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Abstract

Most machine reading comprehension (MRC)
models separately handle encoding and match-
ing with different network architectures. In
contrast, pretrained language models with
Transformer layers, such as GPT (Radford
et al., 2018) and BERT (Devlin et al., 2018),
have achieved competitive performance on
MRC. A research question that naturally arises
is: apart from the benefits of pre-training,
how many performance gain comes from the
unified network architecture. In this work,
we evaluate and analyze unifying encoding
and matching components with Transformer
for the MRC task. Experimental results on
SQuAD show that the unified model outper-
forms previous networks that separately treat
encoding and matching. We also introduce a
metric to inspect whether a Transformer layer
tends to perform encoding or matching. The
analysis results show that the unified model
learns different modeling strategies compared
with previous manually-designed models.

1 Introduction

In spite of different neural network structures, en-
coding and matching components are two basic
building blocks for many NLP tasks like machine
reading comprehension (Rajpurkar et al., 2016;
Joshi et al., 2017). A widely-used paradigm is that
the input texts are encoded into vectors, and then
these vectors are aggregated to model interactions
between them by matching layers.

Figure 1(a) shows a typical machine reading
comprehension model, encoding components sep-
arately encode question and passage to vector rep-
resentations. Then, we obtain context-sensitive
representations for input words by considering the
interactions between question and passage. Fi-
nally, an output layer is used to predict the prob-
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ability of each token being the start or end po-
sition of the answer span. The encoding lay-
ers are usually built upon recurrent neural net-
works (Hochreiter and Schmidhuber, 1997; Cho
et al., 2014), and self-attention networks (Yu et al.,
2018). For the matching component, various
model components have been developed to fuse
question and passage vector representations, such
as match-LSTM (Wang and Jiang, 2016), co-
attention (Seo et al., 2016; Xiong et al., 2016),
and self-matching (Wang et al., 2017). Recently,
Devlin et al. (2018) employ Transformer networks
to pretrain a bidirectional language model (called
BERT), and then fine-tune the layers on specific
tasks, which obtains state-of-the-art results on
MRC. A research question is: apart from the ben-
efits of pretraining, how many performance gain
comes from the unified network architecture.

In this paper, we evaluate and analyze unifying
encoding and matching components with Trans-
former layers (Vaswani et al., 2017), using MRC
as a case study. As shown in Figure 1(b), com-
pared with previous specially-designed MRC net-
works, we do not explicitly distinguish encoding
stages and matching stages. We directly concate-
nate input question and passage into one sequence
at first, and append segment embeddings to word
vectors in order to indicate whether each token is
belong to question or passage. Next, the packed
sequence is fed into a multi-layer Transformer net-
work, which utilizes the self-attention mechanism
to obtain contextualized representations for both
question and passage. The first advantage is that
the unified architecture enables the model to au-
tomatically learn the encoding and matching strat-
egy, rather than empirically specifying layers one
by one. Second, the proposed method is conceptu-
ally simpler than previous systems, which simpli-
fies the model implementation.

We conduct experiments on the SQuAD v1.1
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Figure 1: An illustration of a typical MRC architecture and the unified encoding and matching model.

dataset (Rajpurkar et al., 2016), which is an extrac-
tive reading comprehension benchmark. Experi-
mental results show that the unified model outper-
forms previous state-of-the-art models that treat
encoding and matching separately. The results in-
dicate that part of improvements of BERT (De-
vlin et al., 2018) attribute to the architecture used
for end tasks. Moreover, we introduce a metric
to inspect the ratio of encoding and matching for
each layer. The analysis illustrates that the unified
model learns different strategies to handle ques-
tions and passages, which sheds lights on our fu-
ture model design for MRC.

2 Unified Encoding and Matching Model

We focus on extractive reading comprehension in
the work. Given input passage xP and question
xQ, our goal is to predict the correct answer span
a = xPs · · ·xPe in the passage. The SQuAD v1.1
dataset assumes that the correct answer span is
guaranteed to exist in the passage.

Figure 1(b) shows the overview of the unified
model1. We first pack the question and passage
into a single sequence. Then multiple Trans-
former (Vaswani et al., 2017) layers are employed
to compute the vector representations of question
and passage together. Finally, an output layer is
used to predict the start and end positions of an-
swer span. Compared with previous specially-
designed networks illustrated in Figure 1(a), the
model unifies encoding layers and matching layers
by using multiple Transformer blocks. The self-
attention mechanism is supposed to automatically

1The implementation and models are available at
github.com/addf400/UnifiedModelForSQuAD.

learn question-to-question encoding, passage-to-
passage encoding, question-to-passage matching,
and passage-to-question matching.

2.1 Embedding Layer

For each word in questions and passages, the vec-
tor representation x is constructed by the word
embedding xw, character embedding xc, and seg-
ment embedding xs. The character-level embed-
dings are computed in the similar way as (Yu et al.,
2018). The segment embeddings are vectors used
to indicate whether the word belongs to question
or passage. The final representation is computed
via x = ϑ([xw;xc]) + xs, where ϑ represents a
Highway network (Srivastava et al., 2015).

2.2 Unified Encoder

Given question xQ and passage xP embeddings,
we first pack them together into a single sequence
[xQ

1 , · · · ,x
Q
|Q|,x

P
1 , · · · ,xP

|P |], which also denoted
as h0. Then an L-layer Transformer encoder is
used to encode the packed representations:

hl = Transformerl(hl−1)

where l ∈ [1, L] is the depth.
Transformer blocks use a self-attention mecha-

nism to compute attention weights between each
pair of tokens in the packed question and pas-
sage, which automatically learns the importance
of encoding and matching. Specifically, for each
token, the attention scores are normalized over
the whole sequence. The weights between two
question tokens can be regarded as question en-
coding. Similarly, the attention scores between

github.com/addf400/UnifiedModelForSQuAD


16

two passage tokens can be viewed as passage en-
coding. The attention weights across the ques-
tion segment and the passage segment can be
considered as question-to-passage or passage-to-
question matching.

2.3 Output Layer
Inspired by Yu et al. (2018), hidden vectors of dif-
ferent Transformer layers hi,hj ,hk (i = 6, j =
9, k = 12 in our implementation) are used to rep-
resent the input. Moreover, we employ a self-
attentive method as in Wang et al. (2017) over
question vectors to obtain a question attentive vec-
tor vq. Finally, we predict the probability of each
token being the start (ps) or end (pe) position of
the answer span:

ps = softmax(W1[hi;hi � vq;hj ;hj � vq])

pe = softmax(W2[hi;hi � vq;hk;hk � vq])

where � represents elementwise multiplication,
and W1,W2 are parameters.

To train the model, we maximize the log likeli-
hood of ground-truth start and end positions given
input passage and question. At test time, we pre-
dict answer spans approximately by greedy search.

3 Experiments

3.1 Experimental Setup
Dataset Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) is composed of
over 100,000 instances created by crowdworkers.
Every answer is constrained to be a continuous
sub-span of the passage.

Settings We employ the spaCy toolkit to prepro-
cess data. We use 300-dimensional GloVe embed-
dings (Pennington et al., 2014) to initialize word
vectors of both questions and passages, and keep
them fixed during training. A special trainable to-
ken <UNK> is used to represent out-of-vocabulary
words. We randomly mask some words in the pas-
sage to <UNK>with 0.2 probability while training.
The dimension of character embedding and seg-
ment embedding is 64 and 128, respectively. The
number of Transformer layers used in our model
is 12. For each Transformer layer, we set the hid-
den size to 128, and use relative position embed-
ding (Shaw et al., 2018) whose clipping distance
is 16. The number of the attention heads is 8.

During training, the batch size is 32 and the
number of the max training epochs is 80. We use

Model EM / F1

BiDAF (Seo et al., 2016) 68.0 / 77.3
R-Net (Wang et al., 2017) 72.3 / 80.7
QAnet (Yu et al., 2018) 73.6 / 82.7

Separate Encoding and Matching 74.6 / 83.1
Unified Encoding and Matching 75.7 / 84.2

Table 1: Performance of different models on SQuAD
development set.

Adam (Kingma and Ba, 2015) as the optimizer
with β1 = 0.9, β2 = 0.999, ε = 10−6. We
use warmup over the first 4, 000 steps, and keep
the learning rate fixed for the remainder of train-
ing. The learning rate is set to 6 × 10−4. We ap-
ply the exponential moving average on all train-
able variables with decay rate of 0.9999. Layer
dropout (Huang et al., 2016) is used in Trans-
former layers with 0.95 survival probability. We
also apply dropout on word, character embeddings
and each layers with dropout rate of 0.1, 0.05 and
0.1 respectively.

Comparison Models Apart from comparing
with previous state-of-the-art models (Seo et al.,
2016; Wang et al., 2017; Yu et al., 2018), we
implement a baseline model that separately per-
form encoding and matching. The same settings
as above are used. The first three Transformer
layers are utilized to encode passage and ques-
tion separately. Then we add a passage-question
matching layer following Yu et al. (2018), with
nine more Transformer layers used to compute
the question-sensitive passage representations. To
make a fair comparison, we only compare with the
models that do not rely on pre-trained language
models (Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2018).

3.2 Results

Exact match (EM) and F1 scores are two evalu-
ation metrics for SQuAD. EM measures the per-
centage of the prediction that matches the ground-
truth answer exactly, while F1 measures the over-
lap between the predicted answer answer and the
ground-truth answer. The scores on the develop-
ment set are evaluated by the official script.

As shown in Table 1, the unified model out-
performs previous state-of-the-art models and the
baseline model. We find that our unified model
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(a) Density distribution of passage
encoding ratio for each layer

(b) Density distribution of question
encoding ratio for each layer

Figure 2: Density distribution of passage encoding ratio ep and question encoding ratio eq for all attention heads
in Transformer layers. Vertical axis represents encoding ratio. Larger encoding ratio means that the layer performs
more encoding, while smaller ratio value indicates more matching. Darker color means higher density, i.e., more
attention heads’ encoding ratio values are within the range. The patterns show that the unified model learns
different modeling strategies compared with previous manually-designed networks (see Section 3.3 for details).

brings 1.1/1.1 absolute improvement on EM/F1
over the baseline that separately conducts encod-
ing and matching. The results indicate the unified
model not only simplifies the model architecture,
but also improves performance on SQuAD.

3.3 Analysis
We introduce passage encoding ratio ep and ques-
tion encoding ratio eq to quantify the encoding and
matching strategies for each layer of the unified
encoder. Let us take the question encoding ratio of
an attention head in the l-th Transformer layer for
example. Given the attention head’s self-attention
weight matrix A, the ratio eq is computed via:

sq|q = avgi,j∈Q{Ai,j}
sq|p = avgi∈Q,j∈P {Ai,j}
eq = sq|q/(sq|q + sq|p)

where sq|q is the average question-to-question at-
tention weight, and sq|p is the average passage-to-
question attention weight. To be specific, if eq is
close to 1, it means that the layer tends to perform
question-to-question encoding. In contrast, if eq
is close to 0, it indicates the layer performs more
passage-to-question matching. Similarly, we can
compute passage encoding ratio ep as above.

As shown in Figure 2, we compute passage en-
coding ratio ep and question encoding ratio eq for
all the attention heads on the development set,

and plot their density distributions for each Trans-
former layer. We find that the unified model learns
strategies that are clearly different from manually-
designed architectures:

• Figure 2(a) shows that the first three layers
perform question-to-passage matching and
the fourth layer conducts passage-to-passage
encoding, while most previous models per-
form passage encoding first.

• Figure 2(a) indicates that upper layers tend to
conduct more encoding than matching.

• Figure 2(b) shows that all layers tend to
perform question-to-question encoding than
passage-to-question matching.

• Some layers are automatically learned to per-
form encoding and matching at the same time
instead of separate modeling.

4 Conclusion

In this work, we evaluate and analyze unifying
encoding and matching components with Trans-
former for the MRC task. Experimental results
on the SQuAD dataset illustrate that the unified
model outperforms previous networks that treat
encoding and matching separately. We further in-
troduce a metric to inspect whether a layer tends
to act more like encoding or matching. The analy-
sis results show that the unified Transformer layers
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automatically learn strategies that are clearly dif-
ferent from previous specially-designed models.
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