (13
datasets), and one team (RALI) addressed English
only. IMS is the only team to have submitted re-
sults for all 42 datasets.

16The idea and implementation are from Guy Lapalme,
who is also the author of the RALI system.
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–T1-BLEU– ADA BME CLa CMU Dep Dip IMS LOR RAL OSU Til

ar padt 26.4 23.01 64.9 16.71 21.12
en ewt 79.69 59.22 22.08 77.47 60.51 43.5 82.98 60.37 41.23 62.38 59.57
en gum 81.39 57.57 15.32 82.39 66.06 44.24 83.84 60.7 46.68 49.91 59.39
en lines 41.62 48.78 15.3 75.49 59.81 32.42 81 58.82 41.28 54.56 57.02
en partut 51 61.37 10.07 78.98 62.68 35.11 87.25 53.64 48.43 7.37 64.87
es ancora 61.09 76.47 59.29 83.7 43.02 59.29
es gsd 53.74 70.15 57.14 82.98 53.16 54.48
fr gsd 43.8 60.15 44.91 27.04 84 54.6 52.1
fr partut 49.17 63.7 55.05 37.69 83.38 54.14 66.01
fr sequoia 46.72 62.79 46.87 28.95 85.01 53.71 57.41
hi hdtb 63.63 64.07 80.56 26.51 60.72
id gsd 54.22 63.71 85.34 46.27 53.03
ja gsd 49.53 63.59 50.19 87.69 38.8 43.02
ko gsd 46.08 41.81 74.19 37.85 2.14
ko kaist 47.23 73.93 39.75 1.39
pt bosque 39.53 39.82 77.75 52.69 51.18
pt gsd 30.39 27.16 75.93 33.45 40.48
ru gsd 54.58 32.04 71.23 55.09 6.84
ru syntagrus 50.91 76.95 59.99 30.51
zh gsd 58.72 68.54 59.64 32.87 83.85 48.21 53

en pud 84.07 60.42 12.36 80.35 45.61 86.61 61.43 46.84 67.91 63.29
ja pud 53.65 66.52 86.64 41.72 44.37
ru pud 10.15 58.38 52.37 16.35

en ewtHIT 77.21 58.07 21.21 76.6 43.23 81.8 58.5 39.77 60.58 59.08
en pudLAT 80.66 53.46 12.89 76.22 44.06 82.6 55.4 41.5 66.18 57.92
es ancoraHIT 61.26 77.28 83.31 43.2 59.58
hi hdtbHIT 64.27 80.19 26.99 61.54
ko kaistHIT 46.72 74.27 41.83 1.73
pt bosqueSTA 40.42 78.97 53.64 52.79

Table 4: BLEU-4 scores for the 29 Shallow Track datasets

–T1-NIST– ADA BME CLa CMU Dep Dip IMS LOR RAL OSU Til

ar padt 8.29 7.2 12.22 6.25 7.06
en ewt 13.44 12.62 9.77 13.28 12.5 11.56 13.61 11.89 10.69 11.29 12.56
en gum 12.6 11.99 8.64 12.73 12.07 11.15 12.69 11.15 10.74 8.5 11.8
en lines 9.19 11.54 8.23 12.43 11.68 10.05 12.71 11.17 10.19 9.89 11.64
en partut 8.59 10.34 7.14 10.74 10.23 9.08 11.01 9.29 9.28 3.21 10.27
es ancora 13.52 14.27 13.19 14.69 11.13 13.44
es gsd 11.44 11.99 11.43 12.77 10.68 11.39
fr gsd 10.33 10.86 10.32 9.58 12.45 10.66 10.89
fr partut 8.99 9.16 8.94 8.57 10.36 8.92 9.29
fr sequoia 10.55 11.04 10.47 9.72 12.53 10.56 10.93
hi hdtb 12.26 12.09 13.07 7.97 12.35
id gsd 11.82 12.01 12.83 9.79 11.41
ja gsd 9.99 10.62 9.67 12.42 8.51 9.36
ko gsd 11.98 10.54 12.27 9.98 3.43
ko kaist 12.65 13 10.62 2.52
pt bosque 9.77 9.76 12.15 10.52 11.01
pt gsd 8.85 8.57 13.07 8.89 10.69
ru gsd 11.91 9.06 12.15 11.43 4.68
ru syntagrus 13.8 15.08 13.98 10.87
zh gsd 11.85 12.28 11.98 11.16 12.78 10.27 11.61

en pud 13.36 12.6 8.83 13.18 11.81 13.47 11.81 11.4 11.74 12.69
ja pud 10.56 11.35 13.02 9.29 9.98
ru pud 9.64 10.91 11.16 7.19

en ewtHIT 13.24 12.49 9.69 13.18 11.44 13.46 11.61 10.48 10.96 12.45
en pudLAT 13.17 12.29 8.82 13.02 11.67 13.26 11.42 10.93 11.7 12.32
es ancoraHIT 13.51 14.3 14.61 11.09 13.44
hi hdtbHIT 12.29 13.05 8.01 12.46
ko kaistHIT 12.63 13.02 10.79 2.81
pt bosqueSTA 9.73 12.14 10.54 11.05

Table 5: NIST scores for the 29 Shallow Track datasets
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–T1-DIST– ADA BME CLa CMU Dep Dip IMS LOR RAL OSU Til

ar padt 43.06 55.72 73.71 48.96 53.44
en ewt 83.69 62.69 45.99 80.92 71.99 60.13 86.72 73.96 59.78 77.93 73.67
en gum 83.26 56.07 38.13 84.41 68.84 56.04 83.49 72.89 58.6 66.88 69.92
en lines 63.31 52.77 40.4 79.6 65.93 53.21 82.21 71.21 56.68 71.07 67.37
en partut 70.32 61.22 36.21 78.89 65.9 51.15 85.68 66.8 57.64 54.27 66.69
es ancora 58.15 75.53 62.45 79.82 63.2 63.03
es gsd 59.03 73.69 63.9 79.45 66.07 62.55
fr gsd 59.35 75.18 62.47 47.33 84.15 66.55 63.3
fr partut 56.87 79.83 69.45 54.85 82.32 65.76 72.28
fr sequoia 59.28 76.6 61.96 48.7 85.13 67.21 66.24
hi hdtb 64.04 65.85 79.07 60.67 65.63
id gsd 55.57 71.39 83.92 63.41 71.07
ja gsd 57.03 79.09 69.14 87.17 61.03 62.08
ko gsd 52.1 65.75 80.95 62.56 48.54
ko kaist 50.9 78.69 66.17 49.81
pt bosque 58.72 61.16 79.8 65.96 63.37
pt gsd 54.93 57.93 79.33 63.41 59.6
ru gsd 52.67 55.84 73.04 62.98 50.36
ru syntagrus 55.6 78.66 69.06 56.91
zh gsd 59.29 73.03 65.28 50.57 83.18 62.27 65.7

en pud 85.03 59.84 36.26 81.5 53.26 87 72.85 59.45 78.12 71.01
ja pud 56.72 77.87 84.04 61.77 60.2
ru pud 32.08 77.12 68.71 58.68

en ewtHIT 81.57 60.36 43.59 79.41 58.72 85.35 71.91 58.67 74.64 72.7
en pudLAT 83.89 56.13 36.67 79.34 54.42 86.18 70.49 57.55 76.8 67.54
es ancoraHIT 58.38 77.26 81.14 64.68 63.24
hi hdtbHIT 64.58 78.88 61.58 66.13
ko kaistHIT 50.16 79.12 67.33 51.15
pt bosqueSTA 59.72 81.56 68.09 64.32

Table 6: DIST scores for the 29 Shallow Track datasets

5.1 Results from metric evaluations

Tables 4, 5, and 6 show results for the eleven T1
systems in terms of BLEU, NIST and DIST; Table
7 shows results for the three T2 systems in terms
of the same three metrics. In general, scores are
higher than last year. This is partly due to the fact
that the evaluations are performed on tokenised
sentences (see Section 2.4). Scores are about 5-
10 BLEU points lower when evaluations are run
on detokenised sentences; for instance, the BLEU
score for ADAPT on English-EWT is 79.69, but
using detokenised outputs and references it drops
to 70.26, which is very close to the 69.14 score
obtained in SR’18 (the SR’18 and SR’19 ADAPT
systems are very similar).

IMS obtained the best scores for all metrics on
almost all datasets: the only higher scores are the
NIST score for the LORIA system on Russian-
PUD, and the DIST score for CMU on English-
GUM. IMS achieved high macro-average scores
on both Shallow and Deep track datasets, with
79.97 BLEU for T1, 51.41 BLEU for T2, 12.79
NIST for T1, 10.94 NIST for T2, 81.62 DIST for
T1, and 71.16 DIST for T2.

In the Shallow Track, 8 out of the 11 systems
scored 59 BLEU and above on the English-EWT
dataset, and three systems achieved a BLEU score
of about 80, the highest score being obtained by
IMS with 82.98. High scores were also achieved
for Spanish, Hindi, Indonesian, French and Chi-
nese (58 BLEU and above on average).

Evaluations of the out-of-domain datasets
(PUD) for English and Japanese generally yielded
higher scores than those of the in-domain datasets,
whereas the opposite is true for Russian. This may
be because of the type of language in the differ-
ent datasets: for instance, the PUD data contains
news and Wikipedia texts, i.e. rather cleanly writ-
ten texts, while the English-EWT corpus contains
customer reviews, blog and forum posts, in which
a wider variety of language use can be found. Sen-
tences such as Fun picture websites (:? or in n out
of the chicago area? are expected to be generated
but are more difficult to predict; for instance, the
IMS outputs for these two sentences are In a out
of the chicago area? and (: fun picture websites?.
In this case the type of language used seems to
have more impact than the fact that the domains
are different. On the other hand, the Russian-
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–T2– BLEU NIST DIST
IMS RAL Sur IMS RAL Sur IMS RAL Sur

en ewt 54.75 26.28 23.35 11.79 9.42 7.29 76.3 55.08 56.88
en gum 52.45 26.17 17.97 11.04 9.14 5.88 73.07 51.64 49.45
en lines 47.29 24.94 20.96 10.63 8.79 6.35 71.93 51.2 52.49
en partut 45.89 23.82 17.19 9.03 7.67 4.66 67.45 48.88 47.2
es ancora 53.13 18.59 12.38 5.66 68.58 47.19
es gsd 51.17 18.69 10.82 5.53 68.85 48.06
fr gsd 53.62 15.83 10.79 4.53 68.82 47.93
fr partut 46.95 14.06 8.27 3.61 68.99 46.55
fr sequoia 57.41 18.52 11 4.8 72.06 50.94

en pud 51.01 26.39 18.11 11.45 9.63 6.18 72.31 49.91 49.88

en ewtHIT 53.54 24.54 22.42 11.55 9.19 6.9 74.99 52.54 54.86
en pudLAT 47.6 24.18 17.3 11.08 9.21 6.16 71.65 50.14 50.17
es ancoraHIT 53.54 21.1 12.36 5.98 70.02 48.57

Table 7: BLEU-4, NIST and DIST scores for the 13 Deep Track datasets

SynTagRus and Russian-PUD datasets both con-
tain mostly news texts, so the structures to gener-
ate are more similar; in this context, the impact of
the change of domain becomes visible.

The results on the automatically parsed datasets
are in general very similar to the results on datasets
that originate from gold-standard annotations. For
English-EWTHIT , all scores are slightly lower
than the English-EWT scores, with no more than
2 BLEU points, 0.3 NIST points and 2.5 DIST
points difference. For the English-PUDLAT , the
difference is more pronounced, up to 6 BLEU
points lower e.g. for BME-UW. However, for the
other four datasets, most scores are higher, with
improvements up to 2 BLEU points; the excep-
tions to this trend are IMS on the Hindi data and
BME-UW on the Korean-Kaist data, for which the
scores according to the three metrics are slightly
below scores for gold-standard data.

For the Deep Track datasets, scores are gener-
ally substantially lower than for the Shallow Track
datasets. The trends observed for the generation
from automatically parsed data are confirmed, but
the out-of-domain scores for English (the only lan-
guage with an out of domain dataset in the Deep
Track) are lower than the in-domain ones, which
could be due in particular to the difficulty of gen-
erating punctuation signs.

Finally, the Lower Bound (LB) baseline system
results are, as expected, very low (they are not
shown in the tables): on the two datasets that are
part of the human evaluation, i.e. the T1 and T2
English-EWT, it obtained 7.62 BLEU, 8.26 NIST,
37.99 DIST, and 1.31 BLEU, 4.8 NIST, 35.13
DIST, respectively.

5.2 Results of the human evaluation

Tables 8 and 9 show the results of the human eval-
uation carried out via Mechanical Turk with Direct
Assessment (MTurk DA) for English, Chinese,
Russian and Spanish, respectively. See Section 3.2
for details of the evaluation method. ‘DA’ refers to
the specific way in which scores are collected in
the WMT approach which follows the evaluation
approach of SR’18 but differs from what was done
for SR’11.

English: For human evaluation of systems for
both the Shallow (T1) and Deep (T2) Tracks, out-
puts were combined into a single dataset prior
to being evaluated and results for all systems are
shown in Tables 8 and 9. Average Meaning Sim-
ilarity DA scores for the Shallow Track for En-
glish systems range from 86.6% to 55.3% with
ADAPT and IMS achieving highest overall scores
in terms of both average raw DA scores and cor-
responding z-scores. In order to investigate how
Readability of system outputs compares to that of
human-produced text, we included the original test
sentences as a ‘system’ in the Readability eval-
uation. Unsurprisingly, human text achieves the
highest score in terms of Readability (71.1%) but
is closely followed by the best performing systems
in terms of Readability, IMS (67.9%) and ADAPT
(68.2%), both tied with human readability (and
one another) in terms of statistical significance.

In the Deep Track for English, IMS achieved
highest results in terms of Meaning Similarity
(80.6%), significantly higher than all other sys-
tems participating in the Deep Track. In terms of
Readability, IMS (61.9%) is tied, in terms of sta-
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English
Rank Ave. Ave. z n N System

1 86.6 0.507 695 810 ADAPT-T1
85.6 0.503 672 768 IMS-T1

3 82.5 0.407 702 812 CMU-T1
4 80.6 0.324 718 826 IMS-T2

79.7 0.289 711 816 TILBURG-T1
79.3 0.276 753 859 DEPDIST-T1
78.4 0.255 720 836 OSU-FB-T1
77.0 0.222 702 816 LORIA-T1
73.5 0.164 695 796 BME-UW-T1

10 72.9 0.110 680 795 RALI-T1
69.5 −0.006 700 811 DIPINFOUNITO-T1
67.0 −0.040 692 789 SURFERS-T2
68.3 −0.052 707 808 RALI-T2

14 60.9 −0.216 752 885 CLAC-T1
15 55.3 −0.390 674 775 LB-BASELINE-T1

53.0 −0.422 733 853 LB-BASELINE-T2

Russian
Rank Ave. Ave. z n N System

1 88.3 0.238 481 551 IMS
2 83.7 0.098 477 538 LORIA

83.0 0.071 447 509 BME-UW
4 77.5 −0.134 503 577 TILBURG

Chinese
Rank Ave. Ave. z n N System

1 83.0 0.342 481 711 IMS
2 79.5 0.265 471 691 CMU
3 74.8 0.113 479 709 DEPDIST

73.0 0.043 483 676 BME-UW
74.7 0.039 479 673 TILBURG

6 66.8 −0.188 477 654 DIPINFOUNITO
67.0 −0.213 480 699 LORIA

Pred. Spanish
Rank Ave. Ave. z n N System

1 82.7 0.394 686 799 IMS
2 78.4 0.272 683 804 CMU
3 70.3 −0.042 688 803 TILBURG

67.8 −0.105 675 789 BME-UW
5 59.2 −0.422 652 754 LORIA

UD Spanish
Rank Ave. Ave. z n N System

1 81.1 0.378 620 716 IMS
2 75.8 0.168 655 753 CMU
3 72.2 0.006 614 708 TILBURG
4 70.6 −0.080 617 704 DEPDIST

69.1 −0.111 623 705 BME-UW
6 63.2 −0.302 625 706 LORIA

Table 8: SR’19 human evaluation results for Meaning Similarity. Ave. = the average 0-100% received by systems;
Ave. z = corresponding average standardized scores; systems are ranked according to Ave. z score; horizontal lines
indicate clusters, such that systems in a cluster all significantly outperform all systems in lower ranked clusters; n
= total number of distinct test sentences assessed; N = total number of human judgments.

tistical significance, with Surfers (60.9%).17

Finally, note that for both Meaning Similarity
and Readability, as expected, the Lower Bound
Baselines are tied at the last rank with significantly
lower scores than the other systems.

Russian: Tables 8 and 9 show average DA
scores for systems participating in the Russian
task. Meaning Similarity scores for Russian sys-
tems range from 88.3% to 77.5% with IMS again
achieving highest overall score. In terms of Read-
ability, again IMS achieves the highest average
score of 84.1%. Compared to the human results,

17We tested for statistical significance of differences be-
tween average DA scores using a Wilcoxon rank sum test.

there is a larger gap than that observed for English
outputs, with the best system, IMS, still signifi-
cantly lower than human performance in terms of
Russian readability.

Spanish UD: Tables 8 and 9 show average DA
scores for systems participating in Spanish UD.
Meaning Similarity scores range from 81.1% to
63.2%, with IMS achieving the highest score, sig-
nificantly higher than all other participating teams.
In terms of Readability, the text produced by the
systems ranges from 86.5% to 60.6%, and again
IMS achieves the highest score, again significantly
higher than all other systems. No system achieves
human performance here either, as the human ref-
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English
Rank Ave. Ave. z n N System

− 71.1 0.585 824 1,281 HUMAN
1 67.9 0.507 477 564 IMS-T1

68.2 0.502 482 573 ADAPT-T1
3 61.9 0.313 512 582 IMS-T2

62.5 0.285 500 575 LORIA-T1
62.4 0.260 506 589 CMU-T1
60.8 0.257 497 572 SURFERS-T2
60.5 0.211 516 591 DEPDIST-T1
59.2 0.160 516 594 TILBURG-T1
58.3 0.156 488 554 BME-UW-T1
57.4 0.121 507 583 OSU-FB-T1
57.5 0.096 497 569 RALI-T1

12 50.3 −0.117 494 549 RALI-T2
49.6 −0.195 515 598 DIPINFOUNITO-T1
48.1 −0.202 524 610 CLAC-T1

15 37.8 −0.594 492 569 LB-Baseline-T2
36.5 −0.677 468 534 LB-Baseline-T1

Russian
Rank Ave. Ave. z n N System

− 87.5 0.430 404 432 HUMAN
1 84.1 0.238 736 838 IMS
2 80.9 0.110 747 861 LORIA
3 77.7 0.022 739 846 BME-UW
4 72.7 −0.214 792 902 TILBURG

Chinese
Rank Ave. Ave. z n N System

− 72.8 0.730 323 646 HUMAN
1 68.2 0.541 500 780 IMS
2 61.4 0.319 500 735 CMU
3 54.1 0.056 500 727 LORIA

53.6 0.019 500 737 DEPDIST
53.2 −0.016 500 709 TILBURG

6 50.0 −0.122 500 746 BME-UW
7 39.1 −0.524 500 705 DIPINFOUNITO

Pred. Spanish
Rank Ave. Ave. z n N System

− 89.2 0.736 405 442 HUMAN
1 82.8 0.519 613 713 IMS
2 74.7 0.147 609 686 CMU
3 66.0 −0.103 642 737 TILBURG

64.7 −0.169 640 734 BME-UW
5 53.8 −0.531 594 670 LORIA

UD Spanish
Rank Ave. Ave. z n N System

− 89.0 0.582 389 438 HUMAN
1 86.5 0.517 511 584 IMS
2 78.9 0.236 523 601 CMU
3 72.1 −0.009 513 596 BME-UW

71.5 −0.037 498 562 TILBURG
5 67.7 −0.181 498 562 DEPDIST
6 60.6 −0.458 506 577 LORIA

Table 9: SR’19 human evaluation results for Readability. Ave. = the average 0-100% received by systems; Ave.
z = corresponding average standardized scores; HUMAN denotes scores attributed to the original reference texts;
systems are ranked according to Ave. z score; horizontal lines indicate clusters, such that systems in a cluster all
significantly outperform all systems in lower ranked clusters; n = total number of distinct test sentences assessed;
N = total number of human judgments.

erences achieve a significantly higher score than
all systems in terms of readability.

Spanish Automatically Parsed (‘Pred. Span-
ish’ in the tables): Tables 8 and 9 show aver-
age DA scores for system outputs for the Span-
ish automatically parsed data. Meaning Similar-
ity scores range from 82.7% to 59.2%, with IMS
achieving the highest score, significantly higher
than all other participating teams. IMS and CMU
achieve better scores than on the regular Spanish
UD dataset, while the other systems score lower.

In terms of Readability, the text produced by the
systems ranges from 82.8% to 53.8%, and again
IMS achieves the highest score, again significantly
higher than all other systems. But for the auto-
matically parsed data, all systems score lower than
on the Spanish UD dataset, showing that whereas
there was no clear difference between the two
datasets according to the automatic metrics, the
human evaluation shows that the systems do not
manage to generate texts with the same quality.

Chinese: Tables 8 and 9 show average DA
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scores for all participating systems. Meaning Sim-
ilarity scores range from 83% to 67%, with IMS
achieving the highest score, significantly higher
than all other participating teams. In terms of
Readability, the produced text ranges from 68.2%
to 39.1%, and again IMS achieves the highest
score, again significantly higher than all other sys-
tems. As for the other non-English languages, no
system achieves human performance.

Results from MTurk DA quality control: Sim-
ilar to SR’18, only 31% of workers passed qual-
ity control (being able to replicate scores for same
sentences and scoring damaged sentences lower),
again highlighting the danger of crowd-sourcing
without good quality control measures. The re-
maining 69%, who did not meet this criterion,
were omitted from computation of the official DA
results above. Such levels of low quality workers
are consistent with what we have seen in DA used
for Machine Translation (Graham et al., 2016)
and Video Captioning evaluation (Graham et al.,
2017).

5.3 Correlation of metrics with human
assessment

Table 10 shows the Pearson correlation of BLEU,
NIST and DIST scores with human assessment for
systems in tasks for which we ran human evalua-
tions this year. These were computed on the aver-
age z scores. While BLEU is the metric that corre-
lates best with the human judgements in general,
NIST and DIST are more erratic.

None of the automatic metrics correlate well
with human judgements of Readability on the En-
glish Deep Track data (‘English T2’ in the tables),
in particular NIST with only 0.15. This contrasts
with corresponding correlations for Meaning Sim-
ilarity which do not appear to be affected. Com-
bined with the fact that human assessment scores
the deep systems higher for Readability than the
metrics, this indicates that some deep systems are
producing fluent text that is however dissimilar to
the reference texts. The correlations for T2 should
be interpreted cautiously since only four T2 sys-
tems are being evaluated, which possibly distorts
the numbers.

6 Conclusion

The 2019 edition of the SR task (SR’19) saw in-
creased language coverage (11 languages from 9

language families, up from 10 languages in 5 fam-
ilies), as well as increased participation (33 team
registrations from 17 countries, up from 21 regis-
trations for SR’18), with 14 teams submitting sys-
tems to SR’19 (up from 8 in SR’18). Datasets,
evaluation scripts, system outputs and more about
the task can be found on the GenChal repository.18

Among the notable trends we can observe in
evaluations are the following: (i) the best Shal-
low Track English systems are closing the gap to
human-written texts in terms of human evaluation
of Readability; (ii) there is a notable gap between
human assessment (higher) and metric assessment
(lower) of deep track systems, in particular for the
best deep track systems; and (iii) the correlation
between BLEU and human evaluations of both
Readability and Meaning Similarity is consistently
above 0.9 for outputs for the gold-standard shal-
low track datasets, but substantially lower for deep
track systems (NIST and DIST are both more er-
ratic).

The biggest progress has been made in SR’19
for deep track systems: not only did we have mul-
tiple Deep Track systems to evaluate (compared to
just one in 2018), but the best Deep Track system
performed equally well or better than most Shal-
low Track systems for both Readability and Mean-
ing similarity.

Another notable development has been the in-
troduction of silver-standard data. Even though
the quality of the texts obtained when generating
from automatically parsed data is lower than when
using gold-standard data, the high scores accord-
ing to human evaluations suggest that the shallow
inputs could be used as pivot representations in
text-to-text systems such as paraphrasing, simpli-
fication or summarisation applications.

Overall, the SR tasks have clearly demonstrated
that generation from structured meaning represen-
tations can be done with impressive success by
current neural methods. Given the increased in-
terest and progress we have been able to report for
SR’19, we plan to continue with a third shared task
in 2020, as part of which we plan to investigate
ways of linking up to earlier stages of automatic
language generation.

18https://sites.google.com/site/
genchalrepository/surface-realisation/
sr-19-multilingual
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Correlation of Metrics with Readability

BLEU NIST DIST Mean. Sim.

English T1 0.899 0.813 0.874 0.959
English T2 0.53 0.15 0.66 0.892
Russian 0.994 0.981 0.836 0.992
Chinese 0.932 0.587 0.976 0.801
Spanish UD 0.983 0.938 0.794 0.974
Spanish Pred 0.973 0.911 0.801 0.978

Correlation of Metrics with Meaning Similarity

BLEU NIST DIST Read.

English T1 0.975 0.896 0.966 0.959
English T2 0.994 0.867 0.999 0.892
Russian 0.990 0.985 0.806 0.992
Chinese 0.926 0.948 0.866 0.801
Spanish UD 0.971 0.906 0.863 0.974
Spanish Pred 0.994 0.943 0.81 0.978

Table 10: Pearson correlation of BLEU, NIST and DIST scores with human assessment of Readability (left) and
Meaning Similarity (right).
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Abstract

Recent advances in deep learning have shown
promises in solving complex combinato-
rial optimization problems, such as sorting
variable-sized sequences. In this work, we
take a step further and tackle the problem of
ordering the elements of sequences that come
with graph structures. Our solution adopts an
encoder-decoder framework, in which the en-
coder is a graph neural network that learns the
representation for each element, and the de-
coder predicts the ordering of each local neigh-
borhood of the graph in turn. We apply our
framework to multilingual surface realization,
which is the task of ordering and completing
sentences with their dependency parses given
but without the ordering of words. Experi-
ments show that our approach is much better
for this task than prior works that do not con-
sider graph structures. We participated in 2019
Surface Realization Shared Task (SR'19) , and
we ranked second out of 14 teams while out-
performing those teams below by a large mar-
gin.

1 Introduction

Sorting and ordering a sequence of items is a fun-
damental problem to computer science and artifi-
cial intelligence. When under the problem setting
where a pairwise comparison function is not clear,
one may wish to adopt a learning approach to rank
any two elements in the sequence, and heuristi-
cally find the ordering that optimally agrees with
the ranking function (Cohen et al., 1998). How-
ever, in many real world problems, the ordering
of two elements may largely depend on the other
items in the sequence (e.g. word order in natural
languages), which makes learning a good pairwise
ranking function very hard.

Recent advances in deep learning have opened
many doors in solving sequence prediction prob-
lems. These neural-network-based frameworks

typically involve an encoder that learns a context-
sensitive representation for each element, and a
decoder that predicts a probability distribution
over possible outputs at each time step in an auto-
regressive manner (Sutskever et al., 2014). This
framework has been adapted to performing the
task of sorting by using an encoder that is “order-
less” and a decoder that predicts the indices of el-
ements in the sequence (Vinyals et al., 2016).

Many important machine learning problems in-
volves graph-structured data, such as social net-
works, citation networks, or parse trees in nat-
ural language processing (NLP). There has been
a surging interest in modelling graphs with deep
neural networks in the last few years. Unlike tradi-
tional spectral approaches that work with the spec-
tral representations of graphs (Belkin and Niyogi,
2002), deep learning has the flexibility that it pro-
vides end-to-end solutions to much more complex
problems such as graph generation and transduc-
tion.

Surface realization is a natural language gener-
ation task in which sentences are generated given
input meanings. In particular, the Multilingual
Surface Realization Task (Mille et al., 2019) de-
rived inputs from universal dependency (UD) tree-
bank (De Marneffe et al., 2014), a framework
that aims to facilitate cross-lingually consistent
grammatical annotations. The task consists of
two tracks. The shallow track starts from UDs
with word order information removed and words
are lemmatized. The task consists in determin-
ing the word order and inflecting the words. The
deep track further removes function words that are
leaves in the dependency structures, and the task
additionally consists in introducing removed func-
tion words.

In this paper, we are interested in the scenario
where the sequences to be sorted have graph struc-
tures embedded. Our main contribution is a novel
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graph-to-graph learning framework for ordering
graph elements. Furthermore, we evaluated our
framework on a downstream task – surface real-
ization – that has many impactful applications. We
believe our approach is applicable to other prob-
lem domains.

2 Related Work

We survey the work related to our approach
from the following three aspects: deep learning
for combinatorial optimization, deep learning for
graphs, and structured language generation.

2.1 Neural Combinatorial Optimization

Most sequence-to-sequence models only handles
outputs of fixed vocabulary. Pointer Network
(Vinyals et al., 2015) was first proposed for pre-
dicting the indices of elements of any given out-
put set, and was applied to solving combinatorial
problems suchs as Travelling Salesman Problem
(TSP). A set-to-sequence (Vinyals et al., 2016)
model was developed for investigation on the im-
portance of order in various machine learning
problems. This framework learns a holistic rep-
resentation of the input set by repeatedly applying
attention on the entire set. Last but not least, deep
reinforcement learning has also been investigated
for solving more complex combinatorial problems
such as TSP (Bello et al., 2016).

2.2 Graph Neural Networks

Learning representations of graphs with deep neu-
ral networks has attracted a lot of attention in
the recent years, and deep learning has achieved
success in graph-related tasks such as classifi-
cation (Kipf and Welling, 2017) and generation
(You et al., 2018). Graph neural networks gen-
erally follow a recursive neighborhood aggrega-
tion scheme, where the embedding of each node
is computed with the embeddings of its neigh-
bors and itself. After k iterations, the embed-
ding contains the information of its k-hop neigh-
borhood in the graph. Besides graph represen-
tation learning, extensive research has been con-
ducted on the transduction between sequences and
graphs, including sequence-to-graph (Aharoni and
Goldberg, 2017), graph-to-sequence (Beck et al.,
2018), and graph-to-graph (Sun and Li, 2019)
learning problems.

2.3 Structured Language Generation

Graph structures are ubiquitous in representa-
tions of natural language. Despite the success of
sequence-to-sequence learning for language gen-
eration (especially machine translation), NLP re-
searchers have started to pay a substantial amount
of efforts into incorporating tree structures into
neural language generation in the recent years.
Application domains include machine translation
(Wang et al., 2018), dialog response generation
(Du and Black, 2019), and document summariza-
tion (Liu et al., 2019). Tree-based language gener-
ation models typically sequentialize the parse tree
of sentences by some pre-defined traversal order,
and generate the tree node in an autoregressive
manner. The most common traversal orders are
depth-first, left-to-right (pre-order) and breadth-
first, left-to-right (level-order).

3 Methods

3.1 Problem Definition

We first give the mathematical formulation of the
problem. Given graph G = (V,E) where V is
the vertices and E is the edges, we try to learn
an ordering function π : V −→ {n ∈ N | 1 ≤
n ≤ |V |}. Each vertex has multiple attributes of
discrete type. Denote the attribute a of vi by a(vi).

3.2 Encoder Architecture

Our encoder uses a Graph Attention Network
(GAT) (Veličković et al., 2018). Attention mecha-
nism has been widely used for handling orderless
inputs, such as sets (Vinyals et al., 2016) and mem-
ory (Sukhbaatar et al., 2015). GAT learns repre-
sentations for each graph node through a stack of
graph attention layers. At each layer, the informa-
tion of local neighborhood of each node is aggre-
gated through attention and integrated to the em-
bedding of the node. More specifically, let gil be
the embedding of node i at layer l. Embeddings
of layer 0 are input features, which are the sum of
embeddings of each node attributes:

hi0 =
∑

a

Ea(vi)

where E is the embedding matrix of attributes.
For each node i, the importance of neighbor j

is computed with the scaled inner product of pro-
jected features of i and j and normalized by soft-

19



(a) (b) (c)

Figure 1: The order of visits for sentence ”Both of my dogs like eating sausages.” in our decoding algorithm. The
nodes being considered for ordering are highlighted with red.

max:

eijl =
1√
d
〈Wk

l gi,l−1,W
k
l gj,l−1〉

αijl =
exp(eijl)∑

j,(i,j)∈E
exp(eijl)

and the local neighborhood is aggregated through
the weighted sum of the embeddings. Similar to
Transformer (Vaswani et al., 2017), we employ
multi-head attention

gkil =
∑

j,(i,j)∈E
αkijlg

k
j,l−1

g′il = Concat(gkil)

where k is the index of attention heads. The atten-
tion values are transformed by a one-layered feed-
forward network with residual connection.

gil = g′il + FFNl(g
′
il)

It is clear that these graph embeddings are invari-
ant to permutation through attention mechanism.
When modelling graphs with GAT, all vertices are
considered adjacent to itself. Consequently, the
embeddings of each node at all graph attention
layers include the embedding of itself. Since the
inner product between oneself is always maximal,
the embeddings of the node itself will always dom-
inate the embeddings of its neighbors when aggre-
gating its local neighborhood. It is also clear that
the embeddings at layer k represent the informa-
tion of k-hop neighborhood of each node. We use
the summation of embeddings from all layers as
the final representation of graph nodes:

gi =
∑

l

gil

We also tried concatenation followed by linear
transform for aggregating all layers, but this ap-
proach is no better than simple summation.

Since dependency graphs are directed, it might
be natural to perform unilateral attention (i.e. the
parent uses the information of its children but
not the other way around). However, we found
from experiments that ignoring the directed-ness
of graphs and using bilateral attention (i.e. the
children also use the information of their parent)
would perform much better than the first approach.

3.3 Decoder Architecture
At decoding stage, we order the graph elements
by selecting the next element one by one. At each
step of selection, we have the sequence of past ele-
ments that are already ordered available. A natural
choice would be using a recurrent neural network
(RNN) to encode the ordered elements. The hid-
den state from RNN decoder at each step would
be used for selecting the next element. This idea
is developed as Pointer Network (Vinyals et al.,
2015). Let ht be the hidden state of RNN decoder
at time t, Pointer Network predicts the distribution
over the next element through attention:

uit = vT tanh(W1ei +W2ht)

P (i | vπ(1) . . . vπ(t)) = softmaxi(uit)

where ei is the embedding of element i. In our
architecture, we propose two modifications. First,
we use dot product for computing attention. Sec-
ond, we add candidate component when comput-
ing attention.

uit = 〈gi,W1ht〉+ 〈gi,
∑

j∈Ct

gj〉

where Ct = {j | j 6∈ {π(1) . . . π(t − 1)}} is
the set of candidate indices that are not selected in
previous steps. It is intuitive to add the embedding
of candidates to bias the model towards selecting
from the remaining nodes. We found this modifi-
cation significantly improves the performance.

The model described above is not inherently de-
signed to handle graphs. To incorporate graph
structures in decoding, we predict the order of

20



nodes of each neighborhood in turn. We start with
the root of the graph, and order the set consisting
of the root and its neighbors. Then we recursively
repeat the process for each of the children of the
parent from left to right based their predicted or-
der. An example is provided in the figure above.
We also provide pseudocode for our decoding al-
gorithm. TreeSort is used for arranging the order
of each local neighborhood, and TreeLinearize is
for converting the sorted tree into a sentence. The
sort function sorts the input elements using the de-
coder architecture described above. It takes two
arguments: the first one is the set to be sorted, and
the second one is the initial state of the RNN de-
coder. It returns the sorted set and the last hidden
state from the RNN decoder. TreeLinearize simply
merges subtrees by interpolating spaces.

One limitation of using TreeLinearize is that it
cannot generate non-projective trees, i.e. when
nodes are put in linear order, there are edges
crossing over each other. There are about 2.5%
parses are non-projective in the English dataset,
so the degradation in performance is negligible.
In order to generate non-projective trees, one may
want to use a linearization algorithm alternative to
TreeLinearize that generates the whole sequence
based on the topological order of nodes returned
by TreeSort. At each step, the choices of nodes
should be limited to those that are not preceded by
any unselected nodes with higher topological or-
der.

To see why tree decoding is advantageous over
ordering the whole sequence at a time, consider
the size of the search space of both approaches.
The hypothesis space of sequence decoding is fac-
torial in the number of vertices (i.e. |V |!). In graph
decoding, at each node v, the number of nodes to
be ordered is the degree of v, d(v) (since the nodes
to be ordered include v but not parent of v). In the
example shown above, the total number of permu-
tations of the sentence is 7! = 5040, while with
tree decoding, the number of ordering to be con-
sidered reduced to (3!)3 = 216. The difference
is even larger when there are more words in the
sentence. So tree decoding gains performance by
reducing the size of search space.

The full model is trained by maximizing the
likelihood of choices of indices. We apply candi-
date masking, i.e. the candidates that are already
selected in previous steps are assigned zero prob-
ability.

Algorithm 1 Pseudocode for tree decoding proce-
dures.

procedure TREESORT(node, h)
if node is a leaf then

return
else

n← node
n.children← []
l← n ∪ node.children
l, h← sort(l, h)
node.sorted← l
for ch in l do

TreeSort(ch, h)

procedure TREELINEARIZE(node)
if node is a leaf then

return node.word
else

s← empty string
for ch in node.sorted do

s← s+′ ′+TreeLinearize(ch)

return s

3.4 Morphology
The MSR challenge requires realizaton of lem-
matized words. Since this is not the main focus
of our paper, we briefly describe our approach
here. After the words are ordered into sentences
in the first stage described above, we obtain BERT
embeddings (Devlin et al., 2019) of each word.
We train a character-level sequence-to-sequence
model with attention for morphological inflection,
where the source is the lemmatized word and the
target is the realization. The BERT embedding
is used for constructing the initial state of the de-
coder, so that the morphology model may use con-
textual information. The concatenation of decoder
hidden states and embeddings of syntactic infor-
mation such as tense and number is used for pre-
dicting characters.

4 Experiments

4.1 Data and Preprocessing
We use SR'19 challenge dataset (Mille et al.,
2018). The data is obtained from the universal
dependency treebank (Zeman et al., 2018). The
dataset includes many major languages, such as
English, Spanish, and Chinese. Word orders are
hidden and words are randomly shuffled. Our
model uses the following attributes for graph at-
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Table 1: Average performance on English dataset (dev)
of shallow track with different hyperparameters. All
results are evaluated without morphological inflections.

BLEU DIST NIST
L = 0 76.4 85.3 14.4
L = 1, H = 8 79.9 90.6 14.5
L = 2, H = 8 82.8 91.5 14.7
L = 3, H = 8 83.2 91.4 14.7
L = 4, H = 8 83.5 91.1 14.7
L = 5, H = 8 83.6 92.1 14.7
L = 6, H = 8 83.3 91.0 14.7
L = 5, H = 4 82.3 91.3 14.6
L = 5, H = 16 83.9 92.0 14.7

tention networks: lexicons, part-of-speech tags,
types of the dependency relation with the gover-
nor, depths in the dependency graph, and relative
positions to the parent. All relative positions far-
ther than 2 are considered as one type.

4.2 Metrics
Three quantitative measure are used for evaluating
performance. BLEU measures the average pre-
cisions of n-gram overlap with references. NIST
is similar to BLEU but gives more weights to
less frequent n-grams. DIST measures the edit
distance between hypotheses and references, in
which either insertion, deletion, or substitution of
a word is considered an edit.

4.3 Model and Training Details
All models are implemented in PyTorch 1. The
Graph Attention Networks has output size of 512
for each attention layer, and the feedforward net-
works’ middle layers have 1024 dimension. RNN
decoders have hidden size of 512. Dropout is ap-
plied with rate 0.5. We use Adam optimizer with
learning rate 0.001. We did not use learning rate
warm-up as we did not find much improvement.

4.4 Main Results
We show the effects of hyperparameters of GAT
on performance. We vary the number of attention
layers and the number of heads in GAT. The results
are summarized in Table 1. Note that these results
are for hypotheses without morphological inflec-
tions, which are measured against lemmatized ref-
erences. We first examine the impact of number of
graph attention layers on performance. With only

1https://github.com/wenchaodudu/MSR

Table 2: Comparison between different learning
paradigms on English dev sets. All results are evalu-
ated without morphological inflections.

BLEU DIST NIST
set-to-graph

(no attention)
76.4 85.3 14.4

set-to-graph
(global attention)

79.9 90.6 14.5

graph-to-sequence 63.6 88.9 13.7
graph-to-graph 83.2 91.4 14.7

one layer of graph attention, performances are sig-
nificantly worse than multiple layers. On the other
hand, the improvement beyond using 3 layers is
marginal. Without any graph attention layer, the
model is essentially taking inputs as mathematical
sets, in which case its performance is the worst.
We are also interested in the effect of number of
attention heads. It appears that the best perfor-
mance is achieved with 8 heads, while attentions
with 4 heads and 16 heads are slightly worse off.

Table 1 shows that given local neighborhood in-
formation, the model learns more useful graph em-
beddings than without. We are interested in the
other end of the spectrum: what if each node has
global information of the set from the beginning?
We apply attention over the whole input graph for
each node without masking. This ignores the lo-
cal structures in graphs and is essentially treating
the inputs as sets. Results are listed in Table 2.
It seems that learning the embeddings of set ele-
ments holistically is better than learning for each
element in isolation, but still not as good as learn-
ing with graph structures.

We are also interested in the advantage of
graph-to-graph decoding over graph-to-sequence.
Graph-to-sequence baseline uses the graph em-
beddings from graph encoder, and follows the nor-
mal sequence decoding procedure. The results are
shown in Table 2. The difference between graph-
to-sequence and graph-to-graph is huge. Even if
graph-to-sequence decoding is capable of produc-
ing non-projective trees, learning is much more
difficult due to much larger hypothesis space. On
the other hand, graph-to-graph decoding deals
with smaller search space and exploits the hierar-
chical structure of sentences.

We also include the results with morphological
inflections in Table 3. It seems that the morphol-
ogy of English and Spanish are relatively easy,
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Table 3: Final performance on dev sets after word inflections. Results without considering inflections are paren-
thesized. We did not perform word inflection for Chinese datasets.

BLEU DIST NIST
English 80.0 (83.6) 87.4 (92.1) 14.4 (14.7)
Chinese 66.5 63.4 12.3
Spanish 81.1 (83.2) 84.3 (85.2) 15.2 (15.4)
French 75.4 (85.5) 86.0 (88.6) 13.8 (14.8)
Japanese 67.1 (84.3) 72.5 (72.9) 10.8 (12.2)

hence the differences between the final numbers
and the results without inflections are smallest.
Solving morphological inflections for French is
harder than English and Spanish, and Japanese is
the hardest. Our approach achieved worst results
on Chinese dataset. We hypothesize this is be-
cause 1) the Chinese dataset contains more non-
projective trees and 2), the Chinese dataset is the
smallest one comparing to other languages.

5 Conclusion

In this work, we proposed a novel graph-to-graph
framework for ordering graph elements and gener-
ating sentences with projective dependency struc-
ture. Empirical results show competitive perfor-
mance on surface realization task. Furthermore,
exploiting graph structures is indeed helpful for
such task. One future direction would be finding
an end-to-end approach for jointly finishing and
ordering graphs, as required in the deep track of
surface realization challenge. Another direction
would be finding an end-to-end approach for gen-
erating both projective and non-projective trees.
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Abstract

This paper describes a method of inflecting
and linearizing a lemmatized dependency tree
by: (1) determining a regular expression and
substitution to describe each productive word-
form rule; (2) learning the dependency dis-
tance tolerance for each head-dependent pair,
resulting in an edge-weighted directed acyclic
graph (DAG); and (3) topologically sorting the
DAG into a surface realization based on edge
weight. The method’s output for 11 languages
across 18 treebanks is competitive with the
other submissions to the Second Multilingual
Surface Realization Shared Task (SR‘19).

1 Introduction

The goal of the Second Multilingual Surface Real-
ization Shared Task (SR‘19) is to generate a mor-
phologically inflected surface order from a lem-
matized and unordered dependency tree (Mille
et al., 2019). In track 1, all lemmas in the depen-
dency tree are given, and the task is closed in the
sense that only the provided training data may be
used; outside data is not allowed.

Though conceptually straightforward, lineariz-
ing a dependency tree in an automated way is a
relatively difficult task given issues such as projec-
tivity, flexibility or variation in word-order prefer-
ences among humans, polysemy and homography,
among others. Determining surface inflections is
similarly difficult given the sometimes opaque re-
lationship between spoken and written language,
diversity among language varieties, usage pref-
erences changing over time, and vestigial inflec-
tional forms which may or may not be productive.

The approach outlined in this paper tackles the
inflection part of the task by attempting to de-
termine the productive rules for word forms, im-
plemented as a series of regular expressions and
substitutions. Given the closed nature of the

task, these regular expressions are based on ortho-
graphic forms, rather than what would likely be
more accurate phonological representations.

To linearize a dependency tree, the current
study’s approach is two-fold: first, learn the tol-
erance for how far apart a dependent and its head
can be within the context of a given sentence; sec-
ond, use this dependency distance tolerance to sort
the tree into a surface order. The sorting can be
accomplished such that only projective surface or-
ders are generated, or without any baked-in no-
tion of projectivity. Algorithms for both are pre-
sented here, but given the nature of the task—and
based on empirical testing—only projective lin-
earizations were submitted as part of the shared
task.

2 Inflecting

The current model’s approach to inflecting lem-
mas to arrive at wordforms is to first look up the
lemma and target morphological form in the train-
ing data—if the form exists in the training data for
the lemma, it is used in the test data. For exam-
ple, the past participle of the lemma do is most
likely present in the training data, so when the test-
ing data prompts for it, done is simply supplied
from the training set. More interestingly, lemmas
unseen during training are handled with a series
of regular expressions (regex) built up from the
training data in an attempt to define a natural lan-
guage’s productive inflectional rules.

From a linguistic perspective, inflecting unseen
test-set words is analogous to inflecting nonce
words, a rather long-studied area. For example,
the ‘wug’ test (Berko, 1958) shows that children
possess knowledge about morphological rules. It
is intuitive to conceive of these rules as regular or
irregular—box→ boxes illustrates the regular plu-
ral in English, ox→ oxen an irregular form—and
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lemma regex nonce lemma
wordform substitution nonce wordform

like- ˆ(.*)(e)$ chortle
liked \1\2d chortled

attach-- ˆ(.*)(h)$ gallumph
attached \1\2ed gallumphed

presentar ˆ(.*)(t)ar$ risotar
presentó \1\2ó risotó

triunfar ˆ(.*)(f)ar$ galonfar
triunfó \1\2ó galonfó

Table 1: Regular expressions and substitutions for sim-
ple past with nonces from Jabberwocky (Carroll, 1872)
and Spanish translation El Fablistanón (Pascual, 1977).

to subsequently equate productive rules with reg-
ular forms only. However, a more accurate model
is that speakers seem to inflect nonce words ac-
cording to categories which span what we tend
to think of as both regular and irregular classes.
The college students studied by Bybee and Moder
(1983) produce simple past forms for nonces such
as spling← splung, akin to ‘strong’ verbs such as
cling← clung and string← strung (Wiese, 1996).
Prasada and Pinker (1993) find that the production
and acceptance of inflected nonces correlates with
phonological distance from irregular clusters, with
a bias towards regular forms (p. 48).

The current model approximates the phonolog-
ical environment of word stems with regular ex-
pressions and morphological inflections with sub-
stitutions. There is no notion of regular or irreg-
ular classes; regexes and substitutions are built
for all classes and sorted according to frequency.
If a nonce word’s lemma matches the regex of
a morphological class from the training data, the
associated substitution will provide an inflected
form. Importantly, given the closed nature of
SR ‘19—no outside data is allowed—the gener-
ated regexes and substitutions are defined and em-
ployed orthographically rather than phonetically
or phonologically. As such, depending on the
opacity of a language’s orthographic system, in-
formation about allophones, syllables, and other
phonetically important structures is lost. Interest-
ingly, this loss does not seem to impact neural-
network models of inflection (Wiemerslage et al.,
2018), though the current model’s rule-based ap-
proach likely suffers.

Defining the orthographic environment such
that known lemma-to-wordform exemplars can be
used to create a prototypical regex for a given class

can be accomplished by (1) aligning the lemma
and wordform; (2) recording the characters sur-
rounding a replacement as atoms; (3) generalizing
atoms not surrounding substitutions; and (4) deter-
mining the substitution(s).

Table 1 shows this process for a sample of
simple past forms. For example, the English
lemma like is aligned with the target word-
form liked, the regex defining the environment
is ˆ(.*)(e)$, and the substitution with back-
references is \1\2d. When applied to the nonce
lemma chortle, the correct wordform chortled is
produced. That is, the regex matches the lemma
chortle ending in the character e, and the substi-
tution maintains the atomic root chortl, maintains
the final character e, and appends the character d.

Alignment of lemmas and wordforms is ac-
complished with the pairwise2 module from
Biopython (Cock et al., 2009). Regex and
substitution generation is done with a de-
terministic algorithm which generalizes unin-
volved atoms (.*), records adjacent atoms
in the lemma, and produces back-references
and inflectional morphemes for the substitu-
tion. Morphological features are treated as full
strings rather than as discrete features—something
like Mood=Ind|Person=3|Tense=Past|-
VerbForm=Fin|VERB, depending on the cor-
pus. Each of these feature sets is generally associ-
ated with multiple patterns, as in Table 1.

There are at least two intuitive approaches for
choosing a regex pattern for an unknown lemma:
the most detailed or the most frequent. The first
approach relies on a principle going back to Pān. ini
in which inflections obey specific conditions be-
fore general ones (cf. Embick and Marantz, 2005).
However, during testing, this approach resulted in
archaisms or typos in the generated text. Thus the
most frequent pattern was chosen instead.

3 Linearizing

The task of linearizing a dependency tree can
be informed by long-standing linguistic princi-
ples describing the placement of words in gen-
eral—“what belongs together semantically is also
placed close together” (Behaghel, 1932, p. 4), for
example—as well as more recent work on de-
pendency trees specifically, such as Dependency
Distance minimization (DDM) (Hudson, 1995;
Futrell et al., 2015; Liu et al., 2017). DDM is a
general principle of tree ordering based on Head
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(a) DAG of dependency tree
house

big that there

-1
-2

1

(b) Topologically sorted DAG

that big house there

-2
1

-1

Figure 1: Target dependency distance tolerances for
that big house there, represented as (a) a DAG showing
dependency relations and (b) the topological sort.

Proximity (Rijkhoff, 1986), Early Immediate Con-
stituents (Hawkins, 1994), Dependency Locality
Theory (Gibson, 2000), and Minimize Domains
(Hawkins, 2004), among others.

Submissions to SR ‘18, the first multilingual
shared task, are generally based on sequence-to-
sequence machine translation (Elder and Hokamp,
2018; Sobrevilla Cabezudo and Pardo, 2018), bi-
nary classification (Castro Ferreira et al., 2018;
Puzikov and Gurevych, 2018; King and White,
2018; Madsack et al., 2018), or probabilistic n-
gram language models (Singh et al., 2018).

3.1 Dependency distance tolerance

The DepDist approach to linearization relies on
dependency distance tolerance, the idea that a
dependent and head tolerate a certain contex-
tual distance, measured as the number of in-
tervening words, relative to other words in a
sentence (Dyer, 2019). This dependency dis-
tance tolerance is learned from training data
via a graph neural network (GNN) implemented
within the Graph Nets framework (Battaglia et al.,
2018) based on word2vecf syntactic embed-
dings (Levy and Goldberg, 2014). GNNs take
advantage of message-passing neural networks
(MPNN), in which nodes pass information and
spatial-based convolutions and pooling are imple-
mented (Gilmer et al., 2017; Wu et al., 2019).

Specifically, each word’s 300-element syntac-
tic embedding is included as a node attribute for
a networkx graph constructed for each sentence
in the training, dev, and testing sets. Input edge
attributes are the average dependency distance be-
tween words from the training set. For example,
if the determiner the precedes the noun cat by an
average of 1.3 words in the training data, the input
edge attribute for the ← cat will be 1.3. After 5

training epochs of 100 iterations on a GNN with
64 neurons and 8 MPNN layers using an Adam
optimizer in TensorFlow, output edge attributes re-
flect the learned dependency distance tolerances
for each dependent-head pair in a given sentence.

For example, given a simple tree of one
head, houses, three dependents—big, that, and
there—and a target linearization of that big house
there, the learned directed dependency distances
would be that -2← house, big -1← house, and house
1→ there. In other words, the dependent that pre-
cedes its head house by two words, big precedes
house by one word, and there follows house by
one word. This example is shown in Figure 1(a).

The GNN framework allows for non-Euclidean
data representations, such as graphs, to be ex-
plored from a deep learning perspective (Bronstein
et al., 2017). Further, GNNs are invariant to per-
mutations in the graph elements—ideal for this
surface realization shared task—and can operate
on inputs of varying sizes (Battaglia et al., 2018).

3.2 Topological sorting
A dependency tree can be represented by a di-
rected acyclic graph (DAG) based on the [head→
dependent] relation. Adding edge weights repre-
senting directed dependency distances—the num-
ber of words a dependent precedes or follows its
head—allows the DAG to also represent the prece-
dence relation. Thus an edge-weighted DAG is
equivalent to a partially ordered set (poset).

The topological sort of a non-weighted DAG or
poset is not guaranteed to be unique, but adding
edge weights allows a single linear order to be
generated. For example, Figure 1(b) shows the
unique topological sort for that big house there,
based on the precedence relations house -2→ that,
house -1→ big, and house 1→ there1.

The linearization of a dependency tree can be
projective (Marcus, 1965), in which there are no
crossing arcs, or non-projective. More formally,
a projective order is one in which every word w
occurring between a dependent d and head h is
dominated by h (Nivre, 2006), and as such is only
defined for dependency-based DAGs2.

1The notation of house -2→ that indicates the dependency
relation by the direction of the edge and distance by edge

weight. An equivalent notation would be that
2≺ house.

2Posets can be classified according to their planarity, and
while half-planarity corresponds to the ‘no-crossing-arcs’
sense of projectivity (Pitler et al., 2013), it does not capture
the dominance definition.
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Algorithm 1: Topologically sort DAG (non-projective)

1: function NonProjTopoSort(dag)
2: tuples← ∅
3: tuples.add(0, dag.root)
4: CalcI(root, dag, tuples)
5: return tuples.sort()
6: end function
7: function CalcI(node, dag, tuples)
8: if node.hasHead then
9: head← head(dag, node)

10: edge = dag[node][node.head]
11: tuples.add(head.i+ edge, node)
12: end if
13: for child ∈ node.children do
14: CalcI(child, dag, tuples)
15: end for
16: end function

Algorithm 2: Topologically sort DAG (projective)

1: function ProjTopoSort(dag)
2: tuples← ∅
3: tuples.add(0, dag.root)
4: CalcI(root, dag, tuples)
5: return tuples.sort()
6: end function
7: function CalcI(node, dag, tuples)
8: head← head(dag, node)
9: edge = dag[node][node.head]

10: children← 0
11: for desc ∈ node.descendents do
12: children+← abs(dag[desc][desc.head])
13: end for
14: if edge < 0 then
15: children← −children
16: end if
17: tuples.add(head.i+ edge+ children, node)
18: for child ∈ node.children do
19: CalcI(child, dag, tuples)
20: end for
21: end function

Algorithm 1 sorts an edge-weighted DAG with-
out regard to projectivity. Each node’s distance
from the root is calculated by adding the weight
of the node’s edge with its head to its head’s in-
dex (lines 9-11). This distance becomes an index
i for each word; sorting these indexes from small-
est to largest (line 5) creates a linearization for the
dependency tree which may or may not be projec-
tive. The calculation of root distance in Algorithm
1 runs in O(n) time, since each node is only vis-
ited once and is able to calculate its distance based
on the index of its parent node. The sorting al-
gorithm is not specified, but assuming something
like merge sort (Knuth, 1998) with a time com-
plexity of O(n log n), the overall complexity of
Algorithm 1 would be O(n log n).

Algorithm 2 sorts an edge-weighted DAG into a
projective linearization based on the idea that each
dependent d should be placed vis-à-vis its head

(a) dependency structure used in GNN

[1.1 ...]

scheduled

[-0.3 ...]

hearing

[0.9 ...]

is

[-1.2 ...]

tomorrow

[-0.5 ...]

a

[0.3 ...]

issue

[0.8 ...]

on

[-0.4 ...]

the

[-2.0]

[-1.1] [3.9]

[-0.9]

[3.0]

[-2.1]

[-1.0]

(b) non-projective linearization
a hearing is scheduled on the issue tomorrow

-2.9 -2.0 -1.1 0.0 0.9 2.0 3.0 3.9

(c) projective linearization
a hearing on the issue is scheduled tomorrow

-9.9 -9.0 -5.0 -3.9 -2.9 -1.1 0.0 3.9

Figure 2: Linearizing a DAG. (a) A networkx graph
provides the input and output of the GNN. Input node
attributes are each word’s syntactic embedding, and in-
put edge attributes are the average directed dependency
distances between connected words in the training data.
Target edge attributes are the actual dependency dis-
tances between the words in the sentence. The GNN
learns edge attributes for the test sentences. In prac-
tice, edge directions may be reversed to better take ad-
vantage of MPNN. (b) Non-projective linearization in
which each word’s index reflects its distance from the
root. (c) Projective linearization, in which each word’s
index is set such that all descendents will be adjacent.

h such that all descendents of d could be placed
between d and h. The index i in a linearization
for dependent d is the sum of (1) the index of its
head h (line 8); (2) the edge weight between d and
h (line 9); and (3) the summed absolute value of
the edges of all descendents of d whose polarity
matches that of d (lines 10-16). The calculation of
i in Algorithm 2 runs in O(n log n) time, since
each node is visited once by CalcI, and then in
lines 11-13 each descendent node is visited. Cou-
pled with merge sort, Algorithm 2 overall runs in
O(n log n) time.

Algorithms 1 and 2 are exemplified in Figure
2, in which a dependency tree (a), is sorted into
a valid non-projective linearization (b) and a pro-
jective linearization (c). Due to the nature of
GNNs, the size of the graph need not be stan-
dardized—the graph is simply a series of con-
nected nodes and edges. Input node attributes are
passed along directed edges, and output edges re-
flect learned distance tolerances. These tolerances
are then used to topologically sort the DAG.
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BLEU

Figure 3: BLEU scores per corpus for all track-1 sub-
missions. DepDist shown by black connected points.
Median indicated by dashed line.

3.3 Projective linearizations

Imposing a projective limitation on generated out-
puts is a theoretically dubious action when de-
scribing natural language (Ferrer-i Cancho and
Gómez-Rodrı́guez, 2016; Yadav et al., 2019).
However, given the strong tendency towards pro-
jectivity (Mambrini and Passarotti, 2013; Gómez-
Rodrı́guez, 2016), the nature of SR‘19 as a fun-
damentally Natural Language Generation (NLG)
rather than descriptive task, as well as empirical
observation of the projective and non-projective
outputs of the current model (§4.1), it was decided
to submit only projective linearizations.

4 Results

DepDist was run on 18 corpora across 11 lan-
guages provided by the organizers of SR‘19, based
on Universal Dependencies corpora. Due to time
constraints, only the largest corpus for each lan-
guage was used for training, though linearizations
were generated for nearly all test corpora3.

Results for the DepDist submission measured
by BLEU score (Papineni et al., 2002) compared

3Though ko kaist was the largest supplied Korean cor-
pus, parsing errors prevented training and generation of out-
put; thus only ko gsd was used. Similarly, the large size of
ru syntagrus inhibited training, so only ru gsd was used.
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ar padt
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ko gsd
fr gsd

fr sequoia
ja gsd

fr partut
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es ancora
zh gsd

en lines
en ewt

en partut

id gsd

hi hdtb
en gum

BLEU

proj wf

proj lem

np lem

Figure 4: BLEU scores from dev sets realized as pro-
jective wordforms (red), projective lemmas (green),
and non-projective lemmas (blue).

to other track-1 submissions for the 18 corpora
are shown in Figure 3. DepDist performed be-
low the median for six corpora: Portuguese (GSD
& Bosque), Russian (GSD), French (GSD & Se-
quoia), and Spanish (Ancora). DepDist was the
median for three corpora: Arabic (GSD), Ko-
rean (GSD), and French (ParTUT). DepDist per-
formed better than the median for nine corpora:
Japanese, (GSD), Spanish (GSD), Chinese (GSD),
English (LinES, EWT, ParTUT, & GUM), Indone-
sian (GSD), and Hindi (HDTB).

While the performance on some corpora was
significantly below the median—especially Rus-
sian and both Portuguese—DepDist generally per-
formed close to or slightly better than the median.
Thus DepDist seems to be fairly average in terms
of BLEU score compared to the other submis-
sions, suggesting that it is a competitive solution.

4.1 Error analysis

Figure 4 plots BLEU scores for the dev set of each
corpus differentiated based on projectivity and in-
flections. The first, red bar shows the projective
linearization of wordforms. The second, green
bars show the scores based on linearization only,
without inflecting. The third, blue bars show non-
projective linearizations of lemmas.
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morph features wordforms

corpus lemmas given % generated %

ar padt 28264 21901 77.5 2138 9.8
en ewt 25096 16653 66.4 2324 14.0
en gum 13326 8880 66.6 1691 19.0
en lines 15623 9796 62.7 1007 10.3
en partut 3408 2179 63.9 179 8.2
es ancora 52617 43676 83.0 8196 18.8
es gsd 12000 6854 57.1 646 9.4
fr gsd 10021 5770 57.6 400 6.9
fr partut 2604 1752 67.3 147 8.4
fr sequoia 10050 6306 62.7 384 6.1
hi hdtb 35430 30137 85.1 2605 8.6
id gsd 11780 6036 51.2 661 11.0
ja gsd 12438 219 1.8 21 9.6
ko gsd 11677 82 0.7 35 42.7
pt bosque 10199 6553 64.3 1062 16.2
pt gsd 31496 3065 9.7 294 9.6
ru gsd 11548 7268 62.9 3236 44.5
zh gsd 12012 1349 11.2 112 8.3

Table 2: The number of lemmas in each test corpus
showing (1) the number and percentage for which mor-
phological features were given and (2) the number and
percentage of wordforms generated via regex.

Across all corpora, projective linearizations of
lemmas in the dev set generate the highest BLEU
scores. The difference between the first two bars
for each corpus indicates how well the inflection
subtask performed, and the difference between the
second and third bars indicates the performance of
the linearization subtask.

In all languages other than Chinese, poor in-
flections hurt the scores, and in Arabic, Japanese,
Korean, and Russian, the inflections were quite
detrimental. The regex methodology used in the
current study depends on a set of morphological
features to use as a key for finding an appropri-
ate pattern, but corpora vary as to what propor-
tion of lemmas have this morphological listing.
Table 2 shows the number and rate of lemmas at
which morphological features are listed, as well
as how many of those were generated by the regex
pattern-substitution methodology. For example, of
the 28,264 lemmas in the Arabic (PADT) test cor-
pus, 21,901 (77.5%) had associated morphological
information; of those 21,901, only 2,138 (9.8%)
were generated via regex substitution—the other
90.2% were found in the training data.

Both Japanese (GSD) and Korean (GSD) pro-
vide exceedingly low rates of morphological
data—1.8% and 0.7%, respectively. Thus the dif-
ferential between the BLEU scores of projective
wordforms (first, red bars) and projective lemmas
(second, green bars) in Figure 4 for these two lan-

guages is likely due to lack of morphological fea-
ture sets in the corpora.

Corpora with especially high rates of word-
forms being generated via regex rather than found
in the training data include Portuguese (Bosque)
at 16.2%, Spanish (Ancora) at 18.8%, English
(GUM) at 19%, Korean (GSD) at 42.7%4, and
Russian (GSD) at 44.5%. While the performance
of the inflection systems for the first three of those
corpora is relatively good, the very poor perfor-
mance of Russian is surprising. The cause of the
exceedingly poor performance of Arabic inflec-
tion is also unclear, given the high rate of pro-
vided morphological features (77.5%) and fairly
normal rate of wordform generation (9.8%); per-
haps the methodology is poorly suited to Arabic
and/or Russian inflectional patterns.

One possible source of error is the use of
the most frequent regex pattern when generating
wordforms, rather than the most detailed or spe-
cific. This likely creates a bias towards overly
‘regular’ forms whereby the phonetic environment
is not able to properly trigger substitutions. This
effect may be more strongly felt by languages with
richer morphologies, such as Arabic and Russian.

In general, the reliance on orthography for
defining phonetic environments for regexes and
substitutions almost certainly contributes to er-
ror. This could probably be improved by using
IPA transcriptions or distinctive phonetic features
rather than standard orthography, as well as a more
flexible regex patterning which could better han-
dle allophones. A relatively straightforward way
to implement a bit of phonetic flexibility would
be to utilize substitution matrices when aligning
lemmas to their target wordforms (Smith and Wa-
terman, 1981). This approach would allow, for ex-
ample, a [b] and [v] to be seen as more similar than
other phones, and could therefore be combined
into a single regex atom for a given language.

The second and third bars in Figure 4 for each
corpus differentiate based on projectivity: in all
cases the non-projective linearizations (third, blue
bars) have lower scores than the projective ones
(second, red bars). This is not too surprising, since
a single misplaced word can drastically reduce
BLEU scores. However, if the GNN were able
to better learn dependency distance tolerances, the
non-projective sorting algorithm should produce

4The exceedingly low rate of provided morphological fea-
tures for Korean (GSD) renders the percentage of generated
wordforms a rather uninformative number for this corpus.
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results similar to the projective algorithm, if not
better, given the existence of non-projective sen-
tences in possibly all natural languages (Ferrer-i
Cancho and Gómez-Rodrı́guez, 2016) and prefer-
ence for certain linearizations such as Figure 2(b).

Because the same GNN is used to learn dis-
tances, and projectivity is only realized during lin-
earization, the difference in performance between
projective and non-projective linearizations sug-
gests that the GNN is learning tendencies for de-
pendents to precede or follow their heads, as well
as the relative tolerances among sibling depen-
dents, to a certain degree. However, the accuracy
of those tolerances with respect to all other words
in a sentence leaves room for improvement, prob-
ably via an enhanced GNN architecture.

5 Discussion

The regex-based approach to inflection employed
in the current study is linguistically motivated.
Regex patterns would seem to be an adequate
method for modeling exemplars and grouping
them into templates, and substitutions allow for
productive inflectional patterns to be applied to
uninflected lemmas. The choice of which regex
pattern to employ for a given lemma may be more
complex than outlined here—a choice between the
most frequent or the most detailed, and given the
error rates around inflections in Figure 4, perhaps
the most detailed would perform better. Still, the
notion is plausible. A trade-off between frequency
and level of regex detail might go some way to-
wards modeling the loss of increasingly obscure
inflectional patterns in favor of those which are
more frequent.

DepDist tackles the problem of linearization en-
tirely within a dependency framework. Words are
represented by their syntactic embeddings, and the
neural network is a graph built from a dependency
tree. The learning of dependency distance toler-
ances is accomplished via these embeddings and
graphs. The only point at which the notion of lin-
earity comes into play is after all learning has com-
pleted, when distance tolerances are fed into a de-
terministic algorithm for topological sorting.

This approach is quite different from an n-gram
language model or one based on machine trans-
lation. With DepDist, if adjacent words are not
connected by a dependency relation, their linear
adjacency is in a sense emergent, a necessary
by-product of converting a two-dimensional tree

into a one-dimensional linearization. Thus the
order of sibling dependents is not directly mod-
eled, but is instead implicitly reflected in the rela-
tive distance tolerances. However, due to message
passing, siblings can be made indirectly aware of
each other—since dependents pass their embed-
ding node attributes to the head, the calculation of
edge attributes between the head and each depen-
dent reflects the presence of other siblings.

Further, DepDist is not an end-to-end machine-
learning model. The actual linearized strings are
not the target; rather, individual dependency dis-
tance tolerances are the target of learning. The
data structure which results from weighting the
edges of a directed graph and its subsequent topo-
logical sort generate a linearization based on de-
pendency distance tolerance.

Although a projectivity constraint was artifi-
cially employed in the implementation of Dep-
Dist outlined here, if the GNN were to better
learn dependency distance tolerances, that con-
straint would not be needed. Instead, observed
rates of projectivity among languages should arise
as a result of topologically sorting based on dis-
tance tolerance. Crucially, the rate of projectivity
is not directly learned. A GNN—or human—is ex-
posed to language in which head-dependent pairs
have certain distance tolerances, tolerances which
can be learned. Assembling the pairs such that
these tolerances are obeyed results in largely pro-
jective linearizations, though not exclusively so,
thereby reflecting a tendency towards projectivity.

Dependency distance tolerance seems to be a
psychologically real measure. In the current study,
the tolerances are learned via GNN, but they
might be operationalized in other ways, especially
by psycholinguistic or information-theoretic mea-
sures (cf. Scontras et al., 2017; Dyer, 2018; Hahn
et al., 2018). That is, a dependent which toler-
ates a large linear distance from its head, such as
the adverb tomorrow in the example in Figure 2,
may have a lower pointwise mutual information
(Church and Hanks, 1989) or surprisal (Futrell and
Levy, 2017) with its head, or may have higher or
lower subjectivity than the auxiliary is. As such,
because tomorrow and scheduled belong together
semantically less than is and scheduled, or they de-
pend on each other less, the adverb is allowed to
be placed farther away. This is a sort of conceptual
inversion of Behaghel (1932)—what does not nec-
essarily belong together can be placed far apart.
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5.1 Future directions
Given that the performance of DepDist is competi-
tive with many of the other submissions to SR ‘19,
the approach seems promising. The error analysis
indicates deficiencies in the rule-based approach
to inflections, possibly due to reliance on orthog-
raphy to approximate phonetic environments, as
well as a reliance on morphological-feature list-
ings which may not always be present in Univer-
sal Dependencies corpora. The GNN’s ability to
learn accurate dependency distance tolerances at
the sentence level is promising, but leaves signif-
icant room for improvement. For example, the
GNN’s architecture may be too small, the syn-
tactic embedding framework may be too old to
properly generalize from training data, the training
data may be too limited, and the training of only 5
epochs may be too few to properly learn distance
tolerances. All of these areas can be explored in
future study.

Finally, training was confined to a single train-
ing corpus per language—future study should at
least take advantage of all available corpora for a
given language. More promisingly, transfer learn-
ing could be employed to take advantage of cross-
linguistic tendencies regarding dependency dis-
tance tolerance.

6 Summary

This paper describes the DepDist submission to
SR ‘19. The approach to inflecting uses regular
expressions and substitutions to learn morphologi-
cal prototypes from training exemplars, which can
be applied to words unseen during training. Lin-
earizing a tree is accomplished by first learning de-
pendency distance tolerances via syntactic word
embeddings and a graph neural network (GNN),
then sorting the resulting edge-weighted directed
acyclic graph (DAG) according to either projec-
tive or non-projective algorithms, only the for-
mer of which were submitted. The results of De-
pDist are competitive, the approach is linguisti-
cally grounded, and there is ample room for im-
provement to both the inflectional module and
GNN architecture.
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sitätsbuchhandlung, Heidelberg.

Jean Berko. 1958. The Child’s Learning of English
Morphology. WORD, 14(2-3):150–177.

Michael M. Bronstein, Joan Bruna, Yann LeCun,
Arthur Szlam, and Pierre Vandergheynst. 2017. Ge-
ometric deep learning: going beyond Euclidean
data. IEEE Signal Processing Magazine, 34(4):18–
42. ArXiv: 1611.08097.

Joan L. Bybee and Carol Lynn Moder. 1983. Morpho-
logical Classes as Natural Categories. Language,
59(2):251–270.

Ramon Ferrer-i Cancho and Carlos Gómez-Rodrı́guez.
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Abstract

The Surface Realization Shared Task involves
mapping Universal Dependency graphs to raw
text, i.e. restoring word order and inflection
from a graph of typed, directed dependen-
cies between lemmas. Interpreted Regular
Tree Grammars (IRTGs) encode the corre-
spondence between generations in multiple al-
gebras, and have previously been used for se-
mantic parsing from raw text. Our system
induces an IRTG for simultaneously building
pairs of surface forms and UD graphs in the
SR’19 training data, then prunes this grammar
for each UD graph in the test data for efficient
parsing and generation of the surface ordering
of lemmas. For the inflection step we use a
standard sequence-to-sequence model with a
biLSTM encoder and an LSTM decoder with
attention. Both components of our system are
available on GitHub under an MIT license.

1 Introduction

The ‘shallow’ (T1) track of the Surface Realiza-
tion task (Mille et al., 2019) involves mapping
Universal Dependencies (UD) graphs (De Marn-
effe et al., 2014) to surface forms, i.e. restoring
word order and inflection based on the typed
grammatical dependencies among a set of lem-
mas. We used a hybrid method that restores word
order by IRTG rules, see Section 2, induced from
the training data, see Section 3, and performs
inflection using a standard sequence-to-sequence
model with a biLSTM encoder and an LSTM
decoder with attention, see Section 4. This
architecture fits well with the recent trend toward
eXplainable AI (Gunning, 2017), and is not as

data-hungry as end-to-end neural systems. Only
8 of the 12 teams participated on the non-English
portion of the track, with BME-UW ranked sec-
ond in automated, and generally in the top three
in human evaluation. The IRTG based system
is available under https://github.com/
adaamko/surface_realization, the
inflection system was trained using the framework
under https://github.com/juditacs/
deep-morphology

2 Rule format: IRTGs and s-graphs

Several common tasks in natural language pro-
cessing involve graph transformations, in particu-
lar those that handle syntactic trees, dependency
structures such as UD, or semantic graphs such
as AMR (Banarescu et al., 2013) and 4lang (Ko-
rnai et al., 2015). Interpreted Regular Tree Gram-
mars (IRTGs) (Koller, 2015) encode the corre-
spondence between sets of such structures and
have in recent years been used to perform syntactic
parsing (Koller and Kuhlmann, 2012), generation
(Koller and Engonopoulos, 2017), and semantic
parsing (Groschwitz et al., 2015, 2018). In previ-
ous work (Ács et al., 2019) we encoded transfor-
mations between raw text, phrase structure (PS)
trees, UD and 4lang semantic graphs to build a
single IRTG that allows for mapping between any
pair of such structures.

IRTGs are Regular Tree Grammars in which
each rule is mapped to operations in an arbitrary
number of algebras. Hence, derivations of an
IRTG correspond to synchronous generation of
objects in each of these algebras, and an IRTG
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parser such as alto (Gontrum et al., 2017) can
be used to map from one set of objects to all oth-
ers. For the word order restoration task our sys-
tem constructs an IRTG operating on strings and
UD graphs, simultaneously constructing sentences
from words and UD graphs from nodes. Opera-
tions of the simple string algebra (S, ·) are mapped
to those of an S-graph algebra (Courcelle, 1993),
a formalism also used by (Groschwitz et al., 2015)
to perform semantic parsing via IRTGs. Here we
give only an informal overview of s-graph alge-
bras, see (Koller and Kuhlmann, 2011; Courcelle
and Engelfriet, 2012) for a more formal expla-
nation. S-graphs are graphs whose vertices may
be labeled by one of a countable set of sources.
The central operation of an s-graph algebra is the
binary merge, which unifies pairs of s-graphs
in a way that vertices with matching sources are
merged, i.e. when two s-graphs G1 and G2 are
merged, the resulting s-graph G′ will contain all
nodes of G1 and G2, and when a pair of nodes
(v1, v2) ∈ E(G1) × E(G2) have the same source
name, they will be mapped to a single node v′

in G′ that has all adjacent edges of v1 and v2.
Sources can also be renamed or forgotten using
the operations rena↔b and fga, where a and b are
sources from the set A. Next we shall provide a
small example with string and s-graph interpreta-
tions.

The Algebraic Language Toolkit, or alto1

(Gontrum et al., 2017), is an open-source parser
for IRTGs that implements a variety of algebras
to use as intepretations of IRTGs, including the
string algebra and s-graph algebra. An alto
grammar file must declare all interpretation alge-
bras and for each RTG rule provide mappings to
operations in each of these algebras. Figure 1
shows a minimal example of an IRTG with two
interpretations. The abstract RTG rule nsubj,
so named after the corresponding UD relation,
has two abstract arguments, designated VERB and
NOUN. The string interpretation establishes that
the surface form of the second argument (NOUN)
is to precede the first argument (VERB). The ud
interpretation adds a directed nsubj edge be-
tween the subgraphs corresponding to each ar-
gument, by a series of rename, merge, and
forget operations. Angle brackets after nodes
indicate source names. In our s-graph grammars,
every subgraph at every point of the derivation

1https://github.com/coli-saar/alto

interpretation string:
de.up.ling.irtg.algebra.StringAlgebra

interpretation ud:
de.up.ling.irtg.algebra.GraphAlgebra

VERB -> _nsubj(VERB, NOUN)
[string] *(?2, ?1)
[ud] f_dep1(merge(

merge(?1, "(r<root> :nsubj d1<dep1>)
↪→ "),

r_dep1(?2)))

PROPN -> John
[string] John
[ud] "(John<root> / John)"

VERB -> sleeps
[string] sleeps
[ud] "(sleeps<root> / sleeps)"

Figure 1: Toy IRTG grammar

has exactly one node labeled with the <root>
source, indicating the head of the phrase, which
could be connected to a ROOT node to create a
well-formed UD-graph. The intepretation in our
example contains a graph literal, describing the

graph r<root>
nsubj−−−→ d1<dep1>. This graph

is first merged with the graph corresponding to
the first argument, then the result is merged with
the graph obtained by renaming the root source of
the second argument’s graph to dep. r dep and
f dep are Alto’s shorthands for renaming the
root source to dep and forgetting the dep source.
Terminal rules create string and UD literals. This
toy grammar is therefore a representation of the
parallel derivations of the sentence John sleeps

and the UD graph sleeps
nsubj−−−→ John. The next

section will describe our method for building such
grammars automatically from UD datasets and us-
ing them for the word order restoration step of the
Surface Realization task.

3 Rule induction

As seen already in the example IRTG in the previ-
ous section, we represent the correspondence be-
tween strings and UD graphs as synchronized gen-
erations in two algebras. Since our goal is to learn
rules of such a grammar using UD datasets con-
taining sentences and corresponding UD graphs,
we need a method to assign derivations to UD
graphs in the s-graph algebra, i.e. a series of steps
that build the UD graph from its nodes, through
subgraphs. We choose to represent the construc-
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John loves Mary ’s cat

ROOT

NSUBJ

DOBJ

POSS

CASE

Figure 2: Sample UD analysis

S! -> start_VERB(VERB)
PROPN -> rule_1(PROPN,PART)
NOUN -> rule_2(NOUN,PROPN)
VERB -> rule_3(VERB,PROPN,NOUN)

Figure 3: sample RTG rules (interpretations omitted)

tion of UD graphs as follows: for each node in the
graph we establish one generation step, which is
responsible for attaching all its dependents to it.
The UD graph depicted in Figure 2 would hence
correspond to the RTG rules in Figure 3 (interpre-
tations are omitted for better readability). Note
that we create rules that operate at the part-of-
speech level, lemmas can then be inserted by ter-
minal rules generated separately for each sentence.

The simplest approach to constructing a
(weighted) IRTG would be to simply include all
rules “observed” in the training data, along with a
probablity calculated from the relative frequency
of a given configuration among all occurences of
a head of a particular POS-tag. In practice we
prune this grammar to include only those rules
that are applicable to a given sentence and that are
compatible with the value of the lin feature (see
below), and parse each UD graph using a much
smaller grammar. We may also add new rules to
the pruned grammar to ensure a successful pars-
ing process (that may or may not yield the correct
results).

After generating a static list of IRTG rules from
the training data, we dynamically generate a re-
duced IRTG grammar for each sentence. In a pre-
processing step we read all UD graphs that are to
be parsed, and for each node and its set of de-
pendents we check if there’s a rule in our gram-
mar covering this subgraph. If there’s more than
one matching rule, we check if the lin feature
is present in the input, which allows us to iden-
tify the single matching rule. If we identify a
unique rule matching the subgraph, we add one
to its frequency to increase the rule’s probability.
In other words, sufficiently specific patterns of the

test data are used as additional training data. If no
rules matching a subgraph are present in our static
grammar, we add binary rules for each dependent,
some of which rules may already be present in the
grammar, in which case we increase their frequen-
cies. This ensures that the grammar will cover the
new subgraph but will prefer to build it from sub-
graphs we have already seen in the training data. If
the lin feature is not present in the input, we add
two rules per dependent, corresponding to each
possible word order.

When parsing individual UD graphs, we prune
the grammar by deleting all rules that generate
POS tags that are not present in the graph (or gen-
erate more instances of a POS tag than the tag’s
total frequency in the graph). We further delete
all rules that contradict any lin features present
in the input (only the +/− sign of feature val-
ues is considered). This step must be skipped if
it would mean deleting both of a pair of rules,
e.g. because a word has punctuation both before
and after it. We can then use this pruned gram-
mar to obtain the most probable parse of the UD-
graph and the corresponding string interpretation.
The average parsing time of alto is around 2
seconds per sentence. In a few cases, sentence
length would slow down parsing considerably; for
all graphs that would take more than one minute to
parse (less than 1.5% of the data) we fall back to a
grammar that uses binary rules only, i.e. connects
all edges of the graph one-by-one.

We illustrate the kind of decisions the parser
must make through a simple example. Consider
the sentence in Figure 4. Our system correctly pre-
dicted the word order based on the UD graph, the
top parse involves attaching all dependencies of
the predicate enjoy using the two rules in Figure 5
(s-graph interpretations are omitted for readabil-
ity). The second most probable derivation applies
the three rules in Figure 6 and would yield the in-
correct surface realization I enjoyed really reading
it.

PRP RB VBD VBG PRP .
I really enjoyed reading it .

ROOT

ADVMOD

NSUBJ

XCOMP OBJ

PUNCT

Figure 4: Example from the UD dataset
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VBD -> rule_22276(VBD,PRP,RB,VBG,PERIOD) [8.14e-06]
[string] *(*(*(?2,?3),*(?1,?4)),?5)

VBG -> rule_615(VBG,PRP) [4.88e-05]
[string] *(?1,?2)

Figure 5: Most likely parse of the graph in Fig. 4

VBD -> rule_2004(VBD,PRP,VBG,PERIOD) [1.62e-05]
[string] *(*(?2,?1),*(?3,?4))

VBD -> rule_2698(VBD,RB) [1.22e-05]
[string] *(?1,?2)

VBG -> rule_615(VBG,PRP) [4.88e-05]
[string] *(?1,?2)

Figure 6: Second most likely parse

These parses illustrate a more general phe-
nomenon: since the probabilities of individual
rules are roughly similar, the system prefers
derivations with fewer rules, which attach more
nodes at the same time. Counterexamples with
radically different rule probabilities are in prin-
ciple possible, but on average the system prefers
specific (more detailed) rules over generic (less
detailed) ones, which makes the Elsewhere Prin-
ciple (Kiparsky, 1973) an emergent, rather than an
externally enforced, property of the grammar as a
whole.

4 Reinflection

In order to map sequences of lemmas to surface
forms, we train a standard seq2seq (Sutskever
et al., 2014) system with a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) encoder and
an LSTM decoder with Luong’s attention (Luong
et al., 2015). We include all CoNLL-U fields in the
input, namely the lemma, the UPOS, the XPOS
and the list of morphological tags. We also exper-
imented with adding the position of the token in
the sentence (original_id=N) during training
time. For inference, we use the order generated by
the IRTG component. This improves the perfor-
mance in most, but not all languages (see Table 1).
Figure 7 shows an English example of our input
and output format.

We split the sentences from the train data into
80% train and 20% development sets for the
inflection module. A full-scale hyperparame-
ter search being prohibitively expensive, we only
tried a few hyperparameter combinations and use
the ones performing best on the dev set for the fi-
nal submission. Table 1 lists the best configuration

Input: <L> f a m i l y </L> <P> UPOS=
↪→ NOUN XPOS=NNS </P> <T> Number=
↪→ Plur original_id=2 </T>

Output: f a m i l i e s

Figure 7: Example input and output of the inflection
component.

and the word accuracy on the dev set by language.
We use the Adam optimizer (lr = 0.001, β1 =
0.9, β2 = 0.999) with early stopping based on
dev accuracy and loss. Dropout is set to 0.4. In-
cluding the position of a token in the sentence
(use position) is also a hyperparameter.

5 Evaluation

5.1 The Surface Realization Task

We participate in the ‘shallow’ track of the 2019
Surface Realization Shared Task (SR’19). The
task involves mapping UD graphs of lemmas to
surface forms in 11 languages. Training data for
the task was created from the Universal Depen-
dencies treebanks (Nivre et al., 2018) using meth-
ods described in (Mille et al., 2018) and contains
UD treebanks with word forms replaced by lem-
mas word order information removed via scram-
bling. Two additional features have been added
to the dataset, the lin feature encoding the rel-
ative order of a word and its governor and the
originalId for reconstructing word order (in
the training data only).

5.2 Results

The primary method of evaluation at SR’19 is hu-
man evaluation of two aspects of each output sen-
tence: readability and semantic similarity to the
original sentence. The detailed results are pre-
sented in (Mille et al., 2019). On 4 of the 5 datasets
involved in the human evaluation scheme, our sys-
tem was outperformed significantly by only two
other systems in terms of readability. In terms of
semantic similarity we are outperformed by only
1 or 2 systems on three of the five datasets. Auto-
matic evaluation was performed using three met-
rics, described also in (Mille et al., 2019). Ta-
ble 2 presents macro-average values for the top
four teams, those that submitted outputs for all
datasets. Our system ranks second among these
four teams on two out of three metrics. On indi-
vidual datasets, our system mostly performs below
or around the average of all systems, with the ex-
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use position batch size hidden size layers embedding size dev acc

ar True 128 512 2 100 93.68
en True 128 512 2 100 96.09
es True 128 512 2 100 98.70
fr True 128 512 2 100 94.59
hi True 128 512 2 100 98.26
id True 256 128 1 100 93.77
ja False 32 1024 2 100 91.61
ko True 128 512 2 100 98.43
pt True 128 512 2 100 91.43
ru True 128 512 2 100 97.46
zh False 32 128 1 100 98.81

Table 1: Highest performing configurations for each language. Dev acc refers to a randomly selected subsection
of the train data as the dev sets did not have gold standard inflection.

BLEU NIST DIST

IMS 79.97 12.79 81.62
BME-UW 50.04 11.39 56.11

LORIA 47.67 10.32 65.78
Tilburg 45.18 10.05 56.11

Table 2: Macro-average of the top four systems across
all datasets

ception of one Russian and two Korean datasets
where we are outperformed by only one system
(IMS).

6 Conclusions, further work

The weighting scheme described in Section 3 is
in many ways similar to the way psycholinguists
think about grammatical rules. Those rules that
are based on fewer examples are used more rarely.
In the limiting case, singleton examples are rarely
abstracted into rules, they are memorized as is,
and the key mechanism for such examples to
override the general rules, e.g. that mice over-
rides *mouses, is the same Elsewhere Principle
(Giegerich, 2001) that we see as a derived, emer-
gent property of the system.

Perhaps one modification that would bring the
system even closer to psychological reality would
be to use morphological features when restoring
the id-s. While this remains future work, we con-
sider it a strong point in favor of XAI that such
questions can be raised: explainability makes it
possible to leverage decades of psycholinguistic
work, currently almost entirely ignored in the deep

neural net paradigm which, in its laboratory pure
form, pays no attention to biological or psycholog-
ical evidence.
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Nemeskey, Katalin Pajkossy, and Gábor Recski.
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Abstract

We first describe a surface realizer for Uni-
versal Dependencies (UD) structures. The
system uses a symbolic approach to transform
the dependency tree into a tree of constituents
that is transformed into an English sentence by
an existing realizer. This approach was then
adapted for the two shared tasks of SR’19.
The system is quite fast and showed compet-
itive results for English sentences using auto-
matic and manual evaluation measures.

1 Introduction

This paper describe the system that we submit-
ted to the Surface Realization Shared Task 2019
(SR’19)1 in conjunction with Second Workshop
on Multilingual Surface Realization (Mille et al.,
2019). The data used by this shared task was cre-
ated by modifying original Universal Dependen-
cies structures (Nivre et al., 2016) (UD) to create
two tracks:

Shallow Track (T1) in which word order is per-
muted and tokens have been lemmatized and
some information about linear order about
the governor has been added. The task con-
sists in determining the word order and in-
flecting the words.

Deep Track (T2) in which functional and
surface-oriented morphological information
has been removed from the T1 structures.
The goal is to reintroduce the missing func-
tional words and morphological features.

The creation of the data set is described in (Mille
et al., 2018). The output of the systems have been
evaluated using automated metrics and a subset of
those, evaluated manually.

1http://taln.upf.edu/pages/msr2019-ws/
SRST.html

The organizers of SR’19 have taken for granted
that this task would be solved using statistical and
machine learning approaches, which seems to be
an obvious way of going given the recent trends in
NLP. They provide a list of authorized resources
such as language models and distributed represen-
tations of words.

We decided to try an alternative approach by
first building UD-SURFR (Universal Dependency
Surface Realizer), a symbolic system for the orig-
inal UD structures and then adapting it for the two
tasks of SR’19. We thought it would be interest-
ing to see how this classical approach compares
with machine learning systems.

Written in Prolog, UD-SURFR parses the orig-
inal UD structure and builds the corresponding
dependency tree which is then converted to a
tree of constituents realized using JSREALB,2 a
web-based English and French realizer written in
JavaScript; only the English realizer is used here
because we worked only on the English corpora
of UD. The UD structures are provided in tab sep-
arated files in a well-defined format (see row 1 of
Table 1 for a small example). Given the fact that
the input and output representations are trees, Pro-
log seemed a natural symbolic of choice for a tree
to tree transformation engine.

We are aware that we are not following the rules
of SR’19 as we use JSREALB, a system that is
not authorized by the competition, but we think
this experiment is still interesting. It does not re-
quire any specialized hardware and huge amount
of memory as is often the case by modern ma-
chine learning approaches. It has been developed
using only a few hand selected examples. These
results could be used as a baseline on which sta-
tistical systems could build. We have deliberately
shirked from adding any statistical techniques on

2http://rali.iro.umontreal.ca/rali/?q=
en/jsrealb-bilingual-text-realiser
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the output of UD-SURFR just to determine how
far a symbolic approach can go. In a production
setting, it would surely be better to combine statis-
tical and symbolic systems.

We did not find any text realizer that takes UD
annotations as input except for Ranta and Ko-
lachina (2017) who present an algorithm to trans-
form many UDs into Grammatical Framework
structures from with English sentences can be gen-
erated.

A UD realizer might seem pointless, because
UD annotations are created from realized sen-
tences. As UDs contains all the tokens in their
original form (except for elision in some cases),
the realization can be obtained trivially by listing
the FORM in the second column of each line.

What we propose in this paper is a full realizer
that uses only the lemmas and the syntactic infor-
mation contained in the UD to create the final sen-
tence from scratch which can be compared to the
original. The linear ordering of the tokens is ex-
tracted from the tree structure given by the HEAD
links (column 7) of the UD. We can imagine two
interesting uses for such a realizer:

• Should a What to say module of an NLG sys-
tem produce UD structures, then UD-SURFR
could be used as the How to say module.

• Providing help to annotators to check if the
information they entered is correct by regen-
erating the sentence from the dependencies.
This enables to catch more types of errors in
the annotation; this is not foolproof, but it is
easier to detect a strange sentence than a bad
link buried in lines of dependencies. During
our development, we encountered a concrete
example where the automatic realization re-
vealed an error in the original annotation; the
error was later confirmed by the maintainer
of the corpus.

The next section shows the tree representations
used by our system using a simple example from
the training test. Section 3 describes the develop-
ment of UD-SURFR for the original UD structures
and how it was adapted for SR’19. As T1 struc-
tures are a permutation of the lines of the original
structure, but we conjectured that, once the tree
structure would be retrieved, the differences would
be minor after sorting the leaves at each level of
the tree. For T2, we took the realizer for T1
and abstracted the name of the dependencies by

reversing the transformations described in (Mille
et al., 2018). Section 4 gives the results of the eval-
uation obtained using the evaluation scripts pro-
vided with the task. We also compare our results
with the automatic and manual scores obtained by
other systems that participated in the task. We
conclude with some lessons learned from this de-
velopment.

2 Representations

Table 1 illustrates the transformation steps be-
tween an input UD (row 1) and an English sen-
tence using a short example from the train set
(en_ewt-ud-train.conllu). Row 1 shows
the CONLLU format,3 a series of tab separated
lines into fields giving information for each token
of the sentence. Row 2 shows the dependencies
either as a set of links between words (on the left
part) or as a tree (on the right) Row 3 shows the
Prolog structure corresponding to the tree which
is transformed into the Deep Syntactic Repre-
sentation shown in Row 4. Row 5 shows the Sur-
face Syntactic Representation which is used by
JSREALB to realize the sentence shown in Row 6.

2.1 UD in Prolog

The first step is to parse a group of lines in CON-
LLU format corresponding to UD structure and to
build the corresponding tree. The root is easily
identified: its HEAD (field 7) is 0. Its children are
found by looking for lines that have the root as
HEAD. Each child is then taken as the root of the
subtree and recursively parsed and transformed in
the following format, using the official CONLLU
field names:

[DEPREL>LR, [UPOS:LEMMA | FEATS]
| children]

LR is either l or r depending on whether the re-
lation is to the left or the right of the HEAD. In Pro-
log, “|” separates the start of a list within brackets
from the rest of the list which can be empty.

This representation keeps intact the parent-child
relations and the relative ordering between the
children, it also keeps track of the fact that some
children occur to the left or to the right of the par-
ent. This is easily inferred from the ID of each
token compared with the value of its HEAD. This

3https://universaldependencies.org/
format.html
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1 Universal
Dependencies
in CONLLU

# sent_id = weblog-juancole.com juancole 20051126063000 ENG 20051126 063000-0020

# text = His mother was also killed in the attack.
1 His he PRON PRP Gender=Masc|... 2 nmod:

poss
2 mother mother NOUN NN Number=Sing 5 nsubj:

pass
3 was be AUX VBD Mood=Ind|... 5 aux:

pass
4 also also ADV RB _ 5 advmod
5 killed kill VERB VBN Tense=Past|... 0 root
6 in in ADP IN _ 8 case
7 the the DET DT Definite=Def|... 8 det
8 attack attack NOUN NN Number=Sing 5 obl
9 . . PUNCT . _ 5 punct

2

Linked and tree
representations

3 Universal
Dependencies
in Prolog

[root>r,[verb:"kill",tense:past,verbform:part,voice:pass],
[aux:pass>l,[aux:"be",mood:ind,number:sing,person:3,

tense:past,verbform:fin]],
[obl>l,[noun:"attack",number:sing],

[det>r,[det:"the",definite:def,prontype:art]],
[case>r,[adp:"in"]]],

[nsubj:pass>l,[noun:"mother",number:sing],
[nmod:poss>r,[pron:"he",gender:masc,

number:sing,person:3,
poss:yes,prontype:prs]]],

[punct>l,[punct:".",lin:1]],
[advmod>l,[adv:"also"]]]

4 Deep
Syntactic Rep-
resentation

s(vp(ls(v("kill")*t("ps"),
adv("also")),

np(d("my")*pe(3)*ow("s")*n("s")*g("m")*g("m"),
n("mother")*n("s")),

pp(p("in"),
np(d("the"),

n("attack")*n("s")))))*typ({pas:true})*a(".")

5 Surface
Syntactic Rep-
resentation

S(VP(V("kill").t("ps"),
Adv("also"),
NP(D("my").pe(3).ow("s").n("s").g("m").g("m"),

N("mother").n("s")),
PP(P("in"),

NP(D("the"),
N("attack").n("s"))))).typ({pas:true}).a(".")

6 English His mother was killed also in the attack.

Table 1: Representations used in the transformation of the Universal Dependencies in CONLLU format in row 1
to the sentence shown in row 6.

is useful in some cases for putting compounds and
complements before or after the head. But for the
T1 and T2, this information is not reliable because
the nodes have been permuted and it is the job of
the realizer to get the compound and complements
in the right order.

2.2 Deep Syntactic Representation (DSR)

The DSR is an intermediary Prolog structure that
corresponds to the constituency tree of the real-
ized sentence. A Definite Clause Grammar (DCG)
transforms this structure into the Surface Syntac-
tic Representation (SSR) described in the next
subsection. In principle, it would have been pos-
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sible to create the SSR directly, but, for technical
reasons, it proved more convenient to use this in-
termediary step.

The creation of the DSR from the UD in Prolog,
which is the core part of the system, is described
in Section 3.

2.3 Surface Syntactic Representation
(SSR)

The SSR is the input form for JSREALB(Molins
and Lapalme, 2015), a surface realizer writ-
ten in JavaScript similar in principle to
SIMPLENLG (Gatt and Reiter, 2009) in which
programming language instructions create data
structures corresponding to the constituents of the
sentence to be produced. Once the data structure
(a tree) is built in memory, it is traversed to
produce the list of tokens of the sentence.

This data structure is built by function calls
whose names are the same as the symbols usually
used for classical syntax trees: for example, N to
create a noun structure, NP for a noun phrase, V
for a verb, D for a determiner, S for a sentence
and so on. Options added to the structures using
the dot notation can modify the values according
to what is intended.

The JSREALB syntactic representation is pat-
terned after classical constituent grammar nota-
tions. For example:
S(NP(D("a"),N("woman")).n("p"),

VP(V("eat"),
NP(D("the"),

A("red"),
N("apple"))).t("ps"))

is the JSREALB specification for Women ate
the red apple. Plural is indicated with the
option n("p") where n indicates the number and
"p" plural; this explains why the determiner "a"
does not appear in the output. The verb is conju-
gated to past tense indicated by the option tense t
with value "ps". Agreement within the NP and
between NP and VP is performed automatically.

JSREALB is aimed at web developers that want
to produce web pages from data.4 It takes care
of morphology, declension and conjugation to cre-
ate well-formed texts. Some options allow adding
HTML tags to the realized text.

An interesting feature of JSREALB, inspired
by a similar mechanism in SIMPLENLG, is

4Tutorial and demos are available at http:
//rali.iro.umontreal.ca/JSrealB/current/
documentation/in_action/README.html

the fact that once the sentence structure has
been built, many variations can be obtained by
adding a set of options to the sentences, to get
negative, progressive, passive, modality and
some type of questions. For example, adding
.typ({neg:true,pas:true,mod:"poss"}) to
the previous JSREALB structure will be realized
as The red apple cannot be eaten
by women., a negative passive sentence with a
modal verb for possibility.

Row 5 of Table 1 is the JSREALB structure that
is realized as the bottom part of the table. The
structure of constituents written as an active sen-
tence has been realized as a passive one, the orig-
inal complement becoming the subject. The verb
was also conjugated to the past tense. This was
made possible by the options given to JSREALB.

3 Deep Syntactic Representation

We now describe how a UD in Prolog is trans-
formed into a DSR. The main idea is to reverse
engineer the universal dependencies annotation
guidelines5.

3.1 Morphology

Word forms in UD are lists without children that
are mapped to terminal symbols in JSREALB. So
we transform the UD notation to the DSR one by
mapping lemma and feature names, see Table 2.

As shown in the last example, we had to nor-
malize pronouns to what JSREALB considers as its
base form. In the morphology principles of UD6,
it is specified that

treebanks have considerable leeway in
interpreting what “canonical or base
form” means

In the English UD corpora, it seems that the
LEMMA of pronoun is always the same as its FORM.
We decided to lemmatize further instead of merely
copying the lemma as a string input to JSREALB
so that verb agreement can be performed.

What should be a LEMMA is a hotly discussed
subject on the UD GitHub, but there are still too
many debatable lemmas such as an, n’t, plural
nouns etc. In one corpus, lowercasing has been ap-
plied to some proper nouns, but not all. We think

5https://universaldependencies.org/
guidelines.html

6https://universaldependencies.org/u/
overview/morphology.html
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UD JSREALB
[noun:"mother",number:sing] n("mother")*n("s")
[verb:"be",mood:ind,number:sing,person:3, v("be")*t("p")*pe(3)

tense:pres,verbform:fin]
[pron:"we",case:nom,number:plur,person:1, pro("I")*n("p")*pe(1)

prontype:prs]

Table 2: Some examples of mapping between UD features and JSREALB options

it would be preferable to do a more aggressive
lemmatization to lower the number of base forms
in order to help further NLP processing that is of-
ten dependent on the number of different types.

3.2 UD to Deep Syntactic Representation

The essential idea is to transform recursively each
child to produce a list of DSRs labeled with the
name of the relation. The head of the relation is
used as the constituent to which are added the de-
pendents.

According to the annotation guidelines, there
are two main types of dependents: nominals and
clauses7 which themselves can be simple or com-
plex.

Nominals are triggered when the head is ei-
ther a noun, an adjective, a proper noun, a pro-
noun or a number. When it is a noun, most often
a NP is created using information gathered from
the dependents depending on their part of speech
tags such as det, nummod, amod, compound
or nmod:poss. Special cases are needed for
proper nouns, possessives with ’s, prepositional
phrases and appositions. Nouns and adjectives can
be transformed to a sentence when its dependent is
a nsubj with a possible cop; if the copula is not
given, then be is used.

Clauses (both simple and complex) are trig-
gered when a verb is encountered as the head. In
this case, a S is created taking as subject a expl
or nsubj; the V of the VP is the lemma of the
head and the complements are all other dependen-
cies in order of appearance which corresponds to
the order of the original sentence.

Prepositional phrases are dealt specially by re-
moving the preposition and dealing with the other
dependents like an ordinary clause that is then
nested into the prepositional phrase. Proper nouns
with flat dependents are built beforehand.

This mechanism (25 rules in 100 lines of com-
mented and indented Prolog) was first developed
by reading the annotation guidelines and then re-
fined by experience on the UD corpus.

7not to be confused with the Prolog clauses...

This exercise in transforming UD structures to
JSREALB revealed an important difference in their
level of representation. By design UD stays at the
level of the form in the sentence, while JSREALB
works at the constituent level. For example, in
UD, negation is indicated by annotating not and
the auxiliary elsewhere in the sentence, while in
JSREALB the negation is given as an option for the
whole sentence. So before starting the transforma-
tion previously described, the structure is checked
for the occurrence of part:"not" and an aux-
iliary to generate the .typ({neg:true}) op-
tion for JSREALB; these dependents are then
removed for the rest of the processing. Simi-
lar checks must also be performed for passive
constructs, modal verbs, progressive, perfect and
even future tense in order to abstract the UD
annotations into the corresponding structure for
JSREALB.

3.3 T1 to Deep Syntactic Representation

The algorithm given in the previous section cannot
be used directly on the input of the Shallow Track
because the word order has been permuted while
keeping the intact the relations between the words.

Proper lemmatization is performed by
JSREALB. Unfortunately, lemmatization for
T1 is not always systematic, there are a few cases
such as grounds or rights where the plural was
left in the lemma; no pronoun is lemmatized,
so we find he, them, she, it while a canonical
pronoun should be used, JSREALB uses I. Not
having to find the appropriate pronoun simplifies
realization because this is one of the difficulties
of English generation whose morphology is
otherwise relatively simple at least compared to
other languages.

Given the fact that the permutation left intact
the links between the words, we used a very sim-
ple approach: we first build the tree and then sort
the dependents at each level. The sorting first takes
into account the information about the linear order
added to make sure proper nouns and punctuation
can be added at the appropriate place. Then a fixed
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# sent_id = weblog-juancole.com_juancole_20051126063000_ENG_20051126_063000-0020
# text = His mother was also killed in the attack.
1 kill _ VERB _ Tense=Past|id2=1|id1=9|original_id=5|... 0 ROOT
2 mother _ NOUN _ Number=Sing|id1=3|original_id=2 ... 1 A2
3 also _ ADV _ id1=7|original_id=4 ... 1 A1INV
4 attack _ NOUN _ Number=Sing|id2=5|id1=2|id3=8|origina... 1 AM
5 he _ PRON _ Number=Sing|id1=4|Poss=Yes|original_i... 2 AM

['ROOT'>r,[verb:"kill",tense:past,clausetype:dec],
['A2'>r,[noun:"mother",number:sing],

['AM'>r,[pron:"he",number:sing,poss:yes,person:3,prontype:prs]]],
['A1INV'>r,[adv:"also"]],
['AM'>r,[noun:"attack",number:sing,definite:def]]]

s(vp(v("kill")*t("ps"),
adv("also"),
np(d("my")*pe(3)*ow("s")*n("s")*g("m"),

n("mother")*n("s")),
pp(p("in"),

np(d("the"),
n("attack"))*n("s"))))*typ({pas:true})

His mother was killed also in the attack.

Table 3: The T2 dependency given at the top is parsed into the nested list structure shown in the second line; the id
and original id features are ignored as they are given for easing the training of learning algorithms. It is then
transformed into a Deep Syntactic Representation shown in the third line and then into a Surface Syntactic
Representation (not shown here) which is given to JSREALB to realize the sentence shown at the bottom which
is the same as the original sentence given at the top of Table 1.

order of relation name is chosen so that a subject
appears before the verb or its complements, a de-
terminer will be placed before an adjective and a
noun, etc.

Once the T1 structure has been sorted, it is pro-
cessed like a UD structure using the algorithm de-
scribed above. In this case, the algorithm does not
use the fact the left or right position of the chil-
dren in relation to the head; this relation being lost
by the permutation applied in creating T1. For the
two previous examples, the sorting process recre-
ates almost exactly the structure of the original UD
and the output sentence is the same. This hap-
pens because small differences in the placement
of aux, mark or prep do not change the realiza-
tion.

3.4 T2 to Deep Syntactic Representation

The SR’19 documentation dataset8 provides a
mapping between the universal dependencies and
the ones used for T2. So we adapted the algorithm
given for the UD by changing the names of the re-
lations.

The tree is built by reading the T2 dependen-
cies and the dependents are sorted at each level

8http://taln.upf.edu/pages/msr2019-ws/
srst_dataset_doc.txt

according to the relation names. Then the NAME
dependents are processed using the linear order in-
formation.

Using a similar process as described for UD, we
deal with nominals and clauses. For nominals, all
A1 and AM dependents are used for building a NP.
A sentence is built when a verb is encountered as
a head, the subject being the value of the A1 rela-
tion, the verb phrase comprises the head verb and
all other dependents. Some care has to be given to
the AiINV relations that are used as relative sen-
tences for verbs and noun complements. Given the
fact that important information has been removed
in the T2 structures, the results leave much room
for improvement. It would surely be interesting to
improve this output using a statistical spell or style
checker.

Table 3 shows the T2 structure for the exam-
ple shown in Table 1. That this sentence should
be written in passive mode is not specified in the
input, but the transformation rules indicate that a
passive subject is indicated by a A2 relation with-
out any A1. Prepositions being absent from T2
structures, we computed the most frequent prepo-
sition used with each word as head in the orig-
inal UD corpora; this is the only statistical pro-
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cess used in our system, but there should be more.
This preposition is added for all dependents hav-
ing relation AM and Ai (i>= 3). For the verb kill,
the most frequent preposition being in, it is added
(correctly in this case) before the attack. The orig-
inal sentence was thus reproduced verbatim but, of
course, this is not always the case...

4 Results and Evaluation

We ran the program on all training (≈ 20 000 sen-
tences) and development (≈ 4 000 sentences) sets
provided by the organizers of SR’19 for English.
We also ran them on the test sets of the 2018 and
2019 competitions. Using SWI-Prolog V8.1, the
whole set is processed in about 5 minutes of real
time (half of which is CPU) on a 2.2 GHz Mac-
Book Pro, including the production of evaluation
files, a good example of Green AI (Schwartz et al.,
2019).

4.1 Automatic Evaluation

4.1.1 Training and development sets
Table 4 shows the BLEU, NIST and DIST scores
on the 2019 training and development sets for the
four English corpora. The scores for T1 and UD
are quite similar and their value are within the
scores obtained by systems on a similar task in
2018. Comparing the automatic results on the
train and development sets, we see that the results
for T1 are only slightly worse than the ones for UD
(especially for BLEU), so we consider that this ap-
proach is valuable for this special task.

It seems to us that the permutation of the lines
in the dependency file does not change the input
so much to warrant a special task. In fact, from an
NLG point of view, T1 seems artificial, as we can-
not imagine a generation system that determines
all the tokens but in a random order.

4.1.2 Test sets
Table 5 gives these scores for the test set used in
the 2018 competition. These scores are compet-
itive for T1 and only slightly less in BLEU than
the unique participant for this task in 2018. A cur-
sory manual evaluation of the output for T2 shows
the need for improvement for long sentences even
though the automatic scores are quite similar ex-
cept for BLEU. This can be explained by the fact
that a lot of information is not given in the output,
but is expected to be inferred by the NLG system.
For the moment, the only real information added

by the system is the most frequent preposition en-
countered in the test and development set for com-
plements of nouns or of verbs.

The 2019 test set was much more comprehen-
sive with more languages and different types of
corpora. Evaluation was done on both tokenized
and detokenized input. In the case of UD-SURFR,
as JSREALB was already realizing a detokenized
output, we had to write a tokenizer to separate
the tokens in order to make the output comparable
with the one of other systems working at the to-
ken level and then applying some postprocessing
to produce a more readable output with proper cas-
ing and appropriate spacing around punctuation.
In terms of automatic scores, UD-SURFR is com-
petitive: it is more or less the average between the
best and worst scores obtained by other systems.
And this seems consistent across all types of cor-
pora. Figure 1 shows a graph of the BLEU scores
for the tokenized sentences which seem to be typi-
cal of the comparison across the scores for all par-
ticipants to the tasks. For T1 (left part of the fig-
ure), the score for UD-SURFR (the black stripped
bar on the left) is approximately in the middle of
the score of other systems. For T2, except for the
very best system, UD-SURFR does surprisingly
well compared with other participants.

4.2 Manual Evaluation

The SR’19 organizers evaluated the output of 16
systems on two aspects:

• The text adequately expresses the meaning of
the sentence for which our T1 system ob-
tained 73% (ranked 11th) and T2 obtained
68% (ranked 14th) after scoring about 700
sentences; in fact these scores are not statisti-
cally different from each other.

• the text reads well and is free from grammat-
ical errors and awkward constructions for
with our T1 system obtained 58% which cor-
responds to the second group of system over
4. Note that the human reference only ob-
tained 71% on this evaluation. These scores
were based on about 550 sentences. We were
quite surprised to see that the T2 system man-
aged to get 50% even though no effort was
put in adding any language model.

Given the relative simplicity of our approach, we
are quite satisfied with these scores.
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ewt gum lines partut
BLEU DIST NIST BLEU DIST NIST BLEU DIST NIST BLEU DIST NIST

train 12 543 sent. 2 914 sent. 2 738 sent. 1 781 sent.
UD 0.49 0.64 12.26 0.48 0.58 10.93 0.46 0.56 10.53 0.44 0.48 10.37
T1 0.38 0.62 10.88 0.40 0.55 10.17 0.36 0.53 9.42 0.38 0.48 9.73
T2 0.25 0.56 9.24 0.26 0.47 8.63 0.24 0.49 8.11 0.24 0.42 8.03
dev 2002 sent. 707 sent. 912 sent 156 sent.
UD 0.48 0.69 10.39 0.49 0.60 9.87 0.48 0.60 9.96 0.39 0.61 7.76
T1 0.37 0.66 9.33 0.41 0.57 9.23 0.38 0.56 9.00 0.33 0.60 7.31
T2 0.25 0.64 8.21 0.25 0.49 7.83 0.24 0.54 7.66 0.23 0.54 6.46

Table 4: Automatic evaluation scores produced by the evaluation scripts of the SR’19 organizers on the train and
dev sets. For UD and T1, the scores seem competitive with the ones obtained by the participants at the 2018
competition shown in Table 5.

BLEU DIST NIST
T1 0.38 0.69 9.38
2018-best 0.69 0.80 12.02
2018-worst 0.08 0.47 7.71
T2 0.19 0.60 7.87
2018 0.22 0.49 6.95

Table 5: Automatic evaluation on the 2061 sentences of the 2018 test set compared with the scores obtained by
systems participating in the 2018 shared task. Only one system provided output for the T2 task.
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Figure 1: Comparison for BLEU scores for T1 (left) and T2 (right) on tokenized sentences from the English
corpora for UD-SURFR (Team 2) shown as the first black stripped bar to the left compared with the scores obtained
by other participants.

5 Conclusion

We have described a symbolic approach for tack-
ling the tasks T1 and T2 of SR’19. We first de-
scribed the development of UD-SURFR, a text
realizer for standard UD input that can be used
for checking the annotation. We then described
UD-SURFR was modified to take into account the
specificities of the shared task. The system has
processed the training, development and test sets
of the competition and obtained average results
compared to other machine learning approaches.
This is quite surprising given the fact, that the

symbolic system only used a very small part of
the training and development corpora. But more
important, the experiment has revealed that task
T1 (for English at least) is perhaps too easy and
does not really correspond to a realistic input for a
text realizer. T2 proved more challenging but the
results are finally relatively similar.
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Abstract

We introduce the IMS contribution to the Sur-
face Realization Shared Task 2019. Our sub-
mission achieves the state-of-the-art perfor-
mance without using any external resources.
The system takes a pipeline approach consist-
ing of five steps: linearization, completion, in-
flection, contraction, and detokenization. We
compare the performance of our linearization
algorithm with two external baselines and re-
port results for each step in the pipeline. Fur-
thermore, we perform detailed error analysis
revealing correlation between word order free-
dom and difficulty of the linearization task.

1 Introduction

This paper presents our submission to the Surface
Realization Shared Task 2019 (Mille et al., 2019).
We participate in both shallow and deep track of
the shared task, where the shallow track requires
the recovery of the linear order and inflection of
a dependency tree, and the deep track additionally
requires the completion of function words.

We approach both tasks with very similar
pipelines, consisting of linearizing the unordered
dependency trees, completing function words (for
the deep track only), inflecting lemmata to word
forms, and contracting several words as one token,
and finally detokenizing to obtain the natural writ-
ten text. We use machine learning models for the
first four steps and a rule-based off-the-shelf deto-
kenizer for the final step.

In the evaluation on the tokenized text, our sys-
tem achieves the highest BLEU scores for each in-
dividual treebank in both tracks, with an average
of 79.97 for the shallow track and 51.41 for the
deep track. In the human evaluation on four lan-
guages, we also rank the first in terms of readabil-
ity and adequacy.

2 Surface Realization System

Our system takes a pipeline approach, which
consists of up to five steps to produce the fi-
nal detokenized text. The steps are: lineariza-
tion (§2.2), completion (§2.3), inflection (§2.4),
contraction (§2.5), and detokenization (§2.6),
among which completion is used only in the deep
track. All the steps except for the rule-based deto-
kenization use the same Tree-LSTM encoder ar-
chitecture (§2.1). As the multi-task style training
hurt performance in the preliminary experiments,
all the steps are trained separately.

Since the submission is mostly based on our
system described in Yu et al. (2019b), here we
mainly focus on the changes introduced for this
shared task, and we refer the reader to Yu et al.
(2019b) for more details, especially on the ex-
planation and ablation experiments of the Tree-
LSTM encoder and the linearization decoder.

2.1 Tree-LSTM Encoder

Representation of each token in the tree is based
on its lemma, UPOS, morphological features, and
dependency label. We use embeddings for the
lemma, UPOS and dependency label, and employ
an LSTM to process the list of morphological fea-
tures.1 We then concatenate all of the obtained
vectors as the representation of each token (v◦).

The representation is further processed by a
bidirectional Tree-LSTM to encode the tree struc-
ture information. The encoder is generally the
same as described in Yu et al. (2019b), consisting
of two passes of information: a bottom-up pass
followed by a top-down pass. In the bottom-up
pass, we use a Tree-LSTM (Zhou et al., 2016) to
compose the bottom-up vector of the head from
the vectors of the dependents, attended by the

1There could be better treatment of the morphological fea-
tures, since they are not sequences in nature.
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token-level vector of the head, denoted as v↑. The
bottom-up vectors are then fed into a sequential
LSTM for the top-down pass from the root to each
leaf token, so that every token has access to all the
descendants of all its ancestors, namely all tokens
in the tree. The output vector is denoted as v↓.

For linearization, we use the concatenation of
v↑ and v↓ as the representation of each token. For
the other tasks, where the sequence is already de-
termined, we additionally use a sequential bidi-
rectional LSTM to encode the sequence, with the
tree-based vectors as input.

2.2 Linearization

The linearization algorithm is the same as in Yu
et al. (2019b), which is in turn based on the lin-
earizer described by Bohnet et al. (2010). The
algorithm takes an divide-and-conquer strategy,
which orders each subtree (a head and its depen-
dents) individually, and then combines them into a
fully linearized tree.2

The main improvement of our algorithm to
Bohnet et al. (2010) is that instead of ordering the
subtrees from left to right, we start from the head
(thus called the head-first decoder), and add the
dependents on both sides of the head incremen-
tally. We also train a left-to-right and a right-to-
left decoders to form an ensemble with a shared
encoder, which is shown in Yu et al. (2019b) to
achieve the best performance.

We use beam search to find the best lineariza-
tion order of each subtree, where the best N par-
tial hypotheses are kept to expand at each step.
For the head-first decoder, we use two LSTMs to
track the left and right expansion of the sequence
(only one LSTM is needed for the left-to-right or
right-to-left expansion), and the score of the se-
quence is calculated from the concatenation of the
two LSTM states followed by an MLP.

Note that in the shared task some tokens are
provided with information about the relative word
order to its head.3 We use these constraints in
our decoder so that the hypotheses violating the
constraints are ignored. Preliminary experiments

2This algorithm can only create projective trees. An
method to bypass the projective constraints is described in
Bohnet et al. (2012). However, we did not use this method
and only produce projective trees due to limited time.

3The information are encoded in the morphological fea-
tures, such as lin=+2, which means this token must appear
after the token with the feature lin=+1 after the head. They
are provided for the cases that do not have a unique correct
order, e.g., punctuation or coordinating conjunction.

showed that disregarding this word order informa-
tion would decrease the BLEU score by 2-3 points.

2.3 Completion

The completion model for the deep track takes the
output of the linearization model as input and in-
sert function words into the linearized subtrees.

Similarly to the linearization algorithm, we also
use a head-first strategy to complete each subtree.
We use two pairs of LSTMs to encode the se-
quence: a pair of forward and backward LSTMs
for the left dependents, and a pair for the right de-
pendents, where “forward” means from the head
to the end and “backward” means from the end
towards the head. Since the two pairs are symmet-
rical, we only describe the decoding process to the
right side of the head.

We use a pointer to indicate the current to-
ken, which initially points to the head. We use
the backward LSTM to encode the upcoming
sequence of linearized tokens, and the forward
LSTM to encode the already processed tokens up
to the pointer (which includes both the previously
linearized tokens and the newly generated tokens).

At each decoding step, we concatenate the for-
ward LSTM output of the current pointed token
and the backward LSTM output of the next token,
and calculate a softmax distribution of all possible
function words, as well as a special symbol ⇒ ,
which moves the pointer to the next token. If a new
token is generated, the pointer will point to the
new token. If ⇒ is predicted and the pointer al-
ready reached the last token in the sequence, then
the completion process is terminated.

Figure 1 illustrate an example of the completion
process to the right side of the head, where the lin-
earized tokens are [h, d(+1), d(+2), $], h is the head,
d(+1) and d(+2) are right dependents, and $ indi-
cates the end of the subtree. In step (1) the sym-
bol⇒ is predicted, therefore we move the pointer
from the h to d(+1); in step (2) a new token f1 is
created and attached to d(+1); in step (3) another
token f2 is created and attached to f1; in step (4) the
pointer is moved to d(+2); in step (5) the pointer is
moved again to $, which terminates the process
and outputs the sequence [h, d(+1), f1, f2, d(+2)].

The left and right completion processes are
independent of each other, since both forward
LSTMs are only aware of the initial linearized to-
kens on both sides but not the newly generated to-
kens. We tried several variations in the prelimi-
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⇒
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h $d(+1) d(+2)

⇒

f1 f2

h $d(+1) d(+2)

⇒

f1 f2

(move pointer)

(1)

(2)

(3)

(4)

(5)

(new token f1) 

(new token f2) 

(move pointer)

(move pointer)

h $d(+1) d(+2)f1 f2

(6)

(finish)

Figure 1: An example of the completion process to the
right side, where the right arrows illustrate the forward
LSTM, and the left arrows the backward LSTM.

nary experiments, including joint linearization and
completion, interleaving the left and right comple-
tion processes, and beam-search for completion.
All approaches yielded lower performance than
the described method.4 However, we note that
the completion step seems to have the most po-
tential to benefit from external language models.
We observe that many generated function words
are syntactically correct but semantically implau-
sible, and the language models are generally good
at capturing semantic coherence. We plan to in-
corporate language models in the future work.

4Admittedly, most of the experiments are rather brief,
more careful design and thorough experiments might lead to
different results.

2.4 Inflection

The inflection model is the same as in Yu et al.
(2019b). It generates a sequence of edit opera-
tions that modifies the lemma into the inflected
word form. The model takes the characters in
the lemma as input and encodes through a bidi-
rectional LSTM. A binary feature is concatenated
to the vector of each character which functions as
a pointer to indicate the input character currently
to be processed. At each step, the decoder attends
to the input vectors and predicts an output, which
could be a symbol 3 to copy the current input
character, a symbol 7 to ignore the current input
character, or a character from the alphabet to gen-
erate a new one. When 3 or 7 is predicted, the
input pointer will move one step forward, while if
a character is generated, the input pointer does not
move.

The ground truth of such sequence is calculated
from the Levenshtein edit operations between the
lemma and the word form, where only insertion
and deletion is allowed (no substitution).

Our model is in a way similar to the hard mono-
tonic attention in Aharoni and Goldberg (2017),
but we use a much simpler source-target align-
ment (Levenshtein edit operations), and we use
copy as an edit operation to avoid completion er-
rors while they do not. Furthermore, our edit
operations are associated with the moving of the
pointer, while they treat moving the pointer as an
atomic operation, which lead to longer prediction
sequences. Generally, our model performs on a
par with theirs, see the comparison in Yu et al.
(2019b).

2.5 Contraction

In Yu et al. (2019b) we described a rule-based
contraction method by constructing an automa-
ton from the training data, which works reason-
ably well for most of the languages where the
contraction is trivial. However, it works rather
poorly for Arabic since the contraction is not just
among closed class function words but also con-
tent words, so that the coverage of the rules is very
small. It is also problematic for the verb-pronoun
contraction in Spanish and Portuguese although
they are much less frequent.

We therefore implement a character-based con-
traction model to alleviate this problem. The
model works in two steps. First it predicts BIO
tags to identify the groups of consecutive words
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that need to be contracted. Then it concatenates
the group as a character sequence and predicts the
contracted word form as output. We use a simple
Seq2Seq model for the contraction due to limited
time, although an edit based model similar to the
one for inflection might yield better results.

2.6 Detokenization

The detokenization step is the same as described
in Yu et al. (2019b), namely a rule-based tool
MosesDetokenizer.5 After the submission we real-
ized that the tool removes all empty spaces in Ko-
rean texts, similar to Chinese and Japanese. How-
ever, Korean actually uses empty spaces to sepa-
rate words, thus we expect lower score in the hu-
man evaluation for this language.

2.7 Discussion on Pipeline Order

In our pipeline, we choose the order of lineariza-
tion, completion, and finally inflection. Our ratio-
nale for such order is as follows: (1) the inflec-
tion in some cases depends on the linearized se-
quence of lemmata, e.g., the English determiner
“a/an” depends on whether the following noun be-
gins with an vowel, therefore inflection is the last
of the three steps; (2) the search-based lineariza-
tion model is more reliable than the greedy com-
pletion model, therefore we first perform lineariza-
tion to reduce error propagation.

However, this choice is only based on our intu-
ition, and one could come up with arguments for
the alternative orders. For example, since inflec-
tion is the easiest and most accurate task, perform-
ing it first might further reduce error propagation.
Further experiments are needed to determine the
best order in the pipeline. Alternatively, a care-
fully designed joint prediction might address the
error propagation problem, however, our initial at-
tempts did not yield positive outcome.

2.8 Implementation Details

All the neural models are implemented with the
DyNet library(Neubig et al., 2017), and the full
system is available at the first author’s website.6

We use the embedding size of 64 for lemma and
character, and 32 for UPOS, XPOS, morpholog-
ical features, and dependency labels. The output
dimension of the bottom-up and top-down encoder

5https://pypi.org/project/
mosestokenizer/

6https://www.ims.uni-stuttgart.de/
institut/mitarbeiter/xiangyu/

LSTMs, as well as all the decoder LSTMs, are
equal to the input dimension. The beam size for
the linearization is 32. We train the model up to
100000 steps without batching using the Adam op-
timizer (Kingma and Ba, 2014), test on the devel-
opment set every 2000 steps, and stop training if
there is no improvement 10 times in a row. All the
hyperparameters are only minimally tuned to bal-
ance speed and performance, and kept the same
for all languages.

The training and prediction of each treebank
are run on single CPU cores. Depending on the
treebank size, the training time of linearization
models typically ranges from 1 to 10 hours. The
completion, inflection, and contraction models are
much faster, mostly under 1 hour, since they are
all greedy models.

The prediction speed is around 10 sentence per
second, which is not very fast, however, we did
not perform any optimization toward speed (e.g.
mini-batch, multi-processing, etc.) due to the ex-
perimental nature of our work.

3 Data

The training and test data in the shared task is
based on Universal Dependencies (Nivre et al.,
2016), see the overview paper for the details.

We do not use any external resources for our
system, except that we concatenate the training
treebanks for some languages (see Table 3 and
4). However, not all treebanks benefits from the
concatenation, since the idiosyncrasies in the UD
treebanks can hurt the performance as noted in
Björkelund et al. (2017), where the concatenation
of multiple UD treebanks also hurts parsing per-
formance.

Evaluation in the shared task is also performed
on out-of-domain datasets, namely the automati-
cally parsed trees from some in-domain treebanks
and the unseen PUD treebanks. We use the same
model for the automatically parsed trees as for the
gold ones, and use the model trained on concate-
nated treebanks for the PUD test data.

Some treebanks have XPOS tag set quite dif-
ferent from the UPOS, which could be useful as
complementary information. We used XPOS as
features when the tag set size is at least twice as
large as the UPOS set size and smaller than 500
(to avoid sparsity). In fact, the XPOS tags in some
treebanks could be decomposed as morphologi-
cal features, e.g., Arabic, Indonesian, Korean. In
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the submission, we only choose to decompose the
XPOS for Korean because it can be easily split
by the “+” delimiter and both Korean treebanks
do not have morphological features otherwise. We
also use the real stems in the Korean treebanks by
removing the suffixes after the “+” delimiter in the
lemmata, in order to reduce the out-of-vocabulary
problem, and the information on the suffixes are
well preserved in the morphological features de-
rived from the XPOS.

Finally, since contraction appears only in Ara-
bic, Spanish, French and Portuguese, we therefore
only train contraction models for these languages.

4 Evaluation

The automatic evaluation results of our submis-
sion to the shared task are shown in Table 1 and
Table 2 for the shallow and deep tracks, respec-
tively. The first three columns contain the BLEU,
DIST, and NIST scores of our system, and the
fourth column is the difference of BLEU scores
between our system and the best system among
other participants for each treebank.

Our system achieve the best performance for all
treebanks in both tracks. Comparing to the best
scores of other teams, the differences range from
single digits for the English treebanks to about 20
points for most other treebanks and 38 points for
Arabic. In the out-of-domain scenario, our system
performs very stable in most of the cases. How-
ever, comparing to the English and Japanese PUD
treebanks, the performance drop on Russian PUD
treebank is quite notable. Our conjecture is that
the annotation of the PUD treebank is much closer
to the GSD treebank than the SynTagRus treebank.
Since we use both treebanks for training, the much
larger size of SynTagRus might have dominated
the training.

In the human evaluation (see Mille et al. (2019)
for details), we also rank the first in all four lan-
guages (English, Russian, Chinese and Spanish)
both for readability and adequacy.

5 Analysis

5.1 Pipeline Performance

Table 3 and 4 show the results on the develop-
ment sets of the in-domain treebanks for the shal-
low track and deep track, respectively. We also
provide the linearization baselines by Puduppully

BLEU NIST DIST ∆BLEU

ar padt 64.90 12.22 73.71 38.50
en ewt 82.98 13.61 86.72 3.29
en gum 83.84 12.69 83.49 1.45
en lines 81.00 12.71 82.21 5.51
en partut 87.25 11.01 85.68 8.27
es ancora 83.70 14.69 79.82 7.23
es gsd 82.98 12.77 79.45 12.83
fr gsd 84.00 12.45 84.15 23.85
fr partut 83.38 10.36 82.32 17.37
fr sequoia 85.01 12.53 85.13 22.22
hi hdtb 80.56 13.07 79.07 11.33
id gsd 85.34 12.83 83.92 21.63
ja gsd 87.69 12.42 87.17 24.10
ko gsd 74.19 12.27 80.95 28.11
ko kaist 73.93 13.00 78.69 26.70
pt bosque 77.75 12.15 79.80 25.06
pt gsd 75.93 13.07 79.33 23.43
ru gsd 71.23 12.15 73.04 16.14
ru syntagrus 76.95 15.08 78.66 16.96
zh gsd 83.85 12.78 83.18 15.31

en pud 86.61 13.47 87.00 2.54
ja pud 86.64 13.02 84.04 20.12
ru pud 58.38 10.91 77.12 6.01

en ewt-pred 81.80 13.46 85.35 4.59
en pud-pred 82.60 13.26 86.18 1.94
es ancora-pred 83.31 14.61 81.14 6.03
hi hdtb-pred 80.19 13.05 78.88 10.27
ko kaist-pred 74.27 13.02 79.12 27.55
pt bosque-pred 78.97 12.14 81.56 25.33

AVG 79.97 12.79 81.62 15.64

Table 1: Automatic Evaluation Results of the shallow
track (T1) and the BLEU difference with the best sys-
tem among other participants for each treebank.

BLEU NIST DIST ∆BLEU

en ewt 54.75 11.79 76.30 25.17
en gum 52.45 11.04 73.07 25.85
en lines 47.29 10.63 71.93 18.21
en partut 45.89 9.03 67.45 17.04
es ancora 53.13 12.38 68.58 16.15
es gsd 51.17 10.82 68.85 16.52
fr gsd 53.62 10.79 68.82 28.02
fr partut 46.95 8.27 68.99 18.76
fr sequoia 57.41 11.00 72.06 28.85

en pud 51.01 11.45 72.31 24.45

en ewt-pred 53.54 11.55 74.99 24.91
en pud-pred 47.60 11.08 71.65 21.83
es ancora-pred 53.54 12.36 70.02 16.13

AVG 51.41 10.94 71.16 21.68

Table 2: Automatic Evaluation Results of the deep
track (T2) and the BLEU difference with the best sys-
tem among other participants for each treebank.
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P16 B10 lin∗ lin inf con final

ar padt 77.73 82.69 84.24 87.27 95.63 91.59 68.58
en ewt 79.10 82.71 85.11 88.01 98.47 84.50
en gum 74.03 82.36 83.69 87.29 98.23 84.35
en lines(+) 69.47 75.69 78.39 82.40 97.86 79.05
en partut 71.45 80.11 86.38 89.14 97.94 86.25
es ancora 74.57 81.61 83.47 85.33 99.51 99.86 84.43
es gsd(+) 78.28 82.32 83.53 86.18 99.18 99.09 84.04
fr gsd(+) 82.99 85.26 87.02 89.74 98.63 99.47 86.98
fr partut 71.46 83.92 87.07 90.08 96.95 99.44 84.17
fr sequoia 74.16 83.66 87.09 90.39 98.20 99.58 86.51
hi hdtb 79.83 82.03 82.79 85.25 98.11 81.62
id gsd 74.68 78.27 81.23 86.05 99.51 84.62
ja gsd 86.20 89.08 90.41 92.55 98.69 89.49
ko gsd(+) 67.55 69.48 76.05 79.66 96.74 74.25
ko kaist(+) 76.98 77.47 78.73 80.01 97.32 76.04
pt bosque 76.97 80.30 82.48 84.35 99.31 98.23 80.75
pt gsd 83.19 86.53 87.17 89.24 94.99 99.84 76.89
ru gsd 68.32 74.04 74.64 79.09 95.98 73.66
ru syntagrus(+) 73.58 77.01 78.52 80.97 97.84 76.28
zh gsd 68.92 75.60 81.22 84.10 100.00 83.34

AVG 75.47 80.51 82.96 85.86 97.95 81.29

Table 3: Development results in the shallow track, including the linearization baselines.

lin comp inf con final

en ewt 80.17 67.70 97.98 55.27
en gum(+) 76.14 61.44 97.72 50.53
en lines(+) 76.63 60.47 97.16 47.17
en partut(+) 73.80 60.63 97.63 44.59
es ancora 77.88 66.95 98.25 99.85 53.57
es gsd 77.98 69.72 97.85 99.71 53.81
fr gsd(+) 81.36 73.20 97.63 99.26 57.46
fr partut(+) 75.36 65.94 94.64 98.39 48.17
fr sequoia(+) 80.03 73.01 97.04 99.60 58.27

AVG 77.40 66.42 97.24 51.70

Table 4: Development results in the deep track.

et al. (2016) (P16) and Bohnet et al. (2010) (B10).7

The columns show different evaluation metrics on
different targets. Except for the final column, each
one evaluates on only one step assuming all previ-
ous steps are gold.

In Table 3, columns 1-4 are the BLEU scores of
linearization evaluated on the lemmata, column 5
is the accuracy of inflection, column 6 is BLEU
score on the contracted word form (empty cells
means contraction is not applied), column 7 is the
final BLEU score of the full pipeline. The col-
umn lin* shows the models trained on single tree-
banks and without using the word order informa-
tion, which allows a fair comparison to the two
baselines. The models marked with + are trained
with concatenated treebanks for the submission,

7We run the two baseline systems as is, where we only
convert the input format to ensure all systems are using the
same information and keep their default options.

which performs slightly better than the single tree-
bank, typically by 0.5-1 BLEU points. For each
treebank, we either use the concatenated treebank
to train all steps in the pipeline or use the sin-
gle treebank for all steps, depending on the final
BLEU score on the development set.

In Table 4, column 1 is the BLEU score on the
lemmata of the given content words, columns 2
is the BLEU score on the lemmata including gen-
erated tokens, column 3 is the accuracy on word
forms, column 4 is the BLEU score of contracted
word forms, and column 5 is the BLEU score of
the full pipeline. Similar to Table 3, the models
marked with + are trained with concatenated tree-
banks.

In the shallow track, our linearization model
outperforms the best baseline (Bohnet et al., 2010)
by 2.5 BLEU points on average. The inclusion of
word order information (and treebank concatena-
tion to a much smaller extent) brings about 3 addi-
tional points. For the deep track, the BLEU score
of linearization is much higher than completion,
which motivates our decision to perform lineariza-
tion before completion.

5.2 Word Order Preferences

In this section we analyze the relation between
word order preferences of each language and the
errors made by the linearizer,8 characterized by

8Note that an “error” is counted when the predicted order
is different from the original order in the reference, however,
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Figure 2: The correlation of word order freedom and linearization errors. Different language families are marked
with different colors.
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Figure 3: Detailed visualization of head direction freedom vs. linearization errors of the 10 most frequent depen-
dency relations in each treebank, where “x” means no such relation in the treebank.

two types of word order preferences as defined in
Yu et al. (2019a):
head direction – whether the dependent appears
to the left or the right side of the head;
sibling order – the order of a pair of dependents
on the same side of the head.

We then define the freedom of these two types
of word order preferences, namely the entropy of
the word order of each dependency relation, which
is described in details in Yu et al. (2019a)9. In both

this does not mean that the predicted one is incorrect. The
variation of word order in natural languages can not be triv-
ially evaluated by the single reference BLEU score, human
judgement is thus needed for a more accurate evaluation.

9Here we only use the dependency relations to character-
ize the word orders for simplicity of visualization, while Yu
et al. (2019a) additionally use the UPOS tag, which is more

types of word orders, higher freedom means less
constraints on the word order.

We also calculate the error rate of the linearizer
by the dependency relations:
head direction – whether the dependent appears
on the correct side of the head;
sibling order – whether a pair of dependents on
the same side of the head has the correct order.

Figure 2 shows the correlation of freedom and
linearization errors of the two types of word or-
ders. For both head direction (Figure 2a) and sib-
ling ordering (Figure 2b), we can observe quite
strong correlation of the freedom and linearization
errors. For the head direction, both Russian tree-
banks have the highest freedom, and the linearizer

fine-grained.
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Figure 4: Detailed visualization of sibling ordering freedom vs. linearization errors of the 10 most frequent
dependency relations in each treebank, where “x” means no such relation in the treebank.

also makes the most errors. Verb final languages
such as Korean, Japanese and Hindi, on the con-
trary, have the lowest freedom and the least errors.
For the sibling ordering, both Korean treebanks
have the highest freedom and linearization error
rate. However, there are no treebanks with very
low freedom or error rate, which suggests that the
ordering of arguments are generally less strict than
the head direction in all languages.

We then look into the errors of our system in
more details. We take ten most common depen-
dency relations in all the treebanks (we map the
language-specific relation subtypes to their gen-
eral type, e.g., nmod:poss is mapped to nmod)
and calculate their freedom and the linearization
error rate. Figure 3 presents results for the head
direction constraint, where the intensity patterns
of the freedom and error rate align very well. In-
terestingly, the verb-final languages have very low
freedom and error rate across almost all relations,
not only verb arguments. For the most other lan-
guages, obl and advmod are difficult; amod is dif-
ficult for Romance languages; and nsubj is diffi-
cult for Russian.

Figure 4 shows the freedom and error rate for
sibling ordering. The freedom of particular re-
lations (Figure 4a) and their linearization errors
(Figure 4b) also show quite similar patterns, al-
though less clear than the head direction.

In particular, some relations with very high free-

dom do not have high error rate, e.g. many verb
arguments in Japanese. This suggests that the lex-
icalized linearization model can capture more so-
phisticated word order information than the coarse
word order preferences defined by the dependency
relations.

6 Conclusion

We have presented our surface realization system,
which performs both shallow and deep comple-
tion. The system achieves state-of-the-art results
without any external data.

As future work, we plan to focus on improving
the completion model, since it is currently the per-
formance bottleneck of the deep generation task,
which is a more realistic task for NLG applica-
tions. We also plan to incorporate ranking meth-
ods with and without external language models
to further improve the linearization, since the de-
scribed results suggest that there is room for im-
provement.
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Abstract

This study describes the approach devel-
oped by the Tilburg University team to the
shallow track of the Multilingual Surface
Realization Shared Task 2019 (SR’19)
(Mille et al., 2019). Based on Ferreira
et al. (2017) and on our 2018 submission
Ferreira et al. (2018), the approach gener-
ates texts by first preprocessing an input
dependency tree into an ordered linearized
string, which is then realized using a rule-
based and a statistical machine translation
(SMT) model. This year our submission
is able to realize texts in the 11 languages
proposed for the task, different from our
last year submission, which covered only
6 Indo-European languages. The model is
publicly available1.

1 Introduction

This study presents the approach developed by the
Tilburg University team for the shallow track of
the Multilingual Surface Realization Shared Task
2019 (SR’19) (Mille et al., 2019). Given a lemma-
tized dependency tree without word order infor-
mation, the goal of this task consists of linearizing
the lemmas in the correct order and realizing them
as a surface string with the proper morphological
form.

Our approach is similar to our submission for
the 2018 version of the shared-task (Ferreira et al.,
2018). It is based on the surface realization ap-
proach described in Ferreira et al. (2017), where
a semantic graph structure is first preprocessed
into a preordered linearized form, which is subse-
quently converted into text using a Statistical Ma-
chine Translation (SMT) model implemented in

1https://github.com/ThiagoCF05/
Dep2Text

Moses (Koehn et al., 2007). The difference is that,
instead of a semantic structure, our approach pre-
processes the lemmas of the dependency tree into
an ordered linearized version, which is then con-
verted into text using rules and an SMT model.

Different from our last submission where our
approach covered only some of the proposed lan-
guages (6 out of 10), this year it is able to gen-
erate text in all of the 11 languages proposed in
the shared-task: Arabic, Chinese, English, French,
Hindi, Indonesian, Japanese, Korean, Portuguese,
Russian and Spanish. For these languages, paral-
lel datasets were provided with alignment infor-
mation between source and target sides.

Regarding the languages covered in the previ-
ous version of the shared-task, our submission in-
troduced promising results for English, French,
Portuguese and Spanish, with BLEU scores higher
than 40. For the newly covered languages, re-
sults appear promising for realizing Hindi and In-
donesian output, with BLEU scores higher than
50. However, the approach appeared to work
poorly for Arabic and Russian, and had problems
to generate texts in the Asian languages Chinese,
Japanese and Korean.

In the remainder of this paper, we better de-
scribe our method: Section 2 describes the general
approach, Section 3 describes the results and dis-
cussion of our approach and Section 4 concludes
the study, also describing future work which can
be done to improve the model.

2 Model

Following our submission of last year (Ferreira
et al., 2018), our model is based on the NLG ap-
proach introduced in Ferreira et al. (2017), where a
semantic graph structure is first preprocessed into
a preordered linearized form, which is then con-
verted into its textual counterpart using an SMT
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model implemented with Moses. However for
this task, instead of a semantic structure, our ap-
proach takes as input a lemmatized dependency
tree, which is linearized and converted into its fi-
nal version by a rule-based and an SMT model. In
the next sections, we explain the linearization and
realization phases in more detail.

2.1 Linearization
This method aims to linearize a dependency tree
input without punctuation nodes into an ordering
string format. Our approach is similar to the 2-
step classifier introduced in Ferreira et al. (2017)
and is depicted in Algorithm 1.

The approach starts by deciding which first-
order child nodes are most likely to be before and
after its head node (lines 1-13). It uses a maxi-
mum entropy classifier φ1, trained for each lan-
guage based on the relevant aligned training set.
As features, this classifier uses the lemmas as well
as the dependency and part-of-speech tags of the
head and child nodes.

Once the nodes are split into a group of nodes
before and another group of nodes after their
heads, each one of these groups is ordered with an
algorithm similar to the MergeSort one (lines 14-
24 and function SORT ). To decide the order of
two child nodes of a same group, we use a second
maximum entropy classifier φ2, also trained for
each language based on the corresponding aligned
training set. As features (line 44), it uses the lem-
mas as well as the dependency and part-of-speech
tags of the head and the two child nodes involved
in each comparison.

2.2 Realization
Once the dependency trees are linearized, two
methods were used to surface realize the lemmas:
a rule-based and a statistical machine translation
(SMT) model.

Rule-based For all the 11 covered languages,
this approach uses a lexicon created based on the
aligned information extracted from the datasets.
Given a lemma and its features, our approach
looks for the most frequent morphological form in
the lexicon.

SMT For 4 languages (English, French, Por-
tuguese and Spanish), after linearizing the depen-
dency tree and realizing the lemmas using a rule-
based strategy, we trained a phrase-based machine
translation to convert this representation into the

Algorithm 1 Linearization method
Require: depTree
1: function LINEAR(root, orderId)
2: before← ∅
3: after← ∅
4: edges← getEdges(depTree, root)
5: for all edge ∈ edges do
6: node← edge.node
7: features1← f1(depTree, root, node)
8: if φ1(features1) == before then
9: before← before ∪ node

10: else
11: after← after ∪ node
12: end if
13: end for
14: before← SORT(before)
15: for all node ∈ before do
16: orderId← LINEAR(node, orderId)
17: end for
18: root.orderId← orderId
19: orderId← orderId + 1
20: after← SORT(after)
21: for all node ∈ after do
22: orderId← LINEAR(node, orderId)
23: end for
24: return orderId
25: end function
26:
27: function SORT(nodes)
28: if |nodes| < 2 then
29: return nodes
30: end if
31: half← |nodes|/2
32: end← |nodes|
33: nodes1 ← SORT(nodes[0,half))
34: nodes2← SORT(nodes[half,end])
35: ordNodes← ∅
36: i1, i2 ← 0, 0
37: while i1 < |nodes1| or i2 < |nodes2| do
38: if |nodes1| = 0 then
39: ordNodes← ordNodes ∪ POP(nodes2)
40: i2 ← i2 + 1
41: else if |nodes2| = 0 then
42: ordNodes← ordNodes ∪ POP(nodes1)
43: i1 ← i1 + 1
44: else
45: node1 ←POP(nodes1)
46: node2 ←POP(nodes2)
47: features2 ← f2(depTree, node1, node2)
48: if φ2(features2) = before then
49: ordNodes← ordNodes ∪ node1
50: i1 ← i1 + 1
51: else
52: ordNodes← ordNodes ∪ node2
53: i2 ← i2 + 1
54: end if
55: end if
56: end while
57: return ordNodes
58: end function
59:
60: LINEAR(depTree.root, 0)
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Language Model In/Out-Dom. File BLEU DIST NIST
Arabic Rule in-domain ar padt 19.01 6.40 53.82
Chinese Rule in-domain zh gsd 0.16 0.05 58.78

English SMT

in-domain en ewt 56.28 10.88 74.39
in-domain en gum 57.37 10.41 70.54
in-domain en lines 53.78 10.09 67.88
in-domain en partut 62.08 9.19 67.08
out-domain en pud 60.04 11.04 71.75
predicted en ewt 56.25 10.89 73.33
predicted en pud 55.67 10.83 67.99

French SMT
in-domain fr gsd 45.42 9.20 63.46
in-domain fr partut 60.04 8.55 72.35
in-domain fr sequoia 50.14 9.47 66.37

Hindi Rule in-domain hi hdtb 61.09 12.26 65.73
predicted hi hdtb 61.90 12.37 66.21

Indonesian Rule in-domain id gsd 52.55 10.51 71.77

Japanese Rule in-domain ja gsd 0.14 0.01 55.37
out-domain ja pud 0.08 0.01 52.86

Korean Rule
in-domain ko gsd 0.00 0.00 31.35
in-domain ko kaist 0.00 0.00 31.50
predicted ko kaist 0.00 0.00 34.07

Portuguese SMT
in-domain pt bosque 46.31 9.37 63.79
in-domain pt gsd 35.43 9.00 59.89
predicted pt bosque 47.85 9.60 64.76

Russian Rule
in-domain ru gsd 6.65 4.50 50.58
in-domain ru syntagrus 29.59 10.07 57.28
out-domain ru pud 15.54 6.41 59.11

Spanish SMT
in-domain es ancora 54.64 11.73 63.27
in-domain es gsd 49.00 9.86 62.70
predicted es ancora 55.04 11.73 63.5

Table 1: BLEU, DIST and NIST scores of our approach in the original (non-tokenized) test sets.

final realized text. The SMT model was built us-
ing the Moses toolkit (Koehn et al., 2007).

The settings were copied from the Statistical
MT system introduced in Ferreira et al. (2017). At
training time, we extract and score phrases up to
the size of nine tokens. As feature functions, we
used direct and inverse phrase translation proba-
bilities and lexical weighting, as well as word, un-
known word and phrase penalties. These feature
functions were trained using alignments from the
training set obtained by MGIZA (Gao and Vogel,
2008). Model weights were tuned on the develop-
ment data using 60-batch MIRA (Cherry and Fos-
ter, 2012) with BLEU as the evaluation metric. A
distortion limit of 6 was used for the reordering
models. We used two lexicalized reordering mod-
els: a phrase-level (phrase-msd-bidirectional-fe)
(Koehn et al., 2005) and a hierarchical-level one
(hier-mslr-bidirectional-fe) (Galley and Manning,
2008). At decoding time, we used a stack size of
1000. To rerank the candidate texts, we used a 5-
gram language model trained on the EuroParl cor-
pus (Koehn, 2005) using KenLM (Heafield, 2011).

3 Results and Discussion

Concerning the languages covered in the previ-
ous version of the shared-task, our approach intro-
duced promising results for English, French, Por-
tuguese and Spanish, with BLEU scores higher
than 40. For the newly covered languages, results
were promising for the realization of Hindi and In-
donesian texts, with BLEU scores higher than 50.
On the other hand, our approach obtained low re-
sults for Arabic and Russian, and had problems
to generate texts in the Asian languages Chinese,
Japanese and Korean. For Chinese and Japanese,
the problem arose from the fact we did not man-
age the tokenization/detokenization process well,
which had a drastic negative influence on the final
results.

4 Conclusion

This study described a shallow surface realizer for
the 11 target languages in the Surface Realization
Shared Task 2019 (SR’19). In future work, we
aim to fix the problems for the Asian languages
Chinese, Japanese and Korean. Specifically, for
Chinese and Japanese, we require a proper method
to tokenize/detokenize the results produced by our
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approach. Moreover, we aim to design the task
based on novel pipeline architectures for Natural
Language Generation (Ferreira et al., 2019).
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Abstract

This paper presents the model we developed
for the shallow track of the 2019 NLG Sur-
face Realization Shared Task. The model re-
constructs sentences whose word order and
word inflections were removed. We divided
the problem into two sub-problems: reorder-
ing and inflecting. For the purpose of reorder-
ing, we used a pointer network integrated with
a transformer model as its encoder-decoder
modules. In order to generate the inflected
forms of tokens, a Feed Forward Neural Net-
work was employed.

1 Introduction

The goal of Natural Language Generation (NLG)
is to produce natural texts given structured data.
Typically, NLG is sub-divided into two tasks:
Content Planning and Surface Realization (Hovy
et al., 1996; Reiter and Dale, 2000). While Con-
tent Planning focuses on selecting the most appro-
priate content to convey, Surface Realization pro-
duces the linear form of the text from this selected
data following a given grammar.

Although the field of Natural Language Pro-
cessing (NLP) has witnessed significant progress
in the last few years, NLG, and surface realization
in particular, still performs significantly below hu-
man performance.

Recently, several shared tasks have been pro-
posed to improve the state of the art in specific
NLG tasks (eg. Dušek et al. (2019); May and
Priyadarshi (2017)). In particular, the Surface Re-
alization Shared Task 2019 (SR’19) (Mille et al.,
2019) aims to provide common-ground datasets
for developing and evaluating NLG systems. Sim-
ilarly to SR’18 (Mille et al., 2018), SR’19 pro-
posed two tracks: a shallow track and a deep
track. In the shallow track, unordered and lem-
matized tokens with universal dependency (UD)

structures (de Marneffe et al., 2014) were provided
to participants and systems were required to re-
order and inflect the tokens to produce final sen-
tences. The deep track is similar to the shallow
track but functional words and surface-oriented
morphological information were removed as well.
In addition to determining token order and inflec-
tions, systems participating in the deep track also
had to determine the omitted words.

We decided to only participate in the shallow
track. We used a model based on the transformer
encoder-decoder architecture (Vaswani et al.,
2017) combined with a pointer network (Vinyals
et al., 2015) to reconstruct the word order from the
input provided and a Feed Forward Neural Net-
work to produce inflections. Based on the hu-
man evaluation, our model has an average score
of 48.1% and 60.9% on all the English datasets
for Readability/Quality and Meaning Similarity
respectively.

2 Background

Pointer networks are types of encoder-decoder
models where the output corresponds to a position
in the input sequences (Vinyals et al., 2015). One
of the main advantages of pointer networks com-
pared to standard sequence-to-sequence models is
that the number of output classes depends on the
length of the input. This feature can be useful to
address problems involving sorting variable sized
sequences such as required at SR’19.

In Vinyals et al. (2015), Recurrent Neural Net-
works (RNNs) are used as encoder and decoder.
RNNs compute the context representation based
on the order of the input sequences. In cases where
there is no information regarding the correct order
of the input sequences, using an RNN-based en-
coder cannot provide a proper context representa-
tion for the decoder.
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Transformer models constitute an alternative to
RNNs as they entirely rely on the self-attention
mechanism (Vaswani et al., 2017). Transformer
models have achieved state of the art performance
in many NLP tasks such as machine translation
(Vaswani et al., 2017) and language modeling (De-
vlin et al., 2019; Radford et al., 2019).

The encoder and decoder modules of trans-
former models consist of multiple layers of
stacked self-attention and point-wise fully con-
nected layers. The encoder of the transformer con-
sists in several encoder layers, each of which is
composed of two sub-layers. The first sub-layer
has a multi-head attention which consists of sev-
eral layers of self-attention computing on the same
input, and the second sub-layer is a feed-forward
network. The output of each sub-layer is added
with a residual connection from their input fol-
lowed by a normalization layer. The decoder mod-
ule consists of several layers similar to the en-
coder, where the decoder layers have an extra sub-
layer of encoder-decoder attention.

Transformer models have no information re-
garding the order of the input sequence. Hence
“Mary killed John” and “John killed Mary” have
the same internal representations. To alleviate this
issue, Vaswani et al. (2017) considered using po-
sitional encoding summed to the embedding of
each word. Because the transformer without po-
sitional encoding does not rely on the order of
the input sequence, this architecture constitutes a
promising option for the SR’19 where the correct
order of the input sequence were removed (see
Section 3).

3 Dataset

For the shallow track, training and development
sets were provided for 11 different languages.
These were taken from the Universal Dependency
(UD) datasets (de Marneffe et al., 2014). The
correct token order within the sentences was re-
moved by shuffling the tokens. In total, 7 features
were provided by the organizers. Out of these fea-
tures, FEATS contained more than 40 morpholog-
ical sub-features from the universal feature inven-
tory and the relative linear order with respect to
the governor (Lin). Table 1 lists the 8 features
used by our model: 6 features of the UD structure,
in addition to 2 features for Lin (the Lin feature
divided into its absolute value and its sign).

In particular, we worked only on the En-

Figure 1: The model architecture used for the shallow
track at SR’19

glish datasets, which consists of four train-
ing and development pairs. We concate-
nated all four training sets (en ewt-ud-train,
en gum-ud-train, en lines-ud-train
and en partut-ud-train) into a single one
containing 19,976 sentences, with the longest sen-
tence containing 209 words.

Because the development sets provided by the
SR’19 organizers are not labeled, we divided the
training data in two parts; training (18, 000 sen-
tences) and validation (1, 967 sentences). We re-
moved all sentences longer than 100 tokens for ef-
ficiency reasons.1

4 Model

Inspired by previous work from SR’18 (Mille
et al., 2018) that used pointer networks to recon-
struct unordered sentences (Elder and Hokamp,
2018), we developed a similar model using a
pointer network integrated with a transformer as
its encoder and decoder. As shown in Figure 1,
our model is composed of five modules: input em-
bedding, encoder, decoder, pointer, and token gen-
eration. In the following, we describe each module
in more detail.

4.1 Input embedding
In order to train the model, we embedded each
feature separately into vectors and then concate-
nated them. Table 1 indicates the embedding size
of each feature. For the token embeddings, we em-
ployed the GloVe pretrained embeddings of size
300 (Pennington et al., 2014), while the remaining
feature embeddings are trained from scratch. At
the end, the concatenated vector (of size 393) is
linearly mapped into the desired embedding size
(512 in our case, see Section 5).

4.2 Encoder
The embedded input is fed into the encoder to
compute its representation. The encoder mod-

1This removed 9 sentences from the training sets.
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# Feature Feature description Embedding size
1 Token Lemma or stem of word form 300
2 UPOS Universal part-of-speech tag 10
3 XPOS Language-specific part-of-speech tag 10
4 Deprel Universal dependency relation to the Head 10
5 Head Head of the current word 20
6 Index Word index 20
7 Lin Relative linear order with respect to the governor 20
8 Lin sign The sign of the Lin feature 3

All Concatenation of all features 393

Table 1: The 8 features used in our model with their corresponding embedding sizes

ule uses the transformer architecture described
in Vaswani et al. (2017). Since the input data does
not provide any ordering information, we directly
feed the embedded input into the encoder without
summing it with the positional encoding of the to-
kens.

4.3 Decoder
The decoder in the transformer model receives
the previously generated tokens alongside the en-
coded representation from the encoder as its in-
put to generate the next token. However, since our
task is to produce an ordering rather than gener-
ate tokens, we decided to feed the same embed-
dings used for the encoder (see Section 4.1) in its
correct order. Since the correct order for the pre-
viously generated tokens is determined in the de-
coding phase, we add the positional encoding with
the embedded input.

4.4 Pointer
To find the next token, we deploy the attention
mechanism described in Vaswani et al. (2017) and
in Equation 1.

Attention(Q,V,K) = softmax

(
QKT

√
dk

)
V (1)

In each decoding step, the keys (K) and values
(V ) come from the embedded input and the query
(Q) is defined by the output of the decoder (in this
setup the keys and query have a dimension of dk).
The pointer selects the most probable embedded
input as the next input to the decoder. During test
time, we mask out the previously selected embed-
ded inputs so that they are not selected again.

4.5 Token generation
The Pointer Network orders the given lemmatized
tokens based on the input features. However, the
desired output should be the inflected form of the
input tokens. To this end, the token generation

module (see Figure 1) is designed to generate the
inflected form of the tokens, where its input is the
concatenation of the selected embedded input to-
ken with the decoder’s output. The output of this
module is the probability over all the words in the
vocabulary. This module consists of two feed-
forward layers with a ReLU activation function.
The last layer is initialized with pretrained GloVe
embeddings in order to provide a better general-
ization on unseen tokens.

5 Experiments and Results

5.1 Model Configuration

The model submitted to SR’19, under the team
name CLaC, has the following configuration op-
timized on the validation set.

The encoder and decoder of the model have 4
layers each with 8 heads (number of attention in
each layer). All the embedding sizes of the en-
coder and decoder layers as well as input embed-
ding are set to 512.

To preserve the GloVe embeddings, we froze
the weights of both token embeddings and the last
layer of the token generation module.

We suspected that the Head and Index fea-
tures (see Table 1) constituted valuable informa-
tion regarding the dependency tree structure of the
sentences. Therefore, to ensure the model does not
memorize the actual value of these features, but
rather their relationship, in each training iteration,
we randomly changed the values of these features
while keeping the tree structure relationship intact.

The model was trained using two cross-entropy
loss functions: order loss for the pointer and token
loss for the generation module. We observed train-
ing with the order loss and then fine tuning on both
losses increased the performance of the model.

The final model trained for 60 epochs, where
training on the order loss is done for 30 epochs,
and fine tuning the order and token losses were
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Tokenized Detokenized
# Dataset BLEU NIST DIST BLEU NIST DIST
1

In-domain

en ewt-ud-test 22.08 9.77 45.99 14.62 7.21 44.7
2 en gum-ud-test 15.32 8.64 38.13 10.55 6.53 36.97
3 en lines-ud-test 15.30 8.23 40.40 9.81 6.10 39.08
4 en partut-ud-test 10.07 7.14 36.21 7.45 5.57 35.32
5 Out-of-domain en pud-ud-test 12.36 8.83 36.26 9.11 6.66 35.23
6 Predicted en ewt-Pred-HIT-edit 21.21 9.69 43.59 14.14 7.23 42.41
7 en pud-Pred-LATTICE 12.89 8.82 36.67 9.29 6.69 35.53

Table 2: Results of our submission in the shallow track task of SR’19

done on the remaining 30 epochs. The initial
learning rate was set to 1 × 10−4. We also took
advantage of learning rate decay with the factor of
0.5 when there is no improvement on the valida-
tion loss. A dropout rate of 0.3 was used on the
encoder, decoder, and input embedding module.

The model was implemented using the PyTorch
1.1 framework. For the transformer encoder and
decoder, we modified the fairseq transformer im-
plementation of Ott et al. (2019).

In the test phase, we used tokens generated by
the model as the final output. When encountering
unknown tokens, the model uses the input token
where the pointer points at.

5.2 Results
At SR’19, three types of test sets were given: In-
domain, Out-of-domain, and Predicted. The In-
domain datasets share the same domain as the
training data, while Out-of-domain dataset does
not. The Predicted datasets are those where the
annotation were built using parser outputs from
the Universal Dependency Parsing shared task
2018 (Zeman et al., 2018) instead of the gold syn-
tactic annotations. Evaluation was performed in
both a tokenized and detokenized fashion.

Table 2 shows the results of our model on
the test data. As shown in Table 2, our
model achieved its highest performance on the
en ewt-ud-test dataset with a BLEU score
of 22.08 for tokenized among the In-domain
datasets. Whereas the lowest score is for
en partut-ud-test with a BLEU of 10.07.
Clearly, the performance of the model on these
four datasets is directly related to the relative size
of corresponding training set in the concatenated
training set used to train our model. For ex-
ample, the en ewt-ud-train dataset accounts
for the greatest proportion of our training set
(63%) and achieves the highest BLEU; whereas
en partut-ud-train accounts for only 9%
of the training samples yielding the lowest BLEU

Figure 2: Human evaluation results compared to all
participants of the shallow track at SR’19

of 10.07 with en partut-ud-test.
Based on human evaluation, our submitted sys-

tem achieved average Readability/Quality score of
48.1% and a Meaning Similarity score of 60.9%
with the rank of 12 and 14 respectively among the
16 participating systems. The results are shown in
the Figure 2.

6 Conclusions

In this paper, we have presented the model we
developed for SR’19. The proposed system is
composed of a pointer network where its encoder
and decoder modules borrowed from transformer,
aim to reconstruct the tokens’ order and inflection.
The model achieved its best performance on the
English datasets with the average scores of 48.1
and 60.9 for the Readability/Quality and Mean-
ing Similarity respectively. Although this perfor-
mance is lower than expected, the lack of training
data is observable. It was noticeable that training
the model in an end-to-end fashion without fea-
ture engineering could not lead the model to learn
meaningful representation of the input features.

As future work, it would be interesting to inves-
tigate further the model’s sensitivity to the training
size, as we noted in our submission’s results, by
training it on a much larger dataset. We will also
further investigate the use of other features pro-
vided in the universal dependency structure. An-
other avenue worth looking into is the use of pre-
trained language models. Finally, a thorough error
analysis would provide us with hints as to where
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the model is weaker, in the ordering task or in the
inflection task.
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Martin Popel, and Milan Straka. 2018. CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

67



Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019), pages 68–74
Hong Kong, China, November 3rd, 2019. c©2019 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

The OSU-Facebook Realizer for SR ’19:
Seq2seq Inflection and Serialized Tree2Tree Linearization

Kartikeya Upasani,¹ David L. King,² Jinfeng Rao,¹
Anusha Balakrishnan,¹ and Michael White¹²

¹Facebook Assistant, Menlo Park, CA, USA
{kart,raojinfeng,anushabala,mwhite14850}@fb.com
²Department of Linguistics, The Ohio State University

The Ohio State University, Columbus, OH, USA
king.2138@osu.edu, mwhite@ling.osu.edu

Abstract

We describe our exploratory system for
the shallow surface realization task, which
combines morphological inflection us-
ing character sequence-to-sequence mod-
els with a baseline linearizer that imple-
ments a tree-to-tree model using sequence-
to-sequence models on serialized trees.
Results for morphological inflection were
competitive across languages. Due to time
constraints, we could only submit com-
plete results (including linearization) for
English. Preliminary linearization results
were decent, with a small benefit from
reranking to prefer valid output trees, but
inadequate control over the words in the
output led to poor quality on longer sen-
tences.

1 Introduction
With our entry in the shallow surface realiza-
tion shared task, we aimed to (1) implement
an up-to-date morphological inflection model
based on the approach of Faruqui et al. (2016)
and Kann and Schütze (2016), and (2) conduct
exploratory experiments with linearization us-
ing the constrained decoding approach of Bal-
akrishnan et al. (2019) adapted to dependency
trees.

Our system is a pipeline that begins by gen-
erating inflected wordforms from uninflected
terminals in the tree using character seq2seq
models. We then serialize these inflected syn-
tactic trees as constituent trees by converting
the relations to non-terminals. The serialized
constituent trees are fed to seq2seq models (in-
cluding models with copy and with tree-LSTM
encoders), whose outputs also contain tokens

marking the tree structure. We obtain n-best
outputs for orderings and choose the highest
confidence output sequence with a valid tree—
i.e., one where the input and output trees are
isomorphic up to sibling order—in order to ob-
tain a projective linearization where possible,
given that the vast majority of gold lineariza-
tions are projective.1

While we found that this validity checking
step provided a small benefit, fully adapting
the constrained decoding approach to depen-
dency trees would have required adding a step
to ensure that all and only the input words ap-
peared in the output tree, and enforcing these
constraints during beam search. Due to time
constraints, however, we were only able to ob-
tain preliminary linearization results for En-
glish without these word-level checks.

Development results for morphological in-
flection were competitive across languages as
compared to previous implementations (King
and White, 2018; Puzikov and Gurevych,
2018). With linearization, the preliminary
results were decent, but showed substantial
degradation for longer sentences where prob-
lems with lack of control over the output words
became more severe.

In the rest of the paper, we describe our in-
flection and linearization components in more
detail, along with our experimental results.

2 Inflection
Our pipeline begins by producing fully in-
flected word forms from the citation forms pro-

1To handle non-projective cases, the arc-lifting
method of Bohnet et al. (2012) could be applied as
a preprocessing step.
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vided in the UD input. In a sense, at this
stage, the system has to be able to perform
the wug test (Berko, 1958): having never seen
a word before, we need to have the ability to
produce the correct form for a given paradigm
cell. We utilize sequence-to-sequence models
(Bahdanau et al., 2014) in keeping with previ-
ous successful approaches (Kann and Schütze,
2016; Faruqui et al., 2016; King and White,
2018). Additionally, we reimplemented Kann
and Schütze’s 2016 approach in PyTorch.2

We also follow Kann and Schütze’s approach
by training our inflection model at the lan-
guages level and not at the level of individ-
ual paradigm cells as originally proposed by
Faruqui et al. More formally, our LSTMs
(Hochreiter and Schmidhuber, 1997) create an
encoding, producing hidden state ht which is
dependent on the input xt, the hidden state
from the previous time step ht−1, and nonlin-
ear function f . c is the context of all previous
time steps. Additionally, we set hj to be the
concatenated forward and backward encodings
since we use bidirectional LSTMs.

ht = f(xt, ht−1) (1)

c = q(h1, ..., hTx) (2)

hj =

[−→
hTj ,
←−
hTj

]T
(3)

During inference (i.e. decoding), output y
depends on the input sequence and previous
inference steps. We also use the same atten-
tion as described by Bahdanau et al. and
Kann and Schütze:

p(y|x) =
Ty∏

t=1

p(yt|{y1, ..., yt − 1}, st, ct) (4)

ci =
Tx∑

j=1

αijhj (5)

αij =
exp(eij)∑Tx

k=1 exp(eik)
(6)

eij = a(si−1, hj) (7)
As seen in Table 1, uncased results are al-

most always higher than cased. This should
not surprise us as, operating on the word-
internal level, any sequence-to-sequence model

2Freely available here: https://github.com/
davidlking/med-pytorch

would have no access to syntagmatic informa-
tion outside of how UDs encode that infor-
mation in the morphosynctactic feature sets.
Also Arabic, Hindi, and Japanese do not have
cased orthography and therefore have no dif-
ference in their case/uncased accuracies.

As for feature sets, we include the same
set as described by King and White. In ad-
dition to using the morphosyntactic features
provided by the UD schema, we also used the
POS tag and dependency name as input to the
system. Differing from previous shared tasks
(Cotterell et al., 2016, 2017), we do not al-
ter the token frequencies. In traditional SIG-
MORPHON inflection tasks, each system only
sees a word form once per epoch. We found
that this causes the system to miss irregulars.
Since irregular forms tend to occur with higher
frequency, allowing the system to see more
examples during each epoch increased perfor-
mance on irregular forms. We also found that
adding a rule for English specifically designed
to account for the “to be” paradigm raises ac-
curacy for English another 0.6% to 98.5%.

Finally, for Korean and Chinese, we simply
write rule sets for their morphology. The Ko-
rean dataset exclusively uses concatenation.
The input forms list items and their corre-
sponding affixes, in order, and simply remov-
ing the morpheme boundary token (a “+”)
yielded 100% accuracy. For Chinese, the plu-
ral marker “们” (men) only ever occurred with
“人” (rén, “person”), “我” (wǒ, “I”), “�”
(tā, “it” [animals]), “它” (tā, “it” [inanimate]),
“她” (tā, “she”), and “他” (tā, “he”). Writing
a rule that adds “们” when any of the char-
acter co-occur with the Num=Plur feature also
gives us 100% accuracy for Chinese.

3 Linearization

To help assess the potential of using tree-to-
tree models with constrained decoding (Bal-
akrishnan et al., 2019) for linearization and
guide future work in this direction, we con-
ducted exploratory experiments using off-the-
shelf sequence-to-sequence models where the
input and output trees are represented as
sequences using non-terminal tokens corre-
sponding to dependency relations. In these
serialized trees, each non-terminal token is fol-
lowed by the inflected form, its dependents,
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Figure 1: A graphical representation of the architecture originally introduced by Faruqui et al. (2016) and
adapted by Kann and Schütze (2016). A bidirectional LSTM creates an encoding of the input wordform
and supplied features. That encoding is subsequently fed to the decoder LSTM along with the original
input wordform.

Language
Model ar en es fr hi id ja ko pt ru zh
Cased 92.2 91.1 91.3 89.2 97.3 86.4 99.6 N/A 87.1 90.0 N/A
Uncased 92.2 97.9 93.5 95.3 97.3 98.9 99.6 N/A 91.4 96.9 N/A

Table 1: Morphological inflection results on the development set. Although we only submitted results
for the English due to time constraints, we did train inflection models for each language.

Figure 2: Example of serialized tree representation used for linearization.
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and finally a closing-bracket indicating the end
of the non-terminal’s span, as exemplified in
Figure 2 shows an example of serialized inputs
and outputs.

We experimented with three different vari-
ants of sequence-to-sequence models:

Seq2Seq: Simple encoder-decoder model
with attention (Bahdanau et al., 2014). Both
the encoder and decoder are LSTMs.

Tree2Seq: Similar to Seq2Seq, but we use
a variant of the N-ary tree-LSTM (Tai et al.,
2015) as the encoder, as described in Rao et al.
(2019), thereby potentially taking better ad-
vantage of the input tree structure.

Seq2Seq-Copy: Seq2Seq model with a
pointer-generator mechanism (See et al., 2017)
for copying tokens from input. The decoder
can choose to either generate a word from the
vocabulary or copy an input token instead.
We did not have an off-the-shelf implementa-
tion for a Tree2Seq-Copy model, though our
experiments suggest it would be worth devel-
oping one.

Additionally, we also experimented with
constrained decoding (Balakrishnan et al.,
2019) with each of the above model. Using
this method, in each step of beam search, we
check for and remove candidates whose tree
structures deviate from that of the input tree.
The constraints include ensuring that a par-
ent node only accepts valid children, and that
all its children have been generated before it
can accept a closing bracket, thereby helping
to ensure a projective realization. However,
as noted in the introduction, we did not have
time to extend the constraints to ensure that
all and only the input words appeared in the
output, so we did not expect this method to
work as well as we would have liked. As such,
we also experimented with reranking an n-best
list to select the highest-scoring output with a
valid tree (i.e., one that matches the tree of
the input, up to sibling ordering).

4 Results

We picked the approach that gave the best per-
formance on dev set. We combined samples
of all English train sets, training on all sets
together gave better dev BLEU scores than
training individually. Table 2 shows a com-
parison of the different models that we tried.

Model en_gum-ud en_partut-ud
Seq2Seq 0.180 0.163
Tree2Seq 0.585 0.275
Seq2Seq-Copy 0.870 0.902

Table 2: Dev set BLEU scores (calculated along
with non-terminals), using gold inflected forms

In the table, the BLEU scores are calculated
with the non-terminals included in both input
and output sequences, inflating them some-
what relative to regular BLEU scores. Gold
inflected forms were also used.

Table 3 compares the constrained and un-
constrained versions of the Seq2Seq-Copy
(again with non-terminals in the output and
gold inflected forms). Since we did not have
time to implement word-level constraints, the
results seem to be mixed. In the end, we chose
the constrained model on datasets where dev
BLEU was higher than its unconstrained coun-
terpart. Table 4 shows the gains obtained by
doing validity reranking (again with gold in-
flected forms); here the scores shown are cal-
culated without non-terminals.

Given our time constraints, we only submit-
ted English results for evaluation. Although
we generated inflected forms for all languages
in the T1 task, we could only obtain lineariza-
tion results for English. Our results are de-
cent (with the exception of the en_partut-
ud-test dataset), suggesting that the approach
may represent a viable starting point for fu-
ture work. In particular, in the human eval-
uation results for English in the shared task
overview paper (Mille et al., 2019), our system
was ranked in the middle group of systems for
meaning preservation and in the large group
of systems tied for third–twelfth place in read-
ability. Consistent with the human evaluation,
the automatic scores for our system (Table 5)
were also in the middle of the pack. Note that
the test scores are lower than the dev scores
at least in part because only the former are
calculated with generated inflected forms.

5 Discussion

Regarding the en_partut-ud-test dataset, our
preliminary error analysis seems to indicate
that the inflection model overfit the dev set.
Although the model outputs relatively sane er-
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Model en_ewt-ud en_gum-ud en_partut-ud
Seq2Seq-Copy Unconstr 0.8239 0.8731 0.8984
Seq2Seq-Copy Constr 0.8499 0.8337 0.8847

Table 3: Preliminary BLEU scores for constrained decoding (calculated along with non-terminals), using
gold inflected forms

Dataset w/o reranking w/ reranking
en_ewt 0.8328 0.8405
en_gum 0.8294 0.8289
en_lines 0.7655 0.7778
en_partut 0.7891 0.7909

Table 4: BLEU scores on dev sets before and after
reranking, using gold inflected forms

Test set BLEU NIST DIST
en_ewt-ud-test 62.38 11.29 77.93
en_gum-ud-test 49.91 8.5 66.88
en_lines-ud-test 54.56 9.89 71.07
en_partut-ud-test 7.37 3.21 54.27
en_pud-ud-test 67.91 11.74 78.12
en_ewt-Pred-HIT-edit 60.58 10.96 74.64
en_pud-Pred-LATTICE 66.18 11.7 76.8

Table 5: Test set results for English from the or-
ganizers

rors with the other test sets, errors with this
particular set are much noisier. For example,
in another file the model emits “multichart”
as “multichartart”. This kind of error is ex-
tremely consistent with errors regarding the
attention mechanism. In fact, Faruqui et al.
explicitly feed the lemma into their decoder
for this very reason. That said, errors from
the en_partut-ud-test file are not as clear (e.g.
“copyright” → “Sropopyright”).

Turning to linearization, Seq2Seq-Copy
does much better than the other models. We
believe this is due to the architectural prior
of copying words from the input, as nearly all
output words are present in the input (mod-
ulo words whose inflected forms are sensitive
to adjacent words). Figure 3 shows that BLEU
scores significantly decrease as sequence length
increases. Figure 4 shows that the number of
extra or missing words increases with lengths,
which could explain the drop in BLEU. Such
mistakes could perhaps have been avoided by
adding word-level constraints to constrained
decoding. Other errors are due to picking

Figure 3: BLEU score plotted against gold se-
quence lengths for en-gum-ud dev set.

Figure 4: Extra or missing words normalized by
length, plotted against gold sequence lengths for
en-gum-ud dev set.
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the correct words but in the incorrect order.
Out of 366 mismatches on the en-gum dev set,
193 (53%) are cases of mismatched word order
with the correct words.

Figure 5 shows examples of linearization
model predictions. In 1, the model misses
the word “summer” and repeats “olympic” in-
stead. This can potentially be alleviated by
constraining the generation of a word based on
the number of times it appears in the input.
In 2, the model picks the right set of words
but in an order that is different from the gold
order. In 3, the model fails by stuttering, i.e.
it repeats the same phrase again and again.

6 Conclusions and Future Work

Our exploratory experiments show that com-
bining a morphological inflection with a base-
line linearizer achieves decent results. Our
pipeline for the shallow surface realization
shared task first produces inflected wordforms
from lemmas using a character level sequence-
to-sequence model. We then use those forms
in serialized trees as input to a tree-to-tree
model, which is also implemented using a
sequence-to-sequence architecture, yielding se-
rialized trees as output. This allows outputs
to be filtered for validity in most cases, en-
forcing projective outputs. Due to time lim-
itations we could only submit fully linearized
results for English, and we were not able to im-
plement word-level constraints, so we consider
these preliminary baseline results. Given our
error analysis, in future work it may be fruitful
to update the attention mechanism in the in-
flection model (Aharoni and Goldberg, 2017),
and to use a tree encoder + copy mechanism
in the linearizer together with word-level con-
straints in decoding.
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Abstract
The Multilingual Surface Realization Shared
Task 2019 focuses on generating sentences
from lemmatized sets of universal dependency
parses with rich features. This paper describes
the system design and the results of our par-
ticipation in the deep track. The core inno-
vation in our approach is to use a graph con-
volutional network to encode the dependency
trees given as input. Upon adding morpho-
logical features, our system achieves the sec-
ond rank in the deep track without using data
augmentation techniques or additional compo-
nents (such as a re-ranker).

1 Introduction

The goal in the Multilingual Surface Realization
Shared Task 2019 (MSR’19) is to generate flu-
ent text from Universal Dependencies (UD) struc-
tures. The task makes available UD-annotated
resources in 11 languages for the shallow task,
and three languages (English, Spanish, French)
for the deep track. Developing surface genera-
tion systems that are largely language-independent
is a central objective of the shared task (Mille
et al., 2018). To generate sentences based on the
UD structure and morphological features, recent
neural approaches mainly adopt neural sequence-
to-sequence architectures (Cabezudo and Pardo,
2018; Madsack et al., 2018; Elder and Hokamp,
2018). While representing the feature-rich data in
a linearized manner proved to be a viable option,
we argue that these linear sequences do not opti-
mally exploit the input information. We therefore
propose to encode the dependency trees using a
graph convolutional network (GCN) and find that
this GCN encoder leads to a substantial boost in
performance, compared to a sequential encoder.

The datasets in the deep track consist of seman-
tic representations induced from syntactic depen-
dency parses, see Figure 1 for an example. This

C
on

ca
t

Figure 1: An example of a UD structure with concate-
nated feature embeddings from the MSR’19 deep task.

task is reflects the information that’s realistically
available in real-world natural language genera-
tion task.

Our method works as follows: We first apply
delexicalization to the datasets, replacing rare to-
kens with placeholders. Next, encode the de-
pendency trees using graph representation learn-
ing techniques (Li et al., 2015; Xu et al., 2018a),
in order to improve the encoding of structured
data within the encoder-decoder architecture. Our
model hence learns a mapping between graph in-
puts and sequence outputs. Our ablation study
in the evaluation demonstrates that encoding UD
structure in this manner does embed additional se-
mantic information and subsequently improves the
performance across the three languages available
for the deep track (i.e. English, French, and Span-
ish). Finally, we use an LSTM decoder with copy
mechanism and attention to generate surface text.

Our contributions are as follows:

1. We show that a GCN encoder for UD input
structures outperforms sequential encoders.

2. We propose to use a variant of relational
GCN (R-GCN) to better represent edge labels
in the graph, and show that this boosts overall
performance.

3. We show that structural encoding with the
GCN benefits all three languages in the task.
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2 Related Work

2.1 Neural NLG

Systems proposed as part of the Surface Realiza-
tion Shared Task 2018 are largely sequence-to-
sequence models targeting the Shallow Task. Most
systems in the past contain two separate compo-
nents: 1) preprocessing of the UD dataset, and the
2) neural generator with the encoder-decoder ar-
chitecture.

Most neural generators combine features by
concatenating the aligned feature sequences and
feed them as a single sequence into the neural gen-
erator (Elder and Hokamp, 2018; Madsack et al.,
2018). In these systems, a pre-trained embed-
ding is typically used to represent each lemmas,
before concatenated with embeddings of surface-
level morphological categories and dependency
relations. A form of Recurrent Neural Network
(RNN) are utilized to map the input to a latent
space, and another RNN then decodes into target
output. Examples of common RNN usage include
Long Short-Term memory (LSTM) or the Bi-
directional LSTM as used in Elder and Hokamp
(2018); Madsack et al. (2018).

2.2 Graph-to-text Generation

Considering the fact that a dependency tree is a
special case of a directed acyclic graph, surface re-
alization is a graph-to-text generation tasks. Graph
neural networks have been successfully applied to
different graph to text generation task like SQL to
text generation (Xu et al., 2018b), AMR-to-text
generation (Beck et al., 2018) and semantic ma-
chine translation (Song et al., 2019). LSTM can be
modified to model graph-level information (Song
et al., 2018). Graph Convolutional Networks
(GCN), originally designed for semi-supervised
learning of node representations in graphs (Kipf
and Welling, 2017), explicitly exploit tree struc-
ture data and outperform LSTM and TreeLSTM
on AMR-to-text generation (Damonte and Cohen,
2019). To also model different types of edges in
graphs, Relational Graph Convolutional Networks
(R-GCN) represent each type of edge with a cor-
responding parameter matrix (Schlichtkrull et al.,
2018). We leverage the R-GCN by grouping in-
edge and out-edge together and apply to a graph-
to-text generation task.

3 Our Approach

3.1 Feature Representations
The input format of the MSR’19 deep track is
multi-source in the sense that each type of fea-
ture corresponds to a sequence of features, i.e.,
part-of-speech tags (POS), morphological features
etc. As shown in Figure 1, we transform the tree-
structured data into a graph. We construct node
representations by simply concatenating token and
its features. Then we use an embedding matrix to
map the representations into low-dimensional vec-
tor space.

To handle rare words in input tokens, we firstly
perform delexicalization for all datasets as fol-
lows:

1. Replace tokens that have part-of-speech tags
of NAME, PROPN, NUM and X with place-
holders jointly indexed by the number of
head and the number of entities.

2. Build a dictionary from placeholders to orig-
inal tokens for each input-output pair.

After obtaining the model output, we lexicalize the
text by looking up each generated placeholder in
the corresponding dictionary and insert the origi-
nal token.

For our official submission to the shared task,
we did not make use of features, in order to
see whether the dependency tree is informative
enough for surface realization. However, we per-
formed additional experiments to show the effec-
tiveness of GCN encoder with selected concate-
nated features, see Table 1.

3.2 Model
The graph-to-text generation task has a directed
acyclic graph as input G = {V,E}, where V is
a set of nodes and E is a set of directed edges e
between nodes. In this paper, a node is an em-
bedding vector containing a token and its features.
An edge is the dependency relation between two
nodes. The output Y is a sequence of tokens which
form a sentence expressing the input. We ex-
tend the architecture by Marcheggiani and Perez-
Beltrachini (2018) which combines a graph con-
volutional encoder and attentional LSTM decoder
as described in Figure 2.

Graph Convolutional Encoder We use R-GCN,
a variant of GCN (Schlichtkrull et al., 2018) as-
signing parameters for edges in a graph, to model
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Figure 2: (A): depicts the conceptual relationship between the GCN encoder and LSTM decoder. (B): Addition of
a dense layer is analogous to adding extra connections between multiple layers of graphical representation.

graph-structure input explicitly. Given a directed
graph G, we represent each node with an embed-
ding vector xv ∈ Rd. Then the l-th R-GCN layer
compute the hidden representation for node v in
(l + 1)-th layer as follows:

hl+1
v = f(Whl

v +
∑

u∈N(v)

Weh
l
u) (1)

where W,We ∈ Rd×h and e ∈ E. f is the lin-
ear rectifier (ReLU), a non-linear activation func-
tion. N(v) is the set of all neighbours of node
v. This design is over-parameterized and there is
no parameter sharing between similar edge labels.
Therefore we redesign the update rule to:

hl+1
v = f(Whl

v +
∑

u∈N(v)

Wdir(e)h
l
u ◦ re) (2)

where “◦” is the Hadamard production, Wr(u,v) ∈
Rd×h, dir(e) ∈ {in, out} represents direction of
the edge eu,v and re ∈ Rh is an embedding vector
of the label of eu,v.

Each layer aggregates the direct neighbours of
each node. To model neighbours of neighbours,
we stack L GCN layers where L is set to the aver-
age radius of all graphs (here, average depth of all
trees). Stacking GCN into deep neural networks
could lead to gradient vanishing problem, thus we
add residual connections (He et al., 2016) or dense
connections (Huang et al., 2017) for each layer.

LSTM Decoder We apply stacked LSTM layers
(Hochreiter and Schmidhuber, 1997) as the de-
coder on top of the GCN. The first layer is an
input-feed LSTM (Luong et al., 2015) that aggre-
gates the hidden representations of nodes into one
hidden vector hC for the whole graph. The sec-
ond LSTM layer decodes the hidden vector and

generates the representations of output token at
each time step. We use global attention (Luong
et al., 2015) to re-weight the hidden representa-
tions from the first layer and merge them into a
global hidden vector hG. In order to generate the
placeholder directly from the input, we apply the
copying mechanism (Gu et al., 2016), which is ef-
fective when using lexcalization. The probability
of token yt conditioned on input G and previous
token y1:t−1 is obtained by applying a softmax
layer on the decoder output as P (yt|y1:t−1, G) =
softmax(g(hG,hC)), where g is a perceptron.
The model is trained to maximize the likelihood
function L =

∏t=1
|Y | P (yt|y1:t−1, G).

Encoder BLEU NIST DIST
GCN (*) 23.0 6.88 42
LSTM 28.8 8.13 44.48

BiLSTM 31.2 8.53 46.86
GCN 35.9 8.73 52.86

R-GCN (residual) 39.81 9.24 55.45
R-GCN (dense) 41.01 9.43 56.49

(*) denotes system without morphological features,
which is also our official submission to the shared task.

Table 1: Ablation study: results of models on the
MSR’19 validation set of UD English EWT (enewt-
ud-dev) corpus. We compare different encoders while
keeping decoder constant, i.e., LSTM decoder with
copy mechanism and coverage attention. For beam
search we maintain a constant use of blocking 3-gram.

3.3 Experiments
We built our system on a variant of OpenNMT-py
(Klein et al., 2017) from Marcheggiani and Perez-
Beltrachini (2018) with customized encoders. We
construct the training and validation datasets by
concatenating corresponding splits of all available
corpora for each language. We stack 4 R-GCN
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Encoder Output

BiLSTM
President Bush threw two members to replace manufacturers
in the Washington area to replace manufacturers in federal nations.

GCN
In Tuesday, President Bush commissioned two connections to

replace the federal individual of federal statements in the Washington area.

RGCN
In Tuesday, President Bush nominated two individuals to replace

jurist trials to the Washington area.

Gold
President Bush on Tuesday nominated two individuals to replace
retiring jurist on federal courts in the Washington area.

Table 2: Comparison of outputs from systems with encoder variants given the graph in Figure 1 as input. We
highlighted obvious erroneous blocks of text for contrast. Note that the only variants are the encoders, all other
configurations remain the same.

Dev Test
Corpus GCN (*) R-GCN (dense) GCN (*) R-GCN (dense)

en ewt-ud 23.0 41.01 23.35 18.37
en gum-ud 17.71 34.47 17.97 14.6
en lines-ud 18.32 12.7 20.96 14.89

en partut-ud 18.54 35.3 17.19 12.85
es ancora-ud 21.09 37.2 18.59 36.85

es gsd-ud 20.56 33.39 18.69 35.92
fr gsd-ud 20.48 35.12 15.83 10.65

fr partut-ud 19.16 33.57 14.06 6.07
fr sequoia-ud 21.07 34.49 18.52 10.22

en pud-ud - - 18.11 12.31
en ewt-Pred-HIT - - 22.42 39.05

en pud-Pred-LATTICE - - 17.3 35.85
es ancora-Pred-HIT - - 21.1 37.2

(*) denotes our submission to the shared task, which doesn’t use morphological features

Table 3: Evaluation of our submissions to MSR’19 Deep Task across all corpora on both Test and Dev sets.
Numbers are BLEU scores.

layers with dense connections as encoder and train
the model with dropout rate of 0.5. We per-
form early stopping when the training accuracy is
higher than the validation accuracy and choose the
checkpoint before over-fitting for evaluation.

4 Results and Analysis

4.1 Encoder Model Selection

As indicated in Table 1, we compare R-GCN with
different encoders. Systems are evaluated on the
validation set of UD English EWT (enewt-ud-
dev) corpus. With the same linearized inputs,
we began with a LSTM encoder before moving
on to bi-directional LSTM (BiLSTM). With 2.4
BLEU points improvement, BiLSTM appeared to
be the option in terms of sequential encoder. Next,

we employed the variant of GCN by Marcheg-
giani and Perez-Beltrachini (2018) with four fully-
connected layers. We observed that this change
gave an additional 4.7 BLEU points boost, which
outperforms sequential encoders significantly. We
then compare our R-GCN model to the GCN,
which obtains additional 3.91 BLEU points. We
further add dense conenctions to R-GCN, termed
the dense, that eventually result in 41.01 BLEU
points on the validation set. This was an overall 12
BLEU points improvement from the initial LSTM
encoder.

4.2 Ablation Study: Decoder

We intend to investigate if the LSTM decoder can
be further modified for improvement. Two of such
changes are the copy mechanism and coverage
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attention. The copy mechanism was shown to
be beneficial in numerous similar tasks such as
data-to-text generation (Li and Wan, 2018). With
the addition of copy mechanism while keeping the
encoder unchanged, an average of 1 BLEU score
improvement can be observed; reusing the global
attention for copying mechanism gave the system
another 5 BLEU point boost.

4.3 Discussion

Our analysis shows that structural encoding of the
UD trees leads to substantial improvements in per-
formance. It also shows that including morpholog-
ical features is crucial to performance of the sur-
face realizer — without these features, we observe
many errors in tense and agreement.

We also analyzed the system outputs to look
for evidence to substantiate the intuition that a
structural encoder can better represent the a pri-
ori linguistic information. One of such examples
is shown in Table 2, where we observe fluency im-
provements going from BiLSTM encoder to GCN,
and finally to R-GCN, where an overall improve-
ment in fluency is conspicuous.

We report the results of our submissions in
Table 3. Comparing to the validation results,
GCN(*) trained without morphological features
performs similarly across validation and test
datasets of each corpus, however R-GCN(dense)
has a significant drop from validation to test and
experiences over-fitting. Importantly, we no-
tice substantial BLEU rise and drop going from
GCN(*) to R-GCN(dense) on the test datasets.
We postulate that addition of relational modeling
of edges (R-GCN) on top of rich features constrain
the model to learn specific subset of a priori lin-
guistic structures, thereby mitigating the overall
performance.

5 Conclusion

We have shown that without additional modules
such as re-ranker or data augmentation, the tra-
ditional encoder-decoder architecture can still be
competitive by exploiting the existing structural
input information. For future work, we intend to
see if the performance can be further improved
with pre-trained language models such as GPT-2
(Radford et al.).
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Abstract
We describe the system presented at the SR’19
shared task by the DipInfoUnito team. Our ap-
proach is based on supervised machine learn-
ing. In particular, we divide the SR task into
two independent subtasks, namely word order
prediction and morphology inflection predic-
tion. Two neural networks with different ar-
chitectures run on the same input structure,
each producing a partial output which is re-
combined in the final step in order to produce
the predicted surface form. This work is a di-
rect successor of the architecture presented at
SR’19.

1 Introduction

Surface Realisation (SR) is one of the main tasks
involved in Natural Language Generation. SR fo-
cuses the final macro-step of the standard NLG
pipeline defined by Reiter and Dale (2000), there-
fore involving the production of producing natu-
ral language sentences and longer documents from
formal abstract representations. Such input is as-
sumed to come from an external source, such as a
macro-planning and micro-planning pipeline, and
therefore it will contain all the necessary infor-
mation to create the final natural language output.
Generating a correct and fluent output in a tar-
get natural language is the main responsibility of
the SR component. In this paper, we report on the
system submitted to the second edition of the Sur-
face Realization Shared Task (Mille et al., 2019,
SR’19), organized in the context of the Multilin-
gual Surface Realization Workshop in 2019.

The SR task, in the version proposed at SR’19,
considers the surface realization of Universal De-
pendency (UD) trees, i.e., syntactic structures
where the words of a sentence are linked by la-
beled directed arcs. In particular, UD represents
natural language syntax with trees where each
node is a word. The labels on the arcs indicate

the syntactic relation holding between each word
and its dependent words — see an example in Fig-
ure 1a. Our approach to the SR task is based on
supervised machine learning. In particular, we
draw inspiration from Basile (2015), subdividing
the task into two independent subtasks, namely
word order prediction and morphology inflec-
tion prediction. Two neural networks with differ-
ent architectures run on the same input structure,
each producing a partial output which is recom-
bined in the final step in order to produce the pre-
dicted surface form. This work is a direct succes-
sor of the architecture presented at last year’s edi-
tion of the shared task (Mille et al., 2018) and ex-
perimented in more detail in (Basile and Mazzei,
2018b). With respect to the last year previous sys-
tem, there are two major differences: i) we took
advantage of a high-performance computing pub-
lic platform (see acknowledgments) in order to op-
timize the learning parameters and avoid overfit-
ting; ii) we select the best model by using the
Kendall’s Tau (Kendall, 1938, τ ), a rank correla-
tion measure used to score the word order at the
subtree level predicted by the model, at different
training epochs (Basile and Mazzei, 2018b). By
following the approach of (Basile, 2015), the fit-
ness of the model at each epoch is computed by
using the number of incorrect item inversions (in-
trinsic evaluation), rather than on the downstream
task score (see Section 3).

In the following, we refer to our system by using
the name DipInfo-UniTo realizer.

2 Method

In this section, we detail the two main components
developed to approach word order prediction (2.1)
and morphology inflection (2.2).
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2.1 Word Ordering

We formulate the task of predicting the correct or-
der of words in a sentence in terms of reordering
the subtrees in its syntactical structure. The algo-
rithm works in three steps:

1. splitting the unordered tree into single-level
unordered subtrees;

2. predicting the local word order for each sub-
tree;

3. recomposing the single-level ordered sub-
trees into a single multi-level ordered tree to
obtain the global word order.

The first step splits the input UD tree into sev-
eral single-level unordered trees composed by a
head (the root) and all its dependents (the chil-
dren), similarly to Bohnet et al. (2012).

elle

rester

actuellement

dans le

attente

de le

verdict

final

ROOT

(a) Tree corresponding to the French sentence “Elle reste
actuellement dans l’attente de le verdict final.” (“She is
currently waiting for the final verdict.”)

elle actuellement attente

rester

dans le verdict

attente

(b) Two subtrees extracted from the main tree.

Figure 1: Splitting the input tree into subtrees to extract
lists of items for learning to rank.

An example is shown in Figure 1: from the
(unordered) tree representing the sentence “Elle
reste actuellement dans l’attente de le verdict fi-
nal.” (1a), each of its component subtrees (limited
to one-level dependency) is considered separately
(1b). The head and the dependents of each sub-
tree form an unordered list of lexical items. We
leverage the flat structure of the subtrees to extract
structures that are suitable as input to the learning
to rank approach we propose, carried out by the
next step of the pipeline.

The second step of the algorithm predicts the
relative order of the head and the dependents of
each subtree with a learning to rank approach. We
employ the list-wise learning to rank algorithm
ListNet (Cao et al., 2007). The limited cardinal-
ity of the lists to rank makes it advantageous to
use a list-wise approach, as opposed to pair-wise
or point-wise approaches, without an unmanage-
able increase of the computation load. ListNet
is a generalized version of the pairwise learning
to rank algorithm RankNet (Burges et al., 2005).
ListNet employ a list-wise loss function based on
the top-one probability, i.e., the probability of an
element of being the first one in the ranking. The
top-one probability model approximates the per-
mutation probability model that assigns a proba-
bility to each possible permutation of an ordered
list. This approximation is necessary to keep the
problem tractable by avoiding the exponential ex-
plosion of the number of permutations. Formally,
the top-one probability of an object j is defined as

Ps(j) =
∑

π(1)=j,π∈Ωn

Ps(π)

that is, the sum of the probabilities of all the pos-
sible permutations of n objects (denoted as Ωn)
where j is the first element. s = (s1, ..., sn) is a
given list of scores, i.e., the position of elements
in the list. Considering two permutations of the
same list y and z (in the case of the SR task, the
predicted order and the reference order) their dis-
tance is computed using cross entropy. The dis-
tance measure and the top-one probabilities of the
list elements are used to compute the loss function:

L(y, z) = −
n∑

j=1

Py(j)log(Pz(j))

A linear neural network model provides the
learning environment, using the list-wise loss
function above. ListNet takes as input a sequence
of ordered lists of feature encoded as numeric vec-
tors. The weights of the network are updated over
several epochs by computing distance between the
reference ranking and the prediction of the model
(list-wise cost function) and passing its value to
the gradient descent algorithm for optimization.
We used an implementation of ListNet1 that was
previously applied in a surface realization task

1https://github.com/valeriobasile/
listnet

82



with a similar supervised setting (Basile, 2015).
On top of the core ListNet algorithm, this imple-
mentation features a regularization parameter to
prevent overfitting.

We manually engineer the features for the su-
pervised learning in the word order module. We
use several word-level features encoded as one-hot
vectors, namely: the universal POS-tag, the tree-
bank specific POS tag, the morphology features
and the head-status of the word (head of the single-
level tree vs. leaf). We also include vectorial word
representations of two different kinds. Content
words are open-class word lemmas, and are repre-
sented by language-specific, pre-trained word em-
beddings. In particular, we employ the multilin-
gual model Polyglot (Al-Rfou’ et al., 2013). Func-
tion words are closed-class word lemmas, and are
encoded as one-hot bag-of-words vectors. An im-
plementation of the feature encoding for the word
ordering module of our architecture is available
online2.

The third step of the word ordering algorithm
reconstructs the global order (i.e., at the sentence
level) from the local order of the one-level trees.
Note that this approach works under the hypoth-
esis of projectivity. The DipInfo-UniTo realizer
cannot predict the correct word order for non-
projective sentences. If the local reordering of the
one-level tree T h1 with root h and children c1...cM
produces an order of nodes n1n2...nM+1, the hy-
pothesis of projectivity implies that in the global
word order the position of all the children of the
node nj will be after the position of the node nj−1

and before the position of the node nj+1. So, the
node global order (O) of a k-level tree T hk rooted
by the node h and with children c1...cM can be
rewritten formally in terms of the local order as:

O(T hk )=




h if k=0
Oln(h, c1, ..., cM ) if k=1
Oln(h,O(T c1k−1), ..., O(T cMk−1)) if k>1

where Oln(h, c1, ..., cM ) is the permutation
learned by the ListNet algorithm from the train-
ing set and parametrized over the feature set
F (h, c1, ..., cM ), that is

Oln(h, c1, ..., cM )
def
= P

F (h,c1,...,cM )
ListNet (h, c1, ..., cM )

2https://github.com/alexmazzei/ud2ln

2.2 Morphology Inflection

The second half of our proposed architecture is the
morphology inflection component. We consider
this task an alignment problem at the level of char-
acter, and approach it with a sequence-to-sequence
supervised model. We employ the deep neural
network based on a hard attention mechanism in-
troduced by Aharoni and Goldberg (2017). The
model consists of a neural network in an encoder-
decoder setting. At each training step, the model
can either write a symbol to the output sequence,
or move the attention pointer to the next state of
the sequence. This architecture models the mono-
tonic alignment between the input and output se-
quences, allowing the freedom to condition the
output on the entire sequence in input.

We employ all the morphological features pro-
vided by the UD annotation and the dependency
relation between the target word and its head. We
transform the training CONLL files into a set of
((lemma, features), form) tuples, in order to
learn the neural inflectional model associating a
(lemma, features) to the corresponding form.
An example of training instance for the morphol-
ogy inflection module is the following:

lemma: rester
features:

uPoS=VERB
rel=root
Number=Sing
Mood=Ind
Person=3
Tense=Pres
VerbForm=Fin

form: reste

Corresponding to the word form reste, an in-
flected form (3rd person, present, indicative) of the
lemma rester (to remain, to stay).

3 Experiments

Since our approach does not rely on language spe-
cific procedures or hand-made rules, we tested it
on three languages, namely English, French and
Chinese, in order to cover different families of lan-
guages. We were not able to provide results for
other language for computational time constraints.
For word ordering, we ran the system on a virtu-
alized GNU/Linux box with 16-core and 64GB of
RAM. The computation time of the word order-
ing component was around one hour per epoch for
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the English language, which had the larger data
set among the three languages that we considered.
For morphology inflection, we used a GNU/Linux
box with NVIDIA Tesla K40c GPU computing ca-
pability. Similarly to word ordering, the computa-
tion time for each epoch in morphology inflection
was around one hour for the English language.

3.1 Pipelines
We designed two processing pipelines for the
training and testing phase, as depicted in Figure 2.
We applied the pipelines separately for each of the
tested languages (EN-FR-ZH).

In the training pipeline, we created two dis-
tinct files starting from the UD treebank training
files. The first file contains morphological infor-
mation (that is ((lemma, features), form), see
Section 2.2), used to create the morphological in-
flection model with the deep learning architecture
described in Section 2.2. The second file contains
the vector representation of the tree features (word
embeddings or one-hot for function words, mor-
phological features, etc.) and it is used to create
the word order model by using the linear neural
network architecture described in Section 2.1.

In the testing pipeline, we created two distinct
files starting from the test files provided from the
organizers. Both files are created with the same
procedures of the training pipelines. The first file
was used to test the morphological neural model
and to create a mapping from the lemma-features
pair to the inflected form. The second file was used
to test the word order model by providing the local
word orders of the subtrees and the global word
order at the sentence level. In a subsequent step,
the information from the morphological map and
from the word ordered trees are merged into one
single complete, CONLL-compliant tree structure.
Finally, the trees are detokenized (see 3.3) in order
to produce the sentences that are submitted as the
final output of the system.

3.2 Datasets
The rules of the shallow track for the SR’19 do
not allow to use external resources to train the sur-
face realizer. However, of lexical resources such
as word embedding and neural language models
are allowed. In order to investigate about the
syntactic information contained in the Universal
Dependency format and its appropriateness for
the SR task, we decided to focus on information
derived from the Universal Dependency project

(Nivre et al., 2016), with the only exception of pre-
compiled embeddings to encode of the open-class
words.

The task organizers provided twenty training
files and twenty development files, derived from
the version 2.2 of the UD dataset for the eleven
languages included in the shallow track. In partic-
ular, modified versions of the original treebanks
were provided, where the information about the
original word order was replaced by a random or-
dering. Moreover, the original UD feature set was
enriched with new features, i.e. original id
containing the original position of the word in the
sentence. For a number of specific parts of speech
(e.g. PUNCT, punctuation), the feature lin is
added, containing the original relative position of
the word with respect to its head. Note that the
lin feature, in contrast to the original id
feature, is present in the test file too.

We decided not to use the lin feature, therefore
we employ the original versions 2.2 of the tree-
bank files (provided by the shared task organizer)
since they contain both the gold word order and
the inflected forms of the word. However, during
the conversion of the dependency trees into a vec-
tor form (see Section 2.1), we ignored the infor-
mation about word ordering and inflected forms.

For all the three language processed, we de-
cided to use an holistic approach to learning, that
is, we built one single probabilistic model (i.e. one
for word ordering and one for morphology inflec-
tion) by using one single training file obtained by
merging together all the training file for a specific
language.

3.3 Detokenization

In order to produce the final result of the realiza-
tion, one needs to transform the UD tree produced
by the DipInfoUniTo realizer into a single string
containing the sentence. Since the final goal of the
task is to reproduce an output sentence close to the
original sentence, in detokenized form, we post-
processed the English and French syntax trees,
in two additional phases, namely contraction and
space removal.

In contraction, the sentence was modified in or-
der to produce the contracted form for some spe-
cific multi-word constructions. In particular, in
French there are two linguistic phenomena to ac-
count for, typical of romance languages, namely
articulated preposition and clitics. Since they are
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Figure 2: The training and testing pipelines, originally reported in (Basile and Mazzei, 2018a).

special case of multi-word expressions, both ar-
ticulated prepositions and clitics have a special
annotation status into UD treebanks, that we ex-
ploited to obtain the contracted form (see (Basile
and Mazzei, 2018a) for details).

Moreover, each language has additional specific
rules for the treatment of space between words and
punctuation. In order to treat this specific cases we
used the detokenizer script provided in the moses
project3. The detokenizer provides specific rules
for English and French.

3.4 Results
The final results have been produced by training
the neural models for word ordering and morphol-
ogy inflection for exactly 100 epochs and by using
the development set provided by the organizer to
select the best model. Note that the morphology
inflection deep neural network uses a standard ac-
curacy measure to select the best epoch-model. In
contrast, the performance of word ordering is mea-
sured in terms of average Kendall’s Tau (Kendall,
1938, τ ), a rank correlation measure used to score
the rankings predicted by a specific epoch model
for every subtree (cf. (Basile and Mazzei, 2018b)).
τ measures the similarity between two rankings by
counting how many pairs of elements are swapped
with respect to the original ordering out of all pos-
sible pairs of n elements:

τ =
#concordant pairs−#discordant tpairs

1
2n(n− 1)

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/detokenizer.perl

.
In Table 1 the official scores of the DipIn-

foUniTo system for English, French and Chinese
datasets are reported, computed in terms of the au-
tomatic metrics BLUE, NIST, and DIST. With re-
spect to the other teams, our results score are in
the lower half of the leaderboard, raking between
8th and 9th position depending on metrics and de-
tokenization over the 12 teams participating to the
T1-shared task. Since there is no notable differ-
ence in the ranking of our system in tokenized and
detokenized ranks, we hypothesize that our detok-
enization procedure is similar to that of the others
teams.

It is interesting to note the the best values
for BLEU and NIST have been obtained on the
en pud-ud-test test file. This fact seems to
suggest that our model does not overfit on a spe-
cific domain, which could be a consequence of our
design choice to produce domain-agnostic models
for each language.

Moreover, since the performance of the system
for English and French does not correlate to the
dataset size, we speculate that there are other lin-
guistic features influencing the performance of the
system, e.g., average length of the sentences, or
the complexity of the lexicon. More experimenta-
tion is necessary to investigate on this speculation.

4 Conclusions and Future Work

In this paper, we described the DipInfoUnito re-
alizer and its participation to the SR’19 competi-
tion. With respect to the previous year, we have
introduced the evaluation of the models produced
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Detokenized Tokenized
BLEU NIST DIST BLEU NIST DIST

en ewt-ud-test 37.88 10.03 60.10 43.5 11.56 60.13
en gum-ud-test 39.59 9.82 56.28 44.24 11.15 56.04
en lines-ud-test 26.83 8.56 52.97 32.42 10.05 53.21
en partut-ud-test 29.47 7.81 51.03 35.11 9.08 51.15

fr gsd-ud-test 25.86 8.19 47.48 27.04 9.58 47.33
fr partut-ud-test 36.77 7.84 55.08 37.69 8.57 54.85

fr sequoia-ud-test 27.4 8.49 49.13 28.95 9.72 48.70
zh gsd-ud-test 0.02 0.01 32.10 32.87 11.16 50.57

en pud-ud-test (OoD) 40.73 10.43 53.53 45.61 11.81 53.26
en ewt-Pred-HIT-edit (Pred) 0.00 0.00 0.00 43.23 11.44 58.72

en pud-Pred-LATTICE (Pred) 39.63 10.28 54.61 44.06 11.67 54.42

Table 1: The official scores of the DipInfoUniTo system for English, French and Chinese datasets, in terms of the
automatic metrics BLUE, NIST, and DIST. Note that the label OoD stands for out of domain and the label Pred
stands for predicted values of the features values.

at each epoch by the word ordering neural network
in the training pipeline in terms of Kendall’s Tau.
Due to computational constraints, we have been
able to run our systems on three languages only,
namely English, French and Chinese. The final
results rank our system in the the mid-lower part
of the final ranking. We believe that a more ef-
ficient implementation of the word ordering, i.e.,
the neural network implementing the ListNet al-
gorithm, could improve the results.

With respect to the problem of generalizing our
approach to account for non-projective structure,
we intend to develop our work in two directions.
First, decomposing the original dependency tree
into structures with a wider domain of locality.
By following the direction by Joshi and Rambow
(2003), we plan to model the prediction of local
order with more complex structures. Second, as
pointed out in (Basile, 2015, Chapter 7), learning
the global order of the words rather (or in addi-
tion to) their local order. However, learning the
word order globally may impact the transparency
of the system, therefore a careful balance between
performance and explainability must be achieved.
On the other hand, global order may alleviate the
problem of non-projective sentences, that is cur-
rently an issue with the local ordering approach. In
future work, we plan to devise a two-step approach
to leverage both approaches and learn jointly from
both global and local order, e.g., in a multi-task
learning fashion.
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Abstract

This paper presents the LORIA / Lorraine Uni-
versity submission at the Multilingual Surface
Realisation shared task 2019 for the shallow
track. We outline our approach and evaluate
it on 11 languages covered by the shared task.
We provide a separate evaluation of each com-
ponent of our pipeline, concluding on some
difficulties and suggesting directions for future
work.

1 Introduction

SR’19 (Mille et al., 2019) is the second edition
of the multilingual surface realisation task ran in
2018 (Mille et al., 2018). It aims at developing sur-
face realisers in the multilingual setting. Given an
input tree, a well-formed sentence should be pro-
duced. The input tree can be either an unordered
dependency tree (shallow track), or a tree with a
predicate-argument structure (deep track).

The predecessor of the task is SR’11 (Belz et al.,
2011), which dealt with surface realisation for En-
glish using data from Penn Treebank. Then, most
approaches were based on statistical and rule-
based methods. In SR’18, most participants used
neural-based components, however, most teams (7
out of 8) used a pipeline approach, where they
dealt separately with word ordering and morpho-
logical inflection (Basile and Mazzei, 2018; Cas-
tro Ferreira et al., 2018; Elder and Hokamp, 2018;
King and White, 2018; Madsack et al., 2018;
Puzikov and Gurevych, 2018; Singh et al., 2018;
Sobrevilla Cabezudo and Pardo, 2018).

In this paper, we present a brief overview of
the LORIA / Lorraine University system. We par-
ticipated in the shallow track, and delivered so-
lutions for all the languages proposed by the or-
ganisers. We also participated in generating out-
put for all the types of corpora: in-domain, out-
of-domain, and predicted by syntax parsers. Re-

sults on the development set are presented, and
the system performance for each step of surface
realisation is evaluated and discussed. All the
code and experiments are available at https:
//gitlab.com/shimorina/msr-2019.

2 Data

We used only the data provided by the organisers.
If several corpora were available for a language,
they were mixed to the one training and develop-
ment dataset. We used original UD files for creat-
ing target files for training the word ordering com-
ponent, i.e. we extracted a sequence of tokens (the
field token in the CoNLL format) instead of us-
ing a reference sentence.

3 Model

We made use of the model introduced in Shimo-
rina and Gardent (2019) with some slight mod-
ifications. This model, developed for the SR’18
shared task data, is a pipeline approach to the sur-
face realisation task, which has separate modules
for word ordering, morphological inflection, and
contraction generation. A brief outline is provided
below; for more details about the model, we refer
the reader to Shimorina and Gardent (2019).

3.1 Word Ordering (WO)

Word ordering is modelled as a sequence-to-
sequence task, where an input tree is linearised.
Linearisation differs from our previous approach
in that it was augmented with information about
the relative order of some elements, a feature that
was introduced for this year edition of the shared
task. So nodes were linearised using the depth-
first search, and then elements with the relative
order feature were reordered to match the added
information.
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All input lemmas were delexicalised, i.e. re-
placed by identifiers both in the source and target,
and enriched with features, or factors. A neural,
factored encoder-decoder model was trained for
each language, where factors are dependency rela-
tions, POS tags, and parent node identifiers (Elder
and Hokamp, 2018; Alexandrescu and Kirchhoff,
2006).

During relexicalisation, all the identifiers were
replaced by inflected lemmas. For the word or-
dering evaluation, we also relexicalised identifiers
using the corresponding lemmas (see Section 4).

3.2 Morphological Realisation (MR)

Morphological paradigms were learned from
pairs of (lemma, POS+features) extracted from
the training data (the upos and features
fields from CoNLL) using Aharoni and Goldberg
(2017)’s model. Lemmas with no morphological
features were not used. Since features are not
provided for Chinese, Japanese, and Korean tree-
banks, the morphological realisation module was
not trained for those languages. Instead, during the
inflection phase (a) for Chinese, analytic language,
lemmas were copied verbatim to the ouput; (b) for
Korean, agglutinative language, morphemes in a
lemma were glued together, and then the lemma
was copied; (c) for Japanese, synthetic language,
a dictionary of the form (lemma+POS: wordform)
was constructed from the training data and looked
up. If a key ‘lemma+POS’ was not present in
the dictionary, the lemma was copied to the out-
put verbatim. The same rule applies for any other
lemma with no morphological features in any tree-
bank (e.g., URLs, foreign words, numbers, punc-
tuation signs, etc.)1.

3.3 Contraction Generation (CG)

Contraction generation was implemented for
French and Portuguese to handle clitic attachment,
contractions, and elision. In the following, we will
refer to the MR component as including the con-
traction generation module as well.

Eventually, one may also include detokenisa-
tion, a task of glueing tokens together, in this last
step, as each language requires specific detokeni-
sation rules to produce a final well-formed sen-
tence, which can be shown to an end-user. We

1We deleted features for foreign words in ru gsd ud for it
to be consistent with ru syntagrus ud.

lang Acc. Amb. % Amb. count

ar 90.87 7.29 1,815
en 96.35 0.84 226
es 98.85 0.85 418
fr 98.40 1.48 430
hi 89.95 6.46 569
id 98.52 0.55 47
ja NA 3.62 800
ko NA 0.86 945
pt 98.95 0.85 233
ru 97.25 0.72 933
zh NA 0 0

Table 1: Accuracy of the morphological realisation
component. NA: no MR component was developed.
Percentage and count of lemmas with ambiguous forms
found in the training data.

used the sacremoses2 library to perform deto-
kenisation. Besides, it was also used to tokenise
reference sentences; we need that for the auto-
matic scoring.

4 Results and Discussion

We evaluate each module separately. For WO, we
compared a generated sequence of lemmas with a
gold sequence of lemmas extracted from UD (Sec-
tion 4.1). For MR, we calculated wordform pre-
diction accuracy, and also applied MR to a gold
sequence of lemmas instead of predicted sequence
of lemmas (Section 4.2). Finally, we performed
the overall evaluation, where our system predic-
tions were compared to reference sentences (Sec-
tion 4.3)3.

4.1 WO Evaluation

Table 3 shows the results of WO. BLEU scores
vary from 30 to 66 depending on the language and
corpus (mean = 56.98,median = 60.01).

We surmised that low scores for Arabic, Chi-
nese, Indonesian are due to small sizes of training
corpora (6K, 4K, 4.5K, respectively), which are
not enough for neural systems. Other languages’
scores show a smaller variation, ranging from 51
to 66; we conjecture that the variations between
languages are due to different syntactic phenom-

2https://github.com/alvations/
sacremoses

3After the official submission, we fixed a bug in MR for
Japanese and Korean. In this paper we are reporting improved
results.
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Corpus BLEU DIST NIST

ar padt-ud 40.07 47.23 8.25
en ewt-ud 80.88 80.22 12.90
en gum-ud 90.73 98.74 12.80
en lines-ud 86.78 97.03 12.74
en partut-ud 86.31 96.46 10.23
es ancora-ud 93.82 98.47 14.88
es gsd-ud 89.31 99.23 13.93
fr gsd-ud 90.53 98.12 14.04
fr partut-ud 87.07 96.61 9.82
fr sequoia-ud 91.00 96.38 12.38
hi hdtb-ud 91.88 96.89 13.67
id gsd-ud 94.46 98.91 12.90
ja gsd-ud 77.85 99.70 11.40
ko gsd-ud 60.38 94.38 9.45
ko kaist-ud 97.13 99.67 13.44
pt bosque-ud 94.09 99.10 12.68
pt gsd-ud 57.04 91.12 10.54
ru gsd-ud 86.87 96.89 12.18
ru syntagrus-ud 91.25 98.15 15.53
zh gsd-ud 99.16 99.81 13.33

Table 2: The MR module applied to the gold word or-
dering input. Predictions and reference sentences are
both tokenised. Results on the development set.

ena occurring in each language and the variations
between corpora are due to different annotation
guidelines.

4.2 MR+CG Evaluation

The inflection module was initially measured by
accuracy of producing a correct word form given
a lemma and its POS together with morphological
features (cf. Table 1, second column). The average
accuracy is 96.14 across 8 languages, which cor-
responds to the state-of-the-art results in inflection
tasks (Cotterell et al., 2016).

We also calculated a number of lemmas, which
can have different word forms, given the same set
of POS and morphological features (Table 1, third
column). For example, the lemma people with
pos=NOUN, Number=Plur as features have
two word forms in the training data: people and
peoples. Those ambiguous forms may stem from
different sources: language variation (as in the
example above) including spelling, non-standard
forms and typos; annotation mistakes; underspec-
ified morphological features. The example of the
latter is an adjective in Russian, which can have
different forms in the accusative case depending

on animacy of the noun it modifies (animacy in
that case is an underspecified feature).

To measure the effect on scores, when convert-
ing a sequence of lemmas into a sentence, we ap-
plied MR+CG to gold sequences of lemmas (they
have the same word order as the reference). Re-
sults are shown in Table 2. In general, high accu-
racies of MR alone (word level, Table 1) do not
guarantee good performance while evaluating on
the sentence level.

That type of evaluation enabled us to have more
insight into the data used. Some of our findings
are listed below.

• English: a discrepancy in performance across
datasets. The sources of the en ewt ud
corpus are blogs, social networks, reviews,
emails, where the use of contractions (isn’t,
ain’t, etc) is dominant comparing to formal
style. Since the contraction generation was
not applied for English, scores for this partic-
ular dataset are lower than for others.

• Arabic. We conjecture low scores for the
high variability of forms (cf. Table 1) and
contractions (We did not develop a module
for handling contractions in Arabic.). For
instance, some diacritics are optional (e.g.,
hamza with alif), so a word form can be writ-
ten with or without them, being a valid word
form in both cases.

• Japanese. MR module was not developed for
Japanese, so a look-up dictionary based on
training data was not sufficient to handle the
morphology. The high number of ambiguous
forms also impacted the scores, as in the case
of Arabic.

• Portuguese. The pt gsd ud corpus is not an-
notated with morphological features, hence
57.04 score in BLEU compared to 94.09 in
pt bosque-ud.

• Korean. We do not read Korean, so we were
not able to explain the difference between the
two Korean corpora (97.13 vs. 60.38 BLEU).
Some annotation disparity may well be the
explanation.

4.3 Surface Realisation Evaluation

The performance of the overall surface realisa-
tion model is shown in Table 4. Automatic scores
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Corpus BLEU DIST NIST

ar padt-ud 30.45 54.72 8.86
en ewt-ud 66.71 84.18 12.57
en gum-ud 62.92 80.61 11.53
en lines-ud 61.89 75.76 11.67
en partut-ud 62.38 75.87 9.82
es ancora-ud 59.43 75.03 12.69
es gsd-ud 61.83 74.94 12.80
fr gsd-ud 60.58 78.66 12.74
fr partut-ud 61.24 82.37 9.35
fr sequoia-ud 55.22 74.18 10.86
hi hdtb-ud 63.07 59.87 11.74
id gsd-ud 46.09 76.07 9.99
ja gsd-ud 56.53 62.41 10.33
ko gsd-ud 53.73 53.01 11.69
ko kaist-ud 66.43 63.19 12.85
pt bosque-ud 52.88 81.98 11.13
pt gsd-ud 51.01 72.59 11.82
ru gsd-ud 59.11 62.30 11.72
ru syntagrus-ud 62.37 67.88 14.03
zh gsd-ud 45.67 56.01 10.23

Table 3: WO component performance on the develop-
ment set. Predictions and references (sequences of lem-
mas) are both tokenised.

show a drop compared to the WO component per-
formance (Table 3), which is consistent with the
errors of the MR+CG module, described in Sec-
tion 4.2.

Figure 1 aggregates the BLEU scores, shown in
Tables 2, 3, 4. For each corpus, BLEU for each
module (X axis) is mapped to the final BLEU
score (Y axis). The scatterplots show a strong,
positive association between the two variables:
Pearson’s ρ = 0.83 and ρ = 0.86 for WO and
MR on gold data respectively.

During test time, we also ran our system on
out-of-domain and machine-generated data. For
all languages concerned, automatic scores remain
stable, which demonstrates the portability of our
approach.

5 Conclusion

We presented the LORIA / Lorraine University
submission to the SR’19 shared task. Our main
takeaways are as follows. The WO component
is easily transferrable between languages, and it
will not require much effort for applying it to un-
seen languages. In contrast, the MR component

Corpus BLEU DIST NIST

ar padt-ud 18.06 43.86 6.49
en ewt-ud 54.45 65.45 11.32
en gum-ud 58.17 79.68 11.16
en lines-ud 52.53 73.48 10.79
en partut-ud 54.79 73.98 9.10
es ancora-ud 56.99 73.78 12.53
es gsd-ud 59.63 74.07 12.32
fr gsd-ud 51.94 70.43 11.63
fr partut-ud 51.72 74.74 8.47
fr sequoia-ud 49.08 70.27 10.13
hi hdtb-ud 58.48 61.13 11.42
id gsd-ud 45.28 75.50 9.88
ja gsd-ud 46.30 62.31 9.37
ko gsd-ud 32.21 49.43 8.73
ko kaist-ud 64.58 61.21 12.69
pt bosque-ud 59.35 83.84 11.20
pt gsd-ud 35.44 69.47 9.17
ru gsd-ud 52.90 60.59 11.13
ru syntagrus-ud 57.97 66.87 13.70
zh gsd-ud 45.48 55.91 10.21

Table 4: Automatic metrics on the development set
(WO + MR). Predictions and reference sentences are
both tokenised.

requires a lot of attention, and needs to be tuned
for each language separately. That is mainly due
to the different approaches for language annota-
tion across UD treebanks, and, what is more un-
expected, across UD treebanks for the same lan-
guage, not to speak of the detokenisation process,
which is different for each language, and which
should also be implemented separately.

Having those particularities in mind, we think
that for future work MR (including contraction
generation, and possibly detokenisation) would
benefit for including context information, i.e. do-
ing inflection and necessary character transforma-
tions on a whole sentence, rather than word by
word. As for word ordering, it remains a tough
problem for sequence-to-sequence architectures,
and it is worth exploring other ways of encoding
tree structure.

We also would like to highlight the importance
of modular evaluation. If a system design allows
it, system outputs may be tested against a sequence
of lemmas, not only a reference sentence, thanks
to the UD annotations. We encourage future par-
ticipants not to neglect this type of evaluation to
gain deeper insight into their system and data.
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Figure 1: Linear regression between BLEU scores for
each module and final BLEU scores. Data points are
corpora. In orange: MR on gold data vs. final BLEU
(WO + MR); in blue: WO vs. final BLEU (WO + MR).
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Abstract

This paper presents an exploratory study that
aims to evaluate the usefulness of back-
translation in Natural Language Generation
(NLG) from semantic representations for non-
English languages. Specifically, Abstract
Meaning Representation and Brazilian Por-
tuguese (BP) are chosen as semantic repre-
sentation and language, respectively. Two
methods (focused on Statistical and Neural
Machine Translation) are evaluated on two
datasets (one automatically generated and an-
other one human-generated) to compare the
performance in a real context. Also, several
cuts according to quality measures are per-
formed to evaluate the importance (or not) of
the data quality in NLG. Results show that
there are still many improvements to be made
but this is a promising approach.

1 Introduction

Natural Language Generation (NLG) is the re-
search area that aims to give to the computers the
ability to generate texts in human language from
some underlying representation of information
(Reiter and Dale, 2000). This area has gained rel-
evance in the Natural Language Processing com-
munity and in the industry in the last years.

There are several works and efforts in NLG for
English.1 Recently, shared-tasks focused on NLG
from semantic representations have gained the at-
tention of the NLG community. Thus, several
representations have emerged for attending differ-
ent contexts. For example, the RDF-based rep-
resentation presented by Gardent et al. (2017) in
its WebNLG challenge, the dialog-act-based rep-
resentation presented by Novikova et al. (2016),
and Abstract Meaning Representation (Banarescu
et al., 2013).

1Most of the work may be found at https://aclweb.
org/anthology/sigs/siggen/.

There are not as many works for languages
other than English: in 2018, the first multilin-
gual surface realization was proposed (Mille et al.,
2018). This event proposed two tasks, one focused
on reordering a dependency tree and generating in-
flected words (called shallow track), and the other
one focused on generating sentences from a deep-
syntax representation similar to a semantic repre-
sentation (called deep track). It is important to
note that while NLG methods were evaluated in
corpora for ten different languages in the shal-
low track, the deep track was limited to evalu-
ating NLG methods on three languages (English,
Spanish, and French). The fact that there are less
datasets in the deep track is directly related to the
higher complexity of the conversion compared to
the shallow track, for which a superficial process-
ing (basically order randomization) is sufficient.

Among the efforts to build or adapt seman-
tic representations for non-English languages, it
is possible to cite Abstract Meaning Represen-
tation (AMR) as an example. Although AMR
was not born as an interlingua, several works
have tried to use it in that way to annotate sen-
tences in other languages like Chinese and Czech
(Xue et al., 2014), Italian, Spanish, and German
(Damonte and Cohen, 2018) and Brazilian Por-
tuguese (Anchiêta and Pardo, 2018). Other works
have tried to adapt the English AMR guidelines
to Spanish and Brazilian Portuguese with some
success (Migueles-Abraira et al., 2018; Sobre-
villa Cabezudo and Pardo, 2019). However, most
of these works report a small number of AMR-
annotated sentences (compared to the English cor-
pus) and are restricted to some domains like tales
(“The Little Prince”). To the best of our knowl-
edge, the only AMR-annotated corpus compara-
ble (in terms of size) to the English corpus2 is the

2Available at https://catalog.ldc.upenn.
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Chinese corpus, containing 10,149 annotated sen-
tences in its first version.3

This difficulty to get large corpora with this kind
of annotation (due to the difficult and expensive
annotation task that it represents) constrains the
development of research in other languages. Con-
sequently, it is difficult to achieve the same perfor-
mance as in English or to replicate state-of-the-art
works.

In general, a strategy to overcome the lack of
corpora is to translate English corpora to non-
English ones. This involves the use of Machine
Translation (MT) systems, leveraging the good
performance obtained by MT systems that work
on English as a source or target language. How-
ever, the quality of the translations depends on
the language pair. Thus, it is important to fil-
ter out some translations according to their qual-
ity. This may be accomplished by applying back-
translation and performing a quality evaluation
(using some quality measures like BLEU or ME-
TEOR) in English. In Machine Translation, Back-
translation consists of translating a target sentence
(in our case, Portuguese) into a source language
(in our case, English).

This approach has shown good performance in
some classification tasks like Sentiment Analy-
sis and Word Sense Disambiguation (Klinger and
Cimiano, 2015; Monsalve et al., 2019). Further-
more, Monsalve et al. (2019) show that despite
the introduction of sentences with low quality (ac-
cording to quality measures), the performance of
the classifiers continues improving. Also, this ap-
proach has been successful in the context of neu-
ral machine translation (Sennrich et al., 2016). In
the case of NLG from semantic representations,
it would be expected that quality is critical since
low-quality sentences may lead to models learn-
ing incorrect language. Additionally, other issues
that may impact the performance of this task are
the translation of the semantic representation and
the alignments between language pairs.

In this context, this paper presents an ex-
ploratory study that aims to evaluate the usefulness
of back-translation in NLG from semantic rep-
resentations for non-English languages. Specif-
ically, AMR and Brazilian Portuguese (BP) are
chosen as semantic representation and language,
respectively. Two methods (SMT-based and NMT-

edu/LDC2017T10.
3Available at https://catalog.ldc.upenn.

edu/LDC2019T07

based) are evaluated on two datasets (one automat-
ically generated and one human-generated) in or-
der to compare the performance in a real context.
Also, several cuts4 according to quality measures
are performed to evaluate the importance (or not)
of the data quality in NLG.

This paper is organized as follows: §2 describes
some work that applied back-translation to pro-
duce corpus in non-English languages. Then, §3
introduces Abstract Meaning Representation (our
target representation) and works performed for
English and non-English languages on it. Our
methodology for generating corpus and the ex-
periments performed are presented in §4. Fur-
thermore, §5 contains the results and a discussion
about the results. Finally, the conclusions and fu-
ture work are presented in §6.

2 Related Work

Several works have proven the usefulness of trans-
lating corpora to increase the dataset size and im-
prove the performance of their models. For ex-
ample, Klinger and Cimiano (2015) used Phrase-
based MT and some quality estimation measures
to build a corpus with the best translations and use
it in Sentiment Analysis. Misu et al. (2012) and
Gaspers et al. (2018) explored back-translation in
Natural Language Understanding systems using
different measures. Misu et al. (2012) showed that
BLEU is not a good quality measure and Gaspers
et al. (2018) used measures from alignments, ma-
chine translation and language models to select the
best sentences to be included in the corpus.

Monsalve et al. (2019) also explored some qual-
ity measures (BLEU and METEOR) to select the
best sentences and build a non-English corpus
for Reading Comprehension and Word Sense Dis-
ambiguation. Among the results, they showed
that despite the introduction of low-quality sen-
tences, the performance is still continually im-
proving. However, their main goal was to get a
well-translated corpus and not to get the best re-
sults in both tasks.

About the tasks that involve language gener-
ation, it is noted that back-translation has been
widely, and successfully, used in neural machine
translation. The aim was to generate synthetic
source sentences to increase the parallel train-
ing dataset (Sennrich et al., 2016; Edunov et al.,

4A cut consists of a set of sentences of the corpus with a
similar quality.
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2018). Also, Prabhumoye et al. (2018) applied
back-translation to perform style transfer with
good results.

Concerning the described work, a question
emerges: How can back-translation influence
NLG from semantic representations? It is impor-
tant to note that not only English sentences will
be translated into BP ones, but its corresponding
semantic representations will be translated to han-
dle representations for Portuguese. Thus, several
issues related to alignments may affect the per-
formance (in addition to the quality translation).
The following sections show the influence of back-
translation in NLG.

3 Abstract Meaning Representation

Abstract Meaning Representation (AMR) is a se-
mantic formalism that aims to encode the mean-
ing of a sentence with a simple representation in
the form of a directed rooted graph (Banarescu
et al., 2013). This representation includes in-
formation about semantic roles, named entities,
spatial-temporal information, and co-references,
among other information. AMR-annotated sen-
tences may be represented using logic forms,
PENMAN notation, and graphs (Figure 1).

AMR has gained relevance in the research com-
munity due to its attempt to abstract away from
syntactic idiosyncrasies5 and its wide use of other
comprehensive linguistic resources, such as Prop-
Bank (Palmer et al., 2005).6

The current AMR-annotated corpus for English
contains 39,260 sentences. Some efforts have
been performed to build a corpus for Non-English
languages leveraging the alignments and the paral-
lel corpora that exist and trying to consider AMR
an interlingua (Xue et al., 2014; Damonte and
Cohen, 2018; Anchiêta and Pardo, 2018). Other
works tried to adapt the AMR guidelines to other
languages (Migueles-Abraira et al., 2018; Sobre-
villa Cabezudo and Pardo, 2019).

For Brazilian Portuguese, there are two AMR-
annotated corpora, one automatically built from
the alignments between the sentences of the “The
Little Prince” book in English and Portuguese
(Anchiêta and Pardo, 2018), and the other one that
contains news texts sentences manually annotated

5In Figure 1, there are other possible sentences like “The
man’s description about the mission: a disaster” that could
generate the same representation despite syntactic difference.

6In Figure 1, the frameset “describe-01” belongs to the
PropBank lexical repository.

d / describe-01

m / man m1 / mission d1 / disaster

:ARG1:ARG0 :ARG2

∃ d, m, m1, d1:
instance(d, describe-01) ∧
instance(m, man) ∧
instance(m1, mission) ∧
instance(d1, disaster) ∧
ARG0(d, m) ∧
ARG1(d, m1) ∧
ARG2(d, d1)

(d / describe-01
:ARG0 (m / man)
:ARG1 (m1 / mission)
:ARG0 (d1 / disaster))

(c) Graph format

(a) Logic format (b) PENMAN notation

Figure 1: AMR example for the sentence “The man
described the mission as a disaster”

using an adaptation of the AMR guidelines (So-
brevilla Cabezudo and Pardo, 2019). The lexical
resource used to annotate some concepts in both
corpora was the Verbo-Brasil (Duran and Aluı́sio,
2015), which is analogous to the PropBank lexical
repository.

Concerning the Little Prince corpus, the style of
the sentences reflects a rather unusual genre (tales)
and the vocabulary is restricted to the story. Also,
this corpus only contains 1,527 annotated sen-
tences. In relation to the second corpus, although
annotated sentences belong to news texts, the cor-
pus size is still small, containing 299 annotated
sentences. Besides, only the sentences that con-
tain lexical units found in Verbo-Brasil were anno-
tated, excluding those that are not represented in it.
As a result, the current limitations of the corpora
in terms of genre, size and richness of annotations
hinders the development or adaptation of methods
that target general purpose and semantics-oriented
NLG tasks.

4 Methodology

In order to deal with the lack of corpus in the
AMR-to-Text generation task, firstly, a corpus
generation process was developed to build an
AMR dataset for Brazilian Portuguese (BP) from
an English one. This process involved back-
translation and some MT measures to select the
high-quality BP sentences that are comprised in
the dataset. Secondly, several experiments us-
ing well-known methods for AMR-to-Text gen-
eration were used to evaluate the performance of
each method, measure the influence of the qual-
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ity of the translated sentences, determine the most
useful MT measure to select high-quality BP sen-
tences, and verify if the results obtained with the
translated datasets are comparable with a curated
dataset (gold dataset).

4.1 Corpus generation
The corpus generation was divided in two phases:
the first one focused on filtering and splitting the
original English corpus and the second one fo-
cused on translating the concepts of the AMR
graph according to the alignments between En-
glish and Portuguese tokens in the sentences.7

4.1.1 Corpus Filtering and Splitting
The corpus filtering phase consisted of the follow-
ing steps:

• select the sentences in the English corpus.
This step focused on selecting English sen-
tences which have a similar size to those an-
notated in the BP corpus, i.e., 23 tokens max-
imum. The number of sentences after this
step was 27,464.

• apply the back-translation. This strategy con-
sisted of translating English sentences into
BP sentences and then translating those BP
sentences into English sentences to measure
the quality of the translation in Portuguese
via English (since the Portuguese references
did not exist). To achieve this goal, the Ma-
chine Translation model provided by Google
Translate API was used;8

• evaluate the sentences according to automatic
quality measures. In the same way as Mon-
salve et al. (2019), F9 and METEOR were
used to automatically measure the quality
of the sentences. The quality scores of BP
sentences were calculated applying the qual-
ity measures to their respective English sen-
tences. This generated a dataset for each
quality measure (F and METEOR), where
each instance of each dataset comprised the
BP sentence and its respective quality score,
aiming to define some sets.

7In this work, the LDC2016E25 corpus was used to per-
form all experiments.

8Google Translate API was used due to the good re-
sults obtained in Machine Translation. Eventually, other MT
systems could be used. Available at https://cloud.
google.com/translate/.

9In this work, F measure is defined as the harmonic mean
of BLEU and ROUGE scores.

• define the development and test sets.10 To
achieve this step, firstly, a set of sentences
with a quality higher than the mean plus one
standard deviation of all sentences according
to each quality measure was selected, gener-
ating two sub-sets. Secondly, the sentences
included in the intersection of the sub-sets
were selected in order to filter the highest-
quality sentences. Finally, the development
and test sets were defined as 25% of the sen-
tences in the intersection. In total, 1,073 sen-
tences were used for development and test
sets, respectively.

• define cuts according to quality measures. Fi-
nally, the remaining sentences in the trans-
lated BP datasets were sorted decreasingly
according to each quality measure. Then, five
cuts of 5,000 sentences each were performed
for each quality measure, thus, the first cut
contained the 5,000 best sentences accord-
ing to one quality measure and the last cut
contained the 5,000 worst sentences. Table 1
shows the mean and standard deviation (std)
of each cut for each dataset (for quality mea-
sure). These datasets and cuts constitute the
training set.

Measure 1 2 3 4 5

F
mean 0.92 0.74 0.60 0.32 0.00
std 0.07 0.04 0.04 0.20 0.00

METEOR
mean 0.98 0.58 0.48 0.41 0.30
std 0.03 0.09 0.01 0.01 0.08

Table 1: Statistics of all cuts performed in the AMR
Corpus

4.1.2 Target Corpus Generation
In order to get the AMR-annotated corpus in
Brazilian Portuguese (BP), it was also necessary to
convert the English AMR graphs into Portuguese
ones.

This conversion was performed leveraging the
alignments between English and BP sentences and
the alignments between the English sentences and
the AMR graphs provided by the corpus. Thus,
Fast Align (Dyer et al., 2013) was applied to ob-
tain the alignments between the sentences. Then,

10In this step, both the use of the mean plus one stan-
dard deviation and the 25% of the intersection were used as a
threshold empirically defined.
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these alignments were used to change the align-
ments (the numbers) in the AMR graph and to re-
place the English concepts by their respective BP
concepts.

It is worth noting that not all concepts in the
AMR graph were changed as some of them were
not aligned in the corpus. Also, some concepts be-
longing to PropBank (PropBank framesets) were
replaced by their corresponding framesets in BP
using Verbo-Brasil (Duran and Aluı́sio, 2015).
PropBank concepts (framesets) that could not be
mapped to Verbo-Brasil framesets were kept in
their English version. In general, 825 of 3,965
framesets were translated, representing 20.81% of
the framesets. All other aligned English concepts
were replaced by their corresponding BP ones in
the sentence-alignments, excepting AMR-defined
framesets, modal verbs, and AMR-defined enti-
ties. Besides, some rules were applied to change
some concepts like ly-adverbs.

Concerning the alignment types, we note that
there were some issues in “1-n” and “n-1” align-
ments. In the case of “n-1” alignments (“n” En-
glish tokens corresponding to 1 BP token), all “n”
concepts were replaced by the same one concept,
and in the case of “1-n” alignments, the one En-
glish concept was replaced by the concatenation of
all “n” BP concepts. Figure 2 shows the pipeline
of the AMR graph translation. Tokens and num-
bers in bold are the ones which were translated.

4.2 Experiments

Experiments were performed using the Statisti-
cal Machine Translation (SMT) and Neural Ma-
chine Translation (NMT) methods provided by
Castro Ferreira et al. (2017) to compare how each
method behaved in the evaluated context.

The SMT method used the same parameters
proposed by Castro Ferreira et al. (2017) and a
5-gram language model trained on the BP corpus
provided by Hartmann et al. (2017). Also, the
AMR graph pre-processing comprised a compres-
sion and a pre-ordering step without delexicaliza-
tion (described as -Delex+Compress+Preorder in
the original paper) as this configuration got one of
the best results.

The NMT method used similar parameters to
Castro Ferreira et al. (2017). The encoder was
bidirectional RNN with GRU, each with a 1024D
hidden unit. Source and target word embeddings
were 300D each and both were trained jointly with

the model. Also, the vocabulary was shared. All
weights were initialized using a Xavier uniform,
which draws samples from a uniform distribution
within a range. The decoder RNN also used GRU
with an attention and a copy mechanism (Bah-
danau et al., 2015).

We applied dropout with a probability of 0.3.
Models were trained using the Adadelta optimizer
with a learning rate of 1.0 and a learning rate decay
of 0.7 every 5 epochs, and mini-batches of size
64. We applied early stopping for model selection
based on accuracy and perplexity scores so that if
a model does not improve on the development set
for more than 25 epochs, training is halted.

Besides, the AMR graph pre-processing was
composed of a delexicalization and a pre-ordering
step without compression (described as +Delex-
Compress+Preorder in the original paper) as this
configuration got one of the best results.

These methods were trained according to two
configurations and evaluated using the automat-
ically generated development set described in
§4.1.1. The two configurations are described as
follows:

• training on each cut described in §4.1.1 in-
dependently. It was expected that the perfor-
mance decreases in each cut as the cut quality
decreases as well.

• training on cut 1 plus each cut included pro-
gressively. At the beginning, the training set
was composed by the cut 1. Then, a lower
quality cut was added to the training set at
each training phase until all the cuts were in-
cluded. The goal of this experiment was to
evaluate how the method performance varied
when lower quality data was inserted into the
training set.

It is worth noting that each configuration was
performed using the cuts generated by F and ME-
TEOR to evaluate the quality measure in the cor-
pus selection task. The test was performed on
the automatically generated test set described in
§4.1.1. In order to compare the results in a
real context, the methods were also evaluated on
the AMR-annotated BP dataset described in §3.
Similar to Castro Ferreira et al. (2017), we used
BLEU (Papineni et al., 2002), METEOR (Lavie
and Agarwal, 2007) and TER (Snover et al., 2006)
as metrics to evaluate fluency, adequacy and post-
editing efforts of the models, respectively.
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Eu   posso   trabalhar   no   meu   tópico   de   pesquisa   atual   .

I   can   work   on   my   current   research   topic   .

0 1

0

32 54 76 98

21 4 53 6 7 8

(p / possible-01~e.1
  :ARG1 (w / work-01~e.2
        :ARG0 (i / i~e.0,4)
        :ARG1~e.3 (t / topic~e.7
              :mod (r / research-01~e.6
                    :ARG0 i)
              :time (c / current~e.5))))

(p / possible-01~e.1
:ARG1 (w / trabalhar-01~e.2

:ARG0 (i / eu-eu~e.4,0)
:ARG1~e.3 (t / tópico~e.5

:mod (r / research-01~e.7,6
:ARG0 i)

:time (c / atual~e.8))))

(a) Alignments between English and Brazilian Portuguese sentences

(b)   Conversion of AMR graph from English to Brazilian Portuguese according to alignments

Figure 2: Pipeline for the translation of the AMR corpus

5 Results and discussion

5.1 Overview
Figures 3, 4, and 5 show the results obtained by
the NMT and SMT approaches using cuts gener-
ated by F and METEOR and evaluated on the de-
velopment, test and gold test sets for each metric
(BLEU, METEOR, and TER). Bars show the re-
sults of the first configuration (each cut indepen-
dently) and lines represent the results of the sec-
ond experiment (training on cut 1 plus each cut
included progressively).

In general, results show that the performance
on development and test sets increased while more
data (no matter that was of lower quality) was in-
corporated (except on the last cut). On the other
hand, the performance decreased when a lower
quality cut was used as training data. Also, results
on the curated test11 (also called gold test) showed
that there are many improvements to perform in
order to achieve similar results to the development
and test sets. In this set, BLEU and TER were the
most affected metrics as values between 0.02 and
0.04 were obtained for BLEU (Figure 3), and 0.73
and 0.92 were obtained for TER (Figure 5).

5.2 Discussion
Quality or Quantity? At first glance, quantity
seemed to be more important than quality. Also,
in the case of NMT, quantity seemed to be still
more important than in the case of SMT. A de-
tail to note is that the increase in the performance
was lower when the latest cuts (with lower qual-
ity) were incorporated into the training set. Be-
sides, the performance decreased when the latest

11The curated test was composed by the manually-
annotated 299 BP sentences.
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Figure 3: BLEU scores

cuts were incorporated in some cases (cut 5 in Fig-
ure 3). Thus, a different analysis is required to
check if the quantity is more important than qual-
ity as the size of the training set could hide some
problems caused by the lower quality cut.

In order to perform this analysis, four training
sets were built. Each training set was composed
by the cut 1 and another different cut (from highest
to lowest quality cuts). Figures 6, 7, and 8 show
the results of this experiment for each metric. Bars
show the results on the development and test sets,
and lines represent the results on the gold test set.

In this case, results on development set did not
show a decrease in performance. However, results

99



NMT SMT
Cut 1

NMT SMT
Cut 2

NMT SMT
Cut 3

NMT SMT
Cut 4

NMT SMT
Cut 5

Cuts

0.0

0.1

0.2

0.3

0.4

M
ET

EO
R 

sc
or

es

NMT F dev
NMT Meteor dev
NMT F test
NMT Meteor test

SMT F dev
SMT Meteor dev
SMT F test
SMT Meteor test

NMT F gold-test
NMT Meteor gold-test
SMT F gold-test
SMT Meteor gold-test

Figure 4: METEOR scores
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Figure 5: TER scores

on test set showed that the performance decreased
when lower quality sets were incorporated (see cut
1 + cut 4 and cut 1 + cut 5 in Figures 6 and 7). In
the case of the gold test set, results showed slight
increases and decreases in performance, hindering
the analysis. Similarly, TER results showed slight

increases and decreases in performance. A pos-
sible explanation to the slight (or no) variation in
the results obtained was that Google Translate API
usually produced good translations, and, although
some translations could show low scores in terms
of F or METEOR, they could be paraphrases or
sentences with synonyms of some words of the
original sentences. Thus, it is expected that in
cases of languages where machine translation sys-
tems present worse performance, this analysis will
show more useful information to select better cuts.

Finally, from a quality perspective, it is impor-
tant to note that it would be useful considering
cuts with higher quality to perform better corpus
analysis. However, another problem emerges in
the context of semantic representations. Align-
ments between English and BP sentences may
not be “1-1” and this could make the correct
generation of semantic representations for some
sentences more difficult. Thus, an interesting
research would consist in evaluating how align-
ments may affect the performance of the methods
in this context.
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Figure 6: BLEU scores for the cut 1 plus the other cuts

What is the best quality measure? Following
the idea that Google Translate API generates
paraphrases or sentences with synonyms of
some words of the original sentence, it would be
expected that METEOR shows better results (due
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Figure 7: METEOR scores for the cut 1 plus the other
cuts
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Figure 8: TER scores for the cut 1 plus the other cuts

to the fact that METEOR considers synonyms
and stems). However, analysing the test set, it
is possible to see that F produced stable and
better results in BLEU and METEOR metrics
(see Figure 6 and 7). In the case of TER, both F

and METEOR produced mixed results (Figure 8).
Besides, in the gold test set, F also produced
better results than METEOR, excepting in the
TER metric (Figure 8).

How is each approach affected? As expected,
SMT outperformed NMT on the three sets in most
cases. In the case of TER, NMT outperformed
SMT on the gold test set (Figure 5). In the case of
development and test sets, the difference between
results was small and decreased while more data
was incorporated into the training set, regardless
of their quality. Also, the tendency of TER values
to vary was lower than for METEOR and BLEU.
On the other hand, it is important to highlight the
greater trend of NMT to increase when more data
was incorporated.

Are the results comparable in curated datasets?
In general, the results in the BP corpus (gold-test
set) were quite worse than in the test and devel-
opment sets for all metrics, excepting METEOR.
Although the METEOR values were low, the dif-
ference between these values and the values ob-
tained in the development and test sets was not
as big (principally considering NMT) as the other
metrics. Also, the values were close to the ones
obtained with the NMT approach in the last cut
(Figure 4).

There were two reasons that we hypothesize
that could lead to these results. Firstly, the number
of words in the gold test set that were not in the
training vocabulary. Even though the BP AMR
corpus and the original AMR corpus were focused
on general domains, it is necessary to analyze
the overlap between them. The other problem
was related to alignment types. There were
several translated sentences in the corpus that
present alignments “1-n”, “n-1”, or “1-n and n-1”
and the generation of their respective semantic
representations presented some issues like the
concatenation between two tokens (token “eu-eu”
in Figure 2). This could generate more sparsity
and decrease the performance of the methods.

6 Conclusions and Future Work

This paper presented an exploratory study that
aimed to evaluate the usefulness of back-
translation in NLG from semantic representations.
The followed pipeline showed how to perform a
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simple back-translation process in an NLG con-
text and this may be applied to any language. Re-
sults showed that quantity is important when Ma-
chine Translation systems are good enough. How-
ever, quality may be critical in the context of low-
resource languages, when translations may be too
poor.

It is worth noting that the selection of cuts to
be included in the training set has to be performed
carefully. In this study, we proposed to analyze the
performance considering 5 cuts and the last cut did
not contribute positively to the performance (due
to the poor quality scores). However, a deep anal-
ysis of the use of cuts may be performed to bet-
ter determine the number of cuts that allow for fil-
tering out the worst instances in order to improve
the performance of the models and provide a high-
quality translated dataset.

On the other hand, there are several improve-
ments to be made to achieve similar results in real
(curated) datasets. It is necessary to analyze the
alignments and out-of-vocabulary words. Thus, a
research direction is to analyse how these issues
affect the NLG task in non-English languages.
Also, we plan to explore the text generation in a
curated dataset as a domain adaptation problem.

Acknowledgments

The authors are grateful to CAPES and USP Re-
search Office for supporting this work, and would
like to thank NVIDIA for donating the GPU. This
work is part of the OPINANDO project (more
details can be found in https://sites.
google.com/icmc.usp.br/opinando/),
and has been partly supported by the European
Commission in the framework of the H2020
Programme via contracts to UPF, with the num-
bers 779962-RIA, 700475-IA, 7000024-RIA, and
645012–RIA.

References
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