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Abstract

Existing named entity recognition (NER) sys-
tems rely on large amounts of human-labeled
data for supervision. However, obtaining
large-scale annotated data is challenging par-
ticularly in specific domains like health-care,
e-commerce and so on. Given the availability
of domain specific knowledge resources, (e.g.,
ontologies, dictionaries), distant supervision is
a solution to generate automatically labeled
training data to reduce human effort. The out-
come of distant supervision for NER, however,
is often noisy. False positive and false negative
instances are the main issues that reduce per-
formance on this kind of auto-generated data.
In this paper, we explore distant supervision
in a supervised setup. We adopt a technique
of partial annotation to address false negative
cases and implement a reinforcement learning
strategy with a neural network policy to iden-
tify false positive instances. Our results estab-
lish a new state-of-the-art on four benchmark
datasets taken from different domains and dif-
ferent languages. We then go on to show that
our model reduces the amount of manually an-
notated data required to perform NER in a new
domain.

1 Introduction

Named Entity Recognition (NER) is one of the
primary tasks in information extraction pipelines.
(Ma and Hovy, 2016; Lample et al., 2016; Pe-
ters et al., 2018; Akbik et al., 2018). Traditional
studies apply statistical techniques such as Hidden
Markov Models (HMM) and Conditional Random
Fields (CRF) using large amounts of features and
extra resources (Ratinov and Roth, 2009; Passos
et al., 2014). In recent years, deep learning ap-
proaches achieve state-of-the-art results in the task
without any feature engineering (Ma and Hovy,
2016; Lample et al., 2016). Most of these works
assume that there is a certain amount of annotated
sentences in the training phase. However, avail-

ability of large amounts of labeled data is prob-
lematic, particularly in specific domains. Distant
supervision is proposed by Mintz et al. (2009) to
address the challenge of obtaining training data for
new domains using existing knowledge resources
(dictionaries, ontologies). It has previously been
successfully applied to tasks like relation extrac-
tion (Riedel et al., 2010; Augenstein et al., 2014)
and entity recognition (Fries et al., 2017; Shang
et al., 2018b; Yang et al., 2018). For the task of
NER, it identifies entity mentions if it exist in the
knowledge base (e.g, domain-specific dictionary,
glossary, ontology) and assigns the corresponding
type according to the knowledge base.

However, distant supervision approaches en-
counter two main limitations. First, due to limited
coverage of the knowledge resources, unmatched
tokens result in False Negatives (FNs). Second,
since simple string matching is employed to de-
tect entity mentions, ambiguity in the knowledge
resource may lead to False Positives (FPs). For
the FN problem, Tsuboi et al. (2008) incorpo-
rate partial annotations into CRFs and propose
a parameter estimation method for CRFs using
partially annotated corpora (here-in after referred
to as Partial-CRF). In order to reduce the neg-
ative impact of FPs for relation extraction, Qin
et al. (2018) propose a deep reinforcement learn-
ing (RL) agent where the the agent’s goal is to de-
cide whether to remove or keep the distantly su-
pervised instance.

In this paper we make the following contribu-
tions:

• We combine the Partial-CRF approach with
performance-driven, policy-based reinforce-
ment learning to clean the noisy, distantly su-
pervised data for NER in a pre-processing
step.

• We formulate the reward function in RL
based on the change in the performance of
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the NER module where the policy of RL is
trained in an unsupervised manner by inter-
action with the environment.

• We show that our approach can boost the per-
formance of the neural NER system on four
datasets from different domains and for two
different languages (English and Chinese).

2 Related work

The task of NER has been widely studied in
the last decade and is generally considered as a
sequence labeling problem. Using neural tech-
niques, many studies report state-of-the-art results
on this type of sequence labeling task (Lample
et al., 2016; Ma and Hovy, 2016). These types of
studies utilize character and/or word embeddings
to encode sentence-level features automatically.
Recently, the use of contextualized word represen-
tation (Peters et al., 2018; Akbik et al., 2018) sig-
nificantly improves the state-of-the-art results in
many sequence labeling tasks and specifically also
in the NER benchmark.

In the supervised NER paradigm, this task suf-
fers from lack of large-scale labeled training data
when moving to a new domain or new language.
To alleviate the reliance on human annotated data,
distant supervision is proposed by Mintz et al.
(2009), to generate annotated data by heuristi-
cally aligning text to an existing domain-specific
knowledge resource. It is widely used for rela-
tion extraction (Mintz et al., 2009; Riedel et al.,
2010; Augenstein et al., 2014) and lately it has at-
tracted attention also for NER (Ren et al., 2015;
Fries et al., 2017; Shang et al., 2018b; Yang et al.,
2018). Shang et al. (2018b) present the Au-
toNER model which employs a new type of tag-
ging scheme (i.e., Tie or Break) rather than com-
mon ones (i.e., IOB, IOBES) without any CRF
layer and achieves state-of-the-art unsupervised
F1 scores on several benchmark datasets. Cru-
cially, they employ a set of high-quality phrases in
distant supervision, using a phrase mining tech-
nique (Shang et al., 2018a) to reduce the false-
negative labels. Feng et al. (2018) and Yang
et al. (2018) make use of reinforcement learning
to tackle false positives in distantly supervised re-
lation classification and NER, respectively. Sim-
ilar to our work, Yang et al. (2018) address the
noisy automatic annotation in NER, by using par-
tial annotation learning and reinforcement learn-
ing. However, unlike our approach, they train

the NER model and reinforcement learning model
jointly, calculating the reward based on the loss
of the NER model, whereas we employ the RL
module as a pre-processing/filtering step, incorpo-
rating the previous state to satisfy a Markov de-
cision process (MDP). Yang et al. (2018) evalu-
ate only on a Chinese dataset, whereas we ap-
ply our model also to English datasets. Further-
more, after running their code 1, we observe that
to reach the reported results in their paper on e-
commerce dataset, the model needs more that 500
epochs and the reinforcement learning component
removes all the distantly annotated sentences after
some epochs. It means that after some epochs the
code performs only the base-line NER model on
annotation dataset and ignoring RL module, since
there are no distantly annotated sentences. Their
two datasets are included in our experiment in or-
der to compare to their results. Qin et al. (2018)
explore deep reinforcement learning as a false pos-
itive removal tool for distantly supervised relation
extraction. Here, we adapt their approach to the
NER task. Unlike Qin et al. (2018) however, we
learn the policy agent in an unsupervised manner,
where the parameters are learnt by interaction with
the environment.

3 Model

We implement Partial-CRF together with a
performance-driven, policy-based reinforcement
learning method to detect FNs and FPs in distantly
supervised NER. In contrast to a previous study
that has applied RL in NER (Yang et al., 2018),
we consider the RL agent as a pre-processing task
to clean FPs from the noisy dataset. Furthermore,
our RL agent is rewarded based on the change in
the performance of the NER module and it is mod-
eled as a Markov decision process (MDP).

Algorithm 1 describes the overall training pro-
cedure for our model and in the following, we de-
tail the various components of our model.

3.1 Baseline NER model
The goal of NER is to identify text spans that
present named entities and assign them into pre-
defined categories. These categories vary depend-
ing on the domain, for example in the general do-
main, they are categories like organization, per-
son and location names; in bio-medical domain,

1https://github.com/rainarch/DSNER

https://github.com/rainarch/DSNER
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Figure 1: Annotation of distantly labeled example in Partial CRF based on IOBES scheme. The words with green
tags are found in dictionary and assigned to the corresponding entity types, and the ones that are not found in
dictionary are assigned to all possible tags (yellows).

Algorithm 1: Overall Training Procedure
NER+PA+RL
Input: Human Annotated ( A) + Distantly

Labeled Data ( D)
1 Pre-train NER w/ Partial-CRF ( NER+PA) on

A+D
2 Apply RL on D
3 Train NER+PA using A + cleaned D

they are protein, drug, gene, disease names. In-
tuitively, given a sentence of the words X =
{x1, x2, ..., xn}, NER assigns unique tag for each
word like y = {y1, y2, ..., yn} from a predefined
set of categories yi ∈ Φ, |Φ| = k . Our base-
line model is a BiLSTM-CRF architecture (Lam-
ple et al., 2016; Habibi et al., 2017). The first
layer takes character embeddings for each word
sequence and then merge the output vector with
the word embedding vector to feed into a second
BiLSTM layer. The CRF layer comes on top of the
last layer to model the dependencies across output
tags and locates the best tag sequence by maximiz-
ing the log-probability in following equation:

log(p(y|X)) = log
es(X,y)∑

y′∈Y e
s(X,y′)

(1)

where

s(X, y) =
n∑
i=1

Pi,yi +

n∑
i=1

Tyi,yi+1 (2)

and P is a k × n output tensor of a linear encoder
applied to the last BiLSTM layer where Pi,j cor-
responds to the score of the jth tag of the ith word
in a sentence. T is a (k + 2)× (k + 2) transition
tensor which represents transition probability from
ith tag to the jth tag. Two additional tags<BOS>
and <EOS> are added at the start and end of a
sequence, respectively. In order to infer the final

sequence tags the Viterbi algorithm is employed
in the CRF model.

3.2 Partial-CRF layer (PA)
As mentioned above, FN instances constitute a
common problem in distantly annotated datasets.
It is caused by limited coverage of the knowledge
base resource, when some of the entity mentions
are not found in the resource and followingly la-
beled as non-entities (’O’). We follow Tsuboi et al.
(2008) and treat the result of distant supervision as
a partially annotated dataset where non-entity text
spans are annotated as any possible tag. Figure
1 illustrates the annotation of distantly supervised
examples using the IOBES labeling scheme that
we employ.

Let YL denote all the possible tag sequences for
a distantly supervised sentence X . Then, the con-
ditional probability of the subset YL given X is:

p(YL|X) =
∑
y∈YL

p(y|X). (3)

Extending the original equation of the CRF layer
(Eq.1) provides the log-probability for the dis-
tantly supervised instance:

log(p(YL|X)) = log

∑
y′∈YL e

s(X,y′)∑
y′∈Y e

s(X,y′)
. (4)

Using partial annotation, non-entity text spans are
annotated as any possible tag. It gives a chance for
non-entity text spans to be considered and scored
properly in update version of CRF (Partial CRF)
and become a part of the most optimal tag se-
quence.

3.3 Reinforcement Learning for denoising
The RL agent is designed to determine whether
the distantly supervised instance is a true positive
or not. There are two main components in RL :



228

Algorithm 2: Reinforcement learning Algorithm to clean FPs in Distantly Labeled Data (D)
Input: Training dataset (Atrain) + Distantly Labeled Data (D) , Pre-train NER+PA on Atrain +D,

Validation dataset (Aval)
1 Initialize θ in policy network
2 Initialize s∗ as all-zero vector with the same dimension of sj
3 for epoch i = 0→ N do
4 for instance dj ∈ D do
5 Provide sj using NER+PA model s̃j =concatenation(sj , s∗)
6 Randomly sample aj ∼ π(a; θ, s̃j); compute pj = π(a; θ, s̃j), save (aj , pj)
7 if aj == 0 then
8 save s̃j into Ψi

9 Recompute the s∗ as an average of ∀s̃j ∈ Ψi

10 Di = D − (∀dj ; j ∈ Ψi)
11 Train NER+PA on Atrain +Di

12 Calculate F i1 on Aval and save F i1 and Ψi

13 ri = F i1 − F
i−1
1

14 Find Ωi,Ωi−1 (Eq. 6)
15 Update Policy network (Eq. 5)

16 Update D = D − (∀dj ; j ∈ ΨN )
17 Re-train NER+PA on A+D

I) environment II) policy based agent. Following
Qin et al. (2018), we model the environment as a
Markov Decision Process (MDP), where we add
information from the previous state to the current
state. The policy based agent is formulated based
on the Policy Gradient Algorithm (Sutton et al.,
1999), where we update the policy model by com-
puting the reward after finishing the selection pro-
cess for the whole training set. The algorithm 2
presents additional details of the RL strategy in
our NER model. The following subsections de-
scribe the elements of the RL agent.

State: The RL agent interacts with the environ-
ment to decide about instances at the sentence
level. A central component of the environment is
the current and previous state in the selection pro-
cess. The state Si in step i represents the current
instances as well as their label sequences. Follow-
ing Yang et al. (2018) the state vector Si includes:
I) the vector representation of instances before the
Partial-CRF layer, where we concatenate the out-
puts of the first and last nodes in the BiLSTM layer
of the base NER model, and II) the label sequence
scores calculated by the linear encoder before the
Partial-CRF model. (i.e, Pi,j in Eq. 2). If a word is
annotated with a certain label, the score will be the
corresponding value of the label, otherwise, the
score will be the mean of all possible labels of the

word in the linear encoder. These two vectors are
concatenated to represent the current state. To sat-
isfy the MDP, the average vector of the removed
instances in the earlier step i − 1 is concatenated
to the current state and represents the state for the
RL agent.

Reward: If the RL agent filters out the FP
instances from the noisy dataset, the NER model
will achieve improved performance. Accordingly,
the RL agent will receive a positive reward,
otherwise, the agent will received a negative
reward. Following Qin et al. (2018), we model
the reward as a change of the NER performance;
particularly, we adapt the F1 score to calculate
the reward as the difference between F1 scores of
the adjacent epochs (i.e., ri = F i1 − F

i−1
1 ).

Policy Network: The policy network
π(aj ; θi, sj) is a feed forward network with
two fully-connected hidden layers. It receives
the state vector for each distantly supervised
instance and then determines whether the instance
is a false positive or not. The π as a classifier
with parameter θ decides an action aj ∈ {1, 0}
for each sj ∈ Sj . The loss function for the
policy network is formulated based on the policy
gradient method (Sutton et al., 1999) and the
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REINFORCE algorithm (Williams, 1992). Since
we calculate the reward as a difference between
F1 scores in two contiguous epochs, the agent
will be compensated for a set of actions that has
direct impact on the performance of the NER
model in the current epoch. In other words, the
different parts of the removed instances in each
epoch are the reason of the change in F1 scores.
Accordingly, the policy will update using the
following gradient:

θ = θ + µ[5θ

Ωi∑
log π(a|S; θ)ri

+5θ

Ωi−1∑
log π(a|S; θ)(−ri)]

(5)

According to Qin et al. (2018), assuming Ψi is re-
moved in epoch i :

Ωi = Ψi − (Ψi ∩Ψi−1)

Ωi−1 = Ψi−1 − (Ψi ∩Ψi−1)
(6)

This means that if there is an increase in F1 at the
current epoch i, we will assign a positive reward
to the instances that have been removed in epoch i
and not in epoch i − 1 and negative reward to the
instances that have been removed in epoch i − 1
and not in the current epoch.

4 Experiments

We perform experiments on four benchmark
datasets to compare our method to similar tech-
niques and investigate the impact of the number of
available annotated sentences for our approach.

4.1 Experimental Settings
Datasets: Our approach requires an annotated
dataset, a knowledge resource and a corpus of raw
text. We rely on the resources used by Shang
et al. (2018b) and Yang et al. (2018) for English
and Chinese, respectively, as well as their train-
test splits. For all datasets, we employ a IOBES
labeling scheme. Below we briefly describe the
datasets:

• BC5CDR is from BioCreative V Chemical Dis-
ease Relation task and contains 12,852 ’Dis-
ease’ and 15,935 ’Chemical’ entity mentions
in 1,500 articles. It is already partitioned into
a training, a development and a testing set.
The related dictionary comes from the MeSH

database2 and the CTD chemical and Disease3

vocabularies and contains 322,882 ’Disease’
and ’Chemical’ entities. As a raw text, we use
a corpus consisting of 20,217 sentences that is
provided in Shang et al. (2018b) and extracted
from PubMed papers.

• LaptopReview containing laptop aspect term
is taken from the SemEval 2014 Challenge,
Task 4 Subtask 1 (Pontiki et al., 2014). The
3,845 review sentences are annotated with 3,012
’AspectTerm’ mentions. We extract 15,000 sen-
tences from the Amazon laptop review dataset 4

as a raw text. Wang et al. (2011) design this
dataset for the aspect-based sentiment analysis.
Thanks to Shang et al. (2018b), they provide the
dictionary of 13,457 computer terms crawled
from a public website 5.

• EC is a Chinese dataset from the e-commerce
domain. We choose this dataset in order to
compare our results to the approach by Yang
et al. (2018). There are 5 entity types: ’Brand’,
’Product’, ’Model’, ’Material’ and ’Specifica-
tion’ on user queries. This corpus contain 1,200
training instances, 400 in development set and
800 in test set. Yang et al. (2018) provide the
dictionary of 927 entries and 2,500 sentence as
a raw text.

• NEWS is another Chinese dataset in the news do-
main. It is annotated with PERSON type and
provided by Yang et al. (2018). The NEWS
dataset contains 3,000 sentences as training,
3,328 as dev data, and 3,186 as testing data.
Yang et al. (2018) apply distant supervision to
raw data and obtain 3,722 annotated sentences.

Pre-trained Embeddings: We employ pre-
trained embeddings as initialization for the em-
bedding layer of the LSTM layers. For the
biomedical dataset, we use pre-trained 200-
dimensional word vectors trained on PubMed ab-
stracts, all PubMed Central (PMC) articles and
English Wikipedia (Pyysalo et al., 2013). Standard
pre-trained GloVe 100-dimensional word vectors
are employed for the LaptopReview dataset. In

2https://www.nlm.nih.gov/mesh/
download_mesh.html

3http://ctdbase.org/downloads/
4http://times.cs.uiuc.edu/˜wang296/

Data/
5https://www.computerhope.com/jargon.

htm

https://www.nlm.nih.gov/mesh/download_mesh.html
https://www.nlm.nih.gov/mesh/download_mesh.html
http://ctdbase.org/downloads/
http://times.cs.uiuc.edu/~wang296/Data/
http://times.cs.uiuc.edu/~wang296/Data/
https://www.computerhope.com/jargon.htm
https://www.computerhope.com/jargon.htm
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Model Data Pr. Re. F1

Liu et al. (2017) *

B
C
5
C
D
R 88.84 85.16 86.96

Wang et al. (2018) 89.10 88.47 88.78
Beltagy et al. (2019)** - - 88.94
NER+PA+RL (This work) 92.05 87.91 89.93

Winner system in Pontiki et al.
(2014)

L
a
p
t
o
p

R
e
v
i
e
w 84.80 66.51 74.55

NER+PA+RL (This work) 81.07 74.01 77.38

Yang et al. (2018)

E
C 61.57 61.33 61.45

NER+PA+RL (This work) 61.86 65.36 63.56

Yang et al. (2018)

N
E
W
S 81.63 76.95 79.22

NER+PA+RL (This work) 80.20 79.88 80.04

Table 1: NER models comparison. The results on the Chinese EC and NEWS dataset are without high-quality
phrases. *: is the base NER model in our approach and results are reported by Wang et al. (2018). **: is the
state-of-the-art result on BC5CDR dataset, where they use Pretrained Contextualized Embeddings for Scientific
Text (SciBERT) in Ma and Hovy (2016) for NER.

our experiments on the EC dataset, we use the 100-
dimensional Chinese character embeddings pro-
vided by Yang et al. (2018) and trained on user-
generated text.

Evaluation: We report the performance of the
model on the test set as the micro-averaged pre-
cision, recall and F1 score. A predicted entity is
counted as a true positive if both the entity bound-
ary and entity type is the same as the ground-truth
(i.e., exact match). To alleviate randomness of the
scores, the mean of five different runs are reported.

Model Variants: We use slightly different vari-
ants of our model for English and Chinese. For
English we follow Liu et al. (2017) in leverag-
ing a language model to extract character-level
knowledge. We keep the parameters in the model
the same as in the original work. In order to
compare to state-of-the-art models, we follow the
same approach during training (i.e., by merg-
ing the training and development data as a train-
ing set in BC5CDR and randomly selecting 20%
from the training set as the development set in
LaptopReview). For the Chinese EC dataset,
we only use character-based LSTM and CRF lay-
ers and discard the word-based LSTM and lan-
guage model. For a fair comparison, the model
parameters are set to be the same as in Yang et al.
(2018). For RL, the batch size, optimizer and
learning rate are equal to the parameters in the re-
lated NER model. We use 100 epochs in RL and
initialize the average vector of the removed sen-
tences as an all-zero vector.

High-Quality Phrases: Considering all non-
entity spans (i.e., ’O’ type) as a potential entity
provides noise in the Partial-CRF process. To ad-
dress this issue, we use a set of quality multi-
word and single-word phrases, provided by Shang
et al. (2018b) and obtained using their AutoPhrase
method (Shang et al., 2018a). Note that this re-
source is available only for the English datasets,
therefore, it is not included in the experiments on
the Chinese datasets. When using these phrases,
we assign all possible tags only for the token spans
that are matched with this extended list. In our
model, we treat the high-quality phrases as po-
tential entities and we assign all possible entity
types in annotation of distantly supervised sen-
tences. For example, in Figure 1, we could only
find the word ’leprosy’ in this list, therefore, in
annotation we assign all possible tags to this token
and the other non-entity tokens remain as ’O’.

5 Performance Comparison

The first two rows of Table 1 depicts the compar-
ison of the proposed model to the state-of-the-art
NER models on the English datasets. We observe
that the NER+PA+RL model achieves higher F1
scores on the different datasets compared to the
other models. In order to compare to the RL based
approach in Yang et al. (2018), we run the model
without high-quality phrases on the Chinese EC
and NEWS datasets. Our design boosts the re-
ported F1 score from 61.45 and 79.22 in the orig-
inal to 63.56 and 80.04 with our model on EC and
NEWS datasets, respectively. The experiments on
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Model Variant Data Pr. Re. F1

NER+PA

B
C
5
C
D
R 85.82 88.58 87.18

NER+PAJ 91.28 87.07 89.13
NER+PA+RL 87.00 89.04 88.01
NER+PA+RLJ 92.05 87.91 89.93

NER+PA

L
a
p
t
o
p

R
e
v
i
e
w 61.00 70.80 65.53

NER+PAJ 66.36 66.06 66.21
NER+PA+RL 80.47 73.70 76.94
NER+PA+RLJ 81.07 74.01 77.38

Table 2: Result with different setting of the distantly
supervised NER model. J indicates that we use the
list of high-quality phrases along with the dictionary to
annotate raw text.

Figure 2: Performance of the different configuration:
F1 Score on Test vs, the number of human annotated
sentences

the Chinese datasets show that the different design
of the RL module leads to improved results.

We further investigate the impact of the differ-
ent components of the model (Table 2) in the two
English datasets via ablation experiments, where
we contrast the use of partial annotation (PA) and
reinforcement-based denoising RL, with and with-
out the high-quality phrases (J). The experiments
confirm the efficiency of the PA and RL modules
in resolving FN and FP issues in the distantly la-
beled dataset. The results also corroborate Shang
et al. (2018b) in showing that incorporation of the
high-quality phrases always leads to a boost in the
precision and subsequently in F1 score.

6 Size Of Gold Dataset

In all the previous experiments, we take advan-
tage of the availability of an annotated dataset.
However, one of the challenges in domain spe-
cific NER is the availability of a gold supervi-
sion data. We here examine the performance of

Method Data Pr. Re. F1

Dictionary Match

B
C
5
C
D
R 93.93 58.35 71.98

Fries et al. (2017) 84.98 83.49 84.23
Shang et al. (2018b) 88.96 81.00 84.80
NER+PA+RLJ 88.73 77.51 82.74

Dictionary Match

L
a
p
t
o
p

R
e
v
i
e
w 90.68 44.65 59.84

Giannakopoulos et al. (2017) 74.51 31.41 44.37
Shang et al. (2018b) 72.27 59.79 65.44
NER+PA+RLJ 68.63 56.88 62.21

Table 3: Unsupervised NER Performance Comparison.
The proposed method is trained only on distantly la-
beled data.

the proposed model on the BC5CDR corpus by se-
lecting increasing amounts of annotated instances
from the gold dataset. As shown in Figure 2, the
proposed method achieves a performance of 83.18
only with 2% of the annotated dataset. Whereas
the base NER model, requires almost 45% of the
ground truth sentences to reach the same perfor-
mance. This indicates that with a small set of hu-
man annotated data, our model can deliver rela-
tively good performance.
We also carry out experiments on the BC5CDR
and LaptopReview test sets, where our model
is trained exclusively on distantly annotated data.
We report the outcome together with the scores
of the other state-of-the-art unsupervised meth-
ods in Table 3, where we also compare to sim-
ple dictionary matching. It is clear that the
model of Shang et al. (2018b) (AutoNER) is still
the best performing NER method on BC5CDR
and LaptopReview datasets in an unsupervised
setup. However, as is clear from Figures 3-a and
3-c in Shang et al. (2018b)), if there is at least
some manually labeled data available, our method
makes better use of the gold supervision compared
to the AutoNER system in the similar training sce-
nario. It is also worth noting that the approach pro-
posed by Fries et al. (2017) utilizes extra human
effort to design regular expressions and requires
specialized hand-tuning.

7 Conclusion and Future work

This work presents an approach to alleviate the
problems of auto-generated data in NER. The
performance-driven, policy-based reinforcement
learning module removes the sentences with FPs,
whereas the adapted Partial-CRF layer deals with
FNs. We examine the impact of each component
in ablation experiments. Combining these in a su-
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pervised setting leads to state-of-the-art results on
three benchmark datasets from different domains
and different languages.

Future work will extend the study to improve
the performance of the model in unsupervised
fashion and extend our study to additional do-
mains and languages.
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