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Abstract

Geolocation, predicting the location of a post
based on text and other information, has a
huge potential for several social media appli-
cations. Typically, the problem is modeled
as either multi-class classification or regres-
sion. In the first case, the classes are geo-
graphic areas previously identified; in the sec-
ond, the models directly predict geographic
coordinates. The former requires discretiza-
tion of the coordinates, but yields better perfor-
mance. The latter is potentially more precise
and true to the nature of the problem, but of-
ten results in worse performance. We propose
to combine the two approaches in an attention-
based multitask convolutional neural network
that jointly predicts both discrete locations and
continuous geographic coordinates. We evalu-
ate the multi-task (MTL) model against single-
task models and prior work. We find that MTL
significantly improves performance, reporting
large gains on one data set, but also note that
the correlation between labels and coordinates
has a marked impact on the effectiveness of in-
cluding a regression task.

1 Introduction
Knowing the location of a social media post is use-
ful for a variety of applications: from improving
content relevance for the socio-cultural environ-
ment of a geographic area (Rakesh et al., 2013),
to the understanding of demographic distributions
for disaster relief (Lingad et al., 2013).

However, most social media posts do not in-
clude location. On Twitter, one of the most stud-
ied social media, geotagging is enabled for at most
5% of the posts (Sloan and Morgan, 2015; Cebeil-
lac and Rault, 2016). In order to address this issue,
samples of geolocated data have been used to cre-
ate corpora of geo-tagged texts. Those corpora al-
low us to train supervised models to predict the ge-
ographic location for a post, relying on the post’s

text and, possibly, users’ interaction information
and other meta-data provided by the social media.
While a lot of work has gone into this problem, it
is still far from solved.

The task is usually framed as a multi-class clas-
sification problem, but actual location information
is normally given as a pair of continuous-valued
latitude/longitude coordinates (e.g.: 51.5074◦ N,
0.1278◦ W). Using these coordinates in classifi-
cation requires translation into labels correspond-
ing to a geographic area (e.g., cities, states, coun-
tries). This translation is another non-trivial task
(Wing and Baldridge, 2014), and necessarily loses
information. Much less frequently, geolocation
is framed as regression, i.e., direct prediction of
the coordinates. While potentially more accurate,
regression over geographic coordinates presents
a host of challenges (values are continuous but
bounded, can be negative, and distances are non-
Euclidean, due to the Earth’s curvature). It is
therefore usually less effective than classification.

Ideally, we would like to combine the advan-
tages of both approaches, i.e., let the regres-
sion over continuous-valued coordinates guide the
discrete location classification. So far, how-
ever, no work has tried to combine the two ap-
proaches. With recent advances in multi-task
learning (MTL), we have the opportunity to com-
bine them. In this paper, we do exactly that.

We combine classification and regression in
a multi-task attention-based convolutional neural
network (MTL-Att-CNN), which jointly learns to
predict the geographic labels and the relative co-
ordinates. We evaluate on two data sets widely
used in the geolocation literature, TWITTER-US
and TWITTER-WORLD (Section 3). In line with
prior research on MTL (Alonso and Plank, 2017;
Bingel and Søgaard, 2017), we do find that auxil-
iary regression can indeed help classification per-
formance, but under a somewhat surprising con-
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dition: when there are enough classification la-
bels. We show this by evaluating on two differ-
ent schemes for discretizing coordinates into la-
bels. The first (Rahimi et al., 2017b) identifies ir-
regular areas via k-d trees, and is the most com-
mon in the literature. The second (Fornaciari and
Hovy, 2019b) directly identifies towns of at least
15K inhabitants and allows the evaluation of the
method in a more realistic scenario, but results in
3–6 times more labels.

Contributions 1) We propose a novel multi-
task CNN model, which learns geographic la-
bel prediction and coordinate regression together.
2) Based on Fornaciari and Hovy (2019b), we
propose an alternative coordinate discretization,
which correlates more with geocoordinates (Sec-
tion 3). We find that label granularity impacts the
effectiveness of MTL.

2 Related Work

Most successful recent approaches to geolocation
use Deep Learning architectures for the task (Liu
and Inkpen, 2015; Iso et al., 2017; Han et al.,
2016). Many authors (Miura et al., 2016; Baker-
man et al., 2018; Rahimi et al., 2018; Ebrahimi
et al., 2018; Do et al., 2018; Fornaciari and Hovy,
2019a) follow a hybrid approach, combining the
text representation with network information and
further meta-data. However, recent works explore
the effectiveness of purely textual data for geolo-
cation (Tang et al., 2019).

Other researchers have directly predicted the
geographic coordinates associated with the texts.
Eisenstein et al. (2010) was the first to formulate
the problem as a regression task predicting the co-
ordinate values as numerical values. Lourentzou
et al. (2017) use very simple labels, but create a
neural model which separately performs both the
classification task and the prediction of the geo-
graphic coordinates. They evaluate the relative
performance of each approach.

Rahimi et al. (2017a) created a dense repre-
sentation of bi-dimensional points using Mixture
Density Networks (Bishop, 1994). They motivate
the higher complexity of such multi-dimensional
representations with the limits of the loss min-
imization in uni-modal distributions for multi-
target scenarios. In particular, they underline that
minimizing the squared loss is equivalent to po-
sitioning the predicted point in the middle of the
possible outputs, when more flexible representa-

tions would be useful for geographic prediction:
“a user who mentions content in both NYC and
LA is predicted to be in the centre of the U.S.”.

We address this point with a model which
jointly solves the classification and regression
problem, similar to the approach by Subrama-
nian et al. (2018), who combine regression with
a classification-like “ordinal regression” in order
to predict both the number of votes for a petition
as well as the voting threshold it reaches.

There is a rich literature on the use of multi-
task learning (Caruana, 1996; Caruana et al., 1996;
Caruana, 1997) in NLP, highlighting the impor-
tance of choosing the right auxiliary tasks (Alonso
and Plank, 2017; Bingel and Søgaard, 2017; Ben-
ton et al., 2017; Lamprinidis et al., 2018).

3 Data

Corpora We use two publicly available data
sets commonly used for geolocation, known as
TWITTER-US and TWITTER-WORLD. They were
released by Roller et al. (2012) and Han et al.
(2012) respectively. Both data sets consist of ge-
olocated tweets written in English, coming from
North America and from everywhere in the World.
Each instance consists of a set of tweets from a sin-
gle user, associated with a pair of geographic coor-
dinates (latitude and longitude). TWITTER-US has
449 694 instances, TWITTER-WORLD 1 386 766.
Both corpora have predefined development and
test sets of 10 000 records each. These corpora
were used in the shared task of W-NUT 2016, pro-
viding the basis for comparison with other models
in the literature.

Labels Since the location is represented as coor-
dinates, there is no single best solution for translat-
ing them into meaningful labels (i.e., geographic
areas). We follow two distinct discretizing ap-
proaches, resulting in different label sets. First,
to allow comparison with prior work, we imple-
ment the coordinate clustering method proposed
by Rahimi et al. (2017b). It relies on the k-d tree
procedure (Maneewongvatana and Mount, 1999)
and led to the identification of 256 geographic
areas for TWITTER-US and 930 for TWITTER-
WORLD. These areas, however, are quite large
and do not always correspond to any meaningful
territorial division (e.g., city, county, state, etc).

In order to create labels sets corresponding
more closely to existing geographic distinctions,
we follow the Point2City - P2C, another algorithm

https://noisy-text.github.io/2016/
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based on k-d tree with additional steps, proposed
by Fornaciari and Hovy (2019b). This results in
more fine-grained geographic labels.

P2C clusters all points closer than 11 km (which
correspond to the first decimal point on the lon-
gitude axis), then iteratively merges the centroids
until no centroids are closer than 11 km to each
other. Finally, these points are labeled with the
name of the closest city of at least 15 000 inhab-
itants, according to the information provided by
the free database GeoNames. We refer the reader
to Fornaciari and Hovy (2019b) for more details
of the method.

The mean distance between P2C labels and the
respective actual city centers is less than 3.5 km.
P2C results in 1 593 labels for TWITTER-US and
2 975 for TWITTER-WORLD, a factor of respec-
tively 6 and 3 greater than the method used by
Rahimi et al. (2017b). We provide our labels and
our models on GitHub Bocconi-NLPLab.

Pre-processing and feature selection We pre-
process the text by converting it to lowercase, re-
moving URLs and stop-words. We reduce num-
bers to 0, except for those appearing in mentions
(e.g., @abc123). In order to make the vocabulary
size computationally tractable, we restrict the al-
lowed words to those with a minimum frequency
of 5 for each corpus. Since this removes about
80% of the vocabulary, losing possibly relevant in-
formation, we convert a part of the low-frequency
words into replacement tokens. In particular, con-
sidering the training set only, we selected all those
appearing uniquely in the same place according to
the P2C labels. We discarded the low frequency
terms found in more than one geographic area. In
this way, the resulting vocabulary size is 1.470M
words for TWITTER-US and 470K for TWITTER-
WORLD.

We follow Han et al. (2014) and Forman (2003)
in limiting both vocabularies to the same number
of tokens, i.e., 470K tokens, by filtering the terms
according to their Information Gain Ratio (IGR).
This is a measure of the degree of informativeness
for each term, according to its distribution among
a set of labels – geographic areas in our case.

4 Methods
We train embeddings for both corpora, and use
them as input to the multi-task learning model.

Embeddings Since tweets are natively short
texts further reduced by removing stop words,

we use a small context window size of 5 words.
We trained our embeddings on the training sets
of each corpus. As we are interested in poten-
tially rare geographically informative words, we
use the skip-gram model, which is more sensi-
tive to low-frequency terms than CBOW (Mikolov
et al., 2013) and train for 50 epochs. We use an
embedding size of 512, choosing a power of 2
for memory efficiency, and the size as a compro-
mise between a rich representation and the com-
putational tractability of the embeddings matrix.
For the same reason, we limit the length of each
instance to 800 words for TWITTER-US and 400
words for TWITTER-WORLD, which preserves the
entire text for 99.5% of the instances in each cor-
pus.

MTL-Att-CNN We implement a CNN with the
following structure. The input layer has the
word indices of the text, converted via the em-
bedding matrix into a matrix of shape words ×
embeddings. We convolve two parallel channels
with max-pooling layers and convolutional win-
dow sizes 4 and 8 over the input. The two window
sizes account for both short and relatively long
patterns in the texts. In both channels, the initial
number of filters is 128 for the first convolution,
and 256 in the second one. We join the output
of the convolutional channels and pass it through
an attention mechanism (Bahdanau et al., 2014;
Vaswani et al., 2017) to emphasize the weight of
any meaningful pattern recognized by the convo-
lutions. We use the implementation of Yang et al.
(2016). The output consists of two independent,
fully-connected layers for the predictions, respec-
tively in the form of discrete labels for classifica-
tion and of continuous latitude and longitude val-
ues for regression.

Gradient Normalization Multi-task networks
are quite sensitive to the choice of auxiliary tasks
and the associated loss (Benton et al., 2017). If
the loss function outputs of different tasks differ in
scale, backpropagation also involves errors at dif-
ferent scales. This can imbalance the relative con-
tributions of each task on the overall results: the
“lighter” task can therefore be disadvantaged up
to the point to become untrainable, since the back-
propagation becomes dominated by the task with
the larger error scale. To prevent this problem,
we first normalize the coordinates to the range
0 − 1. Since coordinates include negative values,
we transform them by adding 180 and dividing by

http://www.geonames.org/
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TWITTER-US

method model # labels Acc Acc@161 mean median

Han et al. (2014) NB + IGR 378 26% 45% - 260
Rahimi et al. (2017b) MLP + k-means 256 - 55% 581 91

k-d labels STL-Att-CNN 256 21.06% 44.51% 845.23† 272.15
MTL-Att-CNN 256 20.75% 44.35% 856.60 276.99

P2C labels STL-Att-CNN 1,593 31.22% 44.48% 944.89 304.99
MTL-Att-CNN 1,593 31.36% 44.64% 889.98∗∗ 293.26

TWITTER-WORLD

Han et al. (2014) NB + IGR 3135 13% 26% - 913
Rahimi et al. (2017b) MLP + k-means 930 - 36% 1417 373

k-d labels STL-Att-CNN 930 30.67% 48.13% 1656.06 202.68
MTL-Att-CNN 930 30.70% 48.46% 1640.16 195.18

P2C labels STL-Att-CNN 2,975 35.67% 47.95% 1695.85 203.50
MTL-Att-CNN 2,975 36.07% 48.48%∗ 1643.29∗∗ 195.54

Table 1: Performance of prior work and proposed model. NB= Naive Bayes, MLP=Multi-Layer Perceptron,
CNN=Convolutional Neural Net, STL=Single Task, MTL=Multi Task. Significance on MTL vs. STL: ∗ : p ≤ 0.05
, ∗∗ : p ≤ 0.01, † : p ≤ 0.005

360. As loss function, we compute the Euclidean
distance between the predicted and the target coor-
dinates.1 We rescale all distances to within 0−1 as
well, i.e., to the same scale as the softmax output
of the classification task.

For the main task (i.e., classification), we use
the Adam optimizer (Kingma and Ba, 2014). This
gradient descent optimizer is widely used as it uses
moving averages of the parameters (i.e., the mo-
mentum), in practice adjusting the step size during
the training (Bengio, 2012). The Adam optimizer,
though, requires a high number of parameter. For
the auxiliary task (i.e., regression), we simply used
standard gradient descent.

5 Experiments
We carry out 8 experiments, 4 on TWITTER-
US and 4 on TWITTER-WORLD. For each data
set, we compare the performance of multi-task
(MTL) and single-task (i.e., classification) mod-
els (STL), both with the labels of Rahimi et al.
(2017b) and our own label set. For each of the
8 conditions, we report results averaged over three
runs to reduce the impact of the random initial-
izations. For each condition, we compute sig-
nificance between STL and MTL via bootstrap
sampling (Berg-Kirkpatrick et al., 2012; Søgaard
et al., 2014).

1We also experimented with incorporating radians into the
distance measure, but did not find any particular improve-
ment, since it is learned directly during the training process.

TWITTER-US and TWITTER-WORLD are two
remarkably different data sets. Not only they ad-
dress areas of different size, with different geo-
graphic density of the entities to locate, they also
differ in vocabulary size (larger in TWITTER-US),
even considering different pre-processing proce-
dures. Therefore, the performance difference
many studies report is not surprising.

The outcomes are shown in Table 1. On both
data sets, MTL yields the best results for exact
accuracy. On TWITTER-US, we outperform Han
et al. (2014) in exact accuracy, but cannot compare
to Rahimi et al. (2017b), and do not reach their
acc@161 or distance measures. For TWITTER-
WORLD, we report the best results for both types
of accuracy and median distance. Interestingly,
mean distance is higher, suggesting a very long tail
of far-away predictions.

The effectiveness of MTL increases with label
granularity. This makes sense, since under a more
fine-grained label scheme, the correlation between
coordinates and labels is higher, which is exactly
what we learn in the auxiliary task. Under the
broader labeling scheme by Rahimi et al. (2017b),
label areas are of irregular size, and so the correla-
tion with the coordinates varies. With the k-d tree
labels, the mean distance between the coordinates
and the cluster centroids is 50 Km for TWITTER-
US and 40 km for TWITTER-WORLD, while with
our labels the mean distance is 16 and 7 km, re-
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spectively. With highly granular P2C labels, MTL
consistently outperforms STL; in contrast, with
wider areas, STL mean distance beats MTL in
TWITTER-US. The auxiliary regression adds valu-
able information to the classification task: MTL
improves significantly over STL.

6 Ablation study
In order to verify the impact of the network com-
ponents on the overall performance, we carry out
a brief ablation study. In particular, we are in-
terested in the attention mechanism, implemented
following Yang et al. (2016). To this end, we train
a MTL model without attention mechanism. We
note that they are not directly comparable to those
shown in table 1, since they used different, ran-
domly initialized embeddings, and should be in-
terpreted with caution. The results do suggest,
though, that we can expect the attention mecha-
nism to increase performance by about 10 points
percent (both for accuracy and for acc@161), and
to increase median distance by about 150 km. This
effect holds for both multi-task and single-task
models.

7 Conclusion
IN this paper, we propose a novel multi-task
learning framework with attention for geoloca-
tion, combining label classification with regres-
sion over geo-coordinates.

We find that the granularity of the labels (and
their correlation with the coordinates) has a direct
impact on the effectiveness of MTL, with more
labels counter-intuitively resulting in higher exact
accuracy. Besides the labels commonly adopted in
the literature, we also evaluate with a greater num-
ber and more specific locations (arguably a more
realistic way to evaluate the geolocation for many
real life applications). This effect holds indepen-
dent of whether the model is trained with attention
or not.

The auxiliary regression task is helpful for clas-
sification when using more fine-grained labels,
which address specific rather than broad areas.
Our models are optimized for exact accuracy,
rather than to Acc@161, and we report some of the
best accuracy measures for TWITTER-WORLD,
and competitive results for TWITTER-US.
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communication et territoires, 30(3/4):231–248.

Tien Huu Do, Duc Minh Nguyen, Evaggelia Tsili-
gianni, Bruno Cornelis, and Nikos Deligiannis.
2018. Twitter user geolocation using deep multi-
view learning. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6304–6308. IEEE.

Mohammad Ebrahimi, Elaheh ShafieiBavani, Ray-
mond Wong, and Fang Chen. 2018. A unified neural
network model for geolocating twitter users. In Pro-
ceedings of the 22nd Conference on Computational
Natural Language Learning, pages 42–53.

Jacob Eisenstein, Brendan O’Connor, Noah A Smith,
and Eric P Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the
2010 conference on empirical methods in natural
language processing, pages 1277–1287. Association
for Computational Linguistics.

George Forman. 2003. An extensive empirical
study of feature selection metrics for text classi-
fication. Journal of machine learning research,
3(Mar):1289–1305.

Tommaso Fornaciari and Dirk Hovy. 2019a. Dense
Node Representation for Geolocation. In Proceed-
ings of the 5th Workshop on Noisy User-generated
Text (WNUT).

Tommaso Fornaciari and Dirk Hovy. 2019b. Identify-
ing Linguistic Areas for Geolocation. In Proceed-
ings of the 5th Workshop on Noisy User-generated
Text (WNUT).

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Ge-
olocation prediction in social media data by finding
location indicative words. Proceedings of COLING
2012, pages 1045–1062.

Bo Han, Paul Cook, and Timothy Baldwin. 2014. Text-
based twitter user geolocation prediction. Journal of
Artificial Intelligence Research, 49:451–500.

Bo Han, Afshin Rahimi, Leon Derczynski, and Timo-
thy Baldwin. 2016. Twitter Geolocation Prediction
Shared Task of the 2016 Workshop on Noisy User-
generated Text. In Proceedings of the 2nd Workshop
on Noisy User-generated Text (WNUT), pages 213–
217.

Hayate Iso, Shoko Wakamiya, and Eiji Aramaki. 2017.
Density estimation for geolocation via convolu-
tional mixture density network. arXiv preprint
arXiv:1705.02750.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Sotiris Lamprinidis, Daniel Hardt, and Dirk Hovy.
2018. Predicting news headline popularity with
syntactic and semantic knowledge using multi-task
learning. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 659–664.

John Lingad, Sarvnaz Karimi, and Jie Yin. 2013. Loca-
tion extraction from disaster-related microblogs. In
Proceedings of the 22nd international conference on
world wide web, pages 1017–1020. ACM.

Ji Liu and Diana Inkpen. 2015. Estimating user lo-
cation in social media with stacked denoising auto-
encoders. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, pages 201–210.

Ismini Lourentzou, Alex Morales, and ChengXiang
Zhai. 2017. Text-based geolocation prediction of
social media users with neural networks. In 2017
IEEE International Conference on Big Data (Big
Data), pages 696–705. IEEE.

Songrit Maneewongvatana and David M Mount. 1999.
It’s okay to be skinny, if your friends are fat. In Cen-
ter for Geometric Computing 4th Annual Workshop
on Computational Geometry, volume 2, pages 1–8.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi,
and Tomoko Ohkuma. 2016. A simple scalable neu-
ral networks based model for geolocation prediction
in twitter. In Proceedings of the 2nd Workshop on
Noisy User-generated Text (WNUT), pages 235–239.

Afshin Rahimi, Timothy Baldwin, and Trevor Cohn.
2017a. Continuous representation of location for
geolocation and lexical dialectology using mixture
density networks. In Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Afshin Rahimi, Trevor Cohn, and Tim Baldwin.
2018. Semi-supervised user geolocation via
graph convolutional networks. arXiv preprint
arXiv:1804.08049, pages 2009–2019.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2017b. A neural model for user geolocation and lex-
ical dialectology. arXiv preprint arXiv:1704.04008,
pages 209–216.

Vineeth Rakesh, Chandan K Reddy, and Dilpreet
Singh. 2013. Location-specific tweet detection and
topic summarization in twitter. In Proceedings of

https://www.amazon.com/clouddrive/share/kfl0TTPDkXuFqTZ17WJSnhXT0q6fGkTlOTOLZ9VVPNu/folder/8LsINlmwTvWDpcWYHcVVXQ?_encoding=UTF8&*Version*=1&*entries*=0&mgh=1
https://www.amazon.com/clouddrive/share/kfl0TTPDkXuFqTZ17WJSnhXT0q6fGkTlOTOLZ9VVPNu/folder/8LsINlmwTvWDpcWYHcVVXQ?_encoding=UTF8&*Version*=1&*entries*=0&mgh=1
https://www.amazon.com/clouddrive/share/kfl0TTPDkXuFqTZ17WJSnhXT0q6fGkTlOTOLZ9VVPNu/folder/8LsINlmwTvWDpcWYHcVVXQ?_encoding=UTF8&*Version*=1&*entries*=0&mgh=1


223

the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining,
pages 1441–1444. ACM.

Stephen Roller, Michael Speriosu, Sarat Rallapalli,
Benjamin Wing, and Jason Baldridge. 2012. Super-
vised text-based geolocation using language models
on an adaptive grid. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 1500–1510. Association for
Computational Linguistics.

Luke Sloan and Jeffrey Morgan. 2015. Who tweets
with their location? understanding the relationship
between demographic characteristics and the use of
geoservices and geotagging on twitter. PloS one,
10(11):e0142209.

Anders Søgaard, Anders Johannsen, Barbara Plank,
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