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Introduction

The W-NUT 2019 workshop focuses on a core set of natural language processing tasks on top of
noisy user-generated text, such as that found on social media, web forums and online reviews. Recent
years have seen a significant increase of interest in these areas. The internet has democratized content
creation leading to an explosion of informal user-generated text, publicly available in electronic format,
motivating the need for NLP on noisy text to enable new data analytics applications.

We received 89 long and short paper submissions this year. There are two invited speakers, Isabelle
Augenstein (University of Copenhagen) and Jing Jiang (Singapore Management University) with each
of their talks covering a different aspect of NLP for user-generated text. We have the best paper
award(s) sponsored by Google this year, for which we are thankful. We would like to thank the Program
Committee members who reviewed the papers this year. We would also like to thank the workshop
participants.

Wei Xu, Alan Ritter, Tim Baldwin and Afshin Rahimi
Co-Organizers
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Abstract
In many review classification applications, a
fine-grained analysis of the reviews is desir-
able, because different segments (e.g., sen-
tences) of a review may focus on different as-
pects of the entity in question. However, train-
ing supervised models for segment-level clas-
sification requires segment labels, which may
be more difficult or expensive to obtain than
review labels. In this paper, we employ Mul-
tiple Instance Learning (MIL) and use only
weak supervision in the form of a single la-
bel per review. First, we show that when inap-
propriate MIL aggregation functions are used,
then MIL-based networks are outperformed
by simpler baselines. Second, we propose a
new aggregation function based on the sig-
moid attention mechanism and show that our
proposed model outperforms the state-of-the-
art models for segment-level sentiment clas-
sification (by up to 9.8% in F1). Finally, we
highlight the importance of fine-grained pre-
dictions in an important public-health applica-
tion: finding actionable reports of foodborne
illness. We show that our model achieves
48.6% higher recall compared to previous
models, thus increasing the chance of identify-
ing previously unknown foodborne outbreaks.

1 Introduction

Many applications of text review classification,
such as sentiment analysis, can benefit from a fine-
grained understanding of the reviews. Consider
the Yelp restaurant review in Figure 1. Some seg-
ments (e.g., sentences or clauses) of the review ex-
press positive sentiment towards some of the items
consumed, service, and ambience, but other seg-
ments express a negative sentiment towards the
price and food. To capture the nuances expressed
in such reviews, analyzing the reviews at the seg-
ment level is desirable.

In this paper, we focus on segment classifica-
tion when only review labels—but not segment

Figure 1: A Yelp review discussing both positive and nega-
tive aspects of a restaurant, as well as food poisoning.

labels—are available. The lack of segment labels
prevents the use of standard supervised learning
approaches. While review labels, such as user-
provided ratings, are often available, they are not
directly relevant for segment classification, thus
presenting a challenge for supervised learning.

Existing weakly supervised learning frame-
works have been proposed for training models
such as support vector machines (Andrews et al.,
2003; Yessenalina et al., 2010; Gärtner et al.,
2002), logistic regression (Kotzias et al., 2015),
and hidden conditional random fields (Täckström
and McDonald, 2011). The most recent state-of-
the-art approaches employ the Multiple Instance
Learning (MIL) framework (Section 2.2) in hi-
erarchical neural networks (Pappas and Popescu-
Belis, 2014; Kotzias et al., 2015; Angelidis and
Lapata, 2018; Pappas and Popescu-Belis, 2017;
Ilse et al., 2018). MIL-based hierarchical net-
works combine the (unknown) segment labels
through an aggregation function to form a single
review label. This enables the use of ground-truth
review labels as a weak form of supervision for
training segment-level classifiers. However, it re-
mains unanswered whether performance gains in
current models stem from the hierarchical struc-
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ture of the models or from the representational
power of their deep learning components. Also,
as we will see, the current modeling choices for
the MIL aggregation function might be problem-
atic for some applications and, in turn, might hurt
the performance of the resulting classifiers.

As a first contribution of this paper, we show
that non-hierarchical, deep learning approaches
for segment-level sentiment classification —with
only review-level labels— are strong, and they
equal or exceed in performance hierarchical net-
works with various MIL aggregation functions.

As a second contribution of this paper, we
substantially improve previous hierarchical ap-
proaches for segment-level sentiment classifica-
tion and propose the use of a new MIL aggrega-
tion function based on the sigmoid attention mech-
anism to jointly model the relative importance of
each segment as a product of Bernoulli distribu-
tions. This modeling choice allows multiple seg-
ments to contribute with different weights to the
review label, which is desirable in many applica-
tions, including segment-level sentiment classifi-
cation. We demonstrate that our MIL approach
outperforms all of the alternative techniques.

As a third contribution, we experiment beyond
sentiment classification and apply our approach
to a critical public health application: the dis-
covery of foodborne illness incidents in online
restaurant reviews. Restaurant patrons increas-
ingly turn to social media—rather than official
public health channels—to discuss food poison-
ing incidents (see Figure 1). As a result, public
health authorities need to identify such rare inci-
dents among the vast volumes of content on social
media platforms. We experimentally show that
our MIL-based network effectively detects seg-
ments discussing food poisoning and has a higher
chance than all previous models to identify un-
known foodborne outbreaks.

2 Background and Problem Definition

We now summarize relevant work on fully super-
vised (Section 2.1) and weakly supervised models
(Section 2.2) for segment classification. We also
describe a public health application for our model
evaluation (Section 2.3). Finally, we define our
problem of focus (Section 2.4).

2.1 Fully Supervised Models

State-of-the-art supervised learning methods for
segment classification use segment embedding
techniques followed by a classification model.
During segment encoding, a segment si =
(xi1, xi2, . . . , xiNi) composed of Ni words is en-
coded as a fixed-size real vector hi ∈ R` us-
ing transformations such as the average of word
embeddings (Wieting et al., 2015; Arora et al.,
2017), Recurrent Neural Networks (RNNs) (Wi-
eting and Gimpel, 2017; Yang et al., 2016), Con-
volutional Neural Networks (CNNs) (Kim, 2014),
or self-attention blocks (Devlin et al., 2019; Rad-
ford et al., 2018). We refer to the whole seg-
ment encoding procedure as hi = ENC(si). Dur-
ing segment classification, the segment si is as-
signed to one of C predefined classes [C] :=
{1, 2, . . . , C}. To provide a probability distribu-
tion pi = 〈p1i , . . . , pCi 〉 over the C classes, the seg-
ment encoding hi is fed to a classification model:
pi = CLF(hi). Supervised approaches require
ground-truth segment labels for training.

2.2 Weakly Supervised Models

State-of-the-art weakly supervised approaches for
segment and review classification employ the Mul-
tiple Instance Learning (MIL) framework (Zhou
et al., 2009; Pappas and Popescu-Belis, 2014;
Kotzias et al., 2015; Pappas and Popescu-Belis,
2017; Angelidis and Lapata, 2018). In contrast to
traditional supervised learning, where segment la-
bels are required to train segment classifiers, MIL-
based models can be trained using review labels as
a weak source of supervision, as we describe next.

MIL is employed for problems where data are
arranged in groups (bags) of instances. In our set-
ting, each review is a group of segments: r =
(s1, s2, . . . , sM ). The key assumption followed by
MIL is that the observed review label is an aggre-
gation function of the unobserved segment labels:
p = AGG(p1, . . . , pM ). Hierarchical MIL-based
models (Figure 2) work in three main steps: (1)
encode the review segments into fixed-size vec-
tors hi = ENC(si), (2) provide segment predic-
tions pi = CLF(hi), and (3) aggregate the pre-
dictions to get a review-level probability estimate
p = AGG(p1, . . . , pM ). Supervision during train-
ing is provided in the form of review labels.

Different modeling choices have been taken for
each part of the MIL hierarchical architecture.
Kotzias et al. (2015) encoded sentences as the in-
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Figure 2: MIL-based hierarchical models.

ternal representations of a hierarchical CNN that
was pre-trained for document-level sentiment clas-
sification (Denil et al., 2014). For sentence-level
classification, they used logistic regression, while
the aggregation function was the uniform aver-
age. Pappas and Popescu-Belis (2014, 2017) em-
ployed Multiple Instance Regression, evaluated
various models for segment encoding, including
feed forward neural networks and Gated Recurrent
Units (GRUs) (Bahdanau et al., 2015), and used
the weighted average for the aggregation function,
where the weights were computed by linear re-
gression or a one-layer neural network. Ange-
lidis and Lapata (2018) proposed an end-to-end
Multiple Instance Learning Network (MILNET),
which outperformed previous models for senti-
ment classification using CNNs for segment en-
coding, a softmax layer for segment classification,
and GRUs with attention (Bahdanau et al., 2015)
to aggregate segment predictions as a weighted av-
erage. Our proposed model (Section 4) also fol-
lows the MIL hierarchical structure of Figure 2
for both sentiment classification and an important
public health application, which we discuss next.

2.3 Foodborne Illness Discovery in Online
Restaurant Reviews

Health departments nationwide have started to
analyze social media content (e.g., Yelp re-
views, Twitter messages) to identify foodborne
illness outbreaks originating in restaurants. In
Chicago (Harris et al., 2014), New York City (Ef-
fland et al., 2018), Nevada (Sadilek et al., 2016),
and St. Louis (Harris et al., 2018), text classifica-
tion systems have been successfully deployed for
the detection of social media documents mention-
ing foodborne illness. (Figure 1 shows a Yelp re-

view discussing a food poisoning incident.) Af-
ter such social media documents are flagged by
the classifiers, they are typically examined man-
ually by epidemiologists, who decide if further in-
vestigation (e.g., interviewing the restaurant pa-
trons who became ill, inspecting the restaurant)
is warranted. This manual examination is time-
consuming, and hence it is critically important to
(1) produce accurate review-level classifiers, to
identify foodborne illness cases while not showing
epidemiologists large numbers of false-positive
cases; and (2) annotate the flagged reviews to help
the epidemiologists in their decision-making.

We propose to apply our segment classification
approach to this important public health applica-
tion. By identifying which review segments dis-
cuss food poisoning, epidemiologists could focus
on the relevant portions of the review and safely
ignore the rest. As we will see, our evaluation
will focus on Yelp restaurant reviews. Discovering
foodborne illness is fundamentally different from
sentiment classification, because the mentions of
food poisoning incidents in Yelp are rare. Further-
more, even reviews mentioning foodborne illness
often include multiple sentences unrelated to food-
borne illness (see Figure 1).

2.4 Problem Definition

Consider a text review for an entity, with M con-
tiguous segments r = (s1, . . . , sM ). Segments
may have a variable number of words and differ-
ent reviews may have a different number of seg-
ments. A discrete label yr ∈ [C] is provided
for each review but the individual segment labels
are not provided. Our goal is to train a segment-
level classifier that, given an unseen test review
rt = (st1, s

t
2, . . . , s

t
Mt

), predicts a label pi ∈ [C]
for each segment and then aggregates the segment
labels to infer the review label ytr ∈ [C] for rt.

3 Non-Hierarchical Baselines

We can address the problem described in Sec-
tion 2.4 without using hierarchical approaches
such as MIL. In fact, the hierarchical structure of
Figure 2 for the MIL-based deep networks adds a
level of complexity that has not been empirically
justified, giving rise to the following question: do
performance gains in current MIL-based models
stem from their hierarchical structure or just from
the representational power of their deep learning
components?
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We explore this question by evaluating a class
of simpler non-hierarchical baselines: deep neural
networks trained at the review level (without en-
coding and classifying individual segments) and
applied at the segment level by treating each test
segment as if it were a short “review.” While
the distribution of input length is different during
training and testing, we will show that this class of
non-hierarchical models is quite competitive and
sometime outperforms MIL-based networks with
inappropriate modeling choices.

4 Hierarchical Sigmoid Attention
Networks

We now describe the details of our MIL-based
hierarchical approach, which we call Hierarchi-
cal Sigmoid Attention Network (HSAN). HSAN
works in three steps to process a review, follow-
ing the general architecture in Figure 2: (1) each
segment si in the review is encoded as a fixed-size
vector using word embeddings and CNNs (Kim,
2014): hi = CNN(si) ∈ R`; (2) each seg-
ment encoding hi is classified using a softmax
classifier with parameters W ∈ R` and b ∈ R:
pi = softmax(Whi + b); and (3) a review predic-
tion p is computed as an aggregation function of
the segment predictions p1, . . . , pM from the pre-
vious step. A key contribution of our work is the
motivation, definition, and evaluation of a suitable
aggregation function for HSAN, a critical design
issue for MIL-based models.

The choice of aggregation function has a sub-
stantial impact on the performance of MIL-based
models and should depend on the specific assump-
tions about the relationship between bags and in-
stances (Carbonneau et al., 2018). Importantly, the
performance of MIL algorithms depends on the
witness rate (WR), which is defined as the propor-
tion of positive instances in positive bags. For ex-
ample, when WR is very low (which is the case in
our public health application), using the uniform
average as an aggregation function in MIL is not
an appropriate modeling choice, because the con-
tribution of the few positive instances to the bag la-
bel is outweighed by that of the negative instances.

The choice of the uniform average of segment
predictions (Kotzias et al., 2015) is also problem-
atic because particular segments of reviews might
be more informative than other segments for the
task at hand and thus should contribute with higher
weights to the computation of the review label.

For this reason, we opt for the weighted aver-
age (Pappas and Popescu-Belis, 2014; Angelidis
and Lapata, 2018):

p =

∑M
i=1 αi · pi∑M

i=1 αi

. (1)

The weights α1, . . . , αM ∈ [0, 1] define the rel-
ative contribution of the corresponding segments
s1, . . . , sM to the review label. To estimate the
segment weights, we adopt the attention mecha-
nism (Bahdanau et al., 2015). In contrast to MIL-
NET (Angelidis and Lapata, 2018), which uses the
traditional softmax attention, we propose to use
the sigmoid attention. Sigmoid attention is both
functionally and semantically different from soft-
max attention and is more suitable for our prob-
lem, as we show next.

The probabilistic interpretation of softmax at-
tention is that of a categorical latent variable z ∈
{1, . . . ,M} that represents the index of the seg-
ment to be selected from the M segments (Kim
et al., 2017). The attention probability distribution
is:

p(z = i | e1, . . . , eM ) =
exp(ei)∑M
i=1 exp(ei)

, (2)

where:

ei = uTa tanh(Wah
′
i + ba), (3)

where h′i are context-dependent segment vectors
computed using bi-directional GRUs (Bi-GRUs),
Wa ∈ Rm×n and ba ∈ Rn are the attention
model’s weight and bias parameter, respectively,
and ua ∈ Rm is the “attention query” vector pa-
rameter. The probabilistic interpretation of Equa-
tion 2 suggests that, when using the softmax at-
tention, exactly one segment should be considered
important under the constraint that the weights of
all segments sum to one. This property of the soft-
max attention to prioritize one instance explains
the successful application of the mechanism for
problems such as machine translation (Bahdanau
et al., 2015), where the role of attention is to align
each target word to (usually) one of the M words
from the source language. However, softmax at-
tention is not well suited for estimating the aggre-
gation function weights for our problem, where
multiple segments usually affect the review-level
prediction.

We hence propose using the sigmoid attention
mechanism to compute the weights α1, . . . , αM .
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Figure 3: Our Hierarchical Sigmoid Attention Net-
work.

In particular, we replace softmax in Equation (2)
with the sigmoid (logistic) function:

αi = σ(ei) =
1

1 + exp(−ei)
. (4)

With sigmoid attention, the computation of the at-
tention weight αi does not depend on scores ej
for j 6= i. Indeed, the probabilistic interpre-
tation of sigmoid attention is a vector z of dis-
crete latent variables z = [z1, . . . , zM ], where
zi ∈ {0, 1} (Kim et al., 2017). In other words,
the relative importance of each segment is mod-
eled as a Bernoulli distribution. The sigmoid at-
tention probability distribution is:

p(zi = 1 | e1, . . . , eM ) = σ(ei). (5)

This probabilistic model indicates that z1, . . . , zM
are conditionally independent given e1, . . . , eM .
Therefore, sigmoid attention allows multiple seg-
ments, or even no segments, to be selected. This
property of sigmoid attention explains why it is
more appropriate for our problem. Also, as we
will see in the next sections, using the sigmoid at-
tention is the key modeling change needed in MIL-
based hierarchical networks to outperform non-
hierarchical baselines for segment-level classifica-
tion. Attention mechanisms using sigmoid acti-
vation have also been recently applied for tasks
different than segment-level classification of re-
views (Shen and Lee, 2016; Kim et al., 2017; Rei
and Søgaard, 2018). Our work differs from these
approaches in that we use the sigmoid attention

mechanism for the MIL aggregation function of
Equation 1, i.e., we aggregate segment labels pi
(instead of segment vectors hi) into a single re-
view label p (instead of review vectors h).

We summarize our HSAN architecture in Fig-
ure 3. HSAN follows the MIL framework and thus
it does not require segment labels for training. In-
stead, we only use ground-truth review labels and
jointly learn the model parameters by minimizing
the negative log-likelihood of the model parame-
ters. Even though a single label is available for
each review, our model allows different segments
of the review to receive different labels. Thus, we
can appropriately handle reviews such as that in
Figure 1 and assign a mix of positive and negative
segment labels, even when the review as a whole
has a negative (2-star) rating.

5 Experiments

We now turn to another key contribution of our pa-
per, namely, the evaluation of critical aspects of
hierarchical approaches and also our HSAN ap-
proach. For this, we focus on two important and
fundamentally different, real-world applications:
segment-level sentiment classification and the dis-
covery of foodborne illness in restaurant reviews.

5.1 Experimental Settings

For segment-level sentiment classification, we use
the Yelp’13 corpus with 5-star ratings (Tang et al.,
2015) and the IMDB corpora with 10-star rat-
ings (Diao et al., 2014). We do not use segment
labels for training any models except the fully su-
pervised Seg-* baselines (see below). For evalu-
ating the segment-level classification performance
on Yelp’13 and IMDB, we use the SPOT-Yelp and
SPOT-IMDB datasets, respectively (Angelidis and
Lapata, 2018), annotated at two levels of gran-
ularity, namely, sentences (SENT) and Elemen-
tary Discourse Units (EDUs)1 (see Table 1). For
dataset statistics and implementation details, see
the supplementary material.

For the discovery of foodborne illness, we use
a dataset of Yelp restaurant reviews, manually la-
beled by epidemiologists in the New York City
Department of Health and Mental Hygiene. Each
review is assigned a binary label (“Sick” vs. “Not
Sick”). To test the models at the sentence level,
epidemiologists have manually annotated each

1The use of EDUs for sentiment classification is moti-
vated in (Angelidis and Lapata, 2018).
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SPOT-Yelp SPOT-IMDB
Statistic SENT EDU SENT EDU
# Segments 1,065 2,110 1,029 2,398
Positive segments (%) 39.9 32.9 37.9 25.6
Neutral segments (%) 21.7 34.3 29.2 47.7
Negative segments (%) 38.4 32.8 32.9 26.7
Witness positive (# segs) 7.9 12.1 6.0 8.5
Witness negative (# segs) 7.3 11.6 6.6 11.2
Witness salient (# segs) 8.5 14.0 7.6 12.6
WR positive 0.74 0.58 0.55 0.36
WR negative 0.68 0.53 0.63 0.43
WR salient 0.80 0.65 0.76 0.55

Table 1: Label statistics for the SPOT datasets. “WR
(x)” is the witness rate, meaning the proportion of seg-
ments with label x in a review with label x. “Witness
(x)” is the average number of segments with label x
in a review with label x. “Salient” is the union of the
“positive” and “negative” classes.

sentence for a subset of the test reviews (see the
supplementary material). In this sentence-level
dataset, the WR of the “Sick” class is 0.25, which
is significantly lower than the WR on sentiment
classification datasets (Table 1). In other words,
the proportion of “Sick” segments in “Sick” re-
views is relatively low; in contrast, in sentiment
classification the proportion of positive (or neg-
ative) segments is relatively high in positive (or
negative) reviews.

For a robust evaluation of our approach
(HSAN), we compare against state-of-the-art
models and baselines:

• Rev-*: non-hierarchical models, trained at
the review level and applied at the segment
level (see Section 3); this family includes
a logistic regression classifier trained on re-
view embeddings, computed as the element-
wise average of word embeddings (“Rev-
LR-EMB”), a CNN (“Rev-CNN”) (Kim,
2014), and a Bi-GRU with attention (“Rev-
RNN”) (Bahdanau et al., 2015). For food-
borne classification we also report a logis-
tic regression classifier trained on bag-of-
words review vectors (“Rev-LR-BoW”), be-
cause it is the best performing model in pre-
vious work (Effland et al., 2018).

• MIL-*: MIL-based hierarchical deep learn-
ing models with different aggregation func-
tions. “MIL-avg” computes the review label
as the average of the segment-level predic-
tions (Kotzias et al., 2015). “MIL-softmax”
uses the softmax attention mechanism –this is

the best performing MILNET model reported
in (Angelidis and Lapata, 2018) (“MIL-
NETgt”). “MIL-sigmoid” uses the sigmoid
attention mechanism as we propose in Sec-
tion 4 (HSAN model). All MIL-* models
have the hierarchical structure of Figure 2
and for comparison reasons we use the same
functions for segment encoding (ENC) and
segment classification (CLF), namely, a CNN
and a softmax classifier, respectively.

For the evaluation of hierarchical non-MIL net-
works such as the hierarchical classifier of Yang
et al. (2016), see Angelidis and Lapata (2018).
Here, we ignore this class of models as they have
been outperformed by MILNET.

The above models require only review-level la-
bels for training, which is the scenario of focus of
this paper. For comparison purposes, we also eval-
uate a family of fully supervised baselines trained
at the segment level:

• Seg-*: fully supervised baselines using
SPOT segment labels for training. “Seg-LR”
is a logistic regression classifier trained on
segment embeddings, which are computed
as the element-wise average of the corre-
sponding word embeddings. We also report
the CNN baseline (“Seg-CNN”), which was
evaluated in Angelidis and Lapata (2018).
Seg-* baselines are evaluated using 10-fold
cross-validation on the SPOT dataset.

For sentiment classification, we evaluate the mod-
els using the macro-averaged F1 score. For
foodborne classification, we report both macro-
averaged F1 and recall scores (for more metrics,
see the supplementary material).

5.2 Experimental Results
Sentiment Classification: Table 2 reports the
evaluation results on SPOT datasets for both
sentence- and EDU-level classification.

The Seg-* baselines are not directly comparable
with other models, as they are trained at the seg-
ment level on the (relatively small) SPOT datasets
with segment labels. The more complex Seg-CNN
model does not significantly improve over the sim-
pler Seg-LR, perhaps due to the small training set
available at the segment level.

Rev-CNN outperforms Seg-CNN in three out of
the four datasets. Although Rev-CNN is trained
at the review level (but is applied at the segment
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SPOT-Yelp SPOT-IMDB
Method SENT EDU SENT EDU
Seg-LR 55.6 59.2 60.5 62.8
Seg-CNN 56.2 60.0 58.3 63.0
Rev-LR-EMB 51.2 49.3 52.7 48.6
Rev-CNN 60.6 61.5 60.8 60.1
Rev-RNN 58.5 53.9 55.3 50.8
MIL-avg 51.8 46.8 45.7 38.4
MIL-softmax 63.4 59.9 64.0 59.9
MIL-sigmoid 64.6 63.3 66.2 65.7

Table 2: F1 score for segment-level sentiment classifi-
cation.

level), it is trained with 10 times as many ex-
amples as Seg-CNN. This suggests that, for the
non-hierarchical CNN models, review-level train-
ing may be advantageous with more training ex-
amples. In addition, Rev-CNN outperforms Rev-
LR-EMB, indicating that the fine-tuned features
extracted by the CNN are an improvement over the
pre-trained embeddings used by Rev-LR-EMB.

Rev-CNN outperforms MIL-avg and has
comparable performance to MILNET: non-
hierarchical deep learning models trained at the
review level and applied at the segment level are
strong baselines, because of their representational
power. Thus, the Rev-* model class should be
evaluated and compared with MIL-based hier-
archical models for applications where segment
labels are not available.

Interestingly, MIL-sigmoid (HSAN) consis-
tently outperforms all models, including MIL-avg,
MIL-softmax (MILNET), and the Rev-* base-
lines. This shows that:

1. the choice of aggregation function of MIL-
based classifiers heavily impacts classification
performance; and

2. MIL-based hierarchical networks can indeed
outperform non-hierarchical networks when
the appropriate aggregation function is used.

We emphasize that we use the same ENC and
CLF functions across all MIL-based models to
show that performance gains stem solely from the
choice of aggregation function. Given that HSAN
consistently outperforms MILNET in all datasets
for segment-level sentiment classification, we con-
clude that the choice of sigmoid attention for ag-
gregation is a better fit than softmax for this task.

The difference in performance between HSAN
and MILNET is especially pronounced on the *-

EDU datasets. We explain this behavior with the
statistics of Table 1: “Witness (Salient)” is higher
in *-EDU datasets compared to *-SENT datasets.
In other words, *-EDU datasets contain more seg-
ments that should be considered important than
*-SENT datasets. This implies that the attention
model needs to “attend” to more segments in the
case of *-EDU datasets: as we argued in Section 4,
this is best modeled by sigmoid attention.

Foodborne Illness Discovery: Table 3 reports
the evaluation results for both review- and
sentence-level foodborne classification.2 For more
detailed results, see the supplementary material.
Rev-LR-EMB has significantly lower F1 score
than Rev-CNN and Rev-RNN: representing a re-
view as the uniform average of the word embed-
dings is not an appropriate modeling choice for
this task, where only a few segments in each re-
view are relevant to the positive class.

MIL-sigmoid (HSAN) achieves the highest F1
score among all models for review-level classifi-
cation. MIL-avg has lower F1 score compared to
other models: as discussed in Section 2.2, in appli-
cations where the value of WR is very low (here
WR=0.25), the uniform average is not an appro-
priate aggregation function for MIL.

Applying the best classifier reported in Effland
et al. (2018) (Rev-LR-BoW) for sentence-level
classification leads to high precision but very low
recall. On the other hand, the MIL-* models out-
perform the Rev-* models in F1 score (with the
exception of MIL-avg, which has lower F1 score
than Rev-RNN): the MIL framework is appropri-
ate for this task, especially when the weighted av-
erage is used for the aggregation function. The
significant difference in recall and F1 score be-
tween different MIL-based models highlights once
again the importance of choosing the appropriate
aggregation function. MIL-sigmoid consistently
outperforms MIL-softmax in all metrics, showing
that the sigmoid attention properly encodes the hi-
erarchical structure of reviews. MIL-sigmoid also
outperforms all other models in all metrics. Also,
MIL-sigmoid’s recall is 48.6% higher than that of
Rev-LR-BoW. In other words, MIL-sigmoid de-
tects more sentences relevant to foodborne illness
than Rev-LR-BoW, which is especially desirable

2We report review-level classification results because epi-
demiologists rely on the review-level predictions to decide
whether to investigate restaurants; in turn, segment-level pre-
dictions help epidemiologists focus on the relevant portions
of positively labeled reviews.
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REV SENT
Method F1 Prec Rec F1 AUPR
Rev-LR-BoW 86.7 82.1 58.8 68.6 80.9
Rev-LR-EMB 63.3 50.0 84.3 62.8 48.9
Rev-CNN 84.8 79.3 59.4 67.9 24.7
Rev-RNN 86.7 81.0 74.5 77.6 11.3
MIL-avg 59.8 75.0 78.0 76.5 73.6
MIL-softmax 87.6 75.5 83.3 79.2 81.6
MIL-sigmoid 89.6 76.4 87.4 81.5 84.0

Table 3: Review-level (left) and sentence-level (right)
evaluation results for discovering foodborne illness.

for this application, as discussed next.

Important Segment Highlighting Fine-grained
predictions could potentially help epidemiologists
to quickly focus on the relevant portions of the re-
views and safely ignore the rest. Figure 4 shows
how the segment predictions and attention scores
predicted by HSAN —with the highest recall and
F1 score among all models that we evaluated—
could be used to highlight important sentences of
a review. We highlight sentences in red if the cor-
responding attention scores exceed a pre-defined
threshold. In this example, high attention scores
are assigned by HSAN to sentences that mention
food poisoning or symptoms related to food poi-
soning. (For more examples, see the supplemen-
tary material.) This is particularly important be-
cause reviews on Yelp and other platforms can be
long, with many irrelevant sentences surrounding
the truly important ones for the task at hand. The
fine-grained predictions produced by our model
could inform a graphical user interface in health
departments for the inspection of candidate re-
views. Such an interface would allow epidemi-
ologists to examine reviews more efficiently and,
ultimately, more effectively.

6 Conclusions and Future Work

We presented a Multiple Instance Learning-based
model for fine-grained text classification that re-
quires only review-level labels for training but
produces both review- and segment-level labels.
Our first contribution is the observation that non-
hierarchical deep networks trained at the review
level and applied at the segment level (by treat-
ing each test segment as if it were a short “re-
view”) are surprisingly strong and perform com-
parably or better than MIL-based hierarchical net-
works with a variety of aggregation functions. Our
second contribution is a new MIL aggregation

Figure 4: HSAN’s fine-grained predictions for a Yelp
review: for each sentence, HSAN provides one binary
label (Pred) and one attention score (Att). A sentence
is highlighted if its attention score is greater than 0.1.

function based on the sigmoid attention mecha-
nism, which explicitly allows multiple segments
to contribute to the review-level classification de-
cision with different weights. We experimentally
showed that the sigmoid attention is the key mod-
eling change needed for MIL-based hierarchical
networks to outperform the non-hierarchical base-
lines for segment-level sentiment classification.
Our third contribution is the application of our
weakly supervised approach to the important pub-
lic health application of foodborne illness discov-
ery in online restaurant reviews. We showed that
our MIL-based approach has a higher chance than
all previous models to identify unknown food-
borne outbreaks, and demonstrated how its fine-
grained segment annotations can be used to high-
light the segments that were considered important
for the computation of the review-level label.

In future work, we plan to consider alterna-
tive techniques for segment encoding (ENC), such
as pre-trained transformer-based language mod-
els (Devlin et al., 2019; Radford et al., 2018),
which we expect to further boost our method’s per-
formance. We also plan to quantitatively evaluate
the extent to which the fine-grained predictions of
our model help epidemiologists to efficiently ex-
amine candidate reviews and to interpret classi-
fication decisions. Indeed, choosing segments of
the review text that explain the review-level de-
cisions can help interpretability (Lei et al., 2016;
Yessenalina et al., 2010; Biran and Cotton, 2017).
Another important direction for future work is
to study if minimal supervision at the fine-grain
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level, either in the form of expert labels or ratio-
nales (Bao et al., 2018), could effectively guide the
weakly supervised models. This kind of supervi-
sion is especially desirable to satisfy prior beliefs
about the intended role of fine-grained predictions
in downstream applications. We believe that build-
ing this kind of fine-grained models is particularly
desirable when model predictions are used by hu-
mans to take concrete actions in the real world.

Acknowledgments
We thank the anonymous reviewers for their con-
structive feedback. This material is based upon
work supported by the National Science Founda-
tion under Grant No. IIS-15-63785.

References
Stuart Andrews, Ioannis Tsochantaridis, and Thomas

Hofmann. 2003. Support vector machines for
multiple-instance learning. In Advances in Neural
Information Processing Systems, pages 577–584.

Stefanos Angelidis and Mirella Lapata. 2018. Multi-
ple instance learning networks for fine-grained sen-
timent analysis. Transactions of the Association for
Computational Linguistics, 6:17–31.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In Proceedings of the 5th International
Conference on Learning Representations.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations.

Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay.
2018. Deriving machine attention from human ra-
tionales. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing.

Or Biran and Courtenay Cotton. 2017. Explanation
and justification in machine learning: A survey. In
IJCAI-17 Workshop on Explainable AI (XAI).
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Abstract

Typical datasets used for style transfer in NLP
contain aligned pairs of two opposite extremes
of a style. As each existing dataset is sourced
from a specific domain and context, most
use cases will have a sizable mismatch from
the vocabulary and sentence structures of any
dataset available. This reduces the perfor-
mance of the style transfer, and is particularly
significant for noisy, user-generated text. To
solve this problem, we show a technique to de-
rive a dataset of aligned pairs (style-agnostic
vs stylistic sentences) from an unlabeled cor-
pus by using an auxiliary dataset, allowing
for in-domain training. We test the technique
with the Yahoo Formality Dataset and 6 novel
datasets we produced, which consist of scripts
from 5 popular TV-shows (Friends, Futurama,
Seinfeld, Southpark, Stargate SG-1) and the
Slate Star Codex online forum. We gather
1080 human evaluations, which show that our
method produces a sizable change in formal-
ity while maintaining fluency and context; and
that it considerably outperforms OpenNMT’s
Seq2Seq model directly trained on the Yahoo
Formality Dataset. Additionally, we publish
the full pipeline code and our novel datasets 1.

1 Introduction

Typical datasets used for style transfer in NLP
contain aligned pairs of two opposite extremes of a
style (Hughes et al., 2012; Xu et al., 2012; Jham-
tani et al., 2017; Carlson et al., 2017; Xu, 2017;
Rao and Tetreault, 2018). Those datasets are use-
ful for training neural networks that perform style
transfer on text that is similar (both in vocabulary
and structure) to the text in the datasets. However,
as each of those datasets is sourced from a specific
domain and context, in most use cases there is not

1https:/github.com/ICEtinger/
StyleTransfer

an available dataset of parallel data with vocabu-
lary and structure similar to the one requested.

This is especially significant for style transfer
with noisy/user-generated text, where a mismatch
is common even when the training dataset is also
noisy/user-generated. We explore formality trans-
fer specifically for noisy/user-generated text. To
the best of our knowledge, the best dataset for this
is currently the Yahoo Formality Dataset (Rao and
Tetreault, 2018). However, this dataset is limited
to few domains and to the context of Yahoo an-
swers instead of other websites or in-person chat.

To overcome this problem, we propose a tech-
nique to derive a dataset of aligned pairs from an
unlabeled corpus by using an auxiliary dataset;
and we apply this technique to the task of formal-
ity transfer on noisy/user-generated conversations.

2 Related Work

Textual style transfer has been a large topic of
research in NLP. Early research directly fed la-
beled, parallel data to train generic Seq2Seq mod-
els. Jhamtani et al. (2017) employed this tech-
nique on Shakespeare and modern literature. Carl-
son et al. (2017) employed it on bible translations.

More recent methods have tackled the problem
of training models with unlabeled corpora. They
seek to obtain latent representations that would
correspond to stylistics and semantics separately,
then change the stylistic representation while
maintaining the semantic one. This can be done
by one of 3 ways (Tikhonov and Yamshchikov,
2018): employing back-translation; training a
stylistic discriminator; or embedding words or
sentences and segmenting embedding state-space
into semantic and stylistic sections. Our method
differs from those works in many aspects.

Artetxe et al. (2017) worked on unsupervised
machine translation. It differs from our objective
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because it is translation instead of style transfer.
Our work employs POS tags as a latent shared
representation of syntactic structures and style-
free semantics across sentences of different styles.
This is not possible (or much less direct) across
different languages.

Han et al. (2017) presented a Seq2Seq model
that uses two switches with tensor product to con-
trol the style transfer in the encoding and decod-
ing processes. Fu et al. (2018) proposed adver-
sarial networks for the task of textual style trans-
fer. Yang et al. (2018) presented a new technique
that uses a target domain language model as the
discriminator to improve training. Our method is
modular with respect to the main Seq2Seq neural
model, so it can more easily leverage state-of-the-
art (Merity et al., 2017) new models, e.g. most
recent versions of OpenNMT (Klein et al., 2017).

Shen et al. (2017) proposed a model that as-
sumes a shared latent content distribution across
different text corpora, and leverages refined align-
ment of latent representations to perform style
transfer. Our method does not assume such shared
latent content distribution across different corpora.
We instead leverage shared latent content distribu-
tion across different styles of a same corpus.

Zhang et al. (2018) presented a Seq2Seq model
architecture using shared and private model pa-
rameters to better train a model from multiple cor-
pora of different domains. Our method is modular
with respect to the main Seq2Seq neural model,
and is trained with a single corpus each time.

Li et al. (2018) proposed a method that uses re-
trieval of training sentences (after a deletion oper-
ation) during inference time to improve sentence
generation. Our method uses a similar inspira-
tion of selecting the “deleted” terms, but instead
of being deleted, they are replaced by a latent
shared representation of syntactic structures and
style-free semantics in the form of POS tags. Ad-
ditionally, we employ a modular Seq2Seq neural
model with the replaced representation instead of
retrieving training sentences.

Prabhumoye et al. (2018) presented a method
that uses back-translation in French to obtain a la-
tent representation of sentences with less stylis-
tic characteristics. That technique requires that
the French translation be trained on a dataset with
similar vocabulary and structure as the data on
which style transfer is applied. Our work does
not have this requirement. Additionally, that work

fixes the encoder and decoder in order to employ
the back-translation, while our work employs a
modular Seq2Seq neural model to leverage state-
of-the-art Seq2Seq neural models.

3 Technique for Dataset Generation

Consider an unlabeled corpus A and a labeled, par-
allel dataset B. We show a technique that uses B
to derive a dataset A′ of aligned pairs from A.

If B contains aligned pairs of sentences with
styles s1 and s2, then one technique to generate
A′ is to train a classifier between s1 and s2 on B,
then to use the classifier to select subsets A1 and
A2 from A following each style, i.e:

Ai = {x ∈ A|P (class(x) = si) > t}, t constant

Then, to create parallel data from {A1, A2}, use
the classifier to select the terms that have the most
weight in determining the style of sentences (e.g.:
if Logistic Regression, use term coefficients, se-
lect term with coefficients above a certain thresh-
old). Call the set of those terms T . For each sen-
tence x ∈ A1∪A2, map x with an altered sentence
x′ which is equal to x when all terms in x that are
in T are replaced by their POS tags in x. The set
of pairs {(x, x′)} = A′ is now parallel data.

POS tags are employed as a latent shared repre-
sentation of syntactic structures and style-free se-
mantics across sentences of different styles.

4 Neural Network Models

After obtaining the dataset in the format {(x, x′)}
as described in Section 3, we train a typical
Seq2Seq model to predict x from x′. Then, on
inference time, we apply the same transformation
described in Section 3 to the test set (that may have
different styles from the training set), and apply
the model on that transformed test set.

For example, consider we have a classifier of
two styles: formal and informal. We use
the classifier to produce datasets Aformal and
Ainformal from an unlabeled corpus A. From
Aformal, we produce {(x, x′)}, and use it to train
a model that predicts {x} from {x′}. Recall that
x′ is equal to x when all terms in x that are the
most characteristic of formality are replaced by
their POS tags in x. During inference time, we
want to transform a neutral or an informal sentence
y to formal. We derive a y′ from y at the same way
we did for x′, but now we replace the terms most
characteristic of informality by their POS tags. We
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Figure 1: Pipeline for generating data, training Seq2Seq models, and applying style transfer.

feed this transformed y′ to the model, and it pre-
dicts ŷ, which should be formal because the model
learned to replace POS tags by words that are for-
mal and are suited to the other words in the sen-
tence. The full pipeline is shown in Figure 1.

5 Datasets

We used multiple datasets, existing and novel.
The Yahoo Formality Dataset was obtained

from (Rao and Tetreault, 2018), and it contains
106k formal-informal pairs of sentences. Infor-
mal sentences were extracted from Yahoo An-
swers (“Entertainment & Music” and “Family &
Relationships” categories). Formal (parallel) sen-
tences were produced with mechanical turks.

The TV-Shows Datasets are the scripts of 5
popular TV-shows from the 1990’s and 2000’s
(Friends, Futurama, Seinfeld, Southpark, Stargate
SG-1), with 420k sentences in total. The datasets
are novel: we produced them by crawling a web-
site that contains scripts of TV-shows and movies
(IMS); except for Friends, obtained from (Fri).

The Slate Star Codex is a novel dataset we pro-
duced in this work. It is comprised of 3.2 mil-
lion sentences from comments in the online forum
Slate Star Codex(SSC), which contains very for-
mal language in the areas of science and philoso-
phy. It was obtained by crawling the website, and
contains posts from 2013 to 2019.

6 Experimental Setup

We applied the techniques explained in Sections 3
and 4. We used the Yahoo Formality Dataset as
labeled dataset B and either a TV-show dataset,
all TV-shows together, or the Slate Star Codex

dataset as unlabeled corpus A. A Logistic Regres-
sion model was employed as the classifier 2 , and
OpenNMT as the Seq2Seq models 3.

The hyperparameters of the Seq2Seq models
are shown in Table 1.

Hyper-parameter Value
Encoder

type LSTM
rnn hidden size 100

layers 1
Decoder

type LSTM
rnn hidden size 100

layers 1
General

word vec size 200
optimizer Adam

learning rate 1e−3

train/validation split 90/10

vocabulary size
30k for SSC, TV merged
10k for single TV-shows

Table 1: Hyperparameters.

2Scikit-learn’s model was used. Terms were stemmed
with Porter Stemming before being fed to the model, and only
terms with frequency ≥2 in the dataset were fed.

3To derive formal and informal datasets from each of our
original unlabeled corpora, we applied our logistic regression
model on each sentence in each corpus. Sentences with infor-
mality scores ≤ 0.6 were considered formal, scores ≥ 0.65
were considered informal, and others were ignored for being
neutral. Terms were replaced by POS tags in the following
manner: the N terms in each sentence with the highest abso-
lute weight (from the Log-Reg model) are replaced by POS
tags, provided they pass a certain threshold (−0.001 for for-
mal terms, and 0.2 for informal terms). N is the floor of the
number of terms in the sentence divided by 5.
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Dataset Target
formality

Avg. formality
score (1–5)

Avg. suitability
score (1–5)

Total # of
sentences

Friends
formal

informal
2.25→ 3.43 (+1.2)
3.91→ 1.63 (−2.3)

3.44→ 3.43 (−0.0)
3.18→ 3.53 (+0.4)

105k

Futurama
formal

informal
2.04→ 3.43 (+1.4)
4.41→ 1.85 (−2.6)

3.39→ 2.29 (−1.1)
3.71→ 3.00 (−0.7) 27k

Seinfeld
formal

informal
1.84→ 3.18 (+1.3)
3.62→ 1.71 (−1.9)

3.58→ 2.82 (−0.8)
4.00→ 3.41 (−0.6) 94k

Southpark
formal

informal
1.92→ 3.47 (+1.6)
3.92→ 1.59 (−2.3)

3.00→ 3.18 (+0.2)
3.69→ 3.06 (−0.6) 77k

Stargate-SG1
formal

informal
2.17→ 4.06 (+1.9)
4.59→ 1.77 (−2.8)

3.50→ 3.17 (−0.3)
3.41→ 3.30 (−0.1) 117k

All TV-Shows
formal

informal
2.38→ 4.18 (+1.8)
3.94→ 1.92 (−2.0)

3.77→ 3.76 (−0.0)
4.24→ 3.92 (−0.3) 420k

Slate Star Codex
formal

informal
3.53→ 4.40 (+0.9)
4.75→ 2.86 (−1.9)

3.67→ 3.93 (+0.3)
4.19→ 3.93 (−0.3) 3.2M

Yahoo (baseline)
formal

informal
2.45→ 2.80 (+0.4)
3.89→ 3.33 (−0.6)

3.85→ 3.05 (−0.8)
4.33→ 2.79 (−1.5) 218k

Table 2: Results of experiments on formality and sentence suitability.

Numbers and proper names were replaced by
symbols <NUMBER> and <NAME> respectively, in
order to greatly reduce data sparcity.

After splitting each corpus in formal and infor-
mal sentences (according to our logistic regres-
sion model), we randomly selected 60 sentences
from each corpus (30 formal and 30 informal) as
held-out test sets, and transformed them to oppo-
site styles. Sentences were assigned evenly split
to 3 human evaluators. To avoid bias, each sen-
tence was randomly shown either original or trans-
formed with equal probabilities (without evalua-
tors’ knowledge). Each sentence was shown ac-
companied with a context: preceding sentence in
the TV-show (or SSC post), character speaking
and TV-show name. Evaluators rated each sen-
tence formality and suitability (how fluent and ap-
propriate it is for the context) in a 1–5 scale4.

Additionally, to serve as baseline, we trained
two Seq2Seq models (formal-to-informal and

41: The sentence does not form any grammatical struc-
ture, or the evaluator cannot understand its meaning. 2: The
sentence forms segments of grammatical structures, and the
evaluator can barely understand the intended meaning. 3:
The sentence is a few words away from perfect English, and
the evaluator probably understands its meaning; or meaning
is clear, but not appropriate for the context. 4: The sentence
is in almost perfect English (usually only missing a word or
a comma, which is common in informal oral speech) and the
meaning is clear; or the English is perfect but the meaning or
words used are not perfectly appropriate for the context. 5:
The sentence is in perfect English and perfectly appropriate
for the context.

informal-to-formal) on OpenNMT directly on the
pairs of parallel sentences of the Yahoo Formality
Dataset. We used the same hyper-parameters as
the other experiments. Then we applied the model
on the All TV-Shows corpus and performed the
same human evaluation as described above, but we
doubled the number of sentences analyzed to 120.

7 Results

Results are presented in Table 2. The average
scores show the differences between the scores of
the original and transformed sentences.

The technique produced a sizable change in
formality while maintaining fluency and context.
When transforming informal sentences to formal,
the average formality score increased by ∼1.5
points (in a 5-point scale) for TV shows, and 0.9
point for SSC. In the formal-to-informal transfor-
mation, the formality score decreased by ∼2.2.
The absolute changes in formality seem to corre-
late with the formality scores of the original sen-
tences. They do not seem to correlate with the total
number of sentences in each dataset.

Average suitability scores suffered a small de-
crease for corpora with a low number of sentences.
The biggest decrease was for Futurama, whose
training datasets contained only ∼10k sentences
(after splitting the 27k total in the corpus). Other
datasets contained smaller decreases in suitability,
or even small improvements over the original sen-
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tences. The largest corpora (All TV-Shows and
SSC) maintained suitability scores approximately
unchanged (∈ [−0.3,+0.3]).

In general, all datasets showed sizable differ-
ences of formality when the formal or informal
transformation was applied, and showed small
decreases in suitability for small datasets (e.g.
10k training sentences for Futurama) and approxi-
mately no changes in suitability for larger datasets.
Note that the suitability scores for the original
sentences were not 5, because many sentences in
the conversations employed in the datasets are in
oral (“wrong”) English, had small typos, or do not
seem appropriate for the context.

The baseline (directly training the OpenNMT
model with the Yahoo Formality Dataset) only
showed small absolute changes in formality
(∼0.5) and lost a sizable amount of average suit-
ability score (−0.8 or −1.5). We suspect the main
reason for the loss of average suitability is the mis-
match of the data used to train the model with the
data on which the style transfer was applied, both
in terms of vocabulary and in structure. The main
reason for the smaller absolute change in formality
scores, we suspect, is the model being conserva-
tive on making changes when it encountered sen-
tences with many new terms. For many sentences
generated by the model, the generated sentence
was equal to the original sentence, which did not
occurred as frequently in the other models (prob-
ably because of a greater match between training
data and inference data).

On the All TV-Shows dataset, our method out-
performs the baseline by 1.4 points in absolute
formality change (both formal and informal trans-
fers), and by 0.8 and 1.2 in average suitability.

8 Conclusion

In this work we presented a technique to derive
a dataset of aligned pairs from an unlabeled cor-
pus by using an auxiliary dataset. The technique
is particularly important for noisy/user-generated
text, which often lack datasets of matching vocab-
ulary and structure. We tested the technique with
the Yahoo Formality Dataset and 7 novel datasets
we produced by web-crawling, which consists of
scripts from 5 TV-shows, all TV-shows together,
and the SSC online forum. We gathered 1080 hu-
man evaluations on the formality and suitability of
sentences, and showed that our method produced a
sizable change in formality while maintaining flu-

ency and context; and that it considerably outper-
formed OpenNMT’s Seq2Seq model trained di-
rectly on the Yahoo Formality Dataset.

A possible application of this technique in in-
dustry is to use large standard datasets as auxil-
iary to build style transformers based on specific
corpora relevant to the industry. For example, a
company wishing to change the formality of com-
ments in its website could use the Yahoo Formality
Dataset as the auxiliary dataset and use the logs
of comments in its own website as the main cor-
pus. This would enable them to create style trans-
fers that are suited to the vocabulary and structures
they use, improving style-transfer and fluency.

For future work, we plan to research different
models for selecting the words most characteris-
tic of formality instead of the logistic regression
model used, such as neural models.

We make available the full pipeline
code (ready-to-run) and our novel datasets:
https:/github.com/ICEtinger/
StyleTransfer
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Abstract

Naturally occurring paraphrase data, such as
multiple news stories about the same event, is a
useful but rare resource. This paper compares
translation-based paraphrase gathering using
human, automatic, or hybrid techniques to
monolingual paraphrasing by experts and non-
experts. We gather translations, paraphrases,
and empirical human quality assessments of
these approaches. Neural machine translation
techniques, especially when pivoting through
related languages, provide a relatively robust
source of paraphrases with diversity compara-
ble to expert human paraphrases. Surprisingly,
human translators do not reliably outperform
neural systems. The resulting data release will
not only be a useful test set, but will also allow
additional explorations in translation and para-
phrase quality assessments and relationships.

1 Introduction

Humans naturally paraphrase. These paraphrases
are often a byproduct: when we can’t recall the
exact words, we can often generate approximately
the same meaning with a different surface realiza-
tion. Recognizing and generating paraphrases are
key challenges in many tasks, including transla-
tion, information retrieval, question answering, and
semantic parsing. Large collections of sentential
paraphrase corpora could benefit such systems.1

Yet when we ask humans to generate paraphrases
of a given task, they are often a bit stuck. How
much should be changed? Annotators tend to pre-
serve the reference expression: a safe choice, as
the only truly equivalent representation is to leave
the text unchanged. Each time we replace a word
with a synonym, some shades of meaning change,
some connotations or even denotations shift.

1Expanding beyond the sentence boundary is also very im-
portant, though we do not explore cross-sentence phenomena
in this paper.

Figure 1: Generating broad-coverage paraphrases
through pivot translation.

One path around the obstacle of reference bias is
to provide a non-linguistic input, then ask humans
to describe this input in language. For instance,
crowd-sourced descriptions of videos provide a
rich source of paraphrase data that is grounded in
visual phenomena (Chen and Dolan, 2011). Such
visual grounding helps users focus on a clear and
specific activity without imparting a bias toward
particular lexical realizations. Unfortunately, these
paraphrases are limited to phenomena that can be
realized visually. Another path is to find multi-
ple news stories describing the same event (Dolan
et al., 2004), or multiple commentaries about the
same news story (Lan et al., 2017). Although this
provides a rich and growing set of paraphrases, the
language is again biased, this time toward events
commonly reported in the news.

An alternative is to provide input in a foreign lan-
guage. Nearly anything expressible in one human
language can be written in another language. When
users translate content, some variation in lexical
realization occurs. To gather monolingual para-
phrases, we can first translate a source sentence
into a variety of target languages, then translate
back into the source language, using either humans
or machines. This provides naturalistic variation in
language, centered around a common yet relatively
unconstrained starting point. Although several re-
search threads have explored this possibility (e.g.,
(Wieting and Gimpel, 2018)), we have seen few if
any comparative evaluations of the quality of this
approach.
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Our primary contribution is to evaluate various
methods of constructing paraphrase corpora, in-
cluding monolingual methods with experts and non-
experts as well as automated, semi-automated, and
manual translation-based approaches. Each para-
phrasing method is evaluated for fluency (“does
the resulting paraphrase sound not only grammati-
cal but natural?”) and adequacy (“does the para-
phrase accurately convey the original meaning
of the source?”) using human direct assessment,
inspired by effective techniques in machine trans-
lation evaluation (Federmann, 2018).

In addition, we measure the degree of change
between the original and rewritten sentence us-
ing both edit distance and BLEU (Papineni et al.,
2002). Somewhat surprisingly, fully automatic neu-
ral machine translation actually outperforms man-
ual human translation in terms of adequacy. The
semi-automatic method of post-editing neural ma-
chine translation output with human editors leads
to fluency improvements while retaining diversity
and adequacy. Although none of the translation-
based approaches outperform monolingual rewrites
in terms of adequacy or fluency, they do produce
greater diversity. Human editors, particularly non-
experts, tend toward small edits rather than substan-
tial rewrites. We conclude that round-tripping with
neural machine translation is a cheap and effective
means of gathering diverse paraphrases.

Our second contribution is a unique data release.
As a byproduct of this evaluation, we have com-
piled a data set consisting of paraphrases gathered
using monolingual rewrites and translation para-
phrases generated through human translation, neu-
ral machine translation, and human post-edited
neural machine translation. These 500 source
sentences—together with all rewrites and interme-
diate translations—comprise a rare and interesting
multilingual data set, useful for both monolingual
and translation tasks. We include all human quality
assessments for adequacy (semantic equivalence)
and fluency of paraphrases, as well as translation
adequacy assessments. Data is publicly available
at https://aka.ms/MultilingualWhispers.

2 Related Work

Translation as a means of generating paraphrases
has been explored for decades. Paraphrase cor-
pora can be extracted from multiple translations
of the same source material (Barzilay and McK-
eown, 2001). Sub-sentential paraphrases (mostly

phrasal replacements) can be gathered from these
multiple translations. Alternatively, one can create
a large body of phrasal replacements from by pivot-
ing on the phrase-tables used by phrase-based sta-
tistical machine translation (Bannard and Callison-
Burch, 2005; Ganitkevitch et al., 2013; Pavlick
et al., 2015).

Recent work has also explored using neural ma-
chine translation to generate paraphrases via pivot-
ing (Prakash et al., 2016; Mallinson et al., 2017).
One can also use neural MT systems to generate
large monolingual paraphrase corpora. Another
line of work has translated the Czech side of a
Czech-English parallel corpus into English, thus
producing 50 million words of English paraphrase
data (Wieting and Gimpel, 2018). Not only can
the system generate interesting paraphrases, but
embeddings trained on the resulting data set prove
useful in sentence similarity tasks. When added
to a paraphrase system, constraints obtained from
a semantic parser can reduce the semantic drift
encountered during rewrites (Wang et al., 2018).
Adding lexical constraints to the output can also
increase diversity (Hu et al., 2019).

Past research has also explored effective
methods for gathering paraphrases from the
crowd (Jiang et al., 2017). However, to the best of
our knowledge, no prior work has compared the
efficacy of human experts, crowd-workers, human
post-editing approaches and machine translation
systems on gathering paraphrase quality.

3 Methodology
To run a comprehensive evaluation of paraphrase
techniques, we create many paraphrases of a com-
mon data set using multiple methods, then evaluate
using human direct assessment as well as automatic
diversity measurements.

3.1 Data
Input data was sampled from two sources: Reddit
provides volumes of casual online conversations;
the Enron email corpus represents communication
in the professional world.2 Both are noisier than
usual NMT training data; traditionally, such noise
has been challenging for NMT systems (Michel
and Neubig, 2018) and should provide a lower-
bound on their performance. It would definitely be
valuable, albeit expensive, to rerun our experiments
on a cleaner data source.

2However, the Enron emails often contain conversations
about casual and personal matters.
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Tokens per segment

Segments Types Tokens median mean min max

500 2,370 9,835 19 19.67 4 46

Table 1: Key characteristics of the source sentences.

As an initial filtering step, we ran automatic
grammar and spell-checking, in order to select sen-
tences that exhibit some disfluency or clear error.
Additionally, we asked crowd workers to discard
sentences that contain any personally identifiable
information, URLs, code, XML, Markdown, and
non-English sentences. The crowd workers were
also encouraged to select noisy sentences contain-
ing slang, run-ons, contractions, and other behavior
observed in informal communications.

3.2 Paraphrase techniques
Expert human monolingual paraphrase. We
hired trained linguists (who are native speakers
of English) to provide paraphrases of the given
source sentences, targeting highest quality rewrites.
These linguists were also encouraged to fix any
misspellings, grammatical errors, or disfluencies.

Crowd-worker monolingual paraphrase. As
a less expensive and more realistic setting, we
asked English native speaking crowd workers who
passed a qualification test to perform the same task.

Human round-trip translation. For the first
set of translation-based paraphrases, we employed
human translators who translated the source text
from English into some pivot language and back
again. The translations were provided by a human
translation service, potentially using multiple dif-
ferent translators (though the exact number was not
visible to us). In our experiments we focused on
a diverse set of pivot languages, namely: Arabic,
Chinese, French, German, Japanese, and Russian.

While French and German seem like a better
choice for translation from and back into English,
due to the close proximity of English as part of the
Germanic language family and its shared vocabu-
lary with French, we hypothesize that the use of
more distant pivot languages may result in a greater
diversity of the back translation output.

We employed professional translators—native in
the chosen target language—who were instructed
to generate translations from scratch, without the
use of any online translation tools. Translation
from English into the pivot languages and back
into English were conducted in separate phases, by
different translators.

Tokens per segment

Segments Types Tokens median mean min max

14,500 7,196 285,833 19 19.72 1 68

Table 2: Key characteristics of collected paraphrases.

Post-edited round-trip translation. Second,
we created round-trip translation output based on
human post-editing of neural machine translation
output. Given the much lower post-editing cost,
we hypothesize that results contain only minimal
edits, mostly improving fluency but not necessarily
fixing problems with translation adequacy.

Neural machine translation. We kept the
NMT output used to generate post-editing-based
paraphrases, without further human modification.
Given the unsupervized nature of machine trans-
lation, we hypothesize that resulting output may
be closer to the source syntactically (and hopefully
more diverse lexically), especially those source
sentences which a human editor would consider
incomplete or low quality.

Crowd-worker monolingual paraphrase
grounded by translation. Finally, we also use
a variant of the Crowd-worker monolingual
paraphrase technique where the crowd worker is
grounded by a translation-based paraphrase output.
The crowd worker is then asked to modify the
translation-based paraphrase to make it more fluent
than the source, and as adequate.

Intuitively, one assumes that human translation
output should achieve both highest adequacy and
fluency scores, while post-editing should result in
higher adequacy than raw neural machine transla-
tion output.

Considering translation fluency scores, NMT
output should be closer to both post-editing and
human translation output, as neural MT models
usually achieve high levels of fluency (Bojar et al.,
2016; Castilho et al., 2017; Läubli et al., 2018).

We hypothesize that translation helps to increase
diversity of the resulting back translation output,
irrespective of the specific method.

3.3 Assessments

We measure four dimensions of quality:

1. Paraphrase adequacy;
2. Paraphrase relative fluency;
3. Translation adequacy;
4. Paraphrase diversity.

19



Eval mode Priming question used

ParA How accurately does candidate text B convey the original semantics of candidate text A?
Slider ranges from Not at all (left) to Perfectly (right).

ParF Which of the two candidate texts is more fluent?
Slider marks preference for Candidate A (left), no difference (middle) or preference for Candidate B (right).

NMTA How accurately does the above candidate text convey the original semantics of the source text?
Slider ranges from Not at all (left) to Perfectly (right).

Table 3: Priming questions used for human evaluation of paraphrase adequacy (ParA), paraphrase fluency (ParF ),
and translation adequacy (NMTA). Paraphrase evaluation campaigns referred to source and candidate text as
“candidate A” and “B”, respectively. Translation evaluation campaigns used “source” and “candidate text” instead.

Paraphrase adequacy For adequacy, we ask
annotators to assess semantic similarity between
source and candidate text, labeled as “candidate
A” and “B”, respectively. The annotation interface
implements a slider widget to encode perceived
similarity as a value x ∈ [0, 100]. Note that the
exact value is hidden from the human, and can
only be guessed based on the positioning of the
slider. Candidates are displayed in random order,
preventing bias.

Paraphrase fluency For fluency, we use a differ-
ent priming question, implicitly asking the human
annotators to assess fluency for candidate “B” rel-
ative to that of candidate “A”. We collect scores
x ∈ [−50, 50], with −50 encoding that candidate
“A” is much more fluent than “B”, while a value
of 50 denotes the polar opposite. Intuitively, the
middle value 0 encodes that the annotator could
not determine a meaningful difference in fluency
between both candidates. Note that this may mean
two things:

1. candidates are semantically equivalent but
similarly fluent or non-fluent; or

2. candidates have different semantics.

We observe that annotators have a tendency to fall
back to “neutral” x = 0 scoring whenever they are
confused, e.g., when semantic similarity of both
candidates is considered low.

Translation Adequacy We measure translation
adequacy using our own implementation of source-
based direct assessment. Annotators do not know
that the source text shown might be translated con-
tent, and they do not know about the actual goal of
using back-translated output for paraphrase genera-
tion. Except for the labels for source and candidate
text, the priming question is identical to the one
used for paraphrase adequacy evaluation. Notably,
we have to employ bilingual annotators to collect
these assessments. Scores for translation adequacy
again are collected as x ∈ [0, 100].

Paraphrase diversity Additionally, we measure
diversity of all paraphrases (both monolingual and
based on translation) by computing the average
number of token edits between source and can-
didate texts. To focus our attention on meaning-
ful changes as opposed to minor function word
rewrites, we normalize both source and candidate
by lower-casing and excluding any punctuation and
stop words using NLTK (Bird et al., 2009).

We adopt source-based direct assessment
(src-DA) for human evaluation of adequacy and
fluency. The original DA approach (Graham et al.,
2013, 2014) is reference-based and, thus, needs to
be adapted for use in our paraphrase assessment
and translation scoring scenarios. In both cases, we
can use the source sentence to guide annotators in
their assessment. Of course, this makes translation
evaluation more difficult, as we require bilingual
annotators. Src-DA has previously been used, e.g.,
in (Cettolo et al., 2017; Bojar et al., 2018).

Direct assessment initializes mental context for
annotators by asking a priming question. The user
interface shows two sentences:

- the source (src-DA, reference otherwise); and
- the candidate output.

Annotators read the priming question and both
sentences and then assign a score x ∈ [0, 100] to
the candidate shown. The interpretation of this
score considers the context defined by the priming
question, effectively allowing us to use the same
annotation method to collect human assessments
with respect to the different dimensions of quality
a defined above. Our priming questions are shown
above in Table 3.

3.4 Profanity handling
Some source segments from Reddit contain profan-
ities, which may have affected results reported in
this paper. While a detailed investigation of such
effects is outside the scope of this work, we want
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Method ParA ↑ ParF ↑ ParD ↑ NMTA ↑
Expert 83.20 11.80 3.48 –
HT 63.13 -7.13 5.98 88.8
NMT 64.62 -8.60 3.58 85.1
Non-Expert 87.10 9.40 1.11 –
Post-Edited NMT 67.57 -4.20 4.43 90.0
Multi-Hop NMT 42.05 -20.65 6.18 50.7

Table 4: Results by paraphrasing method. Adequacy
(ParA) and fluency (ParF ) are human assessments of
paraphrases; paraphrase diversity (ParD) is measured
by the average string-edit-distance between source and
paraphrase (higher means greater diversity); NMTA is
a human assessment of translation quality.

to highlight two potential issues which could be
introduced by profanity in the source text:

1. Profanity may have caused additional
monolingual rewrites (in an attempt to clean
the resulting paraphrase), possibly inflating
diversity scores;

2. Human translators may have performed simi-
lar cleanup, increasing the likelihood of back
translations having a lower adequacy score.

4 Results

In total, we collect 14,500 paraphrases from 29
different systems, as described below:

- Expert paraphrase;
- Non-Expert paraphrase;
- Human translation (HT), for 6 languages;
- Human Post-editing (PE), for 6 languages;
- Neural MT (NMT), for 6 languages;
- Neural “multi-hop” NMT, for 2 languages;
- Grounded Non-Expert (GNE), with grounding

from 7 translation methods.

All data collected in this work is publicly re-
leased. This includes paraphrases as well as as-
sessments of adequacy, fluency, and translation
adequacy. Human scores are based on two eval-
uation campaigns—one for adequacy, the other for
fluency—with t = 27 annotation tasks, a = 54
human annotators, r = 4 redundancy, and tpa = 2
tasks per annotator, resulting in a total of t ∗ r =
a ∗ tpa = 108 annotated tasks—equivalent to at
least 9, 504 assessments per campaign (more in
case of duplicates in the set of paraphrases to be
evaluated), based on the alternate HIT structure
with 88 : 12 candidates-vs-controls setting as de-
scribed in (Bojar et al., 2018).

Language ParA ↑ ParF ↑ ParD ↑ NMTA ↑
Arabic 58.33 -12.57 4.96 81.6
Chinese 61.57 -7.67 5.70 71.3
Chinese-Japanese 40.60 -22.30 6.42 53.9
French 71.50 -1.80 3.68 84.2
German 70.90 -2.77 3.80 87.5
Japanese 59.67 -9.33 5.38 69.5
Japanese-Chinese 43.50 -19.00 5.95 47.4
Russian 68.67 -5.73 4.47 81.4

Table 5: Results by pivot language.

Table 4 presents empirical results organized by
paraphrasing method, while Table 5 organizes by
pivot languages used. “Multi-Hop NMT” refers
to an experiment in which we created paraphrases
translating via two non-English pivot languages,
namely Chinese and Japanese. French and German
perform best as pivot languages, while Chinese-
Japanese achieves best diversity.

Table 6 shows results from our grounded para-
phrasing experiment in which we compared how
different translation methods affect monolingual
rewriting quality. Based on results in Tables 5, we
focus on French and German as our pivot languages.
We also keep Chinese-Japanese “Two-Pivot NMT”
to see how additional pivot languages may affect
resulting paraphrase diversity.

Figure 2 shows convergence of adequacy scores
for the grounded paraphrasing experiment, over
time. Figure 3 shows convergence of relative flu-
ency scores. Note how clustering reported in Ta-
ble 6 appears after a few hundred annotations only.
The clusters denote sets of systems that are not
statistically significantly different.

4.1 Error Analysis

While neural machine translation based para-
phrases achieve surprising results in terms of diver-
sity compared to paraphrases generated by human
Non-Experts, NMT does not reach the adequacy or
fluency level provided by Expert paraphrases. The
examples in Table 7 provides a flavor of the outputs
from each method and demonstrates some of the
error cases.

Partially paraphrasing entities and common ex-
pressions. NMT systems often mangle multi-
word units, rewriting parts of non-compositional
phrases that change meaning (“Material Design”
→ “hardware design”) or decrease fluency.

Informal language. Inadequate or disfluent para-
phrases are also caused by typos, slang and
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Labelling Time [seconds]

Method ParA ↑ ParF ↑ ParD ↑ BLEU ↓ Min P25 Median Mean P75 Max StdDev

Non-Expert 91.7 13.3 1.106 78.8 7.47 21.52 30.84 40.35 48.07 120.0 28.34

GNE-PE French 88.2 11.9 2.222 59.9 4.73 10.26 18.64 33.16 43.39 120.0 32.30
Expert 88.2 14.6 3.482 39.0 – – – – – – –
GNE-PE German 88.1 11.7 2.214 60.5 4.50 9.58 15.05 35.36 52.05 120.0 35.91
GNE-NMT German 87.9 10.5 2.068 62.2 2.28 10.72 19.74 30.98 39.62 120.0 29.73

GNE-HT French 85.4 12.4 3.160 47.3 4.50 17.07 39.90 52.21 81.65 120.0 39.37
GNE-NMT French 83.1 5.1 2.374 54.9 1.75 2.80 7.29 22.48 28.64 120.0 30.92
GNE-HT German 82.8 9.9 3.914 36.8 6.02 14.48 41.47 50.53 76.67 120.0 38.66

GNE-NMT Chinese-Japanese 74.3 4.3 4.608 32.8 3.84 24.08 45.83 54.11 79.17 120.0 35.45

Table 6: Results for translation-based rewriting, ordered by decreasing average adequacy (ParA). Horizontal lines
between methods denote significance cluster boundaries. Edits measures average number of edits needed to create
rewrite (higher means greater diversity). BLEU score measures overlap with original sentence (lower means greater
diversity). Labelling time measured in seconds, with a maximum timeout set to two minutes. P25 and P75 refer to
the 25th and 75th percentiles of observed labelling time, respectively; StdDev to standard deviation.

other informal patterns. As prior work has men-
tioned (Michel and Neubig, 2018), NMT models of-
ten corrupt these inputs, leading to bad paraphrases.

Negation handling. One classic struggle for ma-
chine translation approaches is negation – losing
or adding negation is a common error type. Para-
phrases generated through NMT are no exception.

4.2 Key findings

Given our experimental results, we formulate the
following empirical conclusions:

“Monolingual is better” Human rewriting
achieves higher adequacy and fluency scores com-
pared to all tested translation methods. This comes
at a relatively high cost, though.

“Non-experts more adequate...” Human experts
appear worse than non-experts in adequacy. We
have empirically identified a way to either save or
produce more paraphrases for the same budget.

“...but less diverse” Non-expert paraphrases are
not as diverse as those created by experts. Expert
rewrites also fix source text issues such as profanity.

“MT is not bad” Neural machine translation per-
forms surprisingly well, creating more diverse out-
put than human experts.

“Post-editing is better” Paraphrase adequacy,
paraphrase fluency and translation adequacy benefit
from human post-editing. In our experiments, this
method achieved best performance of all tested
translation methods.

“Human translations are expensive and less ade-
quate” While humans achieve high translation ade-
quacy scores and good paraphrase diversity, the cor-
responding paraphrase adequacy values are worst

among all tested methods (except two-pivot NMT,
which solves a harder problem).

“Related languages are better...” Generating
paraphrases by translation works better when pivot
languages are closely related.

“...but less diverse” Unrelated pivot languages
create more diverse paraphrases.

“Use neural MT for cheap, large data!” Seems
good enough to work for constrained budgets, can
be improved with post-editing as needed. Specif-
ically, we have empirically proven that you can
increase paraphrase diversity by using NMT pivot
translation, combined with non-expert rewriting.

5 Conclusions

Somewhat surprisingly, strong neural machine
translation is more effective at paraphrase genera-
tion than humans: it is cheap, adequate, and diverse.
In contrast, crowd workers required more money,
producing more adequate translations but with triv-
ial edits. Although neural MT also produced less
fluent outputs, post-editing could improve the qual-
ity with little additional expenditure. Expert lin-
guists produced the highest quality paraphrases,
but at substantially greater cost. Translation-based
paraphrases are more diverse.

One limitation of this survey is the input data
selection: generally all input sentences contained
some kind of error. This may benefit some tech-
niques – humans in particular can navigate these
errors easily. Also, the casual data used often in-
cluded profanity and idiomatic expressions. Trans-
lators often rewrote profane expressions, perhaps
decreasing adequacy. Future work on different data
sets could further quantify such data effects.
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Method Text

ORIGINAL Rick, It was really great visiting with you the other day.
EXPERT Rick, it was really great visiting with you the other day.

NMT CHINESE-JAPANESE Rick, the visit with you a few days ago was great.

PE GERMAN Rick, it was really great visiting with you the other day.

PE FRENCH Rick, It was really fantastic visiting with you the other day.
HT FRENCH Rick, it was really good to visit you the other day.

HT GERMAN Rick, it was really great to visit you recently.

NON-EXPERT Rick, it was really great visiting with you the other day.
NMT FRENCH Rick, it was really great to visit with you the other day.
NMT GERMAN Rick, It was really great to visit with you the other day.

ORIGINAL Yeah exactly, btw how did u manage to update ur nvidia driver ?
EXPERT Yes, exactly. How did you update your Nvidia driver?

NMT CHINESE-JAPANESE Yes, exactly. By the way, how were you able to update your NVIDIA drivers?

PE GERMAN Yes, exactly - how did you update your Nvidia driver?

PE FRENCH Yes exactly, by the way how did you manage to update your Nvidia driver ?

HT FRENCH Yeah, exactly, by the way, how did you manage to update your NVIDIA driver?

HT GERMAN Yes exactly, moreover, how did you manage to update your NVIDIA driver?

NON-EXPERT Yes, exactly. By the way, did you manage to update your Nvidia driver?

NMT FRENCH Yes exactly, BTW How did you manage to update your NVIDIA driver?

NMT GERMAN Yes, exactly, btw how did you manage to update your nvidia driver?

ORIGINAL Is it actually more benefitial/safe to do this many exercises a day?
EXPERT Is it actually more beneficial and safe to do so many exercises in a day?

NMT CHINESE-JAPANESE Tell me if daily practice is good?

PE GERMAN Is it actually more safe and important to do this many exercises a day?
PE FRENCH Is it actually more benefitial/safe to do as many exercises a day?
HT FRENCH Is it really more beneficial/safe to do so much exercise per day?

HT GERMAN Is it really more beneficial / safer to do so many exercises per day?

NON-EXPERT Is it actually more beneficial and safe to do this many exercises a day?
NMT FRENCH Is it actually more benefitial/safe to do this many exercises per day?

NMT GERMAN Is it actually beneditialat/sure to do these many exercises a day?

ORIGINAL The cold and rain couldn’t effect my enjoyment.
EXPERT The cold and rain could not affect my enjoyment.
NMT CHINESE-JAPANESE Cold and rain can not detract from my enjoyment.
PE GERMAN The cold and rain will not affect my enjoyment.
PE FRENCH The cold and rain could not effect my enjoyment.
HT FRENCH Cold and rain dont satisfy me.

HT GERMAN The cold and rain couldnt spoil my enjoyment.

NON-EXPERT The cold and the rain couldn’t affect my happiness.

NMT FRENCH The cold and the rain could not affect my pleasure.

NMT GERMAN The cold and rain couldn’t affect my enjoyment.

Table 7: Example paraphrases generated by several monolingual and bilingual methods. Changed regions are
highlighted – insertions are presented in green , and deleted phrases from the original sentence are highlighted in

red and strikethrough . Note how Non-Expert translations tend to be the most conservative, except when clearly
informal language is rewritten or corrected.
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Figure 2: Convergence of adequacy scores over time. Despite the lack of an absolute standard of system assessment,
a diverse set of judges rapidly converge to a consistent ranking of system quality. Within a 100 to 200 judgements,
the rating has basically stabilized, though we continue to assess the whole set for greatest stability and confidence
in ranking. We note, however, that readers should take caution in an absolute reading of these ratings – instead, it
should reflect a relative quality assessment among the approaches under consideration.

Figure 3: Convergence of relative fluency scores over time. These assessments reflect the same trends as adequacy
– raters rapidly converge on a relative assessment of distinct systems.
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Ondřej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, and Christof Monz. 2018. Find-
ings of the 2018 Conference on Machine Transla-
tion (WMT18). In Proceedings of the Third Con-
ference on Machine Translation, Volume 2: Shared
Task Papers, pages 272–307, Belgium, Brussels. As-
sociation for Computational Linguistics.

Sheila Castilho, Joss Moorkens, Federico Gaspari,
Iacer Calixto, John Tinsley, and Andy Way. 2017.
Is Neural Machine Translation the New State of the
Art? The Prague Bulletin of Mathematical Linguis-
tics, 108:109–120.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Jan Niehues, Sebastian Stüker, Katsuhito Sudoh,
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Abstract
Grammar error correction (GEC) systems have
become ubiquitous in a variety of software
applications, and have started to approach
human-level performance for some datasets.
However, very little is known about how to
efficiently personalize these systems to the
user’s characteristics, such as their proficiency
level and first language, or to emerging do-
mains of text. We present the first results on
adapting a general purpose neural GEC system
to both the proficiency level and the first lan-
guage of a writer, using only a few thousand
annotated sentences. Our study is the broad-
est of its kind, covering five proficiency levels
and twelve different languages, and compar-
ing three different adaptation scenarios: adapt-
ing to the proficiency level only, to the first
language only, or to both aspects simultane-
ously. We show that tailoring to both scenarios
achieves the largest performance improvement
(3.6 F0.5) relative to a strong baseline.

1 Introduction

Guides for English teachers have extensively doc-
umented how grammatical errors made by learn-
ers are influenced by their native language (L1).
Swan and Smith (2001) attribute some of the er-
rors to “transfer” or “interference” between lan-
guages. For example, German native speakers are
more likely to incorrectly use a definite article with
general purpose nouns or omit the indefinite article
when defining people’s professions. Other errors
are attributed to the absence of a certain linguistic
feature in the native language. For example, Chi-
nese and Russian speakers make more errors in-
volving articles, since these languages do not have
articles.

A few grammatical error correction (GEC) sys-
tems have incorporated knowledge about L1. Ro-

∗This research was conducted while the author was at
Grammarly.

zovskaya and Roth (2011) use a different prior for
each of five L1s to adapt a Naive Bayes classi-
fier for preposition correction. Rozovskaya et al.
(2017) expand on this work to eleven L1s and
three error types. Mizumoto et al. (2011) showed
for the first time that a statistical machine transla-
tion (SMT) system applied to GEC performs bet-
ter when the training and test data have the same
L1. Chollampatt et al. (2016) extend this work by
adapting a neural language model to three differ-
ent L1s and use it as a feature in SMT-based GEC
system. However, we are not aware of prior work
addressing the impact of both proficiency level and
native language on the performance of GEC sys-
tems. Furthermore, neural GEC systems, which
have become state-of-the-art (Gehring et al., 2017;
Junczys-Dowmunt et al., 2018; Grundkiewicz and
Junczys-Dowmunt, 2018), are general purpose
and domain agnostic.

We believe the future of GEC lies in providing
users with feedback that is personalized to their
proficiency level and native language (L1). In this
work, we present the first results on adapting a
general purpose neural GEC system for English to
both of these characteristics by using fine-tuning,
a transfer learning method for neural networks,
which has been extensively explored for domain
adaptation of machine translation systems (Lu-
ong and Manning, 2015; Freitag and Al-Onaizan,
2016; Chu et al., 2017; Miceli Barone et al., 2017;
Thompson et al., 2018). We show that a model
adapted to both L1 and proficiency level outper-
forms models adapted to only one of these charac-
teristics. Our contributions also include the first
results on adapting GEC systems to proficiency
levels and the broadest study of adapting GEC to
L1 which includes twelve different languages.
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Figure 1: Corpus Distributions for CEFR Level, L1 and L1-Level.

2 Personalizing GEC

Data In this work, we adapt a general purpose
neural GEC system, initially trained on two mil-
lion sentences written by both native and non-
native speakers and covering a variety of topics
and styles. All the sentences have been corrected
for grammatical errors by professional editors.1

Adaptation of the model to proficiency level
and L1 requires a corpus annotated with these
features. We use the Cambridge Learner Corpus
(CLC) (Nicholls, 2003) comprising examination
essays written by English learners with six profi-
ciency levels2 and more than 100 different native
languages. Each essay is corrected by one anno-
tator, who also identifies the minimal error spans
and labels them using about 80 error types. From
this annotated corpus we extract a parallel corpus
comprising of source sentences with grammatical
errors and the corresponding corrected target sen-
tences.

We do note the proprietary nature of the CLC
which makes reproducibility difficult, though it
has been used in prior research, such as Rei and
Yannakoudakis (2016). It was necessary for this
study as the other GEC corpora available are not
annotated for both L1 and level. The Lang-
8 Learner Corpora (Mizumoto et al., 2011) also
provides information about L1, but it has no in-
formation about proficiency levels. The FCE
dataset (Yannakoudakis et al., 2011) is a subset
of the CLC, however, it only covers one profi-
ciency level and there are not enough sentences
for each L1 for our experiments. Previous work
on adapting GEC classifiers to L1 (Rozovskaya
et al., 2017) used the FCE corpus, and thus did not

1To maintain anonymity, we do not include more details.
2The CLC uses levels defined by the Common European

Framework of Reference for Languages: A1 - Beginner, A2 -
Elementary, B1 - Intermediate, B2 - Upper intermediate, C1
- Advanced, C2 - Proficiency.

address adaptation to different proficiency levels.
One of our future goals is to create a public corpus
for this type of work.

Experimental Setup Our baseline neural GEC
system is an RNN-based encoder-decoder neu-
ral network with attention and LSTM units (Bah-
danau et al., 2015). The system takes as input
an English sentence which may contain gram-
matical errors and decodes the corrected sen-
tence. We train the system on the parallel cor-
pus extracted from the CLC with the OpenNMT-
py toolkit (Klein et al., 2018) using the hyper-
parameters listed in the Appendix. To increase the
coverage of the neural network’s vocabulary, with-
out hurting efficiency, we break source and target
words into sub-word units. The segmentation into
sub-word units is learned from unlabeled data us-
ing the Byte Pair Encoding (BPE) algorithm (Sen-
nrich et al., 2016). The vocabulary, consisting of
20,000 BPE sub-units, is shared between the en-
coder and decoder.3 We truncate sentences longer
than 60 BPE sub-units and train the baseline sys-
tem with early stopping on a development set sam-
pled from the base dataset.4

To train and evaluate the adapted models, we
extract subsets of sentences from the CLC that
have been written by learners having a particular
Level, L1, or L1-Level combination. We consider
all subsets having at least 11,000 sentences, such
that we can allocate 8,000 sentences for training,
1,000 for tuning and 2,000 for testing. We com-
pare adapted models trained and evaluated on the
same subset of the data. For example, we adapt
a model using the Chinese training data and then
evaluate it on the Chinese test set.

Since our base dataset and CLC are different
domains, we wanted to make sure that improve-

3Although the source and target vocabularies are the
same, the embeddings are not tied.

4Performance did not improve after 15 epochs.
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ments by fine-tuning by Level or L1 were not
due to simply being in-domain with the test data,
which is also from the CLC. To control for this, we
construct another baseline system (“Random”) by
adapting the general purpose GEC system to a ran-
dom sample of learner data drawn from the CLC.
In Figure 1 we show the distribution of Level, L1
and L1-Level sentences in a random CLC sam-
ple, for the subsets having at least 100 sentences.
B1 is the most frequent level, while A2, the low-
est proficiency level included in this study, is half
as frequent in the random sample. The L1 dis-
tribution is dominated by Spanish, with Chinese
second with half as many sentences. Among the
L1-Level subsets, Spanish-B2 is the most frequent
with Spanish-A2 covering half as many sentences.

Fine-tuning We build adapted GEC models us-
ing fine-tuning, a transfer learning method for neu-
ral networks. We continue training the parameters
of the general purpose model on the “in-domain”
subset of the data covering a particular Level, L1,
or L1-Level. Thompson et al. (2018) showed that
adapting only a single component of the encoder-
decoder network is almost as effective as adapting
the entire set of parameters. In this work, we fine-
tune the parameters of the source embeddings and
encoder, while keeping the other parameters fixed.

To avoid quickly over-fitting to the smaller
“in-domain” training data, we reduce the batch
size (Thompson et al., 2018) and continue us-
ing the dropout regularization (Miceli Barone
et al., 2017). We apply dropout to all the lay-
ers and to the source words, as well as varia-
tional dropout (Gal and Ghahramani, 2016) on
each step, all with probability 0.1. We also re-
duce the learning rate by four times and use the
start decay at option which halves the learn-
ing rate after each epoch. Consequently, the up-
dates become small after a few epochs. To en-
able the comparison between different adaptation
scenarios, all fine-tuned models are trained for 10
epochs on 8,000 sentences of “in-domain” data.

3 Results

We report the results for the three adaptation sce-
narios: adapting to Level only, adapting to L1
only, and adapting to both L1 and Level. We sum-
marize the results by showing the average M2 F0.5

score (Dahlmeier and Ng, 2012) across all the test
sets included in the respective scenario.

We first note that the strong baseline (“Ran-
dom”), which is a model adapted to a random sam-
ple of CLC , achieves improvements between 11 to
13 F0.5 points on average on all scenarios. While
not the focus of the paper, this large improvement
shows the performance gains by simply adapting
to a new domain (in this case CLC data). Second,
we note that the models adapted only by Level or
by L1 are on average better than the “Random”
model by 2.1 and 2.3 F0.5 points respectively. Fi-
nally, the models adapted to both Level and L1
outperform all others, beating the “Random” base-
line on average by 3.6 F0.5 points.

On all adaptation scenarios we report the per-
formance of the single best model released by
Junczys-Dowmunt et al. (2018). Their model,
which we call JD single, was trained on English
learner data of comparable size to our base dataset
and optimized using the CoNLL14 training and
test data.

Adaptation by Proficiency Level We adapt
GEC models to five of the CEFR proficiency lev-
els: A2, B1, B2, C1, C2. The results in Ta-
ble 1 show that performance improves for all lev-
els compared to the “Random” baseline. The
largest improvement, 5.2 F0.5 points, is achieved
for A2, the lowest proficiency level. We attribute
the large improvement to this level having a higher
error rate, a lower lexical diversity and being less
represented in the random sample on which the
baseline is trained on. In contrast, for the B1 and
B2 levels, the most frequent in the random sample,
improvements are more modest: 0.7 and 0.2 F0.5

points respectively. Our adapted models are better
than the JD single model on all levels, and with a
large margin on the A2 and C1 levels.

Adapt A2 B1 B2 C1 C2 Avg.
No 30.4 34.9 33.1 32.5 33.0 32.8
Rand. 48.4 47.9 42.5 41.4 39.2 43.8
Level 53.6 48.6 42.7 43.3 41.1 45.9

JD single 44.1 47.1 41.7 37.8 35.0 44.1

Table 1: Adaptation to Proficiency Level in F0.5

Adaptation by L1 We adapt GEC models to
twelve L1s: Arabic, Chinese, French, German,
Greek, Italian, Polish, Portuguese, Russian, Span-
ish, Swiss-German and Turkish. The results in
Table 2 (top) show that all L1-adapted models
are better than the baseline, with improvements
ranging from 1.2 F0.5 for Chinese and French, up
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Adapt AR CN FR DE GR IT PL PT RU ES CH TR Avg
No 37.5 36.2 32.7 31.4 32.7 29.3 36.0 31.7 35.8 32.1 31.1 35.4 33.5
Random 46.3 45.0 44.9 44.7 46.4 44.9 46.2 45.2 45.3 47.6 44.2 47.0 45.6
L1 48.3 46.2 46.1 47.1 49.0 46.8 48.4 47.6 47.8 49.8 47.1 50.6 47.9

JD single 47.0 44.7 44.2 41.4 44.1 40.7 46.0 44.6 43.7 44.8 40.7 47.5 44.1

Adapt CN-B2 CN-C1 FR-B1 DE-B1 IT-B1 PT-B1 ES-A2 ES-B1 ES-B2 Avg.
No 36.1 32.5 31.8 31.2 28.1 31.4 28.9 31.9 33.7 31.8
Random 42.7 39.1 45.3 46.1 43.5 45.2 50.2 46.4 44.1 44.7
Level 43.4 41.0 46.5 46.9 45.3 46.1 56.6 47.5 43.7 46.3
L1 44.1 40.9 46.5 48.1 46.5 46.2 53.8 47.6 44.4 46.5
L1 & Level 45.5 43.1 48.1 50.2 47.3 47.9 58.2 48.8 45.6 48.3

JD single 43.0 35.8 46.9 43.8 41.6 46.7 43.4 45.0 41.0 43.0

Table 2: Top: Adaptation to L1 Only. Bottom: Adaptation to Level and L1. Eval metric: F0.5

to 3.6 F0.5 for Turkish. For the languages that
are less frequent in the random sample of CLC
(Greek, Turkish, Arabic, Polish and Russian) we
see consistent improvements of over 2 F0.5 points.
Our adapted models are better than the JD single
model on all L1s, and with a margin larger than
5 F0.5 points on German, Swiss-German, Italian,
Greek and Spanish.

Adaptation by L1 and Proficiency Level Fi-
nally, we adapt GEC models to the following
nine L1 – Level subsets: Chinese-B2, Chinese-C1,
French-B1, German-B1, Italian-B1, Portuguese-
B1, Spanish-A2, Spanish-B1 and Spanish-B2. We
include these subsets in our study because they
meet the requirement of having at least 8,000 sen-
tences for training. All the models adapted to both
Level and L1 outperform the models adapted to
only one of these features, as shown in Table 2
(bottom). Focusing on the two levels for Chinese
native speakers, we see the model adapted to C1
achieves a larger improvement over the baseline,
4.1 F0.5 points, compared to 2.7 F0.5 points for the
B2 level. Again, this is explained by the lower fre-
quency of the C1 level in the random sample of
CLC, which is also reflected by the lowest F0.5

score for the baseline model. Similarly, among
the models adapted to different levels of Spanish
native speakers, the one adapted to Spanish-A2
achieves the largest gains of 8 F0.5 points. The
Spanish-A2 testset has the highest number of er-
rors per 100 words among all the L1-Level test-
sets, as shown in Table 1 in the Appendix. Fur-
thermore, the A2 level is only half as frequent as
the B1 level in the random sample of CLC. Finally,
our adapted models are better than the JD single
model on all L1–Level subsets, with a margin of 5

F0.5 points on average.

Adapted P R F0.5
Random 61.9 35.6 54.0
CN-C1 61.1 37.0 54.1
CN-B2 62.4 37.5 55.1
+ spellcheck 63.6 40.3 57.0

JD single 59.1 40.4 54.1
JD ensemble 63.1 42.6 57.5

Table 3: Results on the CoNLL14 testsets for Chinese
models.

CoNLL14 Evaluation We compare our adapted
models on the CoNLL14 testset (Ng et al., 2014)
in Table 3. The model adapted to Chinese-B2
improves the most over the baseline, achieving
55.1 F0.5. This result aligns with how the test
set was constructed: it consists of essays writ-
ten by university students, mostly Chinese na-
tive speakers. When we pre-process the eval-
uation set before decoding with a commercial
spellchecker5, our adapted model scores 57.0
which places it near other leading models, trained
on a similar amount of data, such as Chollam-
patt and Ng (2018) (56.52) and Junczys-Dowmunt
et al. (2018)6 (57.53) even though we do not use
the CoNLL14 in-domain training data. We note
that the most recent state-of-the-art models (Zhao
et al., 2019; Grundkiewicz et al., 2019), are trained
on up to one hundred million additional synthetic
parallel sentences, while we adapt models with
only eight thousand parallel sentences.

5Details removed for anonymity.
6We call their ensemble of four models with language

model re-scoring JD ensemble and their single best model
without language model re-scoring JD single
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Adapt Det Prep Verb Tense NNum Noun Pron
CN-C1 3.53 5.90 2.99 1.77 8.28 8.02 22.78
FR-B1 2.34 1.99 12.54 5.16 9.16 3.48 1.13
DE-B1 8.85 1.77 2.04 2.37 3.86 7.18 22.75
IT-B1 2.37 5.32 12.48 6.74 4.40 3.29 8.99
ES-A2 6.06 12.52 7.51 8.54 8.73 12.39 10.57

Table 4: L1-Level breakdown by error type in relative improvements in F0.5 over the “Random” baseline.

Error-type Analysis We conclude our study by
reporting improvements on the most frequent error
types, excluding punctuation, spelling and orthog-
raphy errors. We identify the error types in each
evaluation set with Errant, a rule-based classi-
fier (Bryant et al., 2017). Table 4 shows the results
for the systems adapted to both L1 and Level that
improved the most in overall F0.5. The adapted
systems consistently outperform the “Random”
baseline on most error types. For Chinese-C1, the
adapted model achieves the largest gains on pro-
noun (Pron) and noun number agreement errors
(NNum). The Spanish-A2 adapted model achieves
notable gains on preposition (Prep), noun and pro-
noun errors. Both the French-B1 and Italian-B1
adapted models gain the most on verb errors. For
German-B1, the adapted model improves the most
on pronoun (Pron) and determiner (Det) errors.
The large improvement of 22.75 F0.5 points for
the pronoun category is in part an artefact of the
small error counts. The adapted model corrects
35 pronouns (P=67.3) while the baseline corrects
only 15 pronouns (P=46.9). We leave an in depth
analysis by error type to future work.

Below, we give an example of a confused aux-
iliary verb that the French-B1 adapted model cor-
rects. The verb phrase corresponding to “go shop-
ping” in French is “faire des achats”, where the
verb “faire” would translate to “make/do”.

Orig He told me that celebrity can be bad
because he can’t do shopping nor-
mally.

Rand He told me that the celebrity can be
bad because he can’t do shopping
normally.

FR-B1 He told me that celebrity can be bad
because he can’t go shopping nor-
mally.

Ref He told me that celebrity can be bad
because he can’t go shopping nor-
mally.

4 Conclusions

We present the first results on adapting a neural
GEC system to proficiency level and L1 of lan-
guage learners. This is the broadest study of its
kind, covering five proficiency levels and twelve
different languages. While models adapted to ei-
ther proficiency level or L1 are on average better
than the baseline by over 2 F0.5 points and the
largest improvement (3.6 F0.5) is achieved when
adapting to both characteristics simultaneously.

We envision building a single model that com-
bines knowledge across L1s and proficiency lev-
els using a mixture-of-experts approach. Adapted
models could also be improved by using the mixed
fine tuning approach which uses a mix of in-
domain and out-of-domain data (Chu et al., 2017).
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Abstract

In this paper, we investigate the modeling
power of contextualized embeddings from pre-
trained language models, e.g. BERT, on the
E2E-ABSA task. Specifically, we build a
series of simple yet insightful neural base-
lines to deal with E2E-ABSA. The experimen-
tal results show that even with a simple lin-
ear classification layer, our BERT-based archi-
tecture can outperform state-of-the-art works.
Besides, we also standardize the comparative
study by consistently utilizing a hold-out de-
velopment dataset for model selection, which
is largely ignored by previous works. There-
fore, our work can serve as a BERT-based
benchmark for E2E-ABSA.1

1 Introduction

Aspect-based sentiment analysis (ABSA) is to dis-
cover the users’ sentiment or opinion towards an
aspect, usually in the form of explicitly men-
tioned aspect terms (Mitchell et al., 2013; Zhang
et al., 2015) or implicit aspect categories (Wang
et al., 2016), from user-generated natural language
texts (Liu, 2012). The most popular ABSA bench-
mark datasets are from SemEval ABSA chal-
lenges (Pontiki et al., 2014, 2015, 2016) where a
few thousand review sentences with gold standard
aspect sentiment annotations are provided.

Table 1 summarizes three existing research
problems related to ABSA. The first one is the
original ABSA, aiming at predicting the senti-
ment polarity of the sentence towards the given
aspect. Compared to this classification problem,
the second one and the third one, namely, Aspect-
oriented Opinion Words Extraction (AOWE) (Fan

∗The work described in this paper is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14204418).

1Our code is open-source and available at: https://
github.com/lixin4ever/BERT-E2E-ABSA

et al., 2019) and End-to-End Aspect-based Sen-
timent Analysis (E2E-ABSA) (Ma et al., 2018a;
Schmitt et al., 2018; Li et al., 2019a; Li and Lu,
2017, 2019), are related to a sequence tagging
problem. Precisely, the goal of AOWE is to ex-
tract the aspect-specific opinion words from the
sentence given the aspect. The goal of E2E-ABSA
is to jointly detect aspect terms/categories and the
corresponding aspect sentiments.

Many neural models composed of a task-
agnostic pre-trained word embedding layer and
task-specific neural architecture have been pro-
posed for the original ABSA task (i.e. the aspect-
level sentiment classification) (Tang et al., 2016;
Wang et al., 2016; Chen et al., 2017; Liu and
Zhang, 2017; Ma et al., 2017, 2018b; Majumder
et al., 2018; Li et al., 2018; He et al., 2018;
Xue and Li, 2018; Wang et al., 2018; Fan et al.,
2018; Huang and Carley, 2018; Lei et al., 2019;
Li et al., 2019b)2, but the improvement of these
models measured by the accuracy or F1 score
has reached a bottleneck. One reason is that the
task-agnostic embedding layer, usually a linear
layer initialized with Word2Vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014), only
provides context-independent word-level features,
which is insufficient for capturing the complex se-
mantic dependencies in the sentence. Meanwhile,
the size of existing datasets is too small to train
sophisticated task-specific architectures. Thus,
introducing a context-aware word embedding3

layer pre-trained on large-scale datasets with deep
LSTM (McCann et al., 2017; Peters et al., 2018;
Howard and Ruder, 2018) or Transformer (Rad-
ford et al., 2018, 2019; Devlin et al., 2019; Lample

2Due to the limited space, we can not list all of the existing
works here, please refer to the survey (Zhou et al., 2019) for
more related papers.

3In this paper, we generalize the concept of “word em-
bedding” as a mapping between the word and the low-
dimensional word representations.
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Sentence:
<Great> [food]P but the
[
::::::
service]N is <

:::::::::::
dreadful>.

Settings Input Output
1. ABSA sentence, aspect aspect sentiment
2. AOWE sentence, aspect opinion words
3. E2E-ABSA sentence aspect, aspect sentiment

Table 1: Different problem settings in ABSA. Gold
standard aspects and opinions are wrapped in [] and
<> respectively. The subscripts N and P refer to aspect
sentiment. Underline

:
* or * indicates the association

between the aspect and the opinion.

and Conneau, 2019; Yang et al., 2019; Dong et al.,
2019) for fine-tuning a lightweight task-specific
network using the labeled data has good potential
for further enhancing the performance.

Xu et al. (2019); Sun et al. (2019); Song et al.
(2019); Yu and Jiang (2019); Rietzler et al. (2019);
Huang and Carley (2019) have conducted some
initial attempts to couple the deep contextualized
word embedding layer with downstream neural
models for the original ABSA task and establish
the new state-of-the-art results. It encourages us
to explore the potential of using such contextual-
ized embeddings to the more difficult but practi-
cal task, i.e. E2E-ABSA (the third setting in Ta-
ble 1).4 Note that we are not aiming at developing
a task-specific architecture, instead, our focus is
to examine the potential of contextualized embed-
ding for E2E-ABSA, coupled with various simple
layers for prediction of E2E-ABSA labels.5

In this paper, we investigate the modeling power
of BERT (Devlin et al., 2019), one of the most
popular pre-trained language model armed with
Transformer (Vaswani et al., 2017), on the task
of E2E-ABSA. Concretely, inspired by the inves-
tigation of E2E-ABSA in Li et al. (2019a), which
predicts aspect boundaries as well as aspect sen-
timents using a single sequence tagger, we build
a series of simple yet insightful neural baselines
for the sequence labeling problem and fine-tune
the task-specific components with BERT or deem
BERT as feature extractor. Besides, we standard-
ize the comparative study by consistently utiliz-
ing the hold-out development dataset for model
selection, which is ignored in most of the existing

4Both of ABSA and AOWE assume that the aspects in a
sentence are given. Such setting makes them less practical
in real-world scenarios since manual annotation of the fine-
grained aspect mentions/categories is quite expensive.

5Hu et al. (2019) introduce BERT to handle the E2E-
ABSA problem but their focus is to design a task-specific
architecture rather than exploring the potential of BERT.
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Figure 1: Overview of the designed model.

ABSA works (Tay et al., 2018).

2 Model

In this paper, we focus on the aspect term-
level End-to-End Aspect-Based Sentiment Analy-
sis (E2E-ABSA) problem setting. This task can
be formulated as a sequence labeling problem.
The overall architecture of our model is depicted
in Figure 1. Given the input token sequence
x = {x1, · · · , xT } of length T , we firstly em-
ploy BERT component with L transformer lay-
ers to calculate the corresponding contextualized
representations HL = {hL1 , · · · , hLT } ∈ RT×dimh

for the input tokens where dimh denotes the di-
mension of the representation vector. Then, the
contextualized representations are fed to the task-
specific layers to predict the tag sequence y =
{y1, · · · , yT }. The possible values of the tag yt
are B-{POS,NEG,NEU}, I-{POS,NEG,NEU},
E-{POS,NEG,NEU}, S-{POS,NEG,NEU} or O,
denoting the beginning of aspect, inside of aspect,
end of aspect, single-word aspect, with positive,
negative or neutral sentiment respectively, as well
as outside of aspect.

2.1 BERT as Embedding Layer

Compared to the traditional Word2Vec- or GloVe-
based embedding layer which only provides a sin-
gle context-independent representation for each
token, the BERT embedding layer takes the sen-
tence as input and calculates the token-level rep-
resentations using the information from the entire
sentence. First of all, we pack the input features
as H0 = {e1, · · · , eT }, where et (t ∈ [1, T ]) is
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the combination of the token embedding, position
embedding and segment embedding correspond-
ing to the input token xt. Then L transformer
layers are introduced to refine the token-level fea-
tures layer by layer. Specifically, the representa-
tions H l = {hl1, · · · , hlT } at the l-th (l ∈ [1, L])
layer are calculated below:

H l = Transformerl(H l−1) (1)

We regard HL as the contextualized representa-
tions of the input tokens and use them to perform
the predictions for the downstream task.

2.2 Design of Downstream Model
After obtaining the BERT representations, we de-
sign a neural layer, called E2E-ABSA layer in
Figure 1, on top of BERT embedding layer for
solving the task of E2E-ABSA. We investigate
several different design for the E2E-ABSA layer,
namely, linear layer, recurrent neural networks,
self-attention networks, and conditional random
fields layer.

Linear Layer The obtained token representa-
tions can be directly fed to linear layer with soft-
max activation function to calculate the token-
level predictions:

P (yt|xt) = softmax(Woh
L
t + bo) (2)

where Wo ∈ Rdimh×|Y| is the learnable parame-
ters of the linear layer.

Recurrent Neural Networks Considering its
sequence labeling formulation, Recurrent Neural
Networks (RNN) (Elman, 1990) is a natural so-
lution for the task of E2E-ABSA. In this paper,
we adopt GRU (Cho et al., 2014), whose superior-
ity compared to LSTM (Hochreiter and Schmid-
huber, 1997) and basic RNN has been verified
in Jozefowicz et al. (2015). The computational
formula of the task-specific hidden representation
hTt ∈ Rdimh at the t-th time step is shown below:

[
rt
zt

]
= σ(LN(Wxh

L
t ) + LN(Whh

T
t−1))

nt = tanh(LN(Wxnh
L
t ) + rt ∗ LN(Whnh

T
t−1))

hTt = (1− zt) ∗ nt + zt ∗ hTt−1

(3)

where σ is the sigmoid activation function and
rt, zt, nt respectively denote the reset gate, up-
date gate and new gate. Wx,Wh ∈ R2dimh×dimh ,
Wxn,Whn ∈ Rdimh×dimh are the parameters of

GRU. Since directly applying RNN on the out-
put of transformer, namely, the BERT represen-
tation hLt , may lead to unstable training (Chen
et al., 2018; Liu, 2019), we add additional layer-
normalization (Ba et al., 2016), denoted as LN,
when calculating the gates. Then, the predictions
are obtained by introducing a softmax layer:

p(yt|xt) = softmax(Woh
T
t + bo) (4)

Self-Attention Networks With the help of self
attention (Cheng et al., 2016; Lin et al., 2017),
Self-Attention Network (Vaswani et al., 2017;
Shen et al., 2018) is another effective feature ex-
tractor apart from RNN and CNN. In this pa-
per, we introduce two SAN variants to build
the task-specific token representations HT =
{hT1 , · · · , hTT }. One variant is composed of a
simple self-attention layer and residual connec-
tion (He et al., 2016), dubbed as “SAN”. The com-
putational process of SAN is below:

HT = LN(HL + SLF-ATT(Q,K, V ))

Q,K, V = HLWQ, HLWK , HLW V
(5)

where SLF-ATT is identical to the self-attentive
scaled dot-product attention (Vaswani et al.,
2017). Another variant is a transformer layer
(dubbed as “TFM”), which has the same archi-
tecture with the transformer encoder layer in the
BERT. The computational process of TFM is as
follows:

ĤL = LN(HL + SLF-ATT(Q,K, V ))

HT = LN(ĤL + FFN(ĤL))
(6)

where FFN refers to the point-wise feed-forward
networks (Vaswani et al., 2017). Again, a linear
layer with softmax activation is stacked on the de-
signed SAN/TFM layer to output the predictions
(same with that in Eq(4)).

Conditional Random Fields Conditional Ran-
dom Fields (CRF) (Lafferty et al., 2001) is effec-
tive in sequence modeling and has been widely
adopted for solving the sequence labeling tasks
together with neural models (Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016). In
this paper, we introduce a linear-chain CRF layer
on top of the BERT embedding layer. Different
from the above mentioned neural models max-
imizing the token-level likelihood p(yt|xt), the
CRF-based model aims to find the globally most
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Model
LAPTOP REST

P R F1 P R F1

Existing Models
(Li et al., 2019a)\ 61.27 54.89 57.90 68.64 71.01 69.80
(Luo et al., 2019)\ - - 60.35 - - 72.78
(He et al., 2019)\ - - 58.37 - - -

LSTM-CRF
(Lample et al., 2016)] 58.61 50.47 54.24 66.10 66.30 66.20
(Ma and Hovy, 2016)] 58.66 51.26 54.71 61.56 67.26 64.29
(Liu et al., 2018)] 53.31 59.40 56.19 68.46 64.43 66.38

BERT Models

BERT+Linear 62.16 58.90 60.43 71.42 75.25 73.22
BERT+GRU 61.88 60.47 61.12 70.61 76.20 73.24
BERT+SAN 62.42 58.71 60.49 72.92 76.72 74.72
BERT+TFM 63.23 58.64 60.80 72.39 76.64 74.41
BERT+CRF 62.22 59.49 60.78 71.88 76.48 74.06

Table 2: Main results. The symbol \ denotes the numbers are officially reported ones. The results with ] are
retrieved from Li et al. (2019a).

Dataset Train Dev Test Total

LAPTOP
# sent 2741 304 800 4245
# aspect 2041 256 634 2931

REST
# sent 3490 387 2158 6035
# aspect 3893 413 2287 6593

Table 3: Statistics of datasets.

probable tag sequence. Specifically, the sequence-
level scores s(x,y) and likelihood p(y|x) of y =
{y1, · · · , yT } are calculated as follows:

s(x,y) =
T∑

t=0

MA
yt,yt+1

+
T∑

t=1

MP
t,yt

p(y|x) = softmax(s(x,y))

(7)

where MA ∈ R|Y|×|Y| is the randomly initialized
transition matrix for modeling the dependency be-
tween the adjacent predictions and MP ∈ RT×|Y|

denote the emission matrix linearly transformed
from the BERT representations HL. The softmax
here is conducted over all of the possible tag se-
quences. As for the decoding, we regard the tag
sequence with the highest scores as output:

y∗ = argmax
y

s(x,y) (8)

where the solution is obtained via Viterbi search.

3 Experiment

3.1 Dataset and Settings
We conduct experiments on two review datasets
originating from SemEval (Pontiki et al., 2014,
2015, 2016) but re-prepared in Li et al. (2019a).
The statistics are summarized in Table 3. We
use the pre-trained “bert-base-uncased” model6,

6https://github.com/huggingface/transformers
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Figure 2: Performances on the Dev set of REST.

where the number of transformer layers L = 12
and the hidden size dimh is 768. For the down-
stream E2E-ABSA component, we consistently
use the single-layer architecture and set the dimen-
sion of task-specific representation as dimh. The
learning rate is 2e-5. The batch size is set as 25 for
LAPTOP and 16 for REST. We train the model up
to 1500 steps. After training 1000 steps, we con-
duct model selection on the development set for
very 100 steps according to the micro-averaged F1
score. Following these settings, we train 5 models
with different random seeds and report the average
results.

We compare with Existing Models, including
tailor-made E2E-ABSA models (Li et al., 2019a;
Luo et al., 2019; He et al., 2019), and competitive
LSTM-CRF sequence labeling models (Lample
et al., 2016; Ma and Hovy, 2016; Liu et al., 2018).

3.2 Main Results

From Table 2, we surprisingly find that only in-
troducing a simple token-level classifier, namely,
BERT-Linear, already outperforms the existing

37



BERT-GRU BERT-TFM BERT-CRF
0

20

40

60

80

100

F1
 sc

or
e

46.58
51.83

47.64

73.24 74.41 74.06

w/o fine-tuning
w/ fine-tuning

Figure 3: Effect of fine-tuning BERT.

works without using BERT, suggesting that BERT
representations encoding the associations between
arbitrary two tokens largely alleviate the issue of
context independence in the linear E2E-ABSA
layer. It is also observed that slightly more pow-
erful E2E-ABSA layers lead to much better per-
formance, verifying the postulation that incorpo-
rating context helps to sequence modeling.

3.3 Over-parameterization Issue

Although we employ the smallest pre-trained
BERT model, it is still over-parameterized for the
E2E-ABSA task (110M parameters), which natu-
rally raises a question: does BERT-based model
tend to overfit the small training set? Following
this question, we train BERT-GRU, BERT-TFM
and BERT-CRF up to 3000 steps on REST and ob-
serve the fluctuation of the F1 measures on the de-
velopment set. As shown in Figure 2, F1 scores on
the development set are quite stable and do not de-
crease much as the training proceeds, which shows
that the BERT-based model is exceptionally robust
to overfitting.

3.4 Finetuning BERT or Not

We also study the impact of fine-tuning on the fi-
nal performances. Specifically, we employ BERT
to calculate the contextualized token-level repre-
sentations but kept the parameters of BERT com-
ponent unchanged in the training phase. Fig-
ure 3 illustrate the comparative results between
the BERT-based models and those keeping BERT
component fixed. Obviously, the general purpose
BERT representation is far from satisfactory for
the downstream tasks and task-specific fine-tuning
is essential for exploiting the strengths of BERT to
improve the performance.

4 Conclusion

In this paper, we investigate the effectiveness of
BERT embedding component on the task of End-
to-End Aspect-Based Sentiment Analysis (E2E-
ABSA). Specifically, we explore to couple the
BERT embedding component with various neu-
ral models and conduct extensive experiments on
two benchmark datasets. The experimental results
demonstrate the superiority of BERT-based mod-
els on capturing aspect-based sentiment and their
robustness to overfitting.
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Abstract
Contemporary machine translation systems
achieve greater coverage by applying sub-
word models such as BPE and character-level
CNNs, but these methods are highly sensitive
to orthographical variations such as spelling
mistakes. We show how training on a mild
amount of random synthetic noise can dra-
matically improve robustness to these vari-
ations, without diminishing performance on
clean text. We focus on translation perfor-
mance on natural typos, and show that robust-
ness to such noise can be achieved using a bal-
anced diet of simple synthetic noises at train-
ing time, without access to the natural noise
data or distribution.

1 Introduction

Machine translation systems are generally trained
on clean data, without spelling errors. Yet many
translation scenarios require robustness to such er-
rors: for example, social media text in which there
is little emphasis on standard spelling (Michel and
Neubig, 2018), and interactive settings in which
users must enter text on a mobile device. Systems
trained on clean data generally perform poorly
when faced with such errors at test time (Heigold
et al., 2017; Belinkov and Bisk, 2018).

One potential solution is to introduce noise
at training time, similar in spirit to the use of
adversarial examples (Goodfellow et al., 2014;
Ebrahimi et al., 2018). So far, using synthetic
noise at training time has been found to im-
prove performance only on test data with exactly
the same kind of synthetic noise, while at the
same time impairing performance on clean test
data (Heigold et al., 2017; Belinkov and Bisk,
2018). We desire methods that perform well on
both clean text and naturally-occurring noise, but
this is beyond the current state of the art.

∗Jacob Eisenstein is now at Google Research.

Drawing inspiration from dropout and noise-
based regularization methods, we explore the
space of random noising methods at training time,
and evaluate performance on both clean text and
text corrupted by “natural noise” found in real
spelling errors. We find that by feeding our trans-
lation models a balanced diet of several types of
synthetic noise at training time (random charac-
ter deletions, insertions, substitutions, and swaps),
it is possible to obtain substantial improvements
on such naturally noisy data, with minimal impact
on the performance on clean data, and without ac-
cessing the test noise data or even its distribution.

Our method substantially improves the robust-
ness of a transformer-based machine translation
model with CNN character encoders to spelling
errors across multiple input languages (German,
French, and Czech). Of the different noise types
we use at training, we find that random charac-
ter deletions are particularly useful, followed by
character insertions. However, noisy training does
not improve translations of social media text, as
indicated by performance on the MTNT dataset
of Reddit posts (Michel and Neubig, 2018). This
finding aligns with previous work arguing that the
distinctive feature of social media text is not noise
or orthographical errors, but rather, variation in
writing style and vocabulary (Eisenstein, 2013).

2 Noise Models

We focus on orthographical noise; character-level
noise that affects the spelling of individual terms.
Orthographical noise is problematic for machine
translation systems that operate on token-level em-
beddings because noised terms are usually out-of-
vocabulary, even when divided into subwords us-
ing techniques such as byte pair encoding (BPE;
Sennrich et al., 2015). Interestingly, orthograph-
ical noise can also pose problems for character-
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Deletion A character is deleted. whale→ whle
Insertion A character is inserted into a random position. whale→ wxhale
Substitution A character is replaced with a random character. whale→ whalz
Swap Two adjacent characters change position. whale→ wahle

Table 1: The synthetic noise types applied during training. Noise is applied on a random character, selected from
a uniform distribution. The right column illustrates the application of each noise type on the word “whale.”

level encoding models, which are based on mod-
els such as convolutional neural networks (CNNs;
Kim et al., 2016). These models learn to match
filters against specific character n-grams, so when
n-grams are disrupted by orthographical noise, the
resulting encoding may radically differ from the
encoding of a “clean” version of the same text. Be-
linkov and Bisk (2018) report significant degrada-
tions in performance after applying noise to only a
small fraction of input tokens.

Synthetic Noise Table 1 describes the four types
of synthetic noise we used during training. Substi-
tutions and swaps were experimented with exten-
sively in previous work (Heigold et al., 2017; Be-
linkov and Bisk, 2018), but deletion and insertion
were not. Deletion and insertion pose a different
challenge to character encoders, because they al-
ter the distances between character sequences in
the word, as well as the overall word length.

During training, we noised each token by sam-
pling from a multinomial distribution of 60%
clean (no noise) and 10% probability for each of
the four noise types. The noise was added dynam-
ically, allowing for different mutations of the same
example over different epochs.

Natural Noise We evaluate our models on nat-
ural noise from edit histories of Wikipedia (for
French and German; Max and Wisniewski, 2010;
Zesch, 2012) and manually-corrected essays (for
Czech; Šebesta et al., 2017). These authors have
obtained a set of likely spelling error pairs, each
involving a clean spelling and a candidate error.
We used that set to replace correct words with
their misspelled versions for each evaluation sam-
ple text in the source language. When there are
multiple error forms for a single word, an error is
selected randomly. Not all words have errors, and
so even with maximal noise, only 20-50% of the
tokens are noised.

Natural noise is more representative of what
might actually be encountered by a deployed ma-
chine translation system, so we reserve it for test
data. While it is possible, in theory, to use nat-

ural noise for training, it is not always realistic.
Significant engineering effort is required to obtain
such noise examples, making it difficult to build
naturally-noised training sets for any source lan-
guage. Furthermore, orthography varies across de-
mographics and periods, so it is unrealistic to an-
ticipate the exact distribution of noise at test time.

3 Experiment

Data Following Belinkov and Bisk (2018), we
evaluated our method on the IWSLT 2016 ma-
chine translation benchmark (Cettolo et al., 2016).
We translated from three source languages (Ger-
man, French, Czech) to English, each with a train-
ing set of approximately 200K sentence pairs.
Synthetic noise was added only to the training
data, and natural noise was added only to the test
data; the validation data remained untouched.

Model We used a transformer-based translation
model (Vaswani et al., 2017) with a CNN-based
character encoder (Kim et al., 2016).

Hyperparameters We followed the base con-
figuration of the transformer (Vaswani et al., 2017)
with 6 encoder and decoder layers of 512/2048
model/hidden dimensions and 8 attention heads.
Character embeddings had 256 dimensions and
the character CNN followed the specifications of
Kim et al. (2016). We optimized the model with
Adam and used the inverse square-root learning
rate schedule typically used for transformers, but
with a peek learning rate of 0.001. Each batch
contained a maximum of 8,000 tokens. We used
a dropout rate of 0.2. We generated the transla-
tions with beam search (5 beams), and computed
BLEU scores to measure test set performance.

Results Table 2 shows the model’s performance
on data with varying amounts of natural errors. As
observed in prior art (Heigold et al., 2017; Be-
linkov and Bisk, 2018), when there are signifi-
cant amounts of natural noise, the model’s perfor-
mance drops significantly. However, training on
our synthetic noise cocktail greatly improves per-
formance, regaining between 19% and 54% of the
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BLEU

Dataset Noise Probability Noised Tokens Clean Training Data + Synthetic Noise ∆ %Recovered

de-en 0.00% 0.00% 34.20 33.53 –0.67 –
de-en 25.00% 9.72% 27.93 31.32 3.39 54.1%
de-en 100.00% 39.36% 12.49 23.34 10.85 50.0%

fr-en 0.00% 0.00% 39.61 39.94 0.33 –
fr-en 25.00% 13.47% 30.48 34.07 3.59 39.3%
fr-en 100.00% 53.74% 11.48 19.43 7.95 28.3%

cs-en 0.00% 0.00% 27.48 27.09 –0.39 –
cs-en 25.00% 6.14% 24.31 24.91 0.60 18.9%
cs-en 100.00% 24.53% 16.64 18.91 2.27 20.9%

Table 2: Performance on the IWSLT 2016 translation task with varying rates of natural noise in the test set. Noise
Probability is the probability of attempting to apply natural noise to a test token, while Noised Tokens is the
fraction of tokens that were noised in practice; not every word in the vocabulary has a corresponding misspelling.

Training Noise BLEU ∆

No Training Noise 12.49
+ Deletion 17.39 4.90
+ Insertion 15.00 2.51
+ Substitution 11.99 –0.50
+ Swap 14.04 1.55

All Training Noise 23.34
− Deletion 14.96 –8.38
− Insertion 18.81 -4.53
− Substitution 20.23 –3.11
− Swap 23.07 –0.27

Table 3: Performance on IWSLT 2016 de-en test with
maximal natural noise when training with one noise
type (top) and three noise types (bottom).

BLEU score that was lost to natural noise. More-
over, this training regime has minimal impact on
clean text translations, with negative and positive
fluctuations that are smaller than 1 BLEU point.

To determine the ceiling performance of noise-
based training, we split the set of natural typos
and used one part for training and the other for
test. However, we observed that training on natu-
ral noise behaves very similarly to training with-
out noise at all (not shown), perhaps because the
natural typos did not have enough variance to en-
courage the model to generalize well.

Ablation Analysis To determine the individual
contribution of each type of synthetic noise, we
conduct an ablation study. We first add only one
type of synthetic noise at 10% (i.e. 90% of the
training data is clean), and measure performance.
We then take the full set of noise types, and re-
move a single type at each time to see how impor-
tant it is given the other noises.

Table 3 shows the model’s performance on the
German dataset when training with various mix-
tures of noise. We find that deletion is by far

Dataset Del Ins Sub Swap

de-en 16.6% 26.5% 17.0% 6.0%
fr-en 11.8% 11.4% 9.7% 2.6%
cs-en 6.6% 6.1% 41.7% 0.4%

Table 4: The proportion of natural errors caused
by deleting/inserting/substituting a single character or
swapping two adjacent characters.

the most effective synthetic noise in preparing
our model for natural errors, followed by inser-
tion. We observe the same trend for French and
Czech. This result could explain why our experi-
ments show a significant improvement when train-
ing on synthetic noise, while previous work, which
trained only on synthetic substitutions and swaps,
did not observe similar improvements.

Natural Noise Analysis Finally, we analyze
how well our synthetic noise covers the distribu-
tion of natural noise. Table 4 shows the percentage
of noised tokens that can be covered by a single
noising operation. With the exception of substitu-
tions in Czech, higher overlap between synthetic
and natural noise appears to correlate with higher
recovery rate in Table 2. One possible explanation
for this outlier is that random synthetic substitu-
tions might be less effective at imitating real sub-
stitutions, and that perhaps a more informed model
is needed for simulating synthetic substitutions.

4 Translating Social Media Text

We also apply our synthetic noise training proce-
dure to social media, using the recently-released
MTNT dataset of Reddit posts (Michel and Neu-
big, 2018), focusing on the English-French trans-
lation pair. Note that no noise was inserted into the
test data in this case; the only source of noise is the
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Dataset Clean Train + Synthetic Noise

en-fr 21.1 20.6
fr-en 23.6 24.1

Table 5: The performance of a machine translation
model on the MTNT task.

non-standard spellings inherent to the dataset.
As shown in Table 5, noised training has min-

imal impact on performance. We did not ex-
haustively explore the space of possible noising
strategies, and so these negative results should be
taken only as a preliminary finding. Nonetheless,
there are reasons to believe that synthetic train-
ing noise may not help in this case. Michel and
Neubig (2018) note that the rate of spelling errors,
as reported by a spell check system, is not espe-
cially high in MTNT; other differences from stan-
dard corpora include the use of entirely new words
and names, terms from other languages (especially
English), grammar differences, and paralinguis-
tic phenomena such as emoticons. These findings
align with prior work showing that social media
does not feature high rates of misspellings (Rello
and Baeza-Yates, 2012). Furthermore, many of the
spelling variants in MTNT have very high edit dis-
tance (e.g., catholique→ catho [Fr]). It is unlikely
that training with mild synthetic noise would yield
robustness to these variants, which reflect well-
understood stylistic patterns rather than random
variation at the character level.1

5 Related work

The use of noise to improve robustness in ma-
chine learning has a long history (e.g., Holm-
strom and Koistinen, 1992; Wager et al., 2013),
with early work by Bishop (1995) demonstrating a
connection between additive noise and regulariza-
tion. To achieve robustness to orthographical er-
rors, we require noise that operates at the character
level. Heigold et al. (2017) demonstrated that syn-
thetic noising operations such as random swaps
and replacements can degrade performance when
inserted at test time; they also show that some ro-
bustness can be obtained by inserting the same
noise at training time. Similarly, Sperber et al.
(2017) explore the impact of speech-like noise.

1 Contemporaneous work shows that MTNT performance
can be improved by a domain-specific noising distribution
that includes character insertions and deletions, as well as
the random insertion of emoticons, stopwords, and profan-
ity (Vaibhav et al., 2019). The specific impact of spelling
noise is not evaluated, nor is the impact on clean text.

Most relevant for us is the work of Belinkov
and Bisk (2018), who evaluated on natural noise
obtained from Wikipedia edit histories (e.g., Max
and Wisniewski, 2010). They find that robustness
to natural noise can be obtained by training on the
same noise model, but that (a) training on syn-
thetic noise does not yield robustness to natural
noise at test time, and (b) training on natural noise
significantly impairs performance on clean text. In
contrast, we show that training on the right blend
of synthetic noise can yield substantial improve-
ments on natural noise at test time, without signif-
icantly impairing performance on clean data. Our
ablation results suggest that deletion and insertion
noise (not included by Belinkov and Bisk) are es-
sential to achieving robustness to natural noise.

An alternative to noise infusion is to build
character-level encoders that are robust to noise by
design. Belinkov and Bisk (2018) experiment with
a bag of characters, while Sakaguchi et al. (2017)
use character-level recurrent neural networks com-
bined with special representations for the first and
last characters of each token. These models are
particularly suited for specific types of swapping
and scrambling noises, but are not robust to natu-
ral noise. We conducted preliminary experiments
with noise-invariant encoders, but obtained better
results by adding noise at training time. A re-
lated idea is to optimize an adversarial objective,
in which a discriminator tries to distinguish noised
and clean examples from their encoded represen-
tations (Cheng et al., 2018). This improves per-
formance on clean data, but it makes optimization
unstable, which is a well-known defect of adver-
sarial learning (Arjovsky et al., 2017). Cheng et al.
(2018) do not evaluate on natural noise.

6 Conclusion

This work takes a step towards making machine
translation robust to character-level noise. We
show how training on synthetic character-level
noise, similar in spirit to dropout, can significantly
improve a translation model’s robustness to natu-
ral spelling mistakes. In particular, we find that
deleting and inserting random characters play a
key role in preparing the model for test-time typos.
While our method works well on misspellings, it
does not appear to generalize to non-standard text
in social media. We conjecture that spelling mis-
takes constitute a small part of the deviations from
standard text, and that the main challenges in this

45



domain stem from other linguistic phenomena.
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Abstract

Illicit activity on the Web often uses noisy
text to obscure information between client and
seller, such as the seller’s phone number. This
presents an interesting challenge to language
understanding systems; how do we model ad-
versarial noise in a text extraction system?
This paper addresses the sex trafficking do-
main, and proposes some of the first neu-
ral network architectures to learn and extract
phone numbers from noisy text. We create
a new adversarial advertisement dataset, pro-
pose several RNN-based models to solve the
problem, and most notably propose a visual
character language model to interpret unseen
unicode characters. We train a CRF jointly
with a CNN to improve number recognition by
89% over just a CRF. Through data augmenta-
tion in this unique model, we present the first
results on characters never seen in training.

1 Introduction

One reason people intentionally obscure textual
content is to evade automatic extraction systems.
There are good reasons for wanting to do this, pri-
vacy being at the forefront. However, illicit activ-
ity is another reason, and human sex trafficking is
one of the most egregious uses. We draw inspi-
ration from this domain, but extracting informa-
tion from adversarial noisy text is a more general
challenge for the NLP community. It is a language
understanding task that humans can easily do, but
which presents difficulty for automated methods.
This paper presents the first deep learning models
for adversarial phone number extraction, and re-
leases new datasets for future experimentation.

An obscured example number is shown here:

(9I4) Too.46-callme-ÖÖ1/4  

The true phone number is 914-246-0014, but
this breaks even the most comprehensive rule-

based extractors. It contains examples of visual
substitution (I for 1 and unicode for 0), word sub-
stitution (“Too” for 2), and character confounders
(separators ‘.’, ‘-’, ‘/’ and other words). Any one
challenge might be solvable in isolation, but they
often combine together:

n1ne0one 7n1ne3 n1ne351

Rather than swapping letters for digits (I for
1), this example swaps digits for letters (1 for i)
which are also part of a word swap (‘nine’ for 9).
There are four ‘1’ characters in the string, but only
one of them maps to one of the two 1 digits in
the number 901-793-9351. Beyond this, the most
challenging noise occurs when unicode is injected,
thus rendering finite character models ineffective
since they’ve never seen these characters in train-
ing. This paper proposes to model all of this noise
with several neural network architectures.

The domain of focus for our study is human sex
trafficking, although our proposed models apply to
any domain with obscured information (social me-
dia, for instance, often mixes unusual characters,
confounding normal language models). This topic
is important in terms of global need, but it also has
attractive language properties for research. Since
our datasets come from people who need to post
contact information, they can’t obscure the text too
much, or nobody could call them. This results in
an interesting cognitive challenge that humans can
solve, but state-of-the-art extraction struggles.

The main contributions in this paper are (1) the
first neural models for noisy phone number extrac-
tion, (2) a visual language model over images of
characters, (3) a combined CRF with CNN input,
(4) a data augmentation technique for training that
helps recognize unseen unicode, and (5) state-of-
the-art extraction results on new datasets.
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2 Previous Work

A number of papers have looked into the sex traf-
ficking domain. Some focus on classifying entire
ads as trafficking or not (Alvari et al., 2016, 2017),
while others build knowledge graphs of mentioned
entities (Szekely et al., 2015) or focus on normal-
izing attributes like geolocations (Kapoor et al.,
2017; Kejriwal and Szekely, 2017; Kejriwal et al.,
2017). Most of these use phone numbers as fea-
tures, and several found them to be among the
most important input (Dubrawski et al., 2015;
Nagpal et al., 2017; Li et al., 2018). In fact, phone
numbers are used as gold truth to connect simi-
lar ads or link traffickers (Rabbany et al., 2018;
Li et al., 2018). Phone numbers have also been
shown to be some of the most stable links to enti-
ties (Costin et al., 2013), so are important for en-
tity linking tasks. Almost all of these threads as-
sume correct phone extraction and ignore the dif-
ficulty of ads with obscured numbers. Although
sometimes unspecified, they all appear to use rule-
based extractors.

Most relevant to this paper is TJBatchEx-
tractor, a rule-based regular expression system
(Dubrawski et al., 2015) which is still state-of-
the-art for extraction, and is used by other work
on trafficking ID (Nagpal et al., 2017). We em-
ploy TJBatchExtractor to identify the ads with ob-
scured text from which it fails to extract a number.
Our paper thus focuses on only the difficult ads
with noisy phone numbers.

Most language models use words or characters
as their base inputs. One of our contributions
is a visual model of characters. We use an im-
age database of 65k unicode characters developed
by BBVA Next Security Lab1 for phishing pre-
vention. Most similar is Liu et al. (2017) who
use CNNs for Asian-language classification. They
aren’t addressing noise like our paper, but rather
the semantics inherent to their visual characters.

Finally, we employ data augmentation (Ding
et al., 2016; Xu et al., 2016) during training of our
visual character model. This is commonly used in
the visual community (Salamon and Bello, 2017;
Zhong et al., 2017) and we adopt their overall idea
to randomly perturb our character images to learn
a robust character recognizer.

1https://github.com/next-security-lab

3 Data and Attributes

3.1 Noisy and Obscured Data
We begin by highlighting the main methods peo-
ple use for adversarial noise in written text. This
is not an exhaustive list, but it covers the vast ma-
jority of cases observed in this paper’s datasets.

1. Digits as Lexemes. The most basic approach
to obscuring numbers is to substitute lexemes
(words) for digits. These are often easy to iden-
tify, and regular expressions with a dictionary are
usually sufficient for detection. Words might be
capitalized (FOUR) or camel case (foUr), such as
in the text, “threeoh2FOUR070six22”.

2. Homophones. This method replaces digits
with homophones or near-rhymes, thereby confus-
ing dictionary approaches as in “337 9twennyfo
06juan9”. Tokens “twenny” and “juan” share
phonological similarities with the digit pronunci-
ation. Regular expressions cannot capture these
without complex phoneme modeling.

3. Letters as Digits. This method substitutes
ASCII letters for their digit lookalikes (e.g., 6I5
093 93B6). The ‘I’ and ‘B’ are representing 1 and
8 respectively. These substitutions can grow more
complicated with things like ‘()’ for 0 and what
was popularized as leetspeak in the 1980’s with
‘E’ for ‘3’ and other such inversions.

4. Visual Deception and Unicode. This is a
variant of ‘Letters as Digits’ above, but goes be-
yond ASCII substitution to use Unicode charac-
ters. Unicode presents a huge challenge to extrac-
tion as these rely entirely on visual similarities in
the character images. Below are just some unicode
options that resemble the ASCII character ‘8’:

8 ! ! ! ! ! Ȣ ȣ " # $ %
A rule-based approach would have to manually

map all possible characters to their digits, an im-
possible task for 138k current unicode characters
(with future room for 1mil). This would also fail
on the larger problem of capturing visually am-
biguous close-matches. For instance, an emoticon
smiley face can be used for the ASCII letter ‘o’:

(4  !!  2) 456 9412  

We are the first to our knowledge to model vi-
sual noise with a language model architecture.
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5. Confounding Separators. Another common
noise tactic is to insert arbitrary characters as sep-
arators. For example: –270**1tree&&822==31–.
The noise in this obscured text is meant to con-
fuse a pattern matcher as to when a digit’s sub-
string begins and ends. Other difficult versions of
this method uses digit characters themselves as the
separators: 111 410 111 897 111 3245 111

6. Human Reasoning. The most difficult class
of obscured text is that which requires reason-
ing to solve. For instance, including arithmetic
(3+1) or instructions to invert digits. This type is
a small minority in obscured phone numbers, but
they prove most challenging.

Some of these challenges have rule-based so-
lutions in isolation, but combined together, they
overlap and build on each other for an exponen-
tial number of noisy combinations. This paper ad-
dresses all of these challenges except for homo-
phones and human reasoning. We leave phoneme
modeling to future work, and reasoning requires
a different approach than discriminative classi-
fiers. The most significant challenge this paper
addresses is that of the visual deceptions (letters
as digits, unicode, and visual sim). We propose
the first neural model for visual similarity detec-
tion with a unique visual model based on a CNN.

4 Corpora

4.1 Real-World Noisy Advertisements
Our initial corpus started from a 250k advertise-
ment crawl of Backpage and Craigslist escort sec-
tions, shared with us by the Global Emancipation
Network. The majority of these ads (180k) are one
line with a standard phone number and no actual
text. We filtered these out to focus on ads with
written descriptions.

After removing one-liners, we ran the state-of-
the-art extractor (Dubrawski et al., 2015) to iden-
tify all ads where the extractor failed to extract
anything. This remaining subset contains ads that
either don’t have a phone number, or they contain
an obscured number that fooled the rule-based ex-
tractor. Figure 1 shows one such explicit ad.

Undergraduate volunteers manually inspected
the remaining ads, removed those without num-
bers, and identified minimal text spans that en-
compassed any obscured phone numbers. These
annotations resulted in approximately 200 real-
world obscured ads with their obscured text spans.

Ad for Phone 555-584-4630

Sexy Slim 555 Ready for fun let me 584 sat-
isfy your 4630 every desire no disappointments..!!
**IF YOUR NOT SERIOUS PLEASE DON’T
CALL ME..!!Kik Me-censored ****CAR
PLAY ONLY****

Figure 1: An example advertisement from the escort
section of Backpage. Phone and username changed for
anonymity. This ad illustrates an obscured number with
normal digits, but text is interspersed in between.

Desiring a larger test set for evaluation, we cre-
ated an adversarial data collection environment for
undergrads to try and “beat” the TJBatchExtractor.
This small-scale collection resulted in about 200
more obscured phone examples.

Merging the crawl with these adversarial ob-
scured numbers, we had 390 real-world examples.
We split into 250 test numbers and 140 for devel-
opment (dev). The dev set was used for model im-
provement and parameter tuning, and the test set
only for final results. Two examples from the dev
set are given here:

Gold Phone Ad Text
3189481720 tree1ate nein 48-one7 twenty
4177015067 4!7 70! fifty6svn

Due to the nature of this domain, training data
is difficult to obtain so neural models are stymied.
We instead chose to “fake” the training data, cre-
ating our own computer-based adversarial dataset.
Though training data is artificial, all experiments
use the above real-world data annotations.

4.2 Artificial Noisy Adversarial Data

A core research question is now whether artificial
training data can train this real-world task. This
section describes our approach.

The generation algorithm starts with a 10 digit
number string (randomly selected2), and then
transforms the string with a sequence of obfusca-
tion operations. Space prevents a full description
of this process and its details, but we will release
the code upon publication. Example transforma-
tions are as follows:

1. Insert separator ASCII chars between digits.
2. Replace a digit with an ASCII lookalike.

2We used a US area code dictionary, and followed the con-
straint that the 4th digit must be [2-9] whereas the 5th to 10th
digits are [0-9]. Numbers were then chosen randomly.
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Artificial Obscured Phone Numbers
2 1tree\6-zero0###33\˜15
778cinco7five688 PaRtyGiRL 6
*forejuan*for 55!826ate
5 1290 si&te4 ˜˜˜˜˜˜˜˜˜˜135
ate0 5 ***2 08–88 8nine

Figure 2: Examples from the artificial phone number
training set.

3. Replace a digit with its English, Spanish, or
homonym (2 to ‘two’)

4. Capitalize letters or replace with an ASCII
lookalike (C to ‘(’)

5. Replace two digits with its English word
(‘18’ to ‘eighteen’)

6. Insert random English words as separators

These occur in sequence, each with random
chance, so the original digit ‘2’ might become
‘too’ which then becomes ‘To0’ after character
conversion. The output of this process is arguably
more difficult than many real-world examples. See
Figure 2 for generated examples. We ultimately
trained on 100k of these.

5 Models for Obscured Extraction

5.1 Baseline Models
We use two baselines: one from prior work and
another with a basic RNN model.

5.1.1 Rule-Based Baseline
The state-of-the-art for phone number extraction
is the TJBatchExtractor from Debrawski et al.
(2015). This is a large set of regular expressions
designed to capture phone numbers even with vari-
ation and noise, mostly focused on what we’ve
named “Digits as Lexemes” and “Letters as Dig-
its”. Their previous results showed 99% extraction
accuracy, however, we found that 72% of ads are
one line with just unobscured digits, so their result
masks a more challenging subset.

5.1.2 RNN Baseline
Our baseline neural architecture is a character-
based bi-directional LSTM. Input is a 70 charac-
ter span of obscured text, and each character is
mapped to its embedding vector. The embeddings
are randomly initialized and learned during train-
ing. Each embedding is fed into the biLSTM, and
the final hidden state of the biLSTM is treated as
the representation of the obscured text. The hid-
den state is then passed to 10 independent dense

layers, one for each of the 10 digits in the phone
number. A softmax is then used on the output of
each dense layer to predict the digit in that position
of the 10-digit phone number.

We also tested GRUs instead of LSTMs, but
performance did not significantly change.

5.2 Obscured Models

5.2.1 RNN with Positional Attention
The RNN baseline transforms the input text to a
single vector from the biLSTM, and then predicts
the digits in the phone number from this vector.
We found that the model quickly learns to pre-
dict the first digits and the last digits, but learning
for the middle digits is hindered. This intuitively
makes sense because the vector represents the en-
tire text without directed guidance on identifying
where in the text the digits exist. How does the
final dense layer know where the 4th and 5th dig-
its begin? The initial digit, in contrast, is easier to
identify because it leads the string.

Our solution to this deficiency was to add po-
sitional attention to the LSTM. Instead of using
its final LSTM state, the vector is a weighted sum
of all hidden states. The weight vector α is the
learned positional attention. Formally, the ith digit
in the 10 digit phone number is predicted by a
dense layer over context vector input Wi:

Wi =

N∑

j=0

αij ∗ Vj (1)

where N is the length of the LSTM, Vj is the jth
LSTM hidden state, i is the ith digit in the phone,
and αi is the ith digit’s positional attention vector.
This allows the network to learn which part of the
text is relevant for each digit. The first digit in
the number should learn a weight vector α0 that
weights the front of the LSTM more than the end,
and vice versa for α9. Figure 3 shows this model.

We experimented with individual attention
(each digit i has its own learned αi) and a single
shared attention (all digits use the same learned
α). We only report on individual attention since it
outperformed shared attention.

We also tested multiple stacked LSTM layers.
Stacking showed no further improvement.

5.2.2 RNN with Conditioned Prediction
One characteristic of our task is that each digit
prediction is mostly independent from the previ-
ous digit. Unlike many domains in NLP, this is
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A T E 6

+

8 5 (seven other digits) 6

LSTM

Character
Embeddings

+ +Position
Attention

Dense Layer
+ softmax

Figure 3: LSTM with position attention. Dotted lines
included with conditioned prediction (Sec 5.2.2).

not a sequence modeling problem where knowing
the previous digit semantically assists in guessing
the next. For instance, a 5 is not more likely to be
followed by a 4.3 Despite position attention, the
model still had difficulty distinguishing which por-
tion of the context vector was relevant to a middle
digit. It sometimes repeats an inner digit because
the 4th and 5th positions were too nearby in the
obscured text. Observe these 2 examples:

41093four 2830
4109threeefour tooo830

The seventh digit is a 2, but it starts five char-
acters later in the second string. We observed
repeated digit predictions like: 4109344830. It
would predict the same number twice, and then
skip over the next due to the shifting positions.

Our quick solution to avoiding repeats was to
pass the predictions forward. We added a sim-
ple conditional dependency that feeds the softmax
output of the previous digit to the current digit.
The dotted lines in Figure 3 illustrate this new
link. This removed many of our repeated digits,
and also increased accuracy in other examples that
weren’t even repeated but just made mistakes.

5.2.3 Conditional Random Field Model
Given that providing the previous digit prediction
showed slight improvements on the development
set, we wanted to formalize the sequence predic-
tions with proper transition probabilities. If a digit
prediction leads to an unlikely next prediction (ac-
cording to the model), then perhaps the previous
digit should switch to its 2nd most likely in order
to maximize the joint prediction.

3There are exceptions and phone numbers do have some
constraints, such as having a limited set of 3 leading digits.
However, the remaining 7 digits are mostly random in the US.

A T E 6

B8 B6

LSTM

Character
Embeddings

Dense Layer
+ softmax

I8 I8
CRF

Figure 4: Neural architecture with a CRF top layer.

The other RNN problem is that input varies in
length and noise. Some input is only about digits:

4treeTOO564ateSVN33

Others contain varying complex separators:

–4**tree**TOO sms 564ate+SVN+33

RNNs must learn to ignore separators in ways
that don’t confuse the subsequent dense layers.
The network is remarkably adept at this, but we
hypothesized that a better model should make
a prediction on each and every input character
rather than merging all into the same hidden state.

Conditional Random Fields (Lafferty et al.,
2001) are a natural way of modeling the above. A
CRF tags each character as it goes, and performs
both training and inference, using viterbi search
to find the most likely output prediction sequence.
Figure 4 shows this model. We used the CRF im-
plementation in Keras inspired by (Huang et al.,
2015) to overlay a CRF on top of the RNN-based
models (see also Ma and Hovy (2016)).

The output of a CRF is different since it must
output a label for every character (rather than just
10 phone digits). We use the standard CRF labels
to mark the beginning (B) and included (I) charac-
ters. This means that instead of a single label for
each possible phone digit (e.g., 8), we now have
two labels which represent a character that begins
a digit (B8) and a character in the middle or end
of a digit (I8). We additionally use an Other la-
bel ‘O’ to label the noisy separator characters that
aren’t part of any digit’s substring. The following
is an example:

B2 I2 I2 B4 B7 O B6 I6 I6 B9 B9
T O O 4 7 - s i x 9 9

The mapping from CRF labels (B2,I2,I2) to ac-
tual digits (2) is deterministic. Evaluation metrics
for the previous RNNs also apply to the CRF out-
put after it is mapped. However, training for the
CRF is done entirely on the CRF label loss.
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Figure 5: CNN architecture for visual image input to
the LSTM model.

5.2.4 Visual Characters with CNNs
As with most NLP tasks, out of vocabulary (OOV)
input is an issue. Our adversarial task is even more
severe because visual substitutions are intentional,
and often OOV as there are 138k current unicode
options. If the character is unseen in training, only
context can try to guess the digit. Below are ex-
amples of such replacement:

Digits   ASCII   Unicode

 410      41o      41!
Why are these easy for humans to decipher? It’s

purely due to visual similarity. In a “normal” NLP
neural model, each character (or token) is mapped
to an embedding, so unseen characters have no
representation. We might use the default approach
of mapping all unknowns to a shared ‘UNK’ em-
bedding, but this loses the different visual charac-
teristics of each character.

All of this motivates our new Visual-Based
Character RNN. Our model does not learn a dic-
tionary of character embeddings, but instead uses
a series of CNN layers that transform 34x34 im-
ages of the characters. The transformations then
feed into our above models. This is now a model
that can interpret unseen (in training) characters.

Figure 5 shows the CNN combined with our po-
sitional attention RNN. We use two 3x3 convolu-
tion layers with 4 and 8 filters respectively. Each
layer is followed by a relu layer and a batch nor-

malization layer (not shown in the figure). The
convolutions are followed by a max pooling layer
and then flattened. A dense layer with softmax
then reduces the flattened vector. We experi-
mented with up to 3 convolution layers, up to 32
filters, and varied the size of the dense layer.

Visual input changes the model significantly. It
is no longer learning an NLP-style character em-
bedding, but rather learning CNN parameters to
transform an image input into that embedding.
Our first models ran into problems because they
simply memorized each 34x34 image. Since all
ASCII ‘3’ characters map to the same flattened
representation, the model memorizes it, and uni-
code variations fail no matter how similar. We
thus introduced data augmentation during train-
ing. Each 34x34 input is ‘jiggled’ with ran-
dom transformations: (1) translation of the im-
age up/down or right/left, (2) darken/lighten the
image, (3) stretch or widen, and (4) rotate up to
20 degrees. This provided different inputs for the
same ASCII chars, so the CNN was encouraged to
learn key visual features across all variants. Data
augmentation led to our most significant improve-
ments on unseen unicode character input.

6 Experiments

All models were trained on the 100k artificial ob-
scured phone dataset (Section 4.2). 90k was used
for training and 10k to determine convergence.
The RNNs were set to N = 70 in length, and in-
puts were padded to that length. The rare input text
longer than 70 is cropped. Embedding size N=100
and LSTM internal dimensions M=200 were cho-
sen for all RNNs based on dev set performance.
The CRFs performed best at N=200. We also ap-
plied dropout of 0.2 for the LSTMs and 0.5 CRF.

We report results with three metrics: digit ac-
curacy, Levenshtein edit distance, and perfect ac-
curacy. Digit accuracy is the simple alignment of
predicted digit with gold digit (# correct / 10). If
a predicted phone number is longer than 10 dig-
its (CRFs are not bound to strictly 10 predictions),
digit accuracy is computed only over the first 10
predicted digits.

Digit accuracy is flawed because a model might
insert one extra digit, but still guess correct for the
remainder. For example:

Gold: 4109342309
Guess: 41109342309

The CRF inserted an extra 1 digit, just one mis-
take, but digit accuracy is now a very low 0.2.

53



Development Set Test Set
Model Digit Lev Perfect Digit Lev Perfect
TJBatch Rules 0.0 0.0 0.0 0.0 0.0 0.0
LSTM (5.1.2) 77.0 79.7 48.1 74.4 78.2 40.3
LSTM-2 77.5 79.4 49.7 74.8 77.6 40.6
LSTM +att (5.2.1) 78.5 80.5 48.6 76.6 78.9 43.5
LSTM +cond (5.2.2) 79.7 81.6 48.5 76.5 79.5 39.8
LSTM +att +cond 79.1 81.2 48.3 77.2 79.8 42.3
CRF with LSTM (5.2.3) 72.9 84.0 58.1 67.7 83.4 48.2

Table 1: Results on dev and test. Though flawed, digit accuracy is included for completeness. The +att and +cond
options are not compatible with the CRF which does not need attention since it predicts at every input character.

We thus use the Levenshtein edit distance to bet-
ter evaluate performance. Levenshtein’s measure
judges string similarity based on the minimum
number of “edits” required to transform the pre-
diction into the gold: (1.0 − edits/10). In the
above case, one deletion is required to make the
strings the same, so the score is (1− 1/10) = 0.9.

Finally, perfect accuracy is the number of per-
fect phone numbers (all 10 digits) that were cor-
rectly guessed, divided by the size of the test set.

Real-world Test: We report results only on the
real-world test set from Section 4.1. The artifi-
cial data was solely used for training. We did not
run models on the test set until the very end after
choosing our best settings (on the dev set).

Real-world Challenge Test: To further illustrate
the challenge of noisy text, we enhanced the real-
world test set with unicode injections. Using a
hand-created character lookup of visually similar
unicode characters, we replaced 10% of the char-
acters with randomly chosen unicode lookalikes
not in the training data. This results in a very chal-
lenging test set to further benchmark the models.

Finally, all results in the next section are the av-
erage of 4 train/test runs of the same model.

7 Results

Table 1 contains results without CNNs for the
baselines, RNNs, and CRF. The models listed are
those that showed consistent improvement on de-
velopment, and the test set columns were run only
at the end for publication results. Adding position
attention and conditional dependence each showed
improvements of 1-2% Levenshtein. Stacking two
LSTMs showed little gain. The CRF excelled with
a 11% relative gain (on test) for perfect prediction
over the best LSTM setup.

CNN Comparison (Perfect Acc)

Test Challenge
Lev Perf Lev Perf

Best LSTM (no CNN) 81.2 48.3 72.9 22.1
CNN-LSTM 77.3 42.1 65.5 15.6
CNN-LSTM +aug 79.7 39.8 75.2 27.3
Best CRF (no CNN) 84.0 58.1 74.9 17.6
CNN-CRF 82.8 54.2 73.4 14.6
CNN-CRF +aug 83.3 56.1 79.7 33.3

Table 2: Results of the CNN models. Challenge has
10% unseen unicode injected. +aug used visual data
augmentation during training.

For CNN results, Table 2 shows test set perfor-
mance. Adding just the CNNs does not improve
recognition, but in fact are slightly worse. How-
ever, more compelling is the challenge set with
injected unicode confounders. Recall the impor-
tance of data augmentation during training so the
models learn real visual features. These “+aug”
results show why it is needed with a 89% rela-
tive improvement in perfect phone accuracy (from
17.6% to 33.3%). The non-CNN LSTM and CRF
struggle at 17-22%. They simply cannnot repre-
sent unseen characters.

Our new CRF model (no CNN) outperforms the
RNNs on the test set by 10% absolute. When com-
paring challenge test performance, the best CRF-
CNN outperforms the best non-CNN LSTM by
11% absolute. To further illustrate the effect of
unicode confounders, we varied how much we in-
jected and graphed performance in Figure 3. The
CNN models consistently outperform.

8 Full Ad Extraction

We wrapup with a pilot for full ad extraction. The
models presented so far extract from one span of
text (it assumes a phone number exists). This for-
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Table 3: Phone accuracy as a higher % of unicode sub-
stitutions are made for lookalike ASCII characters.

mulation is a well-defined task for research, but
we also propose how one might apply these ex-
tractors to the more difficult task of full document
extraction when the location of the phone number
is unknown. We briefly describe initial tests.

The most straightforward way to extract from
a document is to split it into text windows
(spans) and try all possible extractions. Since
these are probabilistic models, we can compute
P (phone|span), and find the window span that
maximizes the probability.

best = maxspanP (phone|span) (2)

P (phone|span) =
9∏

i=0

maxjP (di = j|span) (3)

The phone number extracted from the best span is
the phone number in the text.

We collected a set of real advertisements that
don’t have phone numbers, and artificially inserted
an obscured number from our artificial dataset.
This allows us to track which span contains the
phone number, and then evaluate an extractor.

The difficulty with this task is that our mod-
els are trained on precise text spans, whereas this
full document dataset contains lots of non-phone-
related text. To address this difference, we stopped
padding our snippet input with null values (up to
the length of the RNN), and instead pad with ran-
domly selected text snippets from real ads. The
models are exactly the same, we just change how
padding works when the training text is shorter
than length 70. We refer to this as the “ad pad”.

Datum: 6I5 093 93B6
Null-Pad: 6I5 093 93B6
Ad-Pad: 6I5 093 93B6always in town call

To be clear, no models were changed, just how
training input is padded. Can the models iden-
tify the correct text span that contains a phone
number? Table 4 shows these results for standard

Text Span ID of Phone Numbers
Full Full+Partial

Zero pad 70.3% 92.1%
Craigslist ad pad 99.3% 99.7%
Backpage ad pad 98.0% 99.6%

Table 4: Results of choosing text spans with the full
phone number, or a partial match. Partial matches con-
tained on average 7-8 of the 10 digits.

null-padding versus ad-padding, as well as cross-
domain tests. We trained on Craigslist and Back-
page separately, then tested on only Backpage ads.

Window identification works very well as long
as training padded its input with real ad text. This
is encouraging in that it seems these models can
reliably identify where a phone number is present.

Finally, we tested how the models also extract
from these spans after identifying them. Extrac-
tion showed 80% accuracy on full numbers, com-
pared to 98% when train/test only on artificial
phone snippets. We attribute the drop to the diffi-
cult task - window spans contain more noise than
a precise text span. Future work will focus on this
full document task with real-world numbers.

9 Discussion

This is the first work to model noisy phone num-
ber extraction with neural models. Most notably,
our CNNs explore how to use visual characteris-
tics of the characters, rather than standard NLP-
style models with trained embeddings. To the best
of our knowledge, this is the first proposal for a vi-
sual language model in an extraction architecture.

We showed results on new challenge datasets
with injected unicode. These results illustrate the
challenge for extractors, but also the usefulness of
CNN recognizers. In fact, current rule-based ex-
tractors cannot extract any of the numbers in our
test sets. Our CRF outperformed an LSTM-only
model by 10% absolute, and data augmentation
improved on unicode tests by a relative 89% gain.

Possible future work could investigate a Gen-
erative Adversarial Network (GAN) (Goodfellow
et al., 2014). GANs have become popular in vision
tasks, but the normal GAN setup requires training
data to start from, and this sparse domain prohibits
its straightforward use.

Data from this work’s training and evaluation
are available online4, and we hope this spurs fur-
ther work on this important societal challenge.

4www.usna.edu/Users/cs/nchamber/data/phone/
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Abstract

Language is an important marker of a cultural
group, large or small. One aspect of language
variation between communities is the employ-
ment of highly specialized terms with unique
significance to the group. We study these high
affinity terms across a wide variety of commu-
nities by leveraging the rich diversity of Red-
dit.com. We provide a systematic exploration
of high affinity terms, the often rapid semantic
shifts they undergo, and their relationship to
subreddit characteristics across 2600 diverse
subreddits. Our results show that high affin-
ity terms are effective signals of loyal commu-
nities, they undergo more semantic shift than
low affinity terms, and that they are partial
barrier to entry for new users. We conclude
that Reddit is a robust and valuable data source
for testing further theories about high affinity
terms across communities.

1 Introduction

The evolution and semantic change of human lan-
guage has been studied extensively, both in a his-
torical context (Garg et al., 2017) and, increas-
ingly, in the online context (Jaidka et al., 2018).
However, few studies have explored the evolution
of words across different online communities that
allow a comparison between community charac-
teristics and terms that have high affinity to a com-
munity.

The banning of r/CoonTown and r/fatpeoplehate
in 2015, as analyzed by Saleem et al., provides
good motivation for our work. r/CoonTown was
a racist subreddit with a short life span of 8
months (November 2014 - June 2015)(Saleem
et al., 2017). During this time, as shown
by Saleem (2017), these subreddits underwent
rapid semantic development through which new
words, such as “dindu”, “tbi” and “nuffin” were
not only created, but increasingly became more

context-specific (accumulated in meaning). In
r/fatpeoplehate existing words such as “moo”,
“xxl” and “whale” underwent localized seman-
tic shift such that their meanings transformed to
derogatory terms (Saleem et al., 2017).

These two cases demonstrate that not only are
new words conceived within subreddits, existing
words undergo localized transition. They also sug-
gest that this phenomenon likely takes place in a
short time period for high affinity words. In or-
der to evaluate whether such trends are consistent
across subreddits, we study semantic shift and the
roles high affinity terms play in 2600 different sub-
reddits between November 2014 to June 2015.

Our aim is to provide a characterization of high
affinity terms by mapping their relationship to dif-
ferent types of online communities and the seman-
tic shifts they undergo in comparison to general-
ized terms (low affinity terms). We leverage data
curated from the multi-community social network
Reddit and the types of subreddit characteristics
we study are loyalty, dedication, number of users
and number of comments. Our paper explores the
following research questions:

1. Do certain community characteristics corre-
late with the presence of high affinity terms?

2. Do high affinity terms undergo greater se-
mantic shift than low affinity terms?

3. Do high affinity terms and community char-
acteristics function as a barriers to entry for
new users to participate?

Some key findings include:

1. Loyalty is strongly correlated to the presence
of high affinity terms in a community.

2. High affinity terms undergo greater seman-
tic shift than generalized terms (low affinity
terms) in a short interval of time.

57



3. High affinity terms, and dedication values of
a subreddit strongly correlate to the number
of new users that participate, indicating that
the degree of high affinity terms establishes a
lexical barrier to entry to a community.

2 Related Work and Concepts

2.1 Understanding Community Specific
Terms

Before defining high affinity terms, we examine
the traits observed in community specific terms
from past literature.

Studies have shown that words specific to
a community have qualities of cultural carriers
(Goddard, 2015). While culture is “something
learned, transmitted, passed down from one gener-
ation to the next, through human actions,” (Duranti
et al., 1997) these transmissions through language
affect a culture’s system of “classifications, spe-
cialized lexicons, metaphors, and reference forms”
in communities (Cuza, 2011). Pierre Bourdieu ar-
gues that language is not only grammar and sys-
tematic arrangemennt of words, but it is symbolic
of cultural ideas for each community. To speak
a certain language, is to view the world in a par-
ticular way. To Bourdieu, through language peo-
ple are members of a community of unique ideas
and practices (Bourdieu et al., 1991). As such,
community specific terms are usually not easily
translatable across different communities. For ex-
ample, in Hungarian “life” is metaphorically de-
scribed as “life is a war” and “life is a com-
promise”, whereas in American English “life” is
metaphorically represented as “life is a precious
posesssion”, or “life is a game” (KÃ, 2010). These
definitions of similar entities vary due to different
cultural outlooks in communities.

Besides words that are cultural carriers, slang is
also a form of terminology specific to a commu-
nity. While there is no standard operational defini-
tion of slang, many philosophical linguists define
slang as terms that are vulgar (Green, 2016; Al-
lens, 1993), encapsulate local cultural value and a
type of insider speech that roots from subcultures
(Partridge and Beale, 2002). Morphological prop-
erties of slang are defined as “extra-grammatical”,
and these morphological properties in slang are
shown to be distinguishable from morphological
properties of standard words in English (Mat-
tiello, 2013). There has been an increase of slang
in online spaces (Eble, 2012), with many terms

falling under the extra-grammatical classifica-
tions of abbreviation (‘DIY’, ‘hmu’, ‘lol’), blends
(‘brangelina’, ‘brunch’), and clippings (‘doc (doc-
tor)’, ‘fam (family)’) (Mattiello, 2013; Kulkarni
and Wang, 2018).

By extracting terms that have a high affinity to a
community, we approximate words that are either
cultural carriers or slang.

2.2 Measuring Affinity of Terms

Measurements for affinity of terms to a commu-
nity have been explored in research, where the fre-
quency of a word is compared to some background
distribution to extract linguistic variations that are
more likely in one setting (Monroe et al.; Zhang
et al., 2018). Most helpful to our approach is a
past study that computed a term’s specificity spc
to a subreddit through the pointwise mutual infor-
mation (PMI) of a wordw in one community c rel-
ative to all other communities C in Reddit (Zhang
et al., 2017).

spc(w) = log
Pc(w)

PC(w)

An issue with this metric is that terms with
equal specificity can differ in their frequency.
Specificity does not show which term is more
dominant within a community by frequency, as
show in Table 1. Due to this, we compute the affin-
ity value of a term by measuring its locality and
dominance to a community. Locality is the likeli-
hood of a term belonging to some community, and
dominance captures the presence of the term in the
said community by its frequency.

We therefore calculate the locality l of a word
wj in subreddit si through the conditional proba-
bility of a word occurring in si, relative to it oc-
curring in all other subreddits S.

lsi(wj) =
Psi(wj)

PS(wj)

We then calculate dominance d in two steps.
First we calculate an intermediate value r, which
is the difference between the count of word wj in
si subtracted by the sum of all terms W in si mul-
tiplied by constant ε, which in our work was suf-
ficient as 0.0001. If the value of r is negative, we
disregard it, as it is likely to be an infrequent word
of little semantic significance, such as a typo.

rsi(wj) = Countsi(wj)− Countsi(W )× ε
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mccoy slowmo ducati bleacher takahashi motogp
spc 0.000 0.000 -0.004 0.000 0.000 -0.004
asi 0.942 0.666 0.987 0.500 0.833 0.987

Table 1: Affinity and Specificity of terms found in
r/motogp calculated on the word distributions of 10
sample subreddits. This shows that less frequently oc-
curring words and frequently occurring words can have
the same specificity value, however the affinity value
takes into account the degree of frequency of each term
in a community.

where

rsi(wj) =

{
rsi(wj) rsi(wj) > 1

1 rsi(wj) ≤ 1

Then, we calculate the dominance d as a neg-
ative hyperbolic function of each word’s occur-
rence:

dsi(wj) = 1− 1

rsi(wj)

Finally, we compute the affinity value of a word
to a subreddit as a product of a word’s dominance
and locality:

asi(wj) = dsi(wj)× lsi(wj)

After extracting affinity values of each word rel-
ative to a subreddit, we partition the sets of words
into high affinity terms and low affinity terms.

High Affinity Terms: For each subreddit, we
extract 50 terms with the highest affinity values,
and we categorize them as high affinity terms. The
average of high affinity terms is denoted as high
affinity average.

Low Affinity Terms: For each subreddit, we
extract 50 terms with the lowest affinity values,
and we categorize them as low affinity terms. The
average of low affinity terms is denoted as low
affinity average.

2.3 How Semantic Shift Can Capture
Cultural Shifts

As previously stated, high affinity terms are ap-
proximations for words that are either cultural car-
riers or slang.

Research has shown that shifts of local neigh-
borhoods across embeddings are more effective in
capturing cultural shifts than to calculate distances
of a word across aligned embeddings, which is
used to measure structural shifts (Hamilton et al.,
2016; Eger and Mehler, 2016). Studies have repre-
sented k-nearest neighbors n of a word w through

second-order vectors V |n| that are made of the
cosine similarities between n and w, then cal-
culate the difference between these second-order
vectors to identify shifts (Hamilton et al., 2016;
Eger and Mehler, 2016). Recent works have also
modeled shifts in words through the change in
common neighbors across different embeddings
(Wendlandt et al., 2018; Eger and Mehler, 2016).

2.4 Measuring Semantic Change

Our measurement of semantic shift is based on
the concepts of semantic narrowing of words, a
process in which words become more specialized
to a context, and semantic broadening of words,
a process in which words become more gener-
alized from a context (Bloomfield, 1933; Blank
and Koch, 1999). We capture this contextual in-
formation by constructing 300 dimensional word
embeddings (word2vec) for each subreddit us-
ing skip-gram with negative sampling algorithms,
where a distributional model is trained on words
predicting their context words (Mikolov et al.,
2013). For each word, we measure narrowing as
an increase in co-occurrence of a word’s nearest
neighbors, and broadening as a decrease in co-
occurrence of a word’s nearest neighbors (Crow-
ley and Bowern, 2010).

To measure semantic shift, we extract common
vocabulary V = (w1, ..., wm) across all time in-
tervals t ∈ T . Then, for some t and t+ n, we take
a word wj’s set of k nearest-neighbors (accord-
ing to cosine similarity). These neighbor sets are
denoted as At

k(wj) and At+n
k (wj). We then cal-

culate the neighbours co-occurrence value CO as
the Jaccard similarity of neighbours sets (Hamil-
ton et al., 2016), in subreddit si:

At
k(wj) = cos-sim(wt

j , k)

At+n
k (wj) = cos-sim(wt+n

j , k)

COsi(w
t
j , w

t+n
j ) =

|At
k(wj) ∩At+n

k (wj)|
|At

k(wj) ∪At+n
k (wj)|

Then, we calculate the difference of CO across
successive embeddings in T . We label, chrono-
logically, the first time interval (t1) as initial point
and the last time interval (tp) as terminal point,
across which narrowing and broadening are mea-
sured. We used k = 10 for all computations.

Broadening Measurement: We measure
broadening as the sum of the difference of COsi
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Figure 1: This figure provides a visual representa-
tion of our methodology of semantic shift measure-
ment. The initial point embedding is trained on 2014-
11/12 dataset. The terminal point embedding is trained
on 2015-05/06. All semantic shift measurements fol-
low a chronological order of comparison, such that
narrowing and broadening are both measurements of
embeddingt+1 - embeddingt.

between initial point embedding and all successive
embeddings. This is defined as:

bsi(wj) =

p−1∑

t=2

(COsi(w
1
j , w

t+1
j )−COsi(w

1
j , w

t
j))

By comparing an embedding to its future em-
beddings, we are able to see which contexts are
lost as a word’s meaning becomes more broad.

Narrowing Measurement: Similarly, we mea-
sure narrowing by calculating the sum of the dif-
ference of CO between terminal point embedding
and all previous embeddings.

nsi(wj) =

p−2∑

t=1

(COsi(w
p
j , w

t+1
j )−COsi(w

p
j , w

t
j))

By comparing an embedding to its previous em-
beddings, we are able to see which contexts as-
sociated with a word have increased in specificity
over time.

A visual representation of the metrics are pro-
vided in Figure 1.

2.5 Extracting Rate of Change of Frequency
Many past works have also modelled relationships
between frequency and semantic shift (Lancia,
2007; Hilpert and Gries, 2016; Lijffijt et al., 2014).

One study shows that an increase in frequency of
a term across decades results in a semantic broad-
ening, while a decrease in frequency causes it to
narrow (Feltgen et al., 2017). For example an in-
crease in frequency of the word “dog” evolved its
meaning from a breed to an entire species, and
the decrease in frequency of “deer” localized its
meaning from “animal” to a specific animal (un-
dergoing narrowing) (Hilpert and Gries, 2016).

Very few studies have modelled narrowing and
broadening of terms in the short term. As such, we
are interested in the frequency patterns of terms
that go through short-term cultural shifts. One
study showed the effect of frequency on learn-
ing new words, and how it affects the use of
new words in their correct context. They con-
ducted their experiments in a physical capacity on
children of five years old who were made famil-
iar with new words (Abbot-Smith and Tomasello,
2010) in a short time period. Their results demon-
strate that familiarizing children with new words
allowed them to use the word in correct grammat-
ical contexts, and greater frequency of exposure to
new words resulted in more narrowed and correct
use of the word to a context. This pattern of teach-
ing is categorized as lexically-based learning.

Due to this, we assess whether in the short-term
in subreddits, narrowing and broadening of terms
correlates to the rate of change of frequencies.

We calculate rate of change of frequency across
time periods T for a subreddit si as such, where n
is the size of T :

∆fsi(wj) =
n−1∑

t=1

ft+1(wj)− ft(wj)

ft+1(wj)

A positive value shows an increasing rate of fre-
quency, and a negative value shows a decreasing
rate of frequency.

2.6 Characteristics of Subreddits
We introduce four quantifiers that describe subred-
dit networks based on existing typology. Using
these quantitative chararacteristics we can evalu-
ate and identify systemic patterns that exist be-
tween types of subreddits and high affinity terms.
The four quantifiers are loyalty, dedication, num-
ber of comments, and number of users.

Loyalty: Previous work on subreddit character-
istics has defined community loyalty as a percent-
age of users that demonstrate both preference and
commitment, over other communities in multiple
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Subreddits
High Aff.

Avg. High Aff. Terms
Low Aff.

Avg. Low Aff. Terms

Top 1% bravefrontier 0.999
‘sbb’, ‘zelnite’, ‘darvanshel’,

‘tridon’, ‘ulkina’ 0.000
‘food’, ‘drive’, ‘park’,

‘episode’, ‘photo’

chess 0.999
‘pgn’, ‘bxc’, ‘nxe’,

‘nxd’, ‘bxf’ 0.000
’character’, ‘compose’,

‘pack’, ‘message’, ‘damage’

Arbitrary radiohead 0.732
‘cuttooth’, ‘backdrifts’, ‘tkol’,

‘crushd’, ‘htdc’ , 0.000
’willing’, ‘phone’, ‘gain’,

‘sell’, ‘provide’

fatpeoplehate 0.357
‘pco’, ‘tubblr’, ‘fatshion’,

‘fatkini’, ‘feedee’ 0.000

’application’, ‘network’,
‘engine’, ‘element’,

‘cable’

Bottom 1% Wellthatsucks 0.002
‘helmet’, ‘shoe’, ‘brake’,

‘truck’, ‘tire’ 0.000
‘help’, ‘team’, ‘love’,
‘include’, ‘question’

gif 0.002
‘gif’, ‘prank’, ‘repost’,

‘swim’, ‘ftfy’ 0.000
‘subreddit’, ‘order’,

‘account’, ‘game’, ‘issue’

Table 2: A sample presentation of high affinity terms and low affinity terms from subreddits with high high affinity
averages (top 1%), and low high affinity averages (bottom 1%).

time periods (Hamilton et al., 2017). Preference is
demonstrated by more than half of a user’s com-
ments contributing to subreddit si ∈ S, and com-
mitment is measured by a user commenting in si
in multiple time periods t ∈ T . It has been shown
that community wide loyalty impacts usage of lin-
guistic features such as singular (“I”) and plural
(“We”) pronoun (Hamilton et al., 2017). Commu-
nities with greater loyalty have a higher usage of
plural pronouns than communities with low loy-
alty which have a heavier usage of singular pro-
nouns. Following this finding, we investigate re-
lationships between loyal communities and high
affinity terms, to gauge whether loyal communi-
ties are also strongly correlated to use of other
types of terms.

Dedication: Other studies have also shown
that user retention correlates to increased use of
subreddit specific terms (similar to high affinity
terms) (Zhang et al., 2017). We calculate user
retention to measure a community characteristic
similar to commitment as defined in a past study
(Hamilton et al., 2017), by extracting users that
comment in subreddit si ∈ S a minimum of n
number of times across all time periods t ∈ T and
label this retention value as dedication. A key dif-
ference between dedication and loyalty is that a
user does not have to contribute more than 50%
of their comments to a particular subreddit to be
dedicated, which is a requirement for loyalty. This
means that a user can be dedicated to multiple sub-
reddits, while a user is loyal to only one group at a
particular time. The comparison between loyalty
and dedication allows us to explore whether pref-
erence is a strong factor in the linguistic evolution
of high affinity terms in online communities.

Number of Comments and Number of Users:
Lastly, we measure raw metadata of subreddits
which are the number of comments made, and the
number of users that participated in a subreddit.

Existing work has shown that areas with large
populations experience a larger introduction of
new words, whereas areas with small populations
experience a greater rate of word loss (Bromham
et al., 2015). Furthermore, words in larger popu-
lations are suspect to greater language evolution.
While this is a correlation found in physical com-
munities, we assess whether this remains consis-
tent in online communities. As a proxy for pop-
ulation we consider both the number of users and
the number of comments.

3 Description of Data

Our dataset consists of all subreddits between
November 2014 to June 2015 with more than
10000 comments in that period. We performed our
measures on the curated data in time intervals of 2
months. We manually removed communities that
are mostly in non-ascii or run by bots. This re-
sulted in a dataset of 2626 subreddits.

4 Qualitative Overview of High Affinity
and Low Affinity Terms

We examine high and low affinity terms across
subreddits. Our results, as shown in Table 2,
demonstrate that high affinity terms have different
characteristics across communities.

Certain high affinity terms exist independent of
online communications. For example in r/chess,
the high affinity terms “bxc”, “bxf”, “nxe” are
all numerical representations used to communi-
cate game moves. Similarly in r/bravefrontier,
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Figure 2: This figure shows the relationship between community characteristics and high affinity averages. Each
community characteristics is binned into intervals of 20% by percentile. Loyalty most strongly correlates with
high affinity averages.

the terms ”zelnite” and ”darvanshel” are game
characters. However in r/fatpeoplehate, there are
high affinity terms that originate online. Terms
in r/fatpeoplehate demonstrate extra-grammatical
qualities of slang, such as “fatkini”, which is a
blend of “fat” + “bikini”, and “feedee”, which
is clipping of “feeder”, signalling word devel-
opment through online communication (Kulkarni
and Wang, 2018).

Interestingly, across the topically different sub-
reddits, abbreviations are common form of high
affinity terms. For instance, “pgn” in r/chess
stands for ”portable game notation”, “tkol” in
r/radiohead stand for “The king of Limbs”, “ftfy”
in r/gif stands for ”fixed that for you”. The use
of abbreviations illustrates the transformation of
“gibberish” into collective meaning within a com-
munity. It is only with the context of domain and
culture, that one can attribute meaning to these
terms.

Named Entity Recognition (NER) of Top 100
and Bottom 100 subreddits by high affinity av-
erages: We performed NER using bablefy on the
names of the top 100 and bottom 100 subreddits by
high affinity averages. Through this analysis, we
observe that 82 of the top 100 are named entities,
whereas only 18 of bottom 100 are named entities.
Of the 82, 33 subreddits are videogames, 19 are
regional subreddits and 11 are sports subreddits.
This shows that communities with high affinity av-
erages are likely to be strongly linked with a phys-
ical counterpart. Whereas the bottom 100 subred-
dits consisted of discussion and generalized sub-
reddits such as r/TrueReddit, r/Showerthoughts,
r/blackpeoplegifs whose creation and culture can
directly be attributed to online communities rather

than physical counterparts. This provides an
explanation for subreddits with low high affin-
ity averages having extremely generalized high
affinity terms, such as “helmet” and “shoe” in
r/Wellthatsucks.

5 Impact of Community Characteristics
on Affinity of Terms

We conducted prediction tasks using community
characteristics to demonstrate meaningful rela-
tionships between high affinity terms. We treated
each of the community characteristics as features
(log-transformed), and perform linear regressions,
with five cross-validation, to predict the high affin-
ity average (log-transformed) of a subreddit.

5.1 Prediction of High Affinity Terms from
Community Characteristics

We find that loyalty of a subreddit is remarkably
correlated to the high affinity average of subred-
dits. A linear model trained on loyalty to predict
high affinity average of a subreddit achieves anR2

of 0.364 (p-value < 0.001). Compared to this, a
linear model trained on dedication results in anR2

value of 0.274 (p-value < 0.001). This implies
that preference is a strong factor in the likelihood
of high affinity terms in communities.

In contrast, models trained on number of com-
ments and number of users resulted in an R2 of
0.071 and 0.004. Loyalty is therefore a much more
effective measure than most standard community
measures at least when measured on a linear scale.
This finding supports existing work, which shows
that distinctiveness of a community is strongly re-
lated to its rate of user retention (Zhang et al.,
2017).
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Community Type R2 p-value
loyalty 0.038 < 0.001

dedication 0.036 < 0.001
no. comments 0.048 < 0.001

no. users 0.004 0.001

Community Type R2 p-value
loyalty 0.005 < 0.001

dedication 0.002 0.032
no. comments 0.016 < 0.001

no. users 0.001 0.062

Table 3: Coefficient of determination values for linear models trained on community characteristics that predict
semantic narrowing (left) and semantic broadening (right) of high affinity terms.

5.2 Prediction of Low Affinity Terms from
Community Characteristics

Although low affinity terms for almost all subred-
dits have values that are very close to 0, we find
that raw subreddit meta data (log-transformed) is
an effective predictor of low average affinity term
value (log-transformed). A linear model trained
on number of comments results in a R2 of 0.456
(p-value < 0.001). This makes sense intuitively,
because as the number of comments increases, low
affinity terms have more likelihood of being gen-
eralized.

A similar model trained on number of users at-
tains an R2 of 0.180, with a model trained on loy-
alty performing the worst with an R2 of 0.055.

Finally, as we might expect a multivariate re-
gression model trained on both loyalty and number
of comments performs the best out of all models,
scoring an R2 of 0.391 (p-value < 0.001) when
predicting high affinity averages and scoring an
R2 of 0.470 (p-value < 0.001) when predicting
low affinity averages, which are significant im-
provements.

6 Assessing Semantic Shift of High
Affinity Terms

Calculating semantic shifts of high affinity terms
enables us to test whether high affinity terms are
subject to cultural shifts and whether linguistic de-
velopments in online spaces are consistent with
trends in physical communities.

6.1 Evaluating Semantic Shift to Community
Characteristics

We perform linear regression between community
characteristics and semantic shifts to assess their
relationships. Our results show that all commu-
nity characteristics are weak predictors of seman-
tic shifts. This is surprising as they are effective
predictors of affinity values.

Semantic Narrowing and Semantic Broaden-
ing: Table 3 shows that number of comments has
the strongest correlation to semantic narrowing

and semantic broadening of high affinity terms,
achieving R2 values of 0.037 and 0.019 (p-value
< 0.001). In contrast, while loyalty and dedication
have similarly high R2 values when used for mod-
eling semantic narrowing of high affinity terms as
shown in Table 3, it is more weakly linked to the
semantic broadening of high affinity terms.

Perhaps the most surprising finding is that num-
ber of users is a poor predictor of both semantic
narrowing and semantic broadening (R2 of 0.004
and 0.001) in online spaces. This is surprising be-
cause number of users and number of comments
are highly correlated features (Pearson coefficient
of 0.726, p-value < 0.001), but their performance
in approximation of semantic shifts are broadly
different.

These results provide insight into how the con-
cept of “population” works in online spaces in
contrast to physical communities. Previous works
show a weak correlation between population of a
geographic area and the occurrence of language
evolution (Bromham et al., 2015; Greenhill et al.,
2018). A limitation of these studies was their in-
ability to account for language output that was not
written (i.e, oral communications). This limita-
tion is not present in online communities because
all language output is recorded via online com-
ments. As such, the number of comments having a
stronger correlation to semantic shift than number
of users, indicates that the amount of oral commu-
nication may have contributed to language evolu-
tion.

6.2 Comparing Semantic Shift in High
Affinity and Low Affinity Terms

First we compute a metric that shows the overall
semantic shift a subreddit has experienced. This is
measured by computing the difference between se-
mantic narrowing and semantic broadening, where
a positive value indicates overall narrowing and a
negative value indicates overall broadening. We
label this result as net semantic shift. Then we
compute net semantic shift for high affinity terms
and low affinity terms for all subreddits.
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Figure 3: The sum of semantic narrowing and semantic
broadening from all subreddits by high affinity and low
affinity terms. High affinity terms are more volatile and
sensitive to cultural shifts.

We find that out of 2626 subreddits, 1638 (62%)
subreddits demonstrate a positive net semantic
shift in high affinity terms, whereas, 1529 (58%)
subreddits demonstrate a positive net semantic
shift in low affinity terms.

In Figure 3, we show that across all subred-
dits, the sum of net semantic shift in high affinity
terms is 20.462 (50.253-29.791), whereas the sum
of net semantic shift in low affinity terms is 4.402
(17.878-13.476). This implies that high affinity
terms in general are more likely to attain quali-
ties that are defining of neologisms, and are more
likely to be narrowed in communities across Red-
dit.

This is explained by our results which show
that the rate of decrease of semantic broadening
is slower than the rate of increase of semantic nar-
rowing (Pearson coefficient of -0.192, p-value <
0.001), as demonstrated by a regression coefficient
of -0.148. This trend is consistent when modeling
semantic narrowing and semantic broadening with
other community characteristics.

Interestingly, in communities with very high
affinity averages, we observe several cases where
the semantic narrowing and semantic broadening
are close to 0. Examples of such subreddits are
r/kpop, r/chess, and r/Cricket. We notice that these
groups contain terms that are essential and almost
exclusive to the domain of that community. How-
ever, these terms do not undergo extraordinary cul-
tural impetus that causes a shift in meaning. For
instance in r/chess there is little motivation to use
“bxe”, “cdf” outside of the context of game moves.

Additionally, we observe highest semantic
shifts in groups that are mostly video games, tv-

Figure 4: This figure illustrates the relationship be-
tween net semantic shift of subreddits and their average
rate of change of frequency for high-affinity terms.

shows and sports communities, with high affinity
averages being less than 0.5 in most cases - the av-
erage high affinity score of top 100 semantic nar-
rowing groups is 0.367. These lower scores that
tend away from the possible extremes, show that
niche terms that shift the most are also slightly
distributed in few other communities, but clearly
dominant in one. Terms that are likely to undergo
high levels of semantic shift have potential of be-
ing cross-cultural and adopted by a different group
of people. Study of external influence of high
affinity terms in other communities is an area of
future research, and may reveal factors that make
some high affinity terms more likely to evolve in a
short period of time.

6.3 Mapping of Frequency

Past studies show that in the long term words that
narrow decrease in frequency (Feltgen et al., 2017;
Hilpert and Gries, 2016). However, our results, as
shown in Figure 4, indicate that in the short term
net semantic shift is strongly correlated with in-
crease in frequency.

By testing the relationship between ∆fsi and
net semantic shift, we discovered a strong linear
relationship (Pearson coefficient of 0.429, p-value
< 0.001).

Language adoption studies have shown that in-
creased familiarization with a word in the short
term - measured through frequency - actually en-
ables a person to use the word more accurately
and precisely. This is achieved, in both adults and
children through lexically-based learning (Abbot-
Smith and Tomasello, 2010). Our results indicate
that online communities also employ lexically-
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Community
Characteristic R2 p-value

loyalty 0.340 < 0.001
dedication 0.518 < 0.001

High Aff. Avg. 0.201 < 0.001

Community Characteristic R2 p-value
loyalty + dedication 0.503 < 0.001
loyalty + High Aff. 0.377 < 0.001

dedication + High Aff. 0.539 < 0.001

Table 4: Coefficient of determination values for linear and multivariate models trained on community characteris-
tics that predict rate of new users (δu(si)).

based learning in the short term, and may factor
into linguistic culture adoption and development.
We derive this finding from the fact that increase
in frequency is strongly correlated with semantic
narrowing.

7 Barriers to Entry

In this section, we evaluate the impact high affinity
values have on the rate of new users participating
in each time period.

We calculate the rate of new users δu(si) as:

δu(si) =
n−1∑

t=1

Ut+1(si)− Ut(si)

Ut+1(si)

where U is the set of users in subreddit si at
time period t.

In Table 4 we present our results of regression
and correlation testing. We find that dedication
shows the strongest correlation to the rate of new
users in a community. This insinuates that abso-
lute preference is an unlikely indicator of δu(si).

Although weaker, high affinity terms also show
a correlation to δu(si). However, as shown in Ta-
ble 4, it is remarkable that dedication and high
affinity averages outperform the combination of
loyalty and dedication in predicting the value of
δu(si). This is because loyalty has a stronger cor-
relation with δu(si) than high affinity averages.
Due to this, a model trained on loyalty and ded-
ication should perform better. However not only
does it not perform better than a model trained on
dedication and high affinity averages, it performs
worse than a model trained only on dedication.
This suggests that loyalty likely captures barriers
to entry similar to dedication but more poorly. It
also suggests that high affinity terms and dedica-
tion capture different types of barriers to entry.

Furthermore, we observe that communities
which show the least δu(si), are mostly topics that
originate outside of Reddit, such as r/NASCAR
(sports) and r/SburbRP (sexual roleplay).

These results indicate that there are linguis-
tic and non-linguistic barriers that prevent peo-

ple from engaging in certain online communi-
ties. While this may not be concerning for in-
nocuous topics such as r/Chess, issues may arise
for ideologically-themed subreddits. In the age of
political polarization, hate groups and infamous
echo chambers, further research could be con-
ducted into barriers to entry and the role high affin-
ity terms play.

8 Conclusion and Future Work

Through several analyses we have shown there to
be a strong relationship between online commu-
nity behaviour and several aspects of high affin-
ity terms. We found correlations with subreddit
characteristics related to collective user behaviour,
especially loyalty. The high affinity terms under-
went semantic shift at a high rate given our very
condensed timescale. Finally, we showed a rela-
tionship between user retention and the presence
of these terms.

All three conclusions, and the secondary anal-
yses conducted alongside them, show that high
affinity terms have strong potential for further elu-
cidating online community behaviour, and likely
are correlated with further characteristics more
difficult to measure than subreddit loyalty such
as community cohesion (the strength and salience
of group identity (Rogers and Lea, 2004)) or be-
haviour leading to the formation of extremist hate
groups. Finally, our results and further investiga-
tion can contribute to the literature surrounding the
relationship between vocabulary and social mobil-
ity between groups.
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otis Papapetrou, Kai Puolamäki, and Heikki Man-
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Abstract

The goal of a Question Paraphrase Retrieval
(QPR) system is to retrieve similar questions
that result in the same answer as the orig-
inal question. Such a system can be used
to understand and answer rare and noisy re-
formulations of common questions by map-
ping them to a set of canonical forms. This
task has large-scale applications for commu-
nity Question Answering (cQA) and open-
domain spoken language question-answering
systems. In this paper, we describe a new
QPR system implemented as a Neural Infor-
mation Retrieval (NIR) system consisting of a
neural network sentence encoder and an ap-
proximate k-Nearest Neighbour index for ef-
ficient vector retrieval. We also describe our
mechanism to generate an annotated dataset
for question paraphrase retrieval experiments
automatically from question-answer logs via
distant supervision. We show that the standard
loss function in NIR, triplet loss, does not per-
form well with noisy labels. We propose the
smoothed deep metric loss (SDML), and with
our experiments on two QPR datasets we show
that it significantly outperforms triplet loss in
the noisy label setting.

1 Introduction

In this paper, we propose a Question Paraphrase
Retrieval (QPR) (Bernhard and Gurevych, 2008)
system that can operate at industrial scale when
trained on noisy training data that contains some
number of false-negative samples. A QPR sys-
tem retrieves a set of paraphrase questions for a
given input, enabling existing question answering
systems to answer rare formulations present in in-
coming questions. QPR finds natural applications
in open-domain question answering systems, and
is especially relevant to the community Question
Answering (cQA) systems.

Open-domain QA systems provide answers to a

user’s questions with or without human interven-
tion. These systems are employed by virtual as-
sistants such as Alexa, Siri, Cortana and Google
Assistant. Most virtual assistants use noisy chan-
nels, such as speech, to interact with users. Ques-
tions that are the output of an Automated Speech
Recognition (ASR) system could contain errors
such as truncations and misinterpretations. Tran-
scription errors are more likely to occur for rarer
or grammatically non-standard formulations of a
question. For example ‘Where Michael Jordan
at?’ could be a reformulation for ‘Where is
Michael Jordan?’. QPR systems mitigate the im-
pact of this noise by identifying an answerable
paraphrase of the noisy query and hence improves
the overall performance of the system.

Another use of QPR is with cQA websites such
as Quora or Yahoo Answers. These websites
are platforms in which users interact by asking
questions to the community and answering ques-
tions that have been posted by other users. The
community-driven nature of these platforms leads
to problems such as question duplication. There-
fore, having a way to identify paraphrases can
reduce clutter and improve the user experience.
Question duplication can be prevented by present-
ing users a set of candidate paraphrase questions
by retrieving them from the set of questions that
have been already answered.

Despite some similarities, QPR task differs
from the better known Paraphrase Identification
(PI) task. In order to retrieve the most similar
question to a new question, QPR system needs
to compare the new question with all other ques-
tions in the dataset. Paraphrase Identification (Mi-
halcea et al., 2006; Islam and Inkpen, 2009; He
et al., 2015) is a related task where the objec-
tive is to recognize whether a pair of sentences
are paraphrases. The largest dataset for this task
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was released by Quora.com1. State-of-the-art ap-
proaches on this dataset use neural architectures
with attention mechanisms across both the query
and candidate questions. (Parikh et al., 2016;
Wang et al., 2017; Devlin et al., 2019). However,
these systems are increasingly impractical when
scaled to millions of candidates as in the QPR set-
ting, since they involve a quadratic number of vec-
tor comparisons per question pair, which are non-
trivial to parallelize efficiently.

Information Retrieval (IR) systems have been
very successful to operate at scale for such tasks.
However, standard IR systems, such as BM25
(Robertson et al., 2004), are based on lexical over-
lap rather than on a deep semantic understanding
of the questions (Robertson et al., 2009), mak-
ing them unable to recognize paraphrases that lack
significant lexical overlap. In recent years, the
focus of the IR community has moved towards
neural network-based systems that can provide a
better representation of the object to be retrieved
while maintaining the performance of the standard
model. Neural representations can capture latent
syntactic and semantic information from the text,
overcoming the shortcomings of systems based
purely on lexical information. Moreover, repre-
sentations trained using a neural network can be
task-specific, allowing them to encode domain-
specific information that helps them outperform
generic systems. The major components of a Neu-
ral Information Retrieval (NIR) system are a neu-
ral encoder and a k-Nearest Neighbour (kNN) in-
dex (Mitra and Craswell, 2017). The encoder is a
neural network capable of transforming an input
example, in our case a question, to a fixed size
vector representation. In a standard setting, the
encoder is trained via triplet loss (Schroff et al.,
2015; Rao et al., 2016) to reduce the distance be-
tween a paraphrase vector when compared to a
paraphrase vector with respect to a non-paraphrase
vector. After being trained for this task, the en-
coder is used to embed the questions that can be
later retrieved at inference time. The encoded
questions are added to the kNN index for efficient
retrieval. The input question is encoded and used
as a query to the index, returning the top k most
similar questions

Public datasets, such as Quora Question Pairs,
are built to train and evaluate classifiers to iden-

1https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

tify paraphrases rather than evaluating retrieval
systems. Additionally, the Quora dataset is not
manually curated, thus resulting in a dataset that
contains false-negative question paraphrases. This
problem introduces noise in the training procedure
when minimizing the triplet loss, since each ques-
tion is compared with a positive and a negative
example, that could be a false negative, at each
training step. This noise is further exacerbated
in approaches for training that exploit the concept
of hard negatives, i.e., mining the non-paraphrase
samples that are close to paraphrase samples in the
vector space (Manmatha et al., 2017; Rao et al.,
2016). Rather than treating these false negatives
as a quirk of our data generation process, we rec-
ognize that false negatives are unavoidable in all
large scale information retrieval scenarios with or-
ders of millions or billions of documents - it is not
feasible to get complete annotations as that would
be of quadratic complexity in the number of doc-
uments. Usually, in these settings, randomly se-
lected documents are treated as negative examples
- thus the presence of noisy annotations with a bias
towards false negatives is a recurring phenomenon
in machine-learning based information retrieval.

In this work, we propose a loss function that
minimizes the effect of false negatives in the train-
ing data. The proposed loss function trains the
model to identify the valid paraphrase in a set
of randomly sampled questions and uses label
smoothing to assign some probability mass to neg-
ative examples, thus mitigating the impact of false
negatives.

The proposed technique is evaluated on two
datasets: a distantly supervised dataset of ques-
tions collected from a popular virtual assistant sys-
tem, and a modified version of the Quora dataset
that allows models to be evaluated in a retrieval
setting. The effect of our proposed loss and the
impact of the smoothing parameters are analyzed
in Section 4.

2 Question Paraphrase Retrieval

In QPR the task is to retrieve a set of candidate
paraphrases for a given query. Formally, given a
new query qnew, the task is to retrieve k-questions,
Qk (|Qk| = k), that are more likely to be para-
phrases of the original question. The questions
need to be retrieved from a given set of questions
Qall such that Qk ⊆ Qall, e.g., questions already
answered in a cQA website.
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2.1 System overview
The QPR system described in this paper is made
of two core components: a neural encoder and an
index. The encoder φ is a function (φ : Q → Rn)
that takes as input a question q ∈ Q and maps
it to a dense n-dimensional vector representation.
The index is defined as the encoded set of all the
questions that can be retrieved {φ(q′)|q′ ∈ Qall}
using the standard kNN search mechanism.

2.1.1 Encoder
The encoder φ used by our system is a neural
network that transforms the input question to a
fixed size vector representation. To this end, we
use a convolutional encoder since it scales bet-
ter (is easily parallelizable) compared to a re-
current neural network encoder and transformers
(Vaswani et al., 2017), that have quadratic com-
parisons while maintaining good performance on
sentence matching tasks (Yin et al., 2017). Addi-
tionally, convolutional encoders are less sensitive
to the global structure of the sentence then recur-
rent neural network thus being more resilient to
noisy nature of user-generated text The encoder
uses a three-step process:

1. An embedding layer maps each word wi in
the question q to its corresponding word em-
bedding xi ∈ Redim and thereby generating
a sentence matrix Xq ∈ Rl×edim , where l is
number of words in the question. We also use
the hashing trick of (Weinberger et al., 2009)
to map rare words to m bins via random pro-
jection to reduce the number of false matches
at the retrieval time.

2. A convolutional layer (Kim, 2014) takes
the question embedding matrix Xq as in-
put and applies a trained convolutional filter
W ∈ Redimwin iteratively by taking at each
timestep i a set of win word embeddings.
This results in the output:

hwini = σ(Wxi−win
2

:i+win
2

+ b) (1)

, where σ is a non linearity function, tanh in
our case, and b ∈ R is the bias parameter. By
iterating over the whole sentence it produces
a feature map hwin = [hwin1 , .., hwinl ].

3. A global max pooling operation is applied
over the feature map (ĥwin = max(hwin))
to reduce it into a single feature value. The

convolutional and global max pooling steps
described above are applied multiple times
(cdim times) with varying window size with
resultant ĥ values concatenated to get a fea-
ture vector h ∈ Rcdim which is then lin-
early projected to an n-dimensional output
vector using a learned weight matrix Wp ∈
Rn×cdim .

2.1.2 kNN Index
Despite there is no restriction on the type of kNN
index that can be used, for performance reasons,
we use FAISS2 (Johnson et al., 2017) as an ap-
proximate kNN index3. All the questions (Qall)
are encoded offline using the encoder φ and added
to the index. At retrieval time a new question is en-
coded and used as a query to the index. The kNN
index uses a predefined distance function (e.g. Eu-
clidean distance) to retrieve the nearest questions
in the vector space.

3 Training

Typical approaches for training the encoder use
triplet loss (Schroff et al., 2015; Rao et al., 2016).
This loss attempts to minimize the distance be-
tween positive examples while maximizing the
distance between positive and negative examples.

The loss is formalized as follows:

N∑

i

[‖φ(qai )− φ(qpi )‖22−‖φ(qai )− φ(qni )‖22 +α]+

(2)
where qai is a positive (anchor) question, qpi is a

positive match to the anchor (a valid paraphrase),
qni is a negative match (i.e. a non-paraphrase), α
is a margin parameter and N is the batch size.

In a recent work by Manmatha et al. 2017 the
authors found that better results could be obtained
by training the above objective with hard nega-
tive samples. These hard negatives are samples
from the negative class that are the closest in vec-
tor space to the positive samples, hence most likely
to be misclassified.

However, in our case, and in other cases with
noisy training data, this technique negatively im-
pacts the performance of the model since it starts
focusing disproportionately on any false-negative
samples in the data (i.e. positive examples labelled

2https://github.com/facebookresearch/
faiss

3FAISS provides efficient implementations of various ap-
proximated kNN search algorithms for both CPU and GPU
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as negative due to noise) making the learning pro-
cess faulty. For example in the Quora dataset pos-
itive examples are marked as paraphrase, dupli-
cate, by users using the website however there is
no manual check for the negative examples, thus
leading to a number of false negatives that hap-
pens to be close in the vector space.

3.1 Smoothed Deep Metric Learning

In this paper, we propose a new loss function that
overcomes the limitation of triplet loss in the noisy
setting. Instead of minimizing the distance be-
tween positive examples with respect to negative
examples, we view the problem as a classifica-
tion problem. Ideally, we would like to classify
the paraphrases of the original question amongst
all other questions in the dataset. This process
is infeasible due to time and memory constraints.
We can, however, approximate this general loss by
identifying a valid paraphrase in a set of randomly
sampled questions (Kannan et al., 2016). We map
vector distances into probabilities similar to Gold-
berger et al. 2005 by applying a softmax operation
over the negative squared euclidean distance:

p̂(a, i) =
e−‖φ(q

a)−φ(qi)‖22
∑N

j e
−‖φ(qa)−φ(qj)‖22

(3)

where qa is an anchor question and qj and qi

are questions belonging in a batch of size N con-
taining one paraphrase and N − 1 randomly sam-
pled non-paraphrases. The network is then trained
to assign a higher probability, hence a shorter dis-
tance, to pair of questions that are paraphrases.

Additionally, we apply the label smoothing reg-
ularization technique (Szegedy et al., 2016) to re-
duce impact of false negatives. This technique
reduces the probability of the ground truth by a

smoothing factor ε and redistributes it uniformly
across all other values, i.e.,

p′(k|a) = (1− ε)p(k|a) +
ε

N
(4)

where p(k|a) is the probability for the gold label.
The new smoothed labels computed in this way
are used to train the network using Cross-Entropy
(CE) or Kullback-Leibler (KL) divergence loss4.
In our setting, the standard cross-entropy loss tries
to enforce the euclidean distance between all ran-
dom points to become infinity, which may not
be feasible and could lead to noisy training and
slow convergence. Instead, assigning a constant
probability to random interactions tries to position
random points onto the surface of a hypersphere
around the anchor which simplifies the learning
problem.

The sampling required for this formulation can
be easily implemented in frameworks like Py-
Torch (Paszke et al., 2017) or MxNet (Chen et al.,
2015) using a batch of positive pairs< q1,j , q2,j >
derived from a shuffled dataset, as depicted in Fig-
ure 2. In this setting, each question q1,i would have
exactly one paraphrase, i.e., q2,i andN−1 all other
questions q2,j when j 6= i would serve as counter-
examples. This batched implementation reduces
training time and makes sampling tractable by
avoiding sampling N questions for each example,
reducing the number of forward passes required to
encode the questions in a batch from O(N2) in a
naive implementation to O(2N).

4In this setting, CE loss and KL divergence loss are equiv-
alent in expected values. However, we use the KL divergence
loss for performance reasons.
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Figure 2: Batched implementation of the loss with
smoothing parameter ε = 0.3 and batch size N = 3.
Each paraphrase pair< q1,j , q2,j > in the batch is com-
pared with all the others questions in the batch.

4 Experiments

In this section, we present the experimental setup
used to validate our approach for QPR using the
Smoothed Deep Metric Learning (SDML) tech-
nique.

4.1 Datasets

In order to generate a dataset for question para-
phrase retrieval, we propose a technique that uses
distant supervision to create it automatically from
high-precision question-answer (QA) logs. Addi-
tionally, due to the proprietary nature of our in-
ternal dataset, we tested our approach on a modi-
fied version of the Quora paraphrase identification
dataset that has been adapted for the paraphrase
retrieval task.

4.1.1 Open Domain QA dataset
Our open domain Q&A dataset is created by weak
supervision method using high precision QA logs
of a large scale industrial virtual assistant. From
the logs, we retrieve ‘clusters’ of questions that
are mapped to the same answer. However, we
notice that this may generate clusters where un-
related questions are mapped to a generic answer.
For instance, many different math questions may
map to the same answer; e.g. a given number. To
further refine these clusters, the data is filtered us-
ing a heuristic based on an intra-cluster similarity
metric that we call cluster coherence, denoted as c.
We define this metric as the mean Jaccard similar-
ity (Levandowsky and Winter, 1971) of each ques-
tion in a cluster to the cluster taken as the whole.

Mathematically, for a given cluster A =
{q1, q2...qn} and defining Tqi = {wi1 , wi2 , ...wik}
as shorthand for the set of unique tokens present

in a given question, the coherence of the cluster is
defined as:

S =

n⋃

i=1

Tqi (5)

c =
1

n
Σn
i=1

|Tqi ∩ S|
|S| (6)

In practice, we found that even a small coher-
ence filter (c < 0.1) can eliminate all incoherent
question clusters. Our approach to weak supervi-
sion can be considered as a generalized instance of
the candidate-generation noise-removal pipeline
paradigm used by Kim et al. 2018. Once the in-
coherent clusters are removed from the dataset,
the remaining clusters are randomly split in an
80:10:10 ratio into training, validation and test sets
and question pairs are generated from them5. A
second filter is applied to remove questions in the
validation and test sets that overlap with questions
in the training set. The final output of the weak su-
pervision process is a set of silver labelled clusters
with > 99% accuracy based on spot-checking, a
random sample of 200 clusters.

4.1.2 Quora dataset
We introduce a variant of the Quora dataset for
QPR task. The original dataset consists of pairs
of questions with a positive label if they are para-
phrases, and a negative label if they are not. Simi-
larly to Haponchyk et al. (2018), we identify ques-
tion clusters in the dataset by exploiting the transi-
tive property of the paraphrase relation in the orig-
inal pairs, i.e., if q1 and q2 are paraphrases, and q2
and q3 are paraphrases then q1 and q3 are also para-
phrases, hence q1, q2, and q3 belong to the same
cluster. After iterating over the entire dataset, we
identified 60, 312 question clusters. The question
clusters are split into the training, validation and
test sets such that the resulting validation and test
set contains roughly 5, 000 question pairs each,
and the training set contains 219, 369 question
pairs6. The kNN index is composed of all the
questions in the original Quora datasets (includ-
ing questions that appear only as negative, thus not
being part of any cluster) for a total of 556, 107
questions.

5The open-domain QA dataset contains on order of 100k
- 1M training clusters, 10k - 100k clusters each for validation
and testing, and a search index of size ≈ 10M .

6The code to generate the splits will be released upon ac-
ceptance.
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4.2 Experimental setup

We described the architecture of our encoder pre-
viously in section 2.1.1. For experimentation, we
randomly initialized word embeddings. The size
of vocabulary for Quora dataset is fixed at 50,000
whereas for the bigger open-domain QA dataset
we used a vocabulary of size 100,000. To map
rare words we use the hashing trick (Weinberger
et al., 2009) with 5,000 bins for the Quora dataset
and 10,000 bins for the QA dataset.

We set the dimensionality of word embeddings
at 300 (i.e., edim = 300); the convolutional layer
uses a window size of 5 (i.e., win = 5) and the en-
coder outputs a vector of size n = 300. For triplet
loss the network is trained with margin α = 0.5.
The default batch size for all the experiments is
512 (i.e., N = 512) and the smoothing factor
for SDML, ε, is 0.3. For all experiments train-
ing is performed using the Adam optimizer with
learning rate λ = 0.001 until the model stops im-
proving on the validation test, using early stop-
ping (Prechelt, 1998) on the ROC AUC metric
(Bradley, 1997).

4.3 Evaluation

We use IVF2000, Flat configuration of the FAISS
library as our index, which is a hierarchical in-
dex consisting of an index of k-means centroids
as the top-level index. For evaluation, we re-
trieve 20 questions with 10 probes into the in-
dex each returning a pair of paraphrase questions,
with an average query time of < 10 ms. These
questions are used to measure the system per-
formance via standard information retrieval met-
rics, Hits@N (H@N ) and Mean Reciprocal Rank
(MRR). H@N measures if at least one question
in the first N that are retrieved is a paraphrase
and MRR is the mean reciprocal rank (position)
at which the first retrieved paraphrase is encoun-
tered.

4.4 Results

In the first set of experiments, we measured the
impact of varying the smoothing factor ε. The re-
sults for the Quora validation set are presented in
Table 1. We observe that the presence of smooth-
ing leads to a significant increase over the baseline
(simple cross-entropy loss) and increasing this pa-
rameter has a positive impact up to ε = 0.3.

In our second experiment, we hold the ε con-
stant at 0.3 and experiment with varying the num-

ε H@1 H@10 MRR
0 0.5568 0.7381 0.6217
0.1 0.5901 0.7841 0.6591
0.2 0.6030 0.8090 0.6762
0.3 0.6133 0.8113 0.6837
0.4 0.6107 0.8144 0.6815

Table 1: Impact of smoothing factor ε on the Quora
validation set.

N H@1 H@10 MRR
32 0.5389 0.7444 0.6103
64 0.5710 0.7726 0.6410
128 0.6093 0.8085 0.6777
256 0.6112 0.8141 0.6833
512 0.6133 0.8113 0.6837
1024 0.6081 0.8008 0.6764

Table 2: Impact of the batch size N on the Quora
validation set. For computing SDML a batch consists
of a paraphrase and N − 1 negative examples.

ber of negative samples. Table 2 shows the effect
of an increase in the number of negative examples
in a batch. The model’s performance reaches its
maximum value at N = 512, i.e., with 511 nega-
tive samples for each positive sample. We want to
point out that we limited our exploration to 1024
due to memory constraints. However, better per-
formance may be achieved by further increasing
the number of examples, since the batch becomes
a better approximation of the real distribution.

Table 3 and 4 compare the proposed loss with
the triplet loss with random sampling, TL(Rand).
We compared the proposed approach with two
variants of triplet loss that uses different distance
functions Euclidean Distance (EUC) and Sum of
Squared Differences (SSD). The Euclidean dis-
tance is the standard distance function for triplet
loss implementation present in popular deep learn-
ing frameworks, PyTorch and Mxnet, whereas
SSD is the distance function used in the original
paper of Schroff et al. 2015. Our approach im-
proves over the original triplet loss considerably
on both datasets. The SSD distance also outper-
forms the EUC implementation of the loss.

Tables 5 and 6 show the results on the open do-
main QA dataset validation and test set. TL(Rand)
is the triplet loss with random sampling of nega-
tive examples, whereas TL(Hard) is a variant with
hard negative mining. In both cases, the SDML
outperforms triplet loss by a considerable mar-
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Loss Dist H@1 H@10 MRR
TL (Rand) EUC 0.4742 0.6509 0.5359
TL (Rand) SSD 0.5763 0.7640 0.6421
SDML SSD 0.6133 0.8113 0.6837

Table 3: Comparison of different loss functions on
Quora validation set.

Loss Dist H@1 H@10 MRR
TL (Rand) EUC 0.4641 0.6523 0.5297
TL (Rand) SSD 0.5507 0.7641 0.6265
SDML SSD 0.6043 0.8179 0.6789

Table 4: Comparison of different loss functions on
Quora test set.

Loss Dist H@1 H@10 MRR
TL (Rand) EUC 0.5738 0.7684 0.6428
TL (Rand) SSD 0.6506 0.8579 0.7252
TL (Hard) EUC 0.5549 0.7534 0.6256
TL (Hard) SSD 0.5233 0.7077 0.5870
SDML EUC 0.6526 0.8832 0.7361
SDML SSD 0.6745 0.8817 0.7491

Table 5: Comparison of different loss functions on
open domain QA dataset validation set.

Loss Dist H@1 H@10 MRR
TL (Rand) EUC 0.5721 0.7695 0.6431
TL (Rand) SSD 0.6538 0.8610 0.7271
TL (Hard) EUC 0.5593 0.7593 0.6304
TL (Hard) SSD 0.5201 0.7095 0.5863
SDML EUC 0.6545 0.8846 0.7382
SDML SSD 0.6718 0.8830 0.7480

Table 6: Comparison of different loss functions on
open domain QA dataset test set.

gin. It is important to note that, since our dataset
contains noisy examples, triplet loss with random
sampling outperforms hard sampling setting, in
contrast with the results presented in Manmatha
et al. 2017.

The results presented in this section are consis-
tent with our expectations based on the design of
the loss function.

5 Conclusion

We investigated a variant of the paraphrase identi-
fication task - large scale question paraphrase re-
trieval, which is of particular importance in indus-
trial question answering applications. We devised

a weak supervision algorithm to generate training
data from the logs of an existing high precision
question-answering system and introduced a vari-
ant of the popular Quora dataset for this task. In
order to solve this task efficiently, we developed
a neural information retrieval system consisting of
a convolutional neural encoder and a fast approxi-
mate nearest neighbour search index.

Triplet loss, a standard baseline for learning-
to-rank setting, tends to overfit to noisy examples
in training. To deal with this issue, we designed
a new loss function inspired by label smooth-
ing, which assigns a small constant probability to
randomly paired question utterances in a training
mini-batch resulting in a model that demonstrates
superior performance. We believe that our batch-
wise smoothed loss formulation will be applicable
to a variety of metric learning and information re-
trieval problems for which triplet loss is currently
widespread. The loss function framework we de-
scribe is also flexible enough to experiment with
different priors - for e.g. allocating probability
masses based on the distances between the points.
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Abstract

User reviews provide a significant source of
information for companies to understand their
market and audience. In order to discover
broad trends in this source, researchers have
typically used topic models such as Latent
Dirichlet Allocation (LDA). However, while
there are metrics to choose the “best” num-
ber of topics, it is not clear whether the re-
sulting topics can also provide in-depth, ac-
tionable product analysis. Our paper exam-
ines this issue by analyzing user reviews from
the Best Buy US website for smart speakers.
Using coherence scores to choose topics, we
test whether the results help us to understand
user interests and concerns. We find that while
coherence scores are a good starting point to
identify a number of topics, it still requires
manual adaptation based on domain knowl-
edge to provide market insights. We show that
the resulting dimensions capture brand perfor-
mance and differences, and differentiate the
market into two distinct groups with different
properties.

1 Introduction

The Internet has provided a platform for people to
express their opinions on a wide range of issues,
including reviews for products they buy. Listen-
ing to what users say is critical to understanding
the product usage, helpfulness, and opportunities
for further product development to deliver better
user experience. User reviews – despite some po-
tentially inherent biases1 – have quickly become
an invaluable (and cheap) form of information for
product managers and analysts (Dellarocas, 2006).
However, the speed, amount, and varying format
of user feedback also creates a need to effectively
extract the most important insights.

1People tend to over-report negative experiences, while
some positive reviews are bought (Hovy, 2016).

Topic models, especially LDA (Blei et al.,
2003), are one of the most widely used tools for
these purposes. However, due to their stochas-
tic nature, they can present a challenge for in-
terpretability (McAuliffe and Blei, 2008; Chang
et al., 2009). This is less problematic when the
analysis is exploratory, but proves difficult if it is
to result in actionable changes, for example prod-
uct development. The main dimension of freedom
in LDA is the number of topics: while there are
metrics to assess the optimal number according
to a criterion, it is unclear whether the resulting
topics provide us with a useful discrimination for
product and market analysis. The question is “Can
we derive market-relevant information from topic
modeling of reviews?”

We use smart speakers as a test case to study
LDA topic models for both high-level and in-depth
analyses. We are interested in to answer the fol-
lowing research questions:

• What are the main dimensions of concerns
when people talk about smart speakers?

• Can the LDA topic mixtures be used to di-
rectly compare smart speakers by Amazon,
Google, Apple, and Sonos?

Smart speakers are a type of wireless speaker
that provides a voice interface for people to use
spoken input to control household devices and ap-
pliances. While still relatively new, smart speak-
ers are rapidly growing in popularity. As the
Economist (2017) put it: “voice has the power
to transform computing, by providing a natural
means of interaction.” We use a dataset of smart
speaker reviews and coherence scores as a met-
ric to choose the number of topics, and evaluate
the resulting model both in terms of human judge-
ment and in its ability to meaningfully discrimi-
nate brands in the market.
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Raw data
After

pre-processing

# reviews 53,273
# words 1,724,842 529,035
# unique words 25,007 10,102

Table 1: Summary of dataset.

Contributions We show that LDA can be a
valuable tool for user insights: 1) basic user con-
cerns can be distinguished with LDA by using co-
herence scores (Röder et al., 2015) to determine
the best number of topics, but an additional step
is still needed for consolidation; 2) human judge-
ment correlates strongly with the model findings;
3) the extracted topic mixture distributions accu-
rately reflect the qualitative dimensions to com-
pare products and distinguish brands.

2 Dataset

2.1 Data collection

From the Best Buy US website, we collect a
dataset of 53,273 reviews for nine products from
four brands: Amazon (Echo, Echo Dot, Echo
Spot), Google (Home, Home Mini, Home Max),
Apple (HomePod) and Sonos (One, Beam). Each
review includes a review text and the brand as-
sociated with it. Our collection took place in
November 2018. Due to their later market entries
and significantly smaller market sizes, the num-
ber of available Apple and Sonos reviews is lim-
ited. Amazon, Google, Apple, and Sonos reviews
account for 53.9%, 41.1%, 3.5% and 1.5% of the
dataset, respectively.

2.2 Review text pre-processing

We pre-process the review text as follows: First,
we convert all text to lowercase and tokenize it.
We then remove punctuation and stop words. We
build bigrams and remove any remaining words
with 2 or fewer characters. Finally, we lemma-
tize the data. The statistics of the resulting bag-of-
words representation are described in Table 1.

3 Methodology

3.1 Topic extraction

The main issue in LDA is choosing the optimal
number of topics. To address this issue, we use

the coherence score (Röder et al., 2015) of the re-
sulting topics. This metric is more useful for in-
terpretability than choosing the number of topics
on held-out data likelihood, which is a proxy and
can still result in semantically meaningless topics
(Chang et al., 2009).

The question is: what is coherent? A set of topic
descriptors are said to be coherent if they sup-
port each other and refer to the same topic or con-
cept. For example, “music, subscription, stream-
ing, spotify, pandora” are more coherent than “mu-
sic, machine, nlp, yelp, love.” While this differ-
ence is obvious to human observers, we need a
way to quantify it algorithmically.

Coherence scores are a way to do this. Several
versions exist, but the one used here has the high-
est correlation with human ratings (Röder et al.,
2015). It takes the topic descriptors and combines
four measures of them that capture different as-
pects of “coherence”: 1) a segmentationn Soneset ,
2) a boolean sliding window Psw(110), 3) the in-
direct cosine measure with normalized pointwise
mutual information (NPMI) m̃cos(nlr), and 4) the
arithmetic mean of the cosine similarities σa.

The input to the scoring function is a set W of
the N top words describing a topic, derived from
the fitted model. The first step is their segmenta-
tion Soneset . It measures how strongly W ∗ supports
W ′ by quantifying the similarity of W ∗ and W ′ in
relation to all the words in W :
{
(W ′,W ∗)|W ′ = {wi};wi ∈W ;W ∗ =W

}

In order to so do,W ′ andW ∗ are represented as
context vectors ~v(W ′) and ~v(W ∗) by pairing them
with all words in W :

~v(W ′) =




∑

wi∈W ′
NPMI(wi, wj)

γ




j=1,...,|W |

The same applies for ~v(W ∗). In addition:

NPMI(wi, wj)γ =


 log

P (wi,wj)+ε
P (wi)·P (wj)

− log(P (wi, wj) + ε



γ

An increase of γ gives higher NPMI values
more weight. ε is set to a small value to pre-
vent logarithm of zero. We choose γ = 1 and
ε = 10−12.

Second, the probability Psw(110) captures prox-
imity between word tokens. It is the boolean slid-
ing window probability, i.e., the number of doc-
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Figure 1: Example of word intrusion task in the survey

Figure 2: Example of topic intrusion task in the survey

uments in which the word occurs, divided by the
number of sliding windows of size s = 110.

Third, given context vectors ~u = ~v(W ′) and
~w = ~v(W ∗) for the word sets of a pair Si =
(W ′,W ∗), the similarity of W ′ and W ∗ is the co-
sine vector similarity between all context vectors.

scos(~u, ~w) =

∑|W |
i=1 ui · wi
‖~u‖2 · ‖~w‖2

Finally, the cosine similarity measures are aver-
aged, giving us a single coherence score for each
model (each model has a different number of top-
ics).

We fit LDA models, using Gensim library in
Python, with the number of topics ranging from
2 to 20 to calculate the coherence score. For each
model, we choose the top 20 words of each topic
as inputs to calculate the model’s coherence score.
We move forward with the model with the highest
coherence score (13 topics) for validation, and use
the document-topic distributions and topic-word
distributions from that model in the subsequent
steps.

3.2 LDA validation
To evaluate the semantic interpretability of the re-
sulting LDA model from the coherence score se-
lection, we run a human judgment survey using
word intrusion and topic intrusion. We used 125
human judges. Each of 125 human subjects re-
sponds to 10 questions (5 questions for word in-
trusion, and 5 questions for topic intrusion), which
are randomly selected from a collection of 20
questions.

For the word intrusion task, each subject is
asked to choose which word they think does not
belong to the topic (Fig. 1). Each question is com-
prised of the 5 words with the highest probabili-

ties in that topic, and one random word with low
probability in that topic but high probability (top 5
most frequent words) in another topic. The word
that does not belong to the topic is called the true
intruder word. The hypothesis of word intrusion is
that if the topics are interpretable, they are coher-
ent, and subjects will consistently choose the true
intruder words.

For topic k, letwk be the true intruder word, ik,s
be the intruder selected by the subject s. S is the
number of subjects. The model precision for topic
k is defined as the fraction of subjects agreeing
with the model:

MPk =

∑
s |(ik,s = wk)|

S

The model precision ranges from 0 to 1, with
higher value indicating a better model.

For the topic intrusion task, each survey sub-
ject is shown a short review text and is asked to
choose a group of words which they think do not
describe the review (Fig. 2). Each group of words
represents a topic. Each question is comprised of 3
topics with the highest probabilities LDA assigned
to that review, and 1 random topic with low proba-
bility. The topic with low probability is called the
true intruder topic. The hypothesis of topic intru-
sion is that if the association of topics to a doc-
ument is interpretable, subjects will consistently
choose the true intruder topic.

For review r, let jr be the true intruder topic,
jr,s be the intruding topic selected by subject s. θr
is the probability that the review r belongs to each
topic. The topic log odds for a review r are defined
as the log ratio of a) the probability mass assigned
to the true intruder to b) the probability mass as-
signed to the intruder selected by the subject:

TLOr =

∑
s (log θr,jr− log θr,jr,s)

S

The topic log odds have an upper bound of 0,
which indicates the perfect match between judg-
ments of the model and the subjects. This met-
ric is preferred for the topic intrusion task rather
than the model precision, which only takes into
account right or wrong answers, because each
topic has a probability of generating the review.
Thus, the topic log odds serve as an error function
(Lukasiewicz et al., 2018).

78



Figure 3: Coherence score for each model. Models
with 7, 13, and 14 topics have highest coherence score.

4 Results and discussion

4.1 Topic extraction
For each model, we compute topic coherence
based on the top 20 words in each topic. The topic
coherence plot (Fig. 3) shows three candidates for
the best number of topics, 7, 13, and 14, all with
a score of 0.62. We manually examine the top
20 words for each. The 7-topic model has some
mixed and chained topics e.g., “easy, use, great,
setup, gift, christmas.” The 14-topic model does
not provide any more meaningful topics compared
to 13 topics. Thus, we choose the 13-topic model.

4.2 LDA validation and consolidation
We extract document-topic and topic-word distri-
butions for 13 topics and evaluate them in a hu-
man judgment survey on word and topic intrusion.
The mean of the word intrusion precision is 0.85
(standard deviation 0.086), and the mean of the
topic log odds is -1.66 (standard deviation 1.58).
Fig. 4 shows the box plots for the results of both
tasks. Model precision and topic log odds are on
different scales, see section 3.2. Model precision
is sufficiently good, while topic log odds are ac-
ceptable, but with higher variance. They are on a
par with the best models in (Chang et al., 2009;
Arnold et al., 2016).

Reviews dominated by few topics show more
agreement between model and human judges, re-
views with many topics show a greater diver-
gence. For example, for the review with the lowest
level of agreement (lowest topic log odds): “Once
I managed to get all the apps synced with this
speaker, I was blown away by the sound quality.
Using Alexa’s voice recognition is great, even from
the other side of the room.”, LDA assigns fairly
equal proportions to the top 3 topics (23%, 25%,

Figure 4: Model precision with word intrusion (left)
and topic log odds with topic intrusion (right).

and 32%). For the review with the highest level
of agreement (highest topic log odds): “I get my
morning facts and news all in one easy to use sys-
tem.”, LDA assigns 48% to a dominant topic, and
15% and 26% to the next two topics.

After running the intrusion tests with the 13-
topic model, we manually merge some topics that
were similar to each other. This process results in
8 dimensions (we call them “dimensions” to dif-
ferentiate them from the 13-topic model of the pre-
vious steps). We use these 8 dimensions to mea-
sure brand performance.

As (Boyd-Graber et al., 2014) pointed out, dif-
ferent researchers might combine topics differ-
ently. Here, the merging step is based on our
domain knowledge in the smart speaker market.
We group topics with similar top words into one
dimension. For topics that we cannot label, we
group them to the most similar topics based on the
top words. Doing so, we aim to make the topics
maximally distinguished from each other, and to
be able to label the topics appropriately.

Table 2 shows the respective top keywords. The
following describes the resulting 8 dimensions.

1. Price: price and worthiness, especially as
gifts. Example: “Love my Echo Dot, great
purchase! Made a great Christmas gift.”
(Amazon)

2. Integration: ability to connect, and control
devices/household appliances (e.g., lighting,
thermostat) in a smart home. Bedroom and
kitchen are the two rooms in which people
put their smart speakers most often. Exam-
ple:“I use these in several rooms in my home
to control lights and my AV system. They in-
tegrate with my Samsung Smart Things Hub
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Label Top keywords

Price price, buy, gift, christmas, worth, black friday, money, sale, deal, item
Integration light, control, command, system, integration, thermostat, room, ecosystem, connect
Sound quality speaker, sound, quality, small, music, loud, great, room, bluetooth, volume
Accuracy question, answer, time, response, quick, issue, problem, work, search, good
Skills music, weather, news, alarm, timer, kitchen, morning, reminder, shopping list
Fun fun, family, kid, useful, helpful, great, friend, game, information, question
Ease of use easy, use, set, setup, simple, install, recommend, connect, quick, work
Playing music music, play, song, playlist, favorite, pandora, prime, stream, subscription, beam

Table 2: 8 merged dimensions and the keywords reveal how people use smart speakers and their perceptions.

and Harmony Hub.” (Amazon)

3. Sound quality: ability to provide high-
quality sound. Example: “Can’t believe this
little device has such great sound quality”
(Apple). “This is a great speaker! The sound
is just WOW! And the speaker doesn’t take up
much space.” (Sonos)

4. Accuracy: ability to respond accurately to
the users voice commands, provide answers
to questions, and to issues they might en-
counter. Example: “It is amazing how many
simple questions stump Alexa. Too frequently
the response I hear is “I don’t understand”
or “Sorry, I can’t find the answer.”” (Ama-
zon)

5. Skills: variety of applications that the smart
speaker provides. They are referred to as
“skills” in Amazon Alexa, and as “actions” in
Google Assistant. I.e., music, weather fore-
cast, news, alarms, setting kitchen timers, re-
minders, and shopping lists. Example: “You
can ask Alexa anything. Find information
about the weather, sports, or the news. Also,
ask her to play your favorite music. All you
have to do is ask.” (Amazon)

6. Fun: pleasure to interact with smart speak-
ers, especially with/for kids and family. Ex-
ample: “Lots of fun and lots of great infor-
mation. It was fun to ask it all kinds of ques-
tions.” (Google)

7. Ease of use: ease of setup and connecting to
an existing internet connection via the mobile
app to use voice commands. Example: “Fun
and easy to operate. Connects to your Wi-Fi
in a simple and quick manner.” (Amazon)

Figure 5: % of reviews based on dominant dimensions.

8. Playing music: ability to play music, con-
nect with music services, like Amazon Music
and Pandora. Example: “Upload all of your
music for free to Google Play Music and then
tell the Mini what to play from your music
and it will!” (Google)

Since the LDA model can assign a review to
multiple topics, it is more difficult to see the pro-
portion of reviews for each. We define the domi-
nant dimension for each review as the topic with
the highest probability for the review. The most
frequently mentioned dominant dimensions (Fig.
5) are price (27% of total reviews), integration
(25%), sound quality (14%), and accuracy (13%).

4.3 Brand performance along dimensions

Brand performance measures how frequently each
dimension was mentioned in user reviews.

As described in section 2.1, the amount of avail-
able data across companies is highly imbalanced.
Thus, in order to compare the relative performance
of brands along the 8 dimensions, we normalize
the amount of data for each company. We define
a relative dimension score for a brand b (Ama-
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Figure 6: Company profiles along 8 dimensions form 2
groups with similar positioning.

zon, Google, Apple Sonos) along a dimension
dk (k ∈ [1, 8]) as the normalized topic probabil-
ity:

DSb,dk =

1/Nb

Nb∑
r=1

pr,dk

1/N

N∑
r=1

pr,dk

pr,dk is the probability that review r belongs to
dimension dk. Nb is the number of reviews for
brand b. N is the total number of reviews for all
brands.

The line plot in Fig. 6 reveals some interesting
differences between the brands’ relative strengths
and weaknesses.

Amazon and Google speakers are similar to
each other, with a balanced performance on all di-
mensions. On the other hand, Apple and Sonos
speakers are also similar to each other, but with a
focus on sound quality. This suggests a segmenta-
tion of the smart speaker market into two groups
along those lines.

Apple and Sonos clearly outperform Amazon
and Google speakers in terms of sound quality.
Indeed, both Apple and Sonos speakers are high-
end products, arguably the best sounding smart
speakers on the market, using, e.g., adaptive audio
(beamforming) to determine the position of a user
and adjust its microphones accordingly. Sonos has
digital amplifiers, a tweeter, a woofer, and a 6-
microphone array, and an adaptive noise suppres-
sion algorithm.

Interestingly, Amazon and Google users men-
tion using their speakers to listen to music as much
as Apple and Sonos users do. This is most likely
due to the fact that playing music is the most pop-
ular task on every smart speaker. However, it does

suggest that only a few people are willing to pay
extra for better sound quality, and that they do
greatly appreciate sound quality and mention it of-
ten.

Amazon performs best in term of price, fol-
lowed by Google. Users mention that prices are
reasonable, and many people buy it as a gift for
Christmas or during sales such as Black Friday.
Amazon speakers do have the lowest prices among
the 4 brands (Amazon: $49.99, Echo 2nd Gen:
$99.99, Echo Spot: $129.99). Google’s high-end
speaker, the HomeMax ($399.00) is much less
popular than its Home Mini ($49.00) and Home
($129.00). The main competition in terms of price
and gift is between Amazon Echo Dot ($49.99)
and Google Home Mini ($49).

For skills, Amazon/Google perform better than
Apple/Sonos. Siri is strictly limited to Apple’s
ecosystem (e.g., users can only stream music from
Apple Music, not from Spotify). This is poten-
tially interesting for Sonos to distinguish them-
selves, as the speakers are Alexa-enabled (as of
November 2018 when the reviews were collected),
so users could exploit its skills just like Ama-
zon users. One possible explanation could be that
Sonos users focus more on music and sound qual-
ity, and that other skills become less important to
them so they mention other skills less often.

5 Related work

Several topic models have been proposed, such as
Latent Semantic Indexing (LSI) (Deerwester et al.,
1990), Probabilistic LSI (pLSI) (Hofmann, 1999),
and the most commonly used, Latent Dirichlet Al-
location (Blei et al., 2003). LDA assumes that
a document is comprised of mixtures over latent
topics, and each topic is a distribution over words.

LDA has some limitations. The main limita-
tions are the assumption that the number of topics
is known and fixed, together with the validity of
the assignments, and the interpretability of topics.
LDA evaluation schemes can be categorized into
intrinsic evaluation (holdout-log likelihood/ per-
plexity (Blei et al., 2003; Wallach et al., 2009),
topic coherence (Newman et al., 2010; Röder
et al., 2015), human-in-the-loop (word or topic in-
trusion (Chang et al., 2009; Lau et al., 2014)), and
extrinsic evaluation (e.g., document clustering (Ja-
garlamudi et al., 2012), information retrieval (Wei
and Croft, 2006)). Those work mainly focus on
extracting meaningful high-level topic descriptors.
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In this paper, we show that those techniques, when
combined appropriately together, are useful in not
only high-level topics but also in-depth insights
from data. In order to do so, we address LDA lim-
itations with topic coherence, human-in-the-loop,
and incorporating human knowledge to merge top-
ics for better quality (Boyd-Graber et al., 2014).

6 Conclusion

In this paper, we use the coherence score by Röder
et al. (2015) as a guide to choose the optimal num-
ber of topics, and evaluate this choice with respect
to human judgement and its ability to provide mar-
ket insights. While coherence scores are judged
meaningful (in word intrusion and topic intrusion)
and provide a good starting point, they require and
additional merging step based on domain knowl-
edge to provide market insights. We merge the op-
timal choice of 13 topics into 8 dimensions for eas-
ier interpretation. We show that the topic mixture
proportions are useful to give more insights about
brand performance and market structure, separat-
ing the brands into two distinct camps with sim-
ilar properties. Further research directions could
assess the generalizability of the methodology on
other datasets and tasks.
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Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the 8th ACM Interna-
tional Conference on Web Search and Data Mining.
ACM Press.

Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov,
and David Mimno. 2009. Evaluation methods for
topic models. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning. ACM
Press.

Xing Wei and W. Bruce Croft. 2006. LDA-based docu-
ment models for ad-hoc retrieval. In Proceedings of
the 29th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval. ACM Press.

83



Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 84–93
Hong Kong, Nov 4, 2019. c©2019 Association for Computational Linguistics

Predicting Algorithm Classes for Programming Word Problems

Vinayak Athavale ∗1 Aayush Naik ∗2 Rajas Vanjape 1 Manish Shrivastava 1

(vinayak.athavale, rajas.vanjape)@research.iiit.ac.in, aayushnaik17@gmail.com, m.shrivastava@iiit.ac.in
1 Language Technologies Research Center, IIIT Hyderabad

2 IIIT Hyderabad

Abstract

We introduce the task of algorithm class pre-
diction for programming word problems. A
programming word problem is a problem writ-
ten in natural language, which can be solved
using an algorithm or a program. We define
classes of various programming word prob-
lems which correspond to the class of algo-
rithms required to solve the problem. We
present four new datasets for this task, two
multiclass datasets with 550 and 1159 prob-
lems each and two multilabel datasets having
3737 and 3960 problems each. We pose the
problem as a text classification problem and
train neural network and non-neural network
based models on this task. Our best perform-
ing classifier gets an accuracy of 62.7 per-
cent for the multiclass case on the five class
classification dataset, Codeforces Multiclass-5
(CFMC5). We also do some human-level anal-
ysis and compare human performance with
that of our text classification models. Our best
classifier has an accuracy only 9 percent lower
than that of a human on this task. To the best
of our knowledge, these are the first reported
results on such a task. We make our code and
datasets publicly available.

1 Introduction

In this paper we introduce and work on the prob-
lem of predicting algorithms classes for program-
ming word problems (PWPs). A PWP is a prob-
lem written in natural language which can be
solved using a computer program. These prob-
lems generally map to one or more classes of al-
gorithms, which are used to solve them. Binary
search, disjoint-set union, and dynamic program-
ming are some examples. In this paper, our aim
is to automatically map programming word prob-
lems to the relevant classes of algorithms. We ap-

∗* denotes equal contribution

Figure 1: An example programming word problem.
Note that the example shown here is one of the
easy Codeforces problems – most problems are much
harder.

proach this problem by treating it as a classifica-
tion task.

Programming word problems A program-
ming word problem (PWP) requires the solver to
design correct and efficient programs. The cor-
rectness and efficiency is checked by various test-
cases provided by the problem writer. A PWP
usually consists of three parts – the problem state-
ment, a well-defined input and output format, and
time and memory constraints. An example PWP
can be seen in Figure 1.

Solving PWPs is difficult for several reasons.
One reason is, the problems are often embedded
in a narrative, that is, they are described as quasi
real-world situations in the form of short stories or
riddles. The solver must first decode the intent of
the problem, or understand what the problem is.
Then the solver needs to apply their knowledge of
algorithms to write a solution program. Another
reason is that, the solution programs must be effi-
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cient with respect to the given time and memory
constraints. An outgrowth of this is that, the al-
gorithm required to solve a particular problem not
only depends on the problem statement, but also
the constraints. Consider that there may be two
different algorithms which will generate the cor-
rect output, for example, linear search, and binary
search, but only one of those will abide by the time
and memory constraints.

With the growing popularity of these prob-
lems, various competitions like ACM-ICPC, and
Google CodeJam have emerged. Additionally,
several companies including Google, Facebook,
and Amazon evaluate problem-solving skills of
candidates for software-related jobs (McDowell,
2016) using PWPs. Consequently, as noted by
Forišek (2010), programming problems have been
becoming more difficult over time. To solve a
PWP, humans get information from all its parts,
not just the the problem statement. Thus, we pre-
dict algorithms from the entire text of a PWP. We
also try to identify which parts of a PWP con-
tribute the most towards predicting algorithms.

Significance of the Problem Many interesting
real-world problems can be solved and optimised
using standard algorithms. Time spent grocery
shopping can be optimised by posing it as a graph
traversal problem (Gertin, 2012). Arranging and
retrieving items like mail, or books in a library
can be done more efficiently using sorting and
searching algorithms. Solving problems using al-
gorithms can be scaled by using computers, trans-
forming the algorithms into programs. A program
is an algorithm that has been customised to solve a
specific task under a specific set of circumstances
using a specific language. Converting textual de-
scriptions of such real-world problems into algo-
rithms, and then into programs has largely been
a human endeavour. An AI agent that could au-
tomatically generate programs from natural lan-
guage problem descriptions could greatly increase
the rate of technological advancement by quickly
providing efficient solutions to the said real-world
problems. A subsystem that could identify algo-
rithm classes from natural language would signif-
icantly narrow down the search space of possible
programs. Consequently, such a subsystem would
be a useful feature for, or likely be even part of,
such an agent. Therefore, building a system to
predict algorithms from programming word prob-
lems is potentially an important first step toward

an automatic program generating AI. More imme-
diately, such a system could serve as an applica-
tion to help people in improving their algorithmic
problem-solving skills for software job interviews,
competitive programming, and other uses.

As per our knowledge, this task has not been
addressed in the literature before. Hence, there
is no standard dataset available for this task. We
generate and introduce new datasets by extracting
problems from Codeforces1, a sport programming
platform. We release the datasets and our experi-
ment code at 2.

Contribution The major contributions of this
paper are: Four datasets on programming word
problems - two multiclass3 datasets having 5 and
10 classes and two multilabel4 datasets having 10
and 20 classes. Evaluation of Classifiers on var-
ious multiclass and multilabel classifiers that can
predict classes for programming word problems
on our datasets along with the human baseline.
We define our problem more clearly in section 2.
Then we explain our datasets – their generation
and format along with human evaluation in sec-
tion 3. We describe the models we use for mul-
ticlass and multilabel classification in section 4.
We delineate our experiments, models, and eval-
uation metrics in section 5. We report our clas-
sification results in section 6. We analyse some
dataset nuances in section 7. Finally, we discuss
related work and the conclusion in sections 8 and
9 respectively.

2 Problem Definition

The focus of this paper is the problem of mapping
a PWP to one or more classes of algorithms. A
class of algorithms is a set containing more spe-
cific algorithms. For example, breadth-first search,
and Dijkstra’s algorithm belong to the class of
graph algorithms. A PWP can be solved using one
of the algorithms in the class it is mapped to. Prob-
lems on the Codeforces platform have tags that
correspond to the class of algorithms.

Thus, our aim is to find a tagging function, f∗ :
S → P(T ) which maps a PWP string, s ∈ S, to a
set of tags, {t1, t2, ...} ∈ P(T ). We also consider
another variant of the problem. For the PWPs that
only have one tag, we focus on finding a tagging

1codeforces.com
2https://github.com/aayn/codeforces-clean
3each problem belongs to only one class
4each problem belongs to one or more classes
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Dataset Size Vocab classes Avg. words Class percentage
CFMC5 550 9326 5 504

greedy: 20%, implementation:20%, data struc-
tures: 20%, dp: 20%, math: 20%

CFMC10 1159 14691 10 485
implementation: 34.94%, dp: 12.42%, math:
11.38%, greedy: 10.44%, data structures:
9.49%, brute force: 5.60%, geometry: 4.22%,
constructive algorithms: 5.52%, dfs and simi-
lar: 3.10%, strings: 2.84%

Table 1: Dataset statistics for multiclass datasets. CFMC5 has 550 problems with a balanced class distribution.
CFMC10 has 1159 problems and has a class imbalance. CFMC5 is a subset of CFMC10. Red classes belong to
the solution category; blue classes belong to the problem category.

Dataset Size Vocab N classes Avg. len Label card Label den Label subsets
CFML10 3737 28178 10 494 1.69 0.169 231
CFML20 3960 29433 20 495 2.1 0.105 808

Table 2: Dataset statistics for multilabel datasets. The problems of the CFML10 dataset are a subset of those in the
CFML20 dataset.

function, f∗1 : S → T , which maps a PWP string,
s ∈ S, to a tag, t ∈ T . We approximate f∗ and f∗1
by training models on data.

3 Dataset

3.1 Data Collection

We collected the data from a popular sport pro-
gramming platform called Codeforces. Code-
forces was founded in 2010, and now has over
43000 active registered participants5. We first col-
lected a total of 4300 problems from this platform.
Each problem has associated tags, with most of
the problems having more than one tag. These
tags correspond to the algorithm or class of al-
gorithms that can be used to solve that particular
problem. The tags for a problem are given by the
problem writer and they can only be edited only by
high-rated (expert) contestants who have solved
the problem. Next, we performed basic filtering
on the data – removing the problems which had
non-algorithmic tags, problems with no tags as-
signed to them, and also the problems wherein the
problem statement was not extracted completely.
After this filtering, we got 4019 problems with 35
different tags. This forms the Codeforces dataset.
The label (tag) cardinality (average number of la-
bels/tags per problem) was 2.24. Since the Code-
forces dataset is the first dataset generated for a
new problem, we select different subsets of this

5http://codeforces.com/ratings/page/219

dataset with differing properties. This is to check
if classification models are robust to different vari-
ations of the problem.

3.2 Multilabel Datasets

We found that a large number of tags had a very
low frequency. Hence, we removed those prob-
lems and tags from the Codeforces dataset as fol-
lows. First, we got the list of 20 most frequently
occurring tags, ordered by decreasing frequency.
We observed that the 20th tag in this list had a fre-
quency of 98, in other words, 98 problems had this
tag. Next, for each problem, we removed the tags
that are not in this list. After that, all problems that
did not have any tags left were removed.

This led to the formation of the Codeforces
Multilabel-20 (CFML20) dataset, which has 20
tags. We used the same procedure for the 10 most
frequently occurring tags to get the Codeforces
Multilabel-10 (CFML10) dataset. The CFML20
has 98.53 (3960 problems) percent of the prob-
lems of the original dataset and the label (tag) car-
dinality only reduces from 2.24 to 2.21. CFML10
on the other hand has 92.9 percent of the problems
with label (tag) cardinality 1.69. Statistics about
both these multilabel datasets are given in Table 2.

3.3 Multiclass Datasets

To generate the multiclass datasets, first, we ex-
tracted the problems from the CFML20 dataset
that only had one tag. There were about 1300
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such problems. From those, we selected the prob-
lems whose tags occur in the list of 10 most com-
mon tags. These problems formed the Codeforces
Multiclass-10 (CFMC10) dataset which contains
1159 examples. We found that the CFMC10
dataset has a class (tag) imbalance. We also
make a balanced dataset, Codeforces Multiclass-5
(CFMC5), in which the prior class (tag) distribu-
tion is uniform. The CFMC5 dataset has five tags,
each having 110 problems. To make CFMC5, first
we extracted the problems whose tags are among
the five most common tags. The fifth most com-
mon tag occurs 110 times. We sampled 110 ran-
dom problems corresponding to the other four tags
to give a total of 550 problems. Statistics about
both the multiclass datasets are given in Table 1.

3.4 Dataset Format
Each problem in the datasets follows the same for-
mat (refer to Figure 1 for an example problem).
The header contains the problem title, and the time
and memory constraints for a program running on
the problem testcases. The problem statement is
the natural language description of the problem
framed as a real world scenario. The input and
output format describe the input to, and the out-
put from a valid solution program. It also contains
constraints that will be put on the size of inputs
(for example, max size of input array, max size of
2 input values). The tags associated with the prob-
lem are the algorithm classes that we are trying to
predict using the above information.

3.5 Class Categories in the Dataset
The classes for PWPs can be divided into two cat-
egories: Problem category classes tell us what
kind of broad class of problem the PWP belongs
to. For instance, math, and string are two such
classes. Solution category classes tell us what
kind of algorithm can solve a particular PWP. For
example, a PWP of class dp or binary search
would need a dynamic programming or binary
search based algorithm to solve it.

Problem category PWPs are easier to classify
because, in some cases, simple keyword mapping
may lead to the classification (an equation in the
problem is a strong indicator that a problem is of
math type). Whereas, for solution category PWPs,
a deeper understanding of the problem is required.

The classes belong to problem and solution cat-
egories for CFML20 are mentioned in the supple-
mentary material.

3.6 Human Evaluation

In this section, we evaluate and analyze the per-
formance of an average competitor on the task of
predicting an algorithm for a PWP. The tags for
a given PWP are added by its problem setter or
other high-rated contestants who have solved it.
Our test participants were recent computer science
graduates with some experience in algorithms and
competitive programming. We gave 5 participants
the problem text along with all the constraints, and
the input and output format. We also provided
them with a list of all the tags and a few exam-
ple problems for each tag. We randomly sample
120 problems from the CFML20 dataset and split
them into two parts – containing 20 and 100 prob-
lems respectively. The 20 problems were given
along with their tags to familiarize the participants
with the task. For the remaining 100 problems,
the participants were asked to predict the tags (one
or more) for each problem. We chose to sample
the problems from the CFML20 dataset as it is the
closest to a real-world scenario of predicting algo-
rithms for solving problems. We find that there is
some variation in the accuracy reported by differ-
ent humans with the highest F1 micro score being
11 percent greater than that of the the lowest. (see
supplementary material for more details). The F1
micro score averaged over all 5 participants was
51.8 while the averaged F1 Macro was 42.7. The
results are not surprising since this task is like any
other problem solving task, and people based on
their proficiency would get different results. This
shows us that the problem is hard even for humans
with a computer science education.

4 Classification Models

To test the compatibility of our problem with text
classification paradigm, we apply to it some stan-
dard text classification models from recent litera-
ture.

4.1 Multiclass Classification

To approximate the optimal tagging function f∗1
(see section 2) we use the following models.

Multinomial Naive Bayes (MNB) and Sup-
port Vector Machine (SVM) Wang and Man-
ning (2012) proposed several simple and effec-
tive baselines for text classification. An MNB is a
naive Bayes classifier for multinomial models. An
SVM is a discriminative hyperplane-based classi-
fier (Hearst et al., 1998). These baselines use uni-
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grams and bigrams as features. We also try apply-
ing TF-IDF to these features.

Multi-layer Perceptron (MLP) An MLP is a
class of artificial neural network that uses back-
propagation for training in a supervised setting
(Rumelhart et al., 1986). MLP-based models are
standard for text classification baselines (Glorot
et al., 2011).

Convolutional Neural Network (CNN) We
also train a Convolutional Neural Network (CNN)
based model, similar to the one used by Kim
(2014) in their paper, to classify the prob-
lems. We use the model both with and without
pre-trained GloVe word-embeddings (Pennington
et al., 2014).

CNN ensemble Hansen and Salamon (1990)
introduce neural network ensemble learning, in
which many neural networks are trained and their
predictions combined. These neural network sys-
tems show greater generalization ability and pre-
dictive power. We train five CNN networks and
combine their predictions using the majority vot-
ing system.

4.2 Multilabel Classifiers

To approximate, f∗ (see section 2), we apply the
following augmentations to the models described
above.

Multinomial Naive Bayes (MNB) and Sup-
port Vector Machine (SVM) For applying these
models to the multilabel case, we use the one-vs-
rest (or, one-vs-all) strategy. This strategy involves
training a single classifier for each class, with the
samples of that class as positive samples and all
other samples as negatives (Bishop, 2006).

Multi-layer Perceptron (MLP) Nam et al.
(2014) use MLP-based models for multilabel text
classification. We use similar models, but use the
MSE loss instead of the cross-entropy loss.

Convolutional Neural Network (CNN) For
multilabel classification we use a CNN based fea-
ture extractor similar to the one used in (Kim,
2014). The output is passed through a sigmoid
activation function, σ(x) = 1

1+e−x . The labels
which have a corresponding activation greater than
0.5 are considered (Liu et al., 2017). Similar to
the multiclass case, we train the model both with
and without pre-trained GloVe (Pennington et al.,
2014) word-embeddings.

CNN ensemble We train five CNNs and add
their output linear activation values. We pass this

sum through a sigmoid function and consider the
labels (tags) with activation greater than 0.5.

5 Experiment setup

All hyperparameter tuning experiments were per-
formed with 10-fold cross validation. For the non-
neural network-based methods, we first vector-
ize each problem using a bag-of-words vectorizer,
scikit-learn’s (Pedregosa et al., 2011) CountVec-
torizer. We also experiment with TF-IDF features
for each problem. In the multiclass case, we use
the LIBSVM (chung Chang and Lin, 2001) im-
plementation of the SVM classifier and we grid
search over different kernels. However, the LIB-
SVM implementation is not compatible with the
one-vs-rest strategy (complexity O(n) where n is
the number of classes), but only the one-vs-one
(complexity O(n2)). This becomes prohibitively
slow and thus, we use the LIBLINEAR (Fan et al.,
2008) implementation for the multilabel case. For
hyperparameter tuning, we applied a grid search
over the parameters of the vectorizers, classifiers,
and other components. The exact parameters
tuned can be seen in our code repository. For the
neural network-based methods, we tokenize each
problem using the spaCy tokenizer (Honnibal and
Montani, 2017). We only use words appearing 2
or more times in building the vocabulary and re-
place the words that appear fewer times with a spe-
cial UNK token. Our CNN network architecture is
similar to that used by Kim (2014). The batch size
used is 32. We apply 512 one-dimensional con-
volution filters of size 3, 4, and 5 on each prob-
lem. The rectifier, R(x) = max(x, 0), is used
as the activation function. We concatenate these
filters, apply a global max-pooling followed by a
fully-connected layer with output size equal to the
number of classes. We use the PyTorch frame-
work (Paszke et al., 2017) to build this model.
For the word embedding we use two approaches
- a vanilla PyTorch trainable embedding layer and
a 300-dimensional GloVe embedding (Pennington
et al., 2014). The networks were initialized us-
ing the Xavier method (Glorot and Bengio, 2010)
at the beginning of each fold. We use the Adam
optimization algorithm (Kingma and Ba, 2014) as
we observe that it converges faster than vanilla
stochastic gradient descent.

88



Classifier CFMC5 CFMC10
Acc F1 W Acc F1 W

CNN Random 25.0 22.1 35.2 19.2
MNB 47.6 47.5 43.9 37.4
SVM BoW 49.3 49.1 47.9 43.2
SVM TFIDF 47.8 47.6 45.7 41.2
MLP 47.8 47.6 49.3 46.2
CNN 61.7 61.3 54.7 51.3
CNN Ensemble 62.7 62.2 53.5 50.5
CNN GloVe 62.2 61.3 54.5 51.4

Table 3: Classification Accuracy for single label classi-
fication. Note that all results were obtained on 10-fold
cross validation. CNN Random refers to a CNN trained
on a random labelling of the dataset. F1 W stands for
weighted macro F1-score.

6 Results

6.1 Multiclass Results

We see that the classification accuracy of the
best performing classifier, CNN ensemble, for the
CFMC5 dataset is 62.7 %. The highest accu-
racy for the CFMC10 dataset was achieved by the
CNN classifer which does not use any pretrained
embeddings. For all the multiclass classification
results refer to table 3. We observe that CNN-
based classifiers perform better than other classi-
fiers – MLP, MNB, and SVM for both CFMC5
and CFMC10 datasets. Since these are the first
learning results on the task of algorithm prediction
for PWPs, we train a CNN classifier on a random
labelling of the dataset. The results are given in
the row called CNN random. To obtain this ran-
dom labelling we shuffle the current mapping from
problem to tag randomly. This ensures that the
class distribution of the datasets remain the same.
We see that all the classifiers significantly outper-
form the performance on the random dataset. We
also observe that the classification accuracy is not
the same for every class. We get the highest ac-
curacy (see Fig. 2) for the class, data structures,
at 90%, while, the lowest accuracy is for the class,
greedy, at 40%. These results are on the CFMC5
dataset.

6.2 Multilabel Results

We see that CNN-based classifiers give the best re-
sults for the CFML10 and CFML20 datasets. The
best F1 micro and macro scores for the CFML10
dataset were 45.32, 38.9 respectively. These were
obtained by the CNN Ensemble model. For com-

plete results see table 4. The best performing
model on the CFML20 dataset was also the CNN
ensemble. As we did in the multiclass case, we
train a CNN model on the randomly shuffled la-
belling for both CFML10, CFML20 datasets. We
find that all the classifers significantly outperform
the model trained on a shuffled labelling. The
human-level F1 micro and macro scores on a sub-
set of the CFML20 dataset were 51.2 and 40.5. In
comparison, our best performing classifier on the
CMFL20 dataset, CNN Ensemble, got F1 macro
and micro scores of 42.75, 37.29 respectively. We
see that the performance of our best classifiers trail
average human performance by about 8.45% and
3.21% on F1 micro and F1 macro scores respec-
tively.

7 Analysis

7.1 Experiments with various subsets of the
problem

As described in section 1, a PWP consists of three
components – the problem statement, input and
output format, and time and memory constraints.
We seek to answer the following questions. Does
one component contribute to the accuracy more
than any other? Does the contribution of different
components vary over the problem class? We per-
formed some experiments to address these ques-
tions. We split the problem into two parts – 1)
the problem statement, and 2) the input and out-
put format, and time and memory constraints. We
train an SVM, and a CNN on these two compo-
nents independently.

Multiclass PWP component analysis We find
classifier accuracies on the CFMC5 dataset. We
choose the CFMC5 dataset out of the two multi-
class datasets because it has a balanced class dis-
tribution. We find that the classifiers perform quite
well on only the input and output format, and time
and memory constraints – the best classifier get-
ting an accuracy of 56.4 percent (only 5.3 percent
lower than the accuracy of CNN with the whole
problem). Classification using only the problem
statement gives worse results than using the for-
mat and constraints, with a classification accuracy
of 45.2 percent for the best classifier CNN (16.5
percent lower than the accuracy of a CNN trained
on the whole problem). Complete results are given
in table 5. We also see that the performance across
different classes varies when trained on different
inputs. We find that the class dp performs better
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Classifier CFML10 CFML20
hamming loss F1 micro F1 macro hamming loss F1 micro F1 macro

CNN Random TWE 0.2158 15.98 9.39 0.1207 12.07 4.02
MNB BoW 0.1706 30.57 25.73 0.1067 29.67 23.41
SVM BoW 0.1713 36.08 31.09 0.1056 34.93 30.70
SVM BoW + TF-IDF 0.1723 38.20 33.68 0.1059 38.55 34.70
MLP BoW 0.1879 39.13 34.92 0.1167 38.12 31.37
CNN TWE 0.1671 39.20 32.59 0.1023 38.44 30.38
CNN Ensemble TWE 0.1703 45.32 38.93 0.1093 42.75 37.29
CNN GloVe 0.1676 39.22 33.77 0.1052 37.56 30.29
Human - - - - 51.8 42.7

Table 4: Classification Accuracy for multi-label classification. TWE stands for trainable word embeddings ini-
tialized with a normal distribution. Note that all results were obtained on 10-fold cross validation. CNN Random
refers to a CNN trained on a random labelling of the dataset.

when trained on the problem statement, whereas
the other classes perform much better on the for-
mat and constraints. For each class except greedy,
we see an additive trend – the accuracy is im-
proved by combining both these features. Refer
to figure 2 for more details.

Multilabel partial problem results We also
tabulate the classifier accuracies on the CFML20
dataset by training it only on the format and con-
straints, and the problem statement. Even here,
we observe similar trends as the multiclass par-
tial problem experiments. We find that classifiers
are more accurate when trained only on the format
and constraints than only on the problem state-
ment. Again, the accuracy is improved by combin-
ing both these features. Refer to table 5 for more
details.

7.2 Problem category and Solution category
results

We find that correctly classifying PWPs of the so-
lution category is harder than correctly classify-
ing PWPs of the problem category (table 5). For
instance, take a look at the row corresponding to
CFMC5 dataset and ”all prob” feature. The ac-
curacy for solution category is 54.24% as com-
pared to 71.36% for the problem category. This
trend is followed for both CFMC5 and CFML20
datasets and also when using different features of
the PWPs. In spite of the difficulty, the classifi-
cation scores for the solution category are signifi-
cantly better than random.

8 Related Work

Our work is related to three major topics of re-
search, math word problem solving, text document

classification and program synthesis.
Math word problem solving In the recent

years, many models have been built to solve dif-
ferent kinds of math word problems. Some mod-
els solve only arithmetic problems (Hosseini et al.,
2014), while others solve algebra word prob-
lems (Kushman et al., 2014). There are some
recent solvers which solve a wide range pre-
university level math word problems (Matsuzaki
et al., 2017), (Hopkins et al., 2017). Wang et al.
(2017), and Mehta et al. (2017) have built deep
neural network based solvers for math word prob-
lems. Program synthesis Work related to the
task of converting natural language description
to code comes under the research areas of pro-
gram synthesis and natural language understand-
ing. This work is still in its nascent stage. Zhong
et al. (2017) worked on generating SQL queries
automatically from natural language descriptions.
Lin et al. (2017) worked on automatically gener-
ating bash commands from natural language de-
scriptions. Iyer et al. (2016) worked on summa-
rizing source code. Sudha et al. (2017) use a
CNN based model to classify the algorithm used
in a programming problem using the C++ code.
Our model tries to accomplish this task by using
the natural language problem description. Gul-
wani et al. (2017) is a comprehensive treatise on
program synthesis. Document classification The
problem of classifying a programming word prob-
lem in natural language is similar to the task of
document classification. The state-of-the-art ap-
proach currently for single label classification is to
use a hierarchical attention network based model
(Yang et al., 2016). This model is improved by us-
ing transfer learning (Howard and Ruder, 2018).
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Dataset Features Classifier Soln. category Prob. category all
F1 Mi F1 Ma F1 Mi F1 Ma F1 Mi F1 Ma

CFMC5 only statement cnn 42.73 46.14 51.32 64.35 46.13 45.20
CFMC5 only i/o cnn 44.24 51.73 74.73 81.31 56.42 55.41
CFMC5 all prob cnn 54.24 59.91 71.36 78.32 61.71 61.32
CFML20 only statement cnn 30.83 17.32 38.64 41.82 33.59 28.34
CFML20 only i/o cnn 34.63 19.59 44.49 44.34 38.44 30.38
CFML20 all prob cnn 34.39 19.23 45.36 44.02 39.20 32.59

Table 5: Performance on different categories of PWPs for different parts of the PWPs. The rows with ”only
statement” features use only the problem description part of the PWP, the rows with ”only i/o” use only the I/O and
constraint information, and ”all prob” use the entire PWP. The results under the ”Soln category”, ”Prob category”
columns are for the problems which have the label under problem, solution category respectively. ”All” is for the
entire dataset. So, for example, the F1 Micro score using only I/O and constraint for solution category problems of
CFML20 is 34.63. Note that for CFMC5, F1 Mi (F1 Micro) is the same as accuracy, and F1 Ma (F1 Macro) score
is a weighted Macro F1-score.

Figure 2: Confusion matrices for different parts of the problem on CFMC5. Whole problem text (left), only format
and constraints information (center), and only problem statement (right). Perfomance on the whole problem is the
highest, followed by only format and constraints information. Performance across different classes (except greedy)
is additive, which shows that features extracted from both the parts are of importance

Other approaches include a Recurrent Convolu-
tional Neural Network based approach (Lai et al.,
2015) or the fasttext model (Joulin et al., 2016)
which uses bag-of-words features and a hierarchi-
cal softmax. Nam et al. (2014) use a feed-forward
neural network with binary cross entropy per la-
bel to perform multilabel document classification.
Kurata et al. (2016) leverage label co-occurrence
to improve multilabel classification. Liu et al.
(2017) use a CNN based architecture to perform
extreme multilabel classification.

9 Conclusion

We introduced a new problem of predicting the al-
gorithm classes for programming word problems.
For this task we generated four datasets – two mul-
ticlass (CFMC5 and CFMC10), having five and 10
classes respectively, and two multilabel (CFML10
and CFML20), having 10 and 20 classes respec-

tively. Our classifiers are falling short only by
about 9 percent of the human score. We also
did some experiments which show that increasing
the size of the train dataset improves the accuracy
(see supplementary material). These problems are
much harder than high school math word problems
as they require a good knowledge of various com-
puter science algorithms and an ability to reduce a
problem to these known algorithms. Even our hu-
man analysis shows that trained computer science
graduates only get an F1 of 51.8. Based on these
results, we see that algorithm class prediction is
compatible with and can be solved using text clas-
sification.
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Abstract

Psychologically motivated, lexicon-based text
analysis methods such as LIWC (Pennebaker
et al., 2015) have been criticized by compu-
tational linguists for their lack of adaptabil-
ity, but they have not often been systemati-
cally compared with either human evaluations
or machine learning approaches. The goal of
the current study was to assess the effective-
ness and predictive ability of LIWC on a rela-
tionship goal classification task. In this paper,
we compared the outcomes of (1) LIWC, (2)
machine learning, and (3) a human baseline.
A newly collected corpus of online dating pro-
file texts (a genre not explored before in the
ACL anthology) was used, accompanied by
the profile writers’ self-selected relationship
goal (long-term versus date). These three ap-
proaches were tested by comparing their per-
formance on identifying both the intended re-
lationship goal and content-related text labels.
Results show that LIWC and machine learning
models both correlate with humans in terms
of content-related label assignment. Further-
more, LIWC’s content-related labels corre-
sponded more strongly to humans than those
of the machine learning model. Moreover, all
approaches were similarly accurate in predict-
ing the relationship goal.

1 Introduction

When investigating large textual datasets, it is of-
tentimes necessary to use (automated) tools in or-
der to make sense of the texts. Such tools can
help expose properties of texts or of the texts’ au-
thor (Riffe et al., 2014). A distinction in these
tools can be made between predefined lexicon-
based approaches and more content-specific ma-
chine learning approaches. One commonly used
lexicon-based approach is the Linguistic Inquiry
and Word Count program (LIWC; Pennebaker
et al., 2015). This approach assigns words to

one or more (psychologically validated) labels as-
sociated with the word. These labels might re-
veal more about a writer’s thought processes, emo-
tional states, and intentions (Tausczik and Pen-
nebaker, 2010).

Text analysis tools such as LIWC have become
more popular with the surge of social media: re-
searchers want to assess, for instance, the sen-
timent of social media users on various matters,
and lexicon-based text analysis tools can provide
help with that. At the same time, these tools
have also garnered criticism, for example, because
they do not differentiate between domains and
cannot deal with non-literal language use (e.g.,
irony), or out-of-vocabulary terms frequently seen
within noisy text (e.g., typos or (internet) slang)
(Panger, 2016; Franklin, 2015; Schwartz et al.,
2013). This is something that machine learn-
ing methods might be better suited for as they
can be trained on specific content, thus are able
to analyze more complex language. Yet, not
much is known about the effectiveness of lexicon-
based compared to machine learning methods or
a ground truth: comparative research is scarce,
with few exceptions like Hartmann et al. (2019).
Thus, outcomes of lexicon-based approaches are
often taken at face value, without knowing how
they compare to human attributions. While some
researchers dispute the effectiveness of lexicon-
based approaches (Kross et al., 2019; Johnson and
Goldwasser, 2018), there are others who found
that such approaches are helpful on their own (Do
and Choi, 2015), or that classification performance
increases with the addition of features from such
approaches (Sawhney et al., 2018; Pamungkas and
Patti, 2018). Additionally, most work on writer’s
intentions focuses on basic emotions only (Yang
et al., 2018; Chen et al., 2018; Yu et al., 2018).
Thus, LIWC’s wide range of psychology-related
label detection is presently not matched by others.

94



The social media domain, which the online dat-
ing domain (hereafter: dating profiles) is part of,
might be challenging for LIWC, since these texts
often contain non-standard language and noise.
LIWC may nevertheless be a viable tool for ana-
lyzing dating profiles. Previous research has found
that intended relationship goals are related to psy-
chological traits (Feeney and Noller, 1990; Peter
and Valkenburg, 2007), and that dating profiles
can contain information about a writer’s psycho-
logical and mental states (Ellison et al., 2006).
This underlying psychological layer is something
that may be exploited by LIWC, since previous re-
search found that the tool can expose such psycho-
logical and mental states from linguistic behavior
(Tausczik and Pennebaker, 2010; Van der Zanden
et al., 2019).

The goal of the current study was to assess the
effectiveness and predictive ability of LIWC on
a relationship goal classification task. For this,
LIWC was compared to human judgment and ma-
chine learning approaches in three steps. First, the
quality of LIWC’s content-related labels was as-
sessed by comparing the values given to content-
related labels to those of humans and a regression
model. Second, the meaningfulness of LIWC’s
dictionary was investigated by using the label val-
ues as features for a classification model that pre-
dicts relationship type, contrasting these results
with the predictions of humans and a classifica-
tion model using word features. Third, a quali-
tative evaluation based on topic models, Gini Im-
portance scores, and log-likelihood ratios was con-
ducted to find limitations of LIWC’s lexicon.

2 Method

2.1 Corpus

Corpus Long-term Date
Texts Tokens Types Texts Tokens Types

Full 10,696 863,227 32,020 1,634 127,644 11,274
Train+val 1,464 117,947 9,973 1,464 115,227 10,540
Test 150 11,886 2,383 150 11,738 2,592

Table 1: Descriptives of the dating profile corpus

A total sample of 12,310 dating profiles together
with the indicated desired relationship goal was
collected from a popular Dutch dating site (see
Table 1). These profiles were anonymized after
collection, and were between 50 and 100 words,
written in Dutch (M = 80.36 words, SD = 14.56).

Ethical clearance was obtained from the university
for the collection of the dating profiles and the use
for further text analysis. The (anonymized) corpus
itself and the results from the human evaluation
are available upon request.

2.2 LIWC
LIWC 2015 (Pennebaker et al., 2015) was used
for the experiments, with the Dutch lexicon by
Van Wissen and Boot (2017). This Dutch version
of LIWC is of similar size as the English version
and the scores have been found to correlate well
with those of its English counterpart when tested
on parallel corpora (Van Wissen and Boot, 2017).
LIWC works by iterating over all words and multi-
word phrases in a text and checking whether the
word or phrase is in the predefined lexicon of one
or more labels. There are 70 labels in total. LIWC
outputs percentage scores. For example, if 8%
of words are an I-reference, the I-reference score
would be 8.

2.3 Human Evaluation
In this study, 152 university students participated
(68% female, mean age = 21.8 years). For
their voluntary participation they received course
credit. Altogether, these participants rated a ran-
dom sample of 300 profile texts (test set in Ta-
ble 1). Each participant judged six texts in to-
tal: 3 texts where the indicated goal was a long-
term relationship, and 3 texts where this goal was
a date. Approximately three judgments for each of
the 300 profile texts were obtained.

Participants rated the degree to which the pro-
file writer discussed six topics which were deemed
important for dating profiles based on previous re-
search (status, physical appearance, positive emo-
tion, I-references, you-references, we-references;
see Appendix A) (Davis and Fingerman, 2016;
Groom and Pennebaker, 2005; Van der Zanden
et al., 2019). These ratings were done on six
items, all 7-point Likert scales (“To what degree is
the writer of the text talking about: status related
qualities (e.g., job, achievements), physical quali-
ties (e.g., height, build), positive emotions, them-
self (use of ‘I’), the reader (use of ‘you’), a group
the writer belongs to (use of ‘we’)”, ranging from
“low degree” to “high degree”). The judgments
were used as a baseline for the label assignment
task. Furthermore, participants indicated whether
they thought the profile text writer sought for a
long-term relationship or a date (Krippendorff’s α
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Method Status Physical Positive I You We
appearance emotion

LIWC .42** .20** .30** .45** .44** .36**
Regression .51** .13* .13* .31** .37** .29**

Table 2: Pearson’s r compared to humans. Verti-
cally aligned bold values differ significantly.
* p < .05, ** p < .001.

Metric Human LIWC Word Meta

Precision 0.55 0.54 0.61 0.61
Recall 0.67 0.87 0.65 0.65
F1 0.60 0.67 0.63 0.63
Accuracy 0.57 0.56 0.62 0.62

Table 3: Accuracy scores by humans and classifica-
tion models. Bold indicates highest score on metric.

= 0.24). These predictions were used as a baseline
for the relationship goal classification task. Ad-
ditionally, participants were asked to highlight the
words in the text on which they based their long-
term or date prediction. All marked words were
then collected and counted for the qualitative anal-
ysis.

2.4 Label Assignment Task

The goal of this task was to evaluate the similarity
of labels from lexicon-based and machine learning
approaches compared to a human baseline. The
output of LIWC was limited to the six labels dis-
cussed in Section 2.3. The 300 dating profiles
evaluated in the human evaluation task were rated
by LIWC for fair comparison.

The same 300 texts were also used (with ran-
dom ten-fold cross-validation) for the regression
model. This model was trained to give continuous
scores on the six text labels. Word features were
chosen for fair comparison, since LIWC is word-
based and humans also tend to analyze texts at
word, phrase, or sentence level (Marsi and Krah-
mer, 2005). TheilSenRegressor was the regression
algorithm used (see Appendix B for details).

2.5 Relationship Goal Identification Task

With this task, the meaningfulness of the lexi-
cons used by LIWC to capture writers’ relation-
ship goals was investigated and compared to the
feature sets that humans and machine learning ap-
proaches use. To do so, three classification models
were used. One classification model used LIWC’s
label scores on the aforementioned six labels as
features. The second classification model used
word features. Furthermore, a meta-classifier was
trained on the probability scores of the classifi-
cation model with LIWC features and the model
with word features. This was done to investigate
if LIWC and word features use different facets of
a text to distinguish between relationship goals. If
so, pooling them together could achieve some kind
of synergy, resulting in higher accuracy scores.

A total of 3,228 texts (1,614 texts for each re-
lationship group; see Table 1) was used for train-
ing and testing. This sample was randomly strat-
ified on gender, age and education level based
on the distribution of the group of date seek-
ers. For the classification models, the text was
trained using 2,635 texts and validated on 293
texts. Finally, to enable fair comparison between
methods, the model was tested on the 300 texts
rated by humans. While this test dataset is rel-
atively small, only minor differences were found
between accuracy scores when trained on the full
dataset using ten-fold cross-validation (approxi-
mately 1-2%). Thus, the test set was sufficiently
large to obtain relatively stable results. Further-
more, a test was done using Dutch word2vec
word-embeddings pre-trained on the COW corpus
(Řehůřek and Sojka, 2010; Tulkens et al., 2016)
for the classification model with word features, but
this did not lead to an increase of accuracy scores.
For all classification models, an LSTM network
with eight layers was used (see Appendix B for
details).

2.6 Qualitative analysis
A qualitative analysis of the output on the re-
lationship goal identification task was performed
to analyze possible shortcomings of LIWC’s lexi-
con. Indicative words for identification according
to Gini Importance scores obtained with XGBoost
were compared to LIWC’s lexicon (Breiman et al.,
1984). Furthermore, LIWC’s lexicon was com-
pared to indicative words according to humans and
according to log-likelihood ratio scores (Dunning,
1993). Labels from LIWC were also compared
with topics obtained by topic modeling (see Ap-
pendix B).

3 Results

3.1 Label Assignment Task
For the label assignment task, the performance of
LIWC and the regression model were measured
using (two-tailed) Pearson’s r. Results show that
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Topic name Words

Person characteristics I, humor, good, man, honest, sportive, like, social, sometimes, sweet, spontaneous, woman, positive, little bit, open, stubborn,
especially, reliable, human, happy

Self-disclosure I, you, none, much, say, come, good, something, myself, human, find, become, we, think, sit, always, see, sometime, other
Being together I, you, want, woman, someone, together, man, sweet, find, know, with, you, good, each other, relationship, spontaneous,

cozy, go, where, come
Family and I, LOCATION, PERSON, reside, year, name, visit, ORGANISATION, work, child, you, come, MISCELLANEOUS, go,
occupation time, since, like, old
Named entities, pro, MISCELLANEOUS, LOCATION, PERSON, you, the, ORGANIZATION, to, a, none, and, â, what, I, one, life,
English, and Misc. rather, music, EVENT, my
Nature and hobbies I, like, find, nice, go, friend, eat, movie, cozy, time, watch, couch, delightful, walk, evening, day, good, make, enjoy, music

Table 4: Translated topic models with assigned topic names.

both LIWC and the regression model correlate sig-
nificantly with human behavior for all six inves-
tigated labels. This suggests that LIWC and a
regression model can obtain label scores similar
to humans. However, it should be noted that the
correlation coefficients are relatively low (ranging
from .13 to .51), which indicates a weak to mod-
erate relationship between the regression models
and human judgments.

Fishers r to z transformation was employed to
investigate whether the strength of the correlation
with humans differed significantly between LIWC
scores and word-based regression scores. Over-
all, LIWC performed better on this task: the cor-
relation for LIWC on positive emotions (p = .03)
as well as I-references (p = .05) was significantly
stronger than the correlation scores for the regres-
sion model on these labels (see Table 2). This in-
dicates that LIWC scores are more similar to the
label scores of human annotators (at least for pos-
itive emotions and I-references) than the scores of
the regression model.

3.2 Relationship Goal Identification Task

For the intended relationship goal identification
task, chi-square tests were performed on the pre-
dictions for all different methods, to compare them
to chance and to each other. All methods turned
out to perform better than chance (humans: χ2(1)
= 17.58, p < .001; word-based classifier: χ2(1)
= 17.28, p < .001; classifier with LIWC features:
χ2(1) = 5.33, p = .02; meta-classifier: χ2(1) =
17.28, p < .001). These results suggest that hu-
mans, LIWC, and a word-based regression model
are similarly accurate in identifying a writer’s rela-
tionship goal. This was further corroborated by a
4 (text analysis method) x 2 (correct vs. incorrect
judgments) not significant chi-square test (χ2(3) =
4.22, p = .24), meaning that there was no method
that performed significantly better than any other

method (see Table 3).
Accuracy for the meta-classifiers did not in-

crease for the relationship goal identification task.
The accuracy score of the meta-classifier was the
same as the word-based classifier, which suggests
that LIWC features and word features pick up on
the same aspects of the text. Since the classifica-
tion model with word features performed slightly
better, the meta-classifier likely learns to focus on
the probability scores of that model.

3.3 Qualitative Analysis

With all 70 labels, LIWC manages to capture
only 15% of the types in the dating profile texts,
which suggests that a substantial amount of infor-
mation is not captured by the approach. Infor-
mation that is missing are words such as ‘date’,
‘profile’, ‘click’, and ‘friendship’ (all χ2(1) >=
5.39, and p <= .02): important relationship-
related words, and good discriminators accord-
ing to the word-based classification model, hu-
mans, and log-likelihood ratio. This illustrates that
LIWC was not necessarily built with dating pro-
files in mind.

Distinctive words like ‘spontaneous’ (χ2(1) =
0.13, p = .72, but distinctive according to humans
and Gini Importances), ‘caring’, ‘quiet’, ‘honest’,
and ‘sweet’ (all χ2(1) >= 7.18, and p <= .007)
show that LIWC is missing a person characteris-
tics category. Topic modeling also found a per-
sonality traits topic, further emphasizing the im-
portance of this label. Similarly, words like ‘sea’
and ‘nature’ (both χ2(1)>= 5.99 and p = .01), and
a nature-related topic model shows that a nature-
focused label is important to distinguish relation-
ship goals, which LIWC is currently lacking (see
Table 4 and Table 5).

However, while there are some systematic pat-
terns to be found regarding what LIWC is not cap-
turing, do note that LIWC’s scores on the two
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tasks were similar to machine learning and to hu-
mans. This suggests that the relatively small per-
centage of word types that LIWC is processing
is meaningful. The top 100 most important fea-
tures according to log likelihood ratios, humans,
and Gini Importances corroborates this sugges-
tion. 62% of the top 100 most important words
according to log likelihood ratios are found in
LIWC, 81% of the top 100 most important words
according to humans, and 90% of the top 100 most
important words according to Gini Importances.

Method Important features

Human seek, date, nice, know, people, undertake, spontaneous,
sweet, terrace, pretty, enjoy, child wish, family person

Classifier date, spontaneous, let, live, nature, sociable, send, build,
exercise, nice, independent, again, friendship, sea, girl,
terrace

LLR quiet, sweet, nothing, nature, fetch, again, profile,
click, feel free, weekend, sea, people, visit, caring

Table 5: Translated words not in LIWC’s lexicon or-
dered by importance for relationship goal identifica-
tion. Blue is indicative of long-term, red is indicative
of date

4 Discussion

In this study, a lexicon-based text analysis method
(LIWC) was compared to machine learning ap-
proaches (regression, classification model), with
human judgment scores as a baseline. Lexicon-
based methods are criticized because they may not
capture complex elements of language and do not
discriminate between domains. Still, research of-
ten takes the outcomes of these approaches at face
value without assessing whether they accurately
reflect reality. This study aimed to address these
issues using three tasks: (1) assigning content-
related labels to texts, (2) predicting intended re-
lationship goals, and (3) comparing the output of
the different approaches with a qualitative study.
While (1) was used to investigate if LIWC’s la-
bels reflect reality, (2) and (3) aimed to elucidate
if LIWC’s labels are sufficient to highlight differ-
ences in intended relationship goals. The three
tasks were conducted on a newly collected corpus
of online dating profiles.

The results of this study show that LIWC is a vi-
able text analysis method for these tasks. Despite
the fact that it uses a fixed word list and there-
fore might miss context and out-of-vocabulary
words, it performed similarly to machine learn-
ing methods and humans. The label assignment

task showed that the labels of LIWC and the re-
gression model both correlated with the labels as-
signed by humans. Furthermore, for some labels,
LIWC’s scores corresponded more to human judg-
ments than those of the regression model. This
suggests that LIWC’s lexicon was chosen mean-
ingfully and that despite its limitations, it seems to
be good at exposing textual themes. This is cor-
roborated by the fact that most of the important
words according to Gini Importances, log likeli-
hood ratio, and humans were in LIWC’s lexicon.

However, it should be noted that the sample size
for this task was small (300 texts), and that re-
sults could be different if there was more training
data. Relationship goal prediction turned out to be
a difficult task (low accuracy scores overall, and
low inter-rater agreement). Thus, future research
should look into extending the human evaluation
dataset with more texts and judgments per text.
Nevertheless, humans and all classification models
scored similarly on accuracy and performed above
chance, suggesting that LIWC does cover cate-
gorical differences between long-term relationship
and date seekers, although LIWC seems to pick up
on the same signal as the word-based classification
model. Results from the qualitative analysis show
that the categories in LIWC might not be sufficient
to cover the full range of categorical linguistic dif-
ferences between the two groups. These short-
comings might be addressed by novel approaches
that aim to combine dictionaries with neural text
analysis methods, such as Empath (Fast et al.,
2016). Or by extending neural Emotion Classifi-
cation and Emotion Cause Detection systems like
(Yang et al., 2018; Chen et al., 2018; Yu et al.,
2018) to cover more psychology-relevant cate-
gories. Using novel pre-trained word-embeddings
such as BERT (Devlin et al., 2019) could also
boost the results for the current approach, as this
has improved results for many tasks.

The focus of this study on the intended relation-
ship goals of online daters was a challenge that had
not been investigated in previous computational
linguistics research. We must note that this is just
one example of a task for which LIWC could be
used. Studies have shown that LIWC may be less
suited for some tasks, such as sentiment analysis
(Hartmann et al., 2019). However, the current re-
sults indicate that it can be a viable method for
tasks that tend to look at other, deeper, psycholog-
ical constructs.
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Montréal, Canada

abbas.ghaddar@umontreal.ca

Philippe Langlais
RALI-DIRO
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Abstract

We describe a special type of deep contex-
tualized word representation that is learned
from distant supervision annotations and dedi-
cated to named entity recognition. Our exten-
sive experiments on 7 datasets show system-
atic gains across all domains over strong base-
lines, and demonstrate that our representation
is complementary to previously proposed em-
beddings. We report new state-of-the-art re-
sults on CONLL and ONTONOTES datasets.

1 Introduction

Contextualized word representations are nowa-
days a resource of choice for most NLP tasks (Pe-
ters et al., 2018). These representations are trained
with unsupervised language modelling (Jozefow-
icz et al., 2016), masked-word prediction (Devlin
et al., 2018), or supervised objectives like ma-
chine translation (McCann et al., 2017). Despite
their strength, best performances on downstream
tasks (Akbik et al., 2018; Lee et al., 2018; He
et al., 2018) are always obtained when these rep-
resentations are stacked with traditional (classic)
word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014).

Our main contribution in this work is to re-
visit the work of Ghaddar and Langlais (2018a)
that explores distant supervision for learning clas-
sic word representations, used later as features for
Named Entity Recognition (NER). Motivated by
the recent success of pre-trained language model
embeddings, we propose a contextualized word
representation trained on the distant supervision
material made available by the authors. We do so
by training a model to predict the entity type of
each word in a given sequence (e.g. paragraph).

We run extensive experiments feeding our rep-
resentation, along side with previously proposed
traditional and contextualized ones, as features to

a vanilla Bi-LSTM-CRF (Ma and Hovy, 2016).
Results shows that our contextualized represen-
tation leads to significant boost in performances
on 7 NER datasets of various sizes and domains.
The proposed representation surpasses the one
of Ghaddar and Langlais (2018a) and is com-
plementary to popular contextualized embeddings
like ELMo (Peters et al., 2018).

By simply stacking various representations,
we report new state-of the-art performances on
CONLL-2003 (Tjong Kim Sang and De Meulder,
2003) and ONTONOTES 5.0 (Pradhan et al., 2013)
with a F1 score of 93.22 and 89.95 respectively.

2 Related Work

Pre-trained contextualized word-embeddings have
shown great success in NLP due to their ability
to capture both syntactic and semantic properties.
ELMo representations (Peters et al., 2018) are
built from internal states of forward and backward
word-level language models. Akbik et al. (2018)
showed that pure character-level language mod-
els can also be used. Also, McCann et al. (2017)
used the encoder of a machine translation model to
compute contextualized representations. Recently,
(Devlin et al., 2018) proposed BERT, an encoder
based on the Transformer architecture (Vaswani
et al., 2017). To overcome the unidirectionality of
the language model objective, the authors propose
two novel tasks for unsupervised learning: masked
words and next sentence prediction.

Ghaddar and Langlais (2018a) applied distant
supervision (Mintz et al., 2009) in order to in-
duce traditional word representations. They used
WiFiNE1 (Ghaddar and Langlais, 2018b, 2017),
a Wikipedia dump with massive amount of auto-
matically annotated entities, using the fine-grained

1http://rali.iro.umontreal.ca/rali/en/
wikipedia-lex-sim
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tagset proposed in (Ling and Weld, 2012). Mak-
ing use of Fasttext (Bojanowski et al., 2016), they
embedded words and (noisy) entity types in this
resource into the same space from which they
induced a 120-dimensional word-representation,
where each dimension encodes the similarity of a
word with one of the 120 types they considered.
While the authors claim the resulting representa-
tion captures contextual information, they do not
specifically train it to do so. Our work revisits pre-
cisely this.

3 Data and Preprocessing

We leverage the entity type annotations in WiFiNE
which consists of 1.3B tokens annotated with
159.4M mentions, which cover 15% of the to-
kens. A significant amount of named enti-
ties such as person names and countries can
actually be resolved via their mention tokens
only (Ghaddar and Langlais, 2016a,b). With the
hope to enforce context, we use the fine-grained
type annotation available in the resource (e.g.
/person/politician). Also, inspired by the
recent success of masked-word prediction (Devlin
et al., 2018), we further apply preprocessing to the
original annotations by (a) replacing an entity by
a special token [MASK] with a probability of 0.2,
and (b) replacing primary entity mentions, e.g. all
mentions of Barack Obama within its dedicated
article, by the special mask token with a probabil-
ity of 0.5. In WiFiNE, named-entities that do not
have a Wikipedia article (e.g. Malia Ann in Fig-
ure 2) are left unannotated, which introduces false
negatives. Therefore, we mask non-entity words
when we calculate the loss.

Although contextualized representation learn-
ing has access to arbitrary large contexts (e.g.
the document), in practice representations mainly
depend on sentence level context (Chang et al.,
2019). To overcome this limitation to some extent,
we use the Wikipedia layout provided in WiFiNE
to concatenate sentences of the same paragraphs,
sections and document up to a maximum size of
512 tokens.

An illustration of the preprocessing is depicted
in Figure 2 where for the sake of space, a single
sentence is being showed. Masked entities encour-
age the model to learn good representations for
non-entity words even if they do not participate
in the final loss. Because our examples are sec-
tions and paragraphs, the model will be forced to

encode sentence- as well as document-based con-
text. In addition, training on (longer) paragraphs
is much faster and memory efficient than batching
sentences.

4 Learning our Representation

We use a model (Figure 1) composed of a multi-
layer bidirectional encoder that produces hidden
states for each token in the input sequence. At
the output layer, the last hidden states are fed into
a softmax layer for predicting entity types. Fol-
lowing (Strubell et al., 2017), we used as our en-
coder the Dilated Convolutional Neural Network
(DCNN) with an exponential increasing dilated
width. DCNN was first proposed by (Yu and
Koltun, 2015) for image segmentation, and was
successfully deployed for NER by (Strubell et al.,
2017). The authors show that stacked layers of
DCNN that incorporate document context have
comparable performance to Bi-LSTM while be-
ing 8 times faster. DCNN with a size 3 convolu-
tion window needs 8 stacked layers to incorporate
the entire input context of a sequence of 512 to-
kens, compared to 255 layers using a regular CNN.
This greatly reduces the number of parameters and
makes training more scalable and efficient. Be-
cause our examples are paragraphs rather than sen-
tences, we employ a self-attention mechanism on
top of DCNN output with the aim to encourage the
model to focus on salient global information. In
this paper, we adopt the multi-head self-attention
formulation by Vaswani et al. (2017). Compar-
atively, Transformer-based architectures (Devlin
et al., 2018) require a much larger2 amount of re-
sources and computations. To improve the han-
dling of rare and unknown words, our input se-
quence consists of WordPiece embeddings (Wu
et al., 2016) as used by Devlin et al. (2018); Rad-
ford et al. (2018). We use the same vocabulary dis-
tributed by the authors, as it was originally learned
on Wikipedia. Model parameters and training de-
tails are provided in Appendix A.1.

5 Experiments on NER

5.1 Datasets

To compare with state-of-the-art models, we
consider two well-established NER benchmarks:
CONLL-2003 (Tjong Kim Sang and De Meulder,
2003) and ONTONOTES 5.0 (Pradhan et al., 2012).

2Actually prohibitive with our single GPU computer.
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hcnn hcnn hcnn hcnn hcnn hcnn
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Figure 1: Illustration of the architecture of the model used for learning our representation. It consists of
stacked layers of dilated convolutional neural network followed by a self-attention layer. The input is
a sequence of tokens with a maximum length of 512, where the output is the associated entity type se-
quence. We use the hidden state of the last DCNN layer and the self-attention layer as our representation.

before [Obama] first daughter, Malia Ann, was
born in [July 1998] at [Chicago], [Illinois].

after [MASK] first daughter, Malia Ann, was
born in [July 1998] at [Chicago], [Illinois].

tags /person/politician X X X X X X X

X X /date /date X /location/city
X /location/province X

Figure 2: Sequence before and after masking,
along with output tags. X indicates that no pre-
diction is made for the corresponding token.

To further determine how useful our learned repre-
sentation is on other domains, we also considered
three additional datasets: WNUT17 (Derczyn-
ski et al., 2017) (social media), I2B2 (Stubbs and
Uzuner, 2015) (biomedical), and FIN (Alvarado
et al., 2015) (financial). In addition, we per-
form an out-domain evaluation for models trained
on CONLL-2003 and tested on WIKIGOLD (Bal-
asuriya et al., 2009) (wikipedia) and WEB-
PAGES (Ratinov and Roth, 2009) (web pages).
Statistics of the datasets are provided in Ap-
pendix A.2.

5.2 Input Representations
Our NER model is a vanilla Bi-LSTM-CRF (Ma
and Hovy, 2016) that we feed with various repre-
sentations (hereafter described) at the input layer.

Model parameters and training details are pro-
vided in Appendix A.3.

5.2.1 Word-Shape Features
We use 7 word-shape features: allUpper,
allLower, upperFirst, upperNotFirst,
numeric, punctuation or noAlphaNum.
We randomly allocate a 25-dimensional vector for
each feature, and learn them during training.

5.2.2 Traditional Word Embeddings
We use the 100-dimensional case sensitive
SSKIP (Ling et al., 2015) word embeddings. We
also compare with the previously described 120-
dimensional vector representation of (Ghaddar
and Langlais, 2018a), they call it LS.

5.2.3 Contextualized Word Embeddings
We tested 3 publicly available contextualized
word representations: ELMo (Peters et al., 2018):
dim = 1024, layers = 3; FLAIR (Akbik et al.,
2018): d = 2048, l = 1; and BERT (Devlin
et al., 2018): d = 1024, l = 4. For the latter,
we use the hidden state of the 4 last layers of the
Large model. For the proposed representation,
we use the hidden state of the last DCNN layer and
the self-attention layer as feature input (d = 384,
l = 2). Following Peters et al. (2018), each rep-
resentation (including ours) is the weighted sum
of the hidden layers, where weights are learned
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Conll Ontonotes
X LS ours X LS ours

ws+sskip 90.37 91.23 (+0.9) 91.76 (+1.4) 86.44 87.95 (+0.9) 88.13 (+0.9)
ws+sskip+elmo 92.47 92.49 (+0.0) 92.82 (+0.4) 89.37 89.44 (+0.1) 89.68 (+0.3)
ws+sskip+elmo+flair 92.69 92.75 (+0.1) 93.22 (+0.5) 89.55 89.59 (+0.0) 89.73 (+0.2)
ws+sskip+elmo+flair+bert 92.91 92.87 (+0.0) 93.01 (+0.1) 89.66 89.70 (+0.0) 89.95 (+0.3)
(Peters et al., 2018) 92.20 -
(Clark et al., 2018) 92.61 88.81
(Devlin et al., 2018) 92.80 -

Table 1: F1 scores over five runs on CONLL and ONTONOTES test set of ablation experiments. We
evaluate 4 baselines without additional embeddings (column X ) and with LS embeddings (Ghaddar and
Langlais, 2018a) or ours. Figures in parenthesis indicate the gain over the baselines.

during training. We use concatenation to stack
the resulting representations in the input layer of
our vanilla Bi-LSTM-CRF model, since Coates
and Bollegala (2018) show that concatenation per-
forms reasonably well in many NLP tasks.

6 Experiments

6.1 Comparison to LS embeddings

Since we used the very same distant supervision
material for training our contextual representation,
we compare it to the one of Ghaddar and Langlais
(2018a). We concentrate on CONLL-2003 and
ONTONOTES 5.0, the datasets most often used for
benchmarking NER systems.

Table 1 reports results of 4 strong baselines
that use popular embeddings (column X ), further
adding either the LS representation (Ghaddar and
Langlais, 2018a) or ours. In all experiments, we
report the results on the test portion of models per-
forming the best on the official development set of
each dataset. As a point of comparison, we also
report 2018 state-of-the-art systems.

First we observe that adding our representation
to all baseline models leads to systematic improve-
ments, even for the very strong baseline which ex-
ploits all three contextual representations (fourth
line). The LS representation does not deliver such
gains, which demonstrates that our way of ex-
ploiting the very same distant supervision mate-
rial is more efficient. Second, we see that adding
our representation to the weakest baseline (line 1),
while giving a significant boost, does not deliver
as good performance as when adding other contex-
tual embeddings. Nevertheless, combining all em-
beddings yields state-of-the-art on both CONLL
and ONTONOTES.

6.2 Comparing Contextualized Embeddings

Table 2 reports F1 scores on the test portion of
the 7 datasets we considered, for models trained
with different embedding combinations. Our base-
line is composed of word-shape and traditional
(SSKIP) embeddings. Then, contextualized word
representations are added greedily, that is, the rep-
resentation that yields the largest gain when con-
sidered is added first and so forth.

Expectedly, ELMo is the best representation to
add to the baseline configuration, with significant
F1 gains for all test sets. We are pleased to ob-
serve that the next best representation to consider
is ours, significantly outperforming FLAIR. This is
likely due to the fact that both FLAIR and ELMo
embeddings are obtained by training a language
model, therefore encoding similar information.

Continuously aggregating other contextual em-
beddings (FLAIR and BERT) leads to some im-
provements on some datasets, and degradations on
others. In particular, stacking all representations
leads to the best performance on 2 datasets only:
ONTONOTES and I2B2. Those datasets are large,
domain diversified, and have more tags than other
ones. In any case, stacking word-shapes, SSKIP,
ELMo and our representation leads to a strong
configuration across all datasets. Adding our rep-
resentation to ELMo, actually brings noticeable
gains (over 2 absolute F1 points) in out-domain
settings, a very positive outcome.

Surprisingly, BERT did not perform as we ex-
pected, since they bring minor (ONTONOTES) or
no (CONLL) improvement. We tried to repro-
duce the results of fine-tuned and feature-based
approaches reported by the authors on CONLL,
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In Domain Out Domain
Conll Onto WNUT FIN I2B2 WikiGold WebPage

WS+SSKIP 90.73 86.44 32.30 81.82 86.41 66.03 45.13
+ELMo 92.47 89.37 44.15 82.03 94.47 76.34 54.45

+Ours 92.96 89.68 47.40 83.00 94.75 78.51 57.23
+FLAIR 93.22 89.73 46.80 83.11 94.79 77.77 56.20

+BERT 93.02 89.97 46.47 81.94 94.92 78.06 56.84

Table 2: Mention-level F1 scores. The baseline (first line) uses word shape and traditional (classic)
embeddings. Variants stacking various representations are presented in decreasing order of F1 return. So
for instance, ELMo is the best representation to add to the baseline one.

but as many others,3 our results were disappoint-
ing.

6.3 Analysis

We suspect one reason for the success of our repre-
sentation is that it captures document wise context.
We inspected the words the most attended accord-
ing to the the self-attention layer of some docu-
ments, an excerpt of which is reported in Figure 3.
We observe that attended words in the document
are often related to the topic of the document.

84 economic Stock, mark, Wall, Treasury, bond
148 sport World, team, record, game, win
201 news truck, Fire, store, hospital, arms

Figure 3: top 5 attended words for some randomly
picked documents in the dev set of CONLL. Col-
umn 1 indicate document number, while column 2
is our appreciation of the document topic.

We further checked whether the gain could be
imputable to the fact that WiFiNE contains the
mentions that appear in the test sets we consid-
ered. While this of course happens (for instance
38% of the test mentions in ONTONOTES are in
the resource), the performance on those mentions
with our representation is no better than the per-
formance on other mentions.

7 Conclusion and Future Work

We have explored the idea of generating a contex-
tualized word representation from distant super-
vision annotations coming from Wikipedia, im-
proving over the static representation of Ghad-
dar and Langlais (2018a). When combined with

3https://github.com/google-research/
bert/issues?utf8=%E2%9C%93&q=NER

popular contextual ones, our representation leads
to state-of-the-art performance on both CONLL
and ONTONOTES. We are currently analyzing the
complementarity of our representation to others.

We plan to investigate tasks such as coref-
erence resolution and non-extractive machine
reading comprehension, where document level
context and entity type information is crucial.
The source code and the pre-trained models
we used in this work are publicly available
at http://rali.iro.umontreal.ca/
rali/en/wikipedia-ds-cont-emb
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A Appendices

A.1 Training Representation
We use 8 stacked layers of DCNN to encode input
sequences of maximum length of 512. WordPiece
and position embeddings, number of filters in each
dilated layer and self-attention hidden units were
all set to 384. For self-attention, we use 6 attention
heads and set intermediate hidden unit to 512. We
apply a dropout mask (Srivastava et al., 2014) with
a probability of 0.3 at the end of each DCNN layer,
and at the input and output of the self-attention
layer. We adopt the Adam (Kingma and Ba, 2014)
optimization algorithm, set the initial learning rate
to 1e−4, and use an exponential decay. We train
our model up to 1.5 millions steps with mini-batch
size of 64. We implemented our system using the
Tensorflow (Abadi et al., 2016) library, and train-
ing requires about 5 days on a single TITAN XP
GPU.

A.2 Dataset
Table 3 list the dataset used in this study do-
main, label size, and number of mentions in
train/dev/test portions.

# entities
Dataset Domain Types train dev test
CONLL news 4 23499 5942 5648
ONTONOTES news 18 81828 11066 11257
WNUT17 tweet 6 1975 836 1079
I2B2 bio 23 11791 5453 11360
FIN finance 4 460 - 120
WIKIGOLD wikipedia 4 - - 3558
WEBPAGES web 4 - - 783

Table 3: Statistics on the datasets used in our ex-
periments.

We used the last 2 datasets to perform an out-of-
domain evaluation of CONLL models. Those are
small datasets extracted from Wikipedia articles
and web pages respectively, and manually anno-
tated following CONLL-2003 annotation scheme.

A.3 NER Model Training
Our system is a single Bi-LSTM layer with a CRF
decoder, with 128 hidden units for all datasets
except for ONTONOTES and I2B2 where we use
256 hidden units. For each learned representa-
tions (ours, ELMo, FLAIR, BERT), we use the
weighted sum of all layers as input, where weights
are learned during training. For each word, we

stack the embeddings by concatenating them to
form the input feature of the encoder.

Training is carried out by mini-batch of stochas-
tic gradient descent (SGD) with a momentum of
0.9 and a gradient clipping of 5.0. To mitigate
over-fitting, we apply a dropout mask with a prob-
ability of 0.7 on the input and output vectors of the
Bi-LSTM layer. The mini-batch is 10 and learning
rate is 0.011 for all datasets. We trained the mod-
els up to 63 epochs and use early stopping based
on the official development set. For FIN, we ran-
domly sampled 10% of the train set for develop-
ment.
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Abstract

Question paraphrasing aims to restate a given
question with different expressions but keep
the original meaning. Recent approaches are
mostly based on neural networks following a
sequence-to-sequence fashion, however, these
models tend to generate unpredictable results.
To overcome this drawback, we propose a
pipeline model based on templates. It fol-
lows three steps, a) identifies template from
the input question, b) retrieves candidate tem-
plates, c) fills candidate templates with orig-
inal topic words. Experiment results on two
self-constructed datasets show that our model
outperforms the sequence-to-sequence model
in a large margin and the advantage is more
promising when the size of training sample is
small.

1 Introduction

Paraphrase means sentences or phrases that con-
vey the same meaning with different expressions.
Popular tasks about paraphrases are paraphrase
identification (Yin and Schütze, 2015), paraphrase
generation (Li et al., 2018; Gupta et al., 2018),
sentence rewriting (Barzilay and Lee, 2003), etc.
As a special case of paraphrase generation, ques-
tion paraphrasing (McKeown, 1983) aims to re-
state an input question. It can be applied in a ques-
tion answering system for the expansion of ques-
tion set to enhance the coverage of candidate an-
swers. Besides, it is able to probe the need of users
within an interactive system by rephrasing ques-
tions.

Traditional approaches for paraphrase genera-
tion are mostly based on external knowledge, in-
cluding manually constructed templates (McKe-
own, 1983), or external thesaurus (Hassan et al.,

* Corresponding author

Original Question
请帮我查一下卡片的开户行
Please help me check the card’s bank.
Paraphrase Questions
我想知道卡片的开户行
I would like to know the card’s bank
您好,请帮我查询一下卡片的开户行
Hi, please help me checkthe card’s bank
卡片的开户行请帮我查询一下
The card’s bank, please help me check it
卡片的开户行能帮我查询一下吗？
The card’s bank, can you help me check it?

Table 1: Example of an question and its paraphrases.
Underlined phrases are topic words and others are tem-
plates.

2007). The generated paraphrases are usually flu-
ent and informative. However, it is very time-
consuming to construct templates by human and
external thesaurus are always absent for some
languages. Recently, researchers start to use
neural network based approaches by formulating
the generation task in a fashion of sequence-to-
sequence (Sutskever et al., 2014; Bahdanau et al.,
2014; Prakash et al., 2016). However, these mod-
els tend to “lose control” generating some unpre-
dictable results.

In order to alleviate the uncertainty in sequence-
to-sequence model, Cao et al. (2018) propose to
search for similar sentences as soft template to
back up the neural generation model in the sce-
nario of text summarization. With this inspira-
tion, we also try to bridge neural-based models
and template-based approaches for question para-
phrasing. An example of question paraphrasing
can be seen in Table 1. We have two observations.
First, words in a question can be easily divided
into two types, namely, topic words and template
words. Template words define the information
need of the question while topic words are related
to some specific entities or events. Second, for a
pair of paraphrase questions, they tend to share the
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same topic words while template words are differ-
ent. Motivated by these two observations, we try
to identify template and topic words in the origi-
nal question and construct paraphrase questions by
considering these two parts separately.

In this paper, we propose a template-based
framework to generate question paraphrase in a
pipeline. The framework mainly includes three
components, namely template extraction, template
transforming and template filling. The contribu-
tion of our paper is three-fold.

• First, we propose a pipeline model to identify
template and topic words from a question and
generate the question paraphrases via tem-
plate transforming and filling.

• Second, we construct two datasets for ques-
tion paraphrasing collected from two do-
mains, namely financial domain and automo-
tive domain. All topic words are labeled in
questions. The dataset is available here 1

• Third, extensive experiments are performed
on the self-constructed dataset to evaluate the
effectiveness of our pipeline model. Results
show that our model outperforms the state-
of-the-art approach in a large margin.

2 Datasets Description

Two datasets are collected and annotated for ques-
tion paraphrasing, including banking service ques-
tions from the financial domain and sales service
questions from the automotive domain. The an-
notation consists of two parts. First, we classify
questions into different clusters so that questions
in each cluster share the same meaning. Second,
we label template and topic words in each ques-
tion. The number of question clusters for the fi-
nancial domain and automotive domain are 2,589
and 526 respectively. Note that, for each cluster
in financial dataset, we have 5 paraphrasing ques-
tions and for each cluster in automotive dataset,
we have 4 paraphrasing questions.

The annotation of question cluster is performed
by experts in the two domains, while two student
annotators are hired for the labeling of the tem-
plates. For the template identification, annotators
are instructed that the template part should be gen-
eralized, which means that the question will be

1http://www.sdspeople.fudan.edu.cn/
zywei/data/paraphrase.zip

readable if we replace the topic words with other
similar content.

The agreement between annotators for template
identification is 0.558 and 0.568 for the domain
of finance and automotive respectively. Further
observations on the annotation results of template
identification show that even if templates identi-
fied by the two annotators are different, both tem-
plates can be reasonable. We therefore construct
two versions of datasets for experiments. One
keeps both annotations (union) and the other in-
cludes questions with same labels from annotators
(intersection). The statistics of our datasets can be
seen in Table 2.

Statistics financial automotive
inter. union inter. union

# of questions 7,218 12,938 1,195 2,103
# of templates 6,574 17,300 1,184 2,998

# of vocab. 908 1,100 656 907
# of template vocab. 325 528 144 303

# of topic vocab. 869 1,063 620 873

Table 2: Statistics of annotated datasets for question
paraphrasing. inter. is short for intersection; vocab.
is short for vocabulary; vocabulary here means unique
tokens.

3 Proposed Model

Given the input question q, question paraphrasing
system aims to generate questions with the same
meaning but different expressions. Our proposed
template-based model follows a pipeline fashion.
It includes three main components, namely, tem-
plate extraction, template transforming and tem-
plate filling. The template extraction module clas-
sifies words in the input question into template
part and topic part. Template transforming module
searches for candidate templates for paraphrasing.
Finally template filling module fills in the slots of
the retrieved templates with topic words. And we
take two training approaches, one is separate train-
ing and the other is joint training. A running ex-
ample can be seen in Figure 1.

3.1 Template Extraction

Take a question as input, template extraction mod-
ule classifies words into template and topic ones.
We treat the problem as a supervised sequence la-
beling task and modify the classical BIO tagging
strategy to fit our scenario. Specifically, we use
“O” to specify the template part, and treat “B”
and “I” as the topic part. As Bi-LSTM has been
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Figure 1: The overview of the proposed framework.

proved to be effective for the task of sequence la-
beling (Ma and Hovy, 2016), we also utilize such
structure for template extraction. Cross-entropy
(CE) is used for training and the loss is JTE .

3.2 Template Transforming
Take the extracted template from previous module
as input, template transforming module searches
for candidate templates for paraphrasing. We uti-
lize a retrieval-based approach to search for can-
didate templates. We first build an index for all
the templates in our dataset. Then we use a score
function (e.g. cosine similarity) to evaluate the
similarity between original template and candidate
templates to find out the most similar template.

To better represent our template, we train a
sequence-to-sequence model with attention for
template transforming. For each template, the hid-
den state resulted from the encoder is used as its
representation. Note that, we also tried the gen-
eration results directly, however, preliminary ex-
periment results showed the model performs poor.
The loss for training seq-to-seq model is JTT .

3.3 Template Filling
Take a candidate template and topic words as in-
put, template filling module fills each slot in the
template with topic words to form a new question.
In practice, we use two encoders to encode sub-
sequence of topic part and candidate template sep-
arately. Then we concatenate topic representation
and candidate representation, and put them into a
classifier to predict the position of the slot for the
particular topic word. Cross-entropy is used here
for training and loss is denoted by JTF .

3.4 Training
We study two different approaches for the train-
ing of our pipeline model, namely separate train-
ing and joint training. For separate training, we
train three modules (template extraction, template
transforming and template filling) separately and
combine them together for the whole framework.

We can also train them together to ease the error
propagation problem resulted from separate train-
ing. The loss function here is the sum of each
module.

J(θ) = JTE(θ) + JTT (θ) + JTF (θ) (1)

4 Experiments

4.1 Experimental Setup

We test our model on datasets described in Sec-
tion 2. Both datasets are divided into training,
validation and test with split ratio of 7:2:1. We
use Adam as our optimization method and set the
learning rate as 0.0001. We set the dimension
of hidden state as 128. For padding, we set the
max length as 64. We use BERT-Chinese tok-
enizer(Devlin et al., 2018) to separate characters.

For the general evaluation, we evaluate the qual-
ity of the generated paraphrase questions. BLEU-
1, BLEU-2, BLEU-3, BLEU-4((Papineni et al.,
2002)) are used as evaluation measures. Three
models are compared.

seq2seq (Bahdanau et al., 2014) uses an
encoder-decoder structure with attention for gen-
eration.

ours (separate) this is our pipeline model con-
sisting of three modules. Each module is trained
separately.

ours (joint) this is our pipeline model consist-
ing of three modules and joint training is used.

4.2 Overall Evaluation

The overall experiment results can be seen in Ta-
ble 3. Both of our pipeline models based on tem-
plate outperform sequence-to-sequence model in a
large margin on all the four datasets in terms of all
the four metrics. The performance of ours (joint)
is better than that of ours (separate) which indi-
cates that joint training is effective for the pipeline
model. The performances of all three models on
the union set are better than their counter-part on
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Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4
intersection union intersection union intersection union intersection union

Financial
seq2seq 0.658 0.803 0.577 0.741 0.504 0.683 0.444 0.630

ours (separate) 0.863 0.892 0.808 0.832 0.753 0.772 0.698 0.716
ours (joint) 0.873 0.902 0.827 0.857 0.782 0.812 0.739 0.770

Automotive
seq2seq 0.581 0.771 0.526 0.723 0.482 0.684 0.441 0.648

ours (separate) 0.826 0.850 0.757 0.777 0.701 0.713 0.650 0.654
ours (joint) 0.859 0.849 0.808 0.790 0.763 0.738 0.720 0.690

Table 3: The overall performance of different models on four datasets from two domains (bold number in each
column is the best performance on that dataset).

the intersection set. This is probably because the
size of training samples are larger in the union
set. Moreover, the sequence-to-sequence model
is more sensitive to the size of training set, while
our template-based model can achieve comparable
performance on both sets.

4.3 Further Analysis for Transfer Learning

In addition to the overall performance of our
pipeline model, we also analyze its performance
for transfer learning. Since we have datasets from
two domains, and the financial one is much bigger
than the one from automotive domain. It is nat-
ural to train the model in the bigger dataset and
transfer it to the domain with less training data.
We thus report the experiment results for transfer
learning from financial domain to the automotive
one. Here, we compare three settings for the train-
ing of our model.

f2a: Model is trained on the financial dataset.
a2a: Model is trained on the automotive dataset

only. It is the same joint model as we used in the
previous section.

f+a2a: Model is pre-trained on the financial
dataset and then fine-tuned on the automotive
dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4
Seq2Seq(f2a) 0.251 0.167 0.110 0.085
Seq2Seq(a2a) 0.581 0.526 0.482 0.441

Seq2Seq(f+a2a) 0.715 0.661 0.619 0.580
ours (f2a) 0.796 0.722 0.656 0.598
ours (a2a) 0.859 0.808 0.763 0.720

ours (f+a2a) 0.881 0.835 0.791 0.747

Table 4: Transfer learning performance of our pipeline
model on the intersection datasets (bold number in
each column is the best performance on that dataset).

Performance for transfer learning can be seen
in Table 4. The performance of ours (f2a) that
directly applies the model trained on financial
domain to automotive domain is better than the
performance of Seq2Seq. This indicates that
template-based model is easier to be transferred

from one domain to the other. ours (f2a) is worse
than our (a2a), this is reasonable because there is
a gap between dataset, such as different vocabu-
laries and different templates. The performance
of ours (f+a2a) is better than ours (a2a). This
shows that fine-tuning on the target domain can
further improve the model. The results on Seq2Seq
(f2a), Seq2Seq (a2a) and Seq2Seq (f+a2a) show
the same trend. The experiment we have done in
this part also gives us a new way to improve the
performance of our model when the size of target
dataset is limited.

5 Related Work

There are two lines of research for paraphrase gen-
eration including knowledge based ones and neu-
ral network based ones. Some researchers pro-
vide rules (Bhagat and Hovy, 2013) or corpus in-
cluding knowledge (Fader et al., 2013; Ganitke-
vitch et al., 2013; Pavlick et al., 2015). Other re-
searchers try to make use of templates (Berant and
Liang, 2014), semantic information (Kozlowski
et al., 2003) and thesaurus (Hassan et al., 2007)
for paraphrase generation.

Rush (2015) have applied Seq2Seq model
with attention mechanism for text summarization.
Prakash (2016) employ a residual net in Seq2Seq
model to generate paraphrases. Cao (2017) com-
bine a copying decoder and a generative decoder
for paraphrase generation. Cao(2018) try to uti-
lize template information to help text summariza-
tion, however, the template is vague in that paper.
We hope to utilize the special structure of question
and extract the template explicitly from questions.

6 Conclusion

In this paper, we proposed a template-based
framework for paraphrase question generation in-
cluding three components, template extraction,
template transforming and template filling. We
identify template and topic words via template
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extraction and generate paraphrase questions via
template transforming and filling. Experiment re-
sults on two self-constructed datasets from two do-
mains showed that our pipeline model outperforms
seq2seq model in a large margin.
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Abstract

Existing natural language processing systems
have often been designed with standard texts
in mind. However, when these tools are used
on the substantially different texts from social
media, their performance drops dramatically.
One solution is to translate social media data
to standard language before processing, this
is also called normalization. It is well-known
that this improves performance for many nat-
ural language processing tasks on social me-
dia data. However, little is known about which
types of normalization replacements have the
most effect. Furthermore, it is unknown what
the weaknesses of existing lexical normaliza-
tion systems are in an extrinsic setting. In this
paper, we analyze the effect of manual as well
as automatic lexical normalization for depen-
dency parsing. After our analysis, we con-
clude that for most categories, automatic nor-
malization scores close to manually annotated
normalization and that small annotation differ-
ences are important to take into consideration
when exploiting normalization in a pipeline
setup.

1 Introduction

It is well known that many traditional natural lan-
guage processing systems are focused on standard
texts, and their performance drops when used on
another domain. This is also called the problem
of domain adaptation. Recently, much focus has
been on the notoriously noisy domain of social
media. The hasty and informal nature of com-
munication on social media results in highly non-
standard texts, including a variety of phenomena
not seen in standard texts, like phrasal abbrevi-
ations, slang, typos, lengthening, etc. One ap-
proach to adapt natural language processing tools
to the social media domain is to ‘translate’ in-
put to standard text before processing it, this is
also referred to as normalization. In this ap-

proach, the input data is made more similar to
the type of data the tool is expecting. Previous
work has shown that normalization improves per-
formance on social media data for tasks like POS
tagging, parsing, lemmatization and named en-
tity tagging (Baldwin and Li, 2015; Schulz et al.,
2016; Zhang et al., 2013), however, it often re-
mains unknown which types of replacements are
most influential and which type of replacements
still have potential to improve the usefulness of an
automatic normalization system.

Baldwin and Li (2015) already investigated this
effect in detail. They evaluate the effect of man-
ual normalization beyond the word-level (includ-
ing insertion and deletion of words). To the best of
our knowledge, no automatic systems are available
to obtain such a normalization, which is why Bald-
win and Li (2015) focused only on the theoretical
effect (i.e. manually annotated normalization). In
this work, we will instead focus on lexical normal-
ization, which is normalization on the word level.
For this task, publicly available datasets and au-
tomatic systems are available (Han and Baldwin,
2011; Baldwin et al., 2015).

Recently, multiple English social media tree-
banks were released (Blodgett et al., 2018; Liu
et al., 2018; van der Goot and van Noord, 2018) in
Universal Depencies format (Nivre et al., 2017), as
well as novel categorizations of phenomena occur-
ring in lexical normalization (van der Goot et al.,
2018). In this work, we combine both of these
tasks into one dataset, which allows us not only to
evaluate the theoretical effect of lexical normaliza-
tion for dependency parsing, but also a real-world
situation with automatic normalization.

The main contributions of this paper are:

• We add a layer of annotation to a social media
treebank to also include normalization cate-
gories.
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Orig. text Oo yeaa ii hear thunda ! Rainnn kum onnnnnn
POS INTJ INTJ PRON VERB NOUN PUNCT NOUN VERB ADP
Gold norm. Oh yeah I hear thunder ! rain come on
Aut. norm. Oo yeah i hear thunder ! Rainn kum on
Norm. cat. 11 12 7 0 11 0 7 12 7

DISCOURSE

DISCOURSE

NSUBJ

ROOT

OBJ

PUNCT

NSUBJ

PARATAXIS

COMPOUND:PRT

Figure 1: Example annotation for the sentence “Oo yeaa ii hear thunda ! Rainnn kum onnnnnn”

• We analyze the theoretical effect of lexical
normalization for dependency parsing by us-
ing manually annotated normalization.

• We analyze the effect of an automatic lexical
normalization model for dependency parsing,
thereby showing which type of replacements
still require attention.

2 Data

In this section we shortly discuss our choices for
datasets and annotation formats, starting with the
treebank data, followed by the lexical normaliza-
tion categories annotation and automatic normal-
ization. See Figure 1 for a fully annotated example
instance from our development data.

2.1 Treebank

In 2018, three research groups simultaneously an-
notated dependency trees in the Universal Depen-
dencies format on tweets: Liu et al. (2018) fo-
cussed on training a better parser by using an en-
semble strategy, Blodgett et al. (2018) improved
a dependency parser by using several adaptation
methods, whereas van der Goot and van Noord
(2018) focused on the use of normalization. Be-
cause the treebank created by van der Goot and
van Noord (2018) is already annotated for lexical
normalization, we will use this treebank.

The data from the treebank is taken from Li and
Liu (2015), where van der Goot and van Noord
(2018) only kept the tweets that were still avail-
able at the time of writing. The data from Li and
Liu (2015) was in turn taken from two different
sources: the LexNorm dataset (Han and Baldwin,
2011), originally annotated with lexical normal-
ization and the dataset by Owoputi et al. (2013),
originally annotated with POS tags. Li and Liu

(2015) complemented this annotation so that both
sets contain normalization as well as POS tags,
to which van der Goot and van Noord (2018)
added Universal Dependency structures. Simi-
lar to van der Goot and van Noord (2018) we
use the English Web Treebank treebank (Silveira
et al., 2014) for training, and Owoputi (develop-
ment data) for the analysis. The test split is not
used in this work, since our aim is not to improve
the parser.

2.2 Normalization Categories

We choose to use the taxonomy of van der Goot
et al. (2018) for three main reasons: 1) to the best
of our knowledge, this is the most detailed catego-
rization for lexical normalization 2) annotation for
the same source data as the treebanks is available
from Reijngoud (2019) 3) systems are available to
automatically perform this type of normalization,
as opposed to the taxonomy used by Baldwin and
Li (2015). The existing annotation is edited to fit
the treebank tokenization; if a word is split in the
treebank, the normalization is split accordingly,
and both resulting words are annotated in the same
category. (Reijngoud, 2019) added one category
to the taxonomy: informal contractions, which in-
cludes splitting of words like ‘gonna’ and ‘wanna’.
The frequencies of the categories in the devel-
opment data are shown in Table 1. The ‘split’,
‘merge’ and ‘phrasal abbreviations’ categories are
very infrequent, because the original annotation
only included 1-1 replacements, these categories
have been added when transforming the annota-
tion to treebank tokenization.

2.3 Automatic Lexical Normalization

We use the state-of-the-art model for lexical nor-
malization: MoNoise (van der Goot, 2019), which
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Figure 2: The effect of the categories when using manually annotated normalization. Isolation is the increase
in performance when using only one category compared to using no normalization. Ablation is the loss when
disabling only one category (higher is better).

Category Freq. % Category Freq. %

No norm. 3,743 81.76 Short. vow. 22 0.48
Typo 30 0.66 Short. end 64 1.40
Missing apo. 176 3.84 Short. other 35 0.76
Spelling err. 44 0.96 Reg. trans. 66 1.44
Split 0 0.0 Other trans. 18 4.06
Merge 10 0.22 Slang 42 0.92
Phrasal abbr. 2 0.04 Inf. Contr. 56 1.22
Repetition 90 1.97 Unk 12 0.26

Table 1: Distribution of the replacement categories
in the development data, ‘No norm.’ refers to words
which are not normalized. For a detailed description of
the categories we refer to (van der Goot et al., 2018).

is a modular normalization model, consisting of
two steps; candidate generation and candidate
ranking. For the generation, the most important
modules are a lookup list based on the training
data, the Aspell spell-checker1 and word embed-
dings. For the ranking of candidates, features
from the generation are complemented with n-
gram probabilities and used as input to a random
forest classifier, which predicts the confidence that
a candidate is the correct replacement.

We train MoNoise on data from (Li and Liu,
2014), because it is most similar in annotation
style to our development and test sets. Perfor-
mance on the normalization task is slightly lower
compared to the reported results (Error reduc-
tion rate (van der Goot, 2019) on the word level
dropped from 60.61 to 45.38), because of differ-

1http://aspell.net/

ences in tokenization required for Universal De-
pendencies annotation. Also, the model clearly
has issues with capitalization (see for example
Figure 1) because capitalization is not corrected
in the normalization training data.

3 Effect of Manual Normalization

We use the UUparser(de Lhoneux et al., 2017) for
our experiments, with similar settings as van der
Goot and van Noord (2018), including a heuris-
tic to correctly parse a sentence starting with a
retweet token or a username. All results reported
in this paper are obtained with the official UD
evaluation script2 and are the average of 10 runs
with different random seeds for the parser. For
both settings (manual/automatic) we inspected the
LAS graphs as well as the UAS graphs, but be-
cause the UAS scores showed very similar trends
they are not reported here. The parser scores 52.56
LAS on the original input data, which improves to
57.83 when using the full gold normalization.

To evaluate the effect of each category, we mea-
sure performance twofold: in isolation, and in an
ablation setting. For the isolation, we look at
the difference between the baseline parser (with-
out normalization) and a parser which only has
access to normalization replacements of one cat-
egory. For the ablation setting, we look at the loss
when removing one category from the full model.

2http://universaldependencies.org/
conll18/conll18_ud_eval.py
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Figure 3: The effect of the categories when using automatic normalization. On the right y-axis the performance of
the normalization model on this category is plotted (recall). The ‘Other’ category shows the effect of normalization
replacements that were not annotated (but are still replaced by MoNoise).

The results for each category with gold normal-
ization are shown in Figure 2. From these results,
it becomes clear that some categories have a much
larger effect compared to other categories. Not
surprisingly, there is a correlation visible with the
frequencies (Table 1). The categories going be-
yond the 1-1 normalization have only very little
effect since they are very rare in this dataset3. The
most important category is ‘other transformation’,
this is mainly due to very frequent short words
(e.g. 27→to, u7→you). Other important categories
are ‘shortening end’ and ‘regular transformations’.
This can be explained by the fact that they repair
the suffixes, which often contain important syntac-
tic clues.

It also becomes clear that differences in to-
kenization guidelines play a large role; one of
the most frequent categories ‘missing apostrophe’
seems to be not useful for parsing; a manual in-
spection showed that this is because these also
occur in the training data in their not-normalized
form (e.g. ’ll 7→ will), thereby normalizing them
creates more diversity. For the same reason, infor-
mal contractions (e.g. wanna, gonna) also have a
relatively small effect.

4 Effect of Automatic Normalization

When using the full normalization model, the
parser achieves a LAS of 56.32 when using all

3they were not annotated in their original releases, but
were added when used in the treebank

normalization categories, which is 72% of the gain
that can be achieved with gold normalization com-
pared to the baseline setting (52.56). Similar to
the previous section, we run an isolation as well
as an ablation experiment. In this setting, we only
allow the normalization to replace words that are
annotated as the category under evaluation (for the
ablation experiments the inverse).

The parser performance as well as the recall
of the normalization model on each category are
plotted in Figure 3. Results show that the ‘other
transformations’ and ‘slang’ category have the
most room for improvement in LAS compared to
gold normalization, even though they are not the
worst categories with respect to the normaliza-
tion performance. Furthermore, trends are rather
similar compared to the gold normalization, even
though there are differences in normalization per-
formance. As expected from the gold normaliza-
tion, the ‘missing apostrophe’ category is not help-
ful.

Interestingly, the ‘other’ category, which in-
cludes normalization replacements that were not
annotated in the gold normalization, shows a
small increase in performance. This category in-
cludes replacements like ‘supp’ 7→‘support’ and
‘da’7→‘the’, which were overlooked by the anno-
tator. This could also be due to differences in the
scope of annotation between the training data and
development data.
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5 Conclusion

We have introduced a novel annotation layer for
an existing treebank with normalization annota-
tion, which indicates which types of replacements
are made. This allowed us to evaluate the effect
of lexical normalization on the dependency pars-
ing of tweets, both with manual normalization an-
notation and automatically predicted normaliza-
tion. The automatic normalization obtained over
70% of the performance increase that could be ob-
tained with gold normalization. The most influen-
tial categories were ‘other transformation’, which
includes many replacements for very short words,
and the categories with a high frequency that re-
pair a words’ suffix: ‘shortening end’ and ‘regular
transformation’. The categories which have the
most potential for improvement in parser perfor-
mance are the ‘other transformation’ and ‘slang’
categories. Furthermore, we saw that some pre-
dicted normalization replacements which were not
annotated in the gold data also led to an increase in
performance. Our results suggest that care should
be taken when taking out-of-the-box annotation,
because differences in annotation and the scope of
the normalization task (i.e. tokenization, missed
normalization) could lead to sub-optimal perfor-
mance.

The dataset and code for the analysis is
available on: https://bitbucket.org/
robvanderg/taxeval/.
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Celano, Fabricio Chalub, Jinho Choi, Çağrı
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
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Abstract

Modern e-commerce catalogs contain millions
of references, associated with textual and vi-
sual information that is of paramount impor-
tance for the products to be found via search
or browsing. Of particular significance is the
book category, where the author name(s) field
poses a significant challenge. Indeed, books
written by a given author might be listed with
different authors’ names due to abbreviations,
spelling variants and mistakes, among others.
To solve this problem at scale, we design a com-
posite system involving open data sources for
books, as well as deep learning components,
such as approximate match with Siamese net-
works and name correction with sequence-to-
sequence networks. We evaluate this approach
on product data from the e-commerce website
Rakuten France, and find that the top proposal
of the system is the normalized author name
with 72% accuracy.

1 Introduction

Unlike brick-and-mortar stores, e-commerce websites
can list hundreds of millions of products, with thousands
of new products entering their catalogs every day. The
availability and the reliability of the information on the
products, or product data, is crucial for the products to
be found by the users via textual or visual search, or
using faceted navigation.

Books constitute a prominent part of many large e-
commerce catalogs. Relevant book properties include:
title, author(s), format, edition, and publication date,
among others. In this work, we focus on the names of
book authors, as they are found to be extremely relevant
to the user and are commonly used in search queries on
e-commerce websites, but suffer from considerable vari-
ability and noise. To the best of our knowledge, there is
no large-scale public dataset for books that captures the
variability arising on e-commerce marketplaces from
user-generated input. Thus, in this work we use product
data from Rakuten France (RFR).1

1https://fr.shopping.rakuten.com

The variability and noise is evident in the RFR dataset.
For example, books written by F. Scott Fitzgerald are
also listed with the following author’s names: “Fran-
cis Scott Fitzgerald” (full name), “Fitzgerald, F. Scott”
(inversion of the first and last name), “Fitzgerald” (last
name only), “F. Scott Fitgerald” (misspelling of the last
name), “F SCOTT FITZGERALD” (capitalization and
different typological conventions), as well as several
combinations of those variations. The variability of the
possible spellings for an author’s name is very hard to
capture using rules, even more so for names which are
not primarily written in latin alphabet (such as arabic or
asian names), for names containing titles (such as “Dr.”
or “Pr.”), and for pen names which may not follow the
usual conventions. This motivated us to explore auto-
mated techniques for normalizing the authors’ names to
their best known (“canonical”) spellings.

Fortunately, a wealth of open databases exist for
books, making it possible to match a significant frac-
tion of the books listed in e-commerce catalogs. While
not always clean and unambiguous, this information is
extremely valuable and enables us to build datasets of
name variants, used to train machine learning systems to
normalize authors’ names. To this end, in addition to the
match with open databases, we will explore two differ-
ent approaches: approximate match with known authors’
names using Siamese neural networks, and direct cor-
rection of the provided author’s name using sequence-
to-sequence learning with neural networks. Then, an
additional machine learning component is used to rank
the results.

The rest of the paper is organized as follows: we
present the data from RFR and from the open databases
in Section 2, before turning to the experimental setup for
the overall system and for each of its components in Sec-
tion 3. Finally, we give results in Section 4, we present
related works in Section 5, and conclude in Section 6.

2 Book data
2.1 Rakuten France data
The RFR dataset contains 12 million book references2.
The most relevant product data for normalization is:

2The RFR dataset is publicly available at https://rit.
rakuten.co.jp/data_release.
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Figure 1: Overview of the system for normalizing author names. Each component is detailed in Section 3.

Table 1: Performances of the external bibliographic re-
sources used for matching books on RFR via ISBN.

Source URL % of ISBNs
Open Library openlibrary.org 24.9%
ISBNdb isbndb.com 36.3%
Goodreads www.goodreads.com 64.7%
Google Books books.google.com 51.2%
OCLC www.oclc.org 52.2%
BnF www.bnf.fr 7.4%
Sudoc www.sudoc.abes.fr 29.0%
Babelio www.babelio.com 7.9%

• ISBN3 in 10 digit or 13 digit format;

• product title, which includes the book title, often
supplemented with extra information in free text;

• author(s) of the book as the input catalog name
provided by the seller.

In particular, the ISBN is a worldwide unique iden-
tifier for books, which makes it a prime candidate for
unambiguous matching with external sources. In this
dataset, an ISBN is present for about 70% of the books.
Among the books with no ISBN, 30% are ancient books
which are not expected to be associated an ISBN.

2.2 External bibliographic resources
There is no central authority providing consistent infor-
mation on books associated with an ISBN. However,
there is a wealth of bibliographic resources and open
databases for books. In order to retrieve the author’s
name(s) associated with the books in the RFR dataset,
we perform ISBN matching using public APIs on eight
of them, listed in Table 1 along with the fraction of
found ISBNs from this dataset. We find the sources to
be highly complementary and that 75% of the books
with an ISBN are matched with at least one source. The
match via ISBN on external bibliographic resources is
the first component of the system depicted in Fig. 1.

2.3 Dataset of name entities
In order to train and evaluate machine learning systems
to match or correct authors’ names, a dataset of name en-

3International Standard Book Number, see https://
www.isbn-international.org

tities containing the different surface forms (or variants)
of authors’ names is required. The entities should reflect
as well as possible the variability that can be found in
the RFR dataset, as was illustrated in the case of F. Scott
Fitzgerald in Section 1.

For each entity, a canonical name should be elected
and correspond to the name that should be preferred for
the purpose of e-commerce. Instead of setting these gold
spellings by following some predefined rules (i.e. family
name in the first position, initial of first name, etc. ), for
e-commerce applications it is more appropriate that the
displayed authors names have the most popular spellings
among readers. In agreement with Rakuten catalog ana-
lysts we set the most popular spelling of an author name
as the one found on Wikipedia4 or DBpedia (Lehmann
et al., 2015).

While Wikipedia seems more pertinent to select
canonical names matching the e-commerce user expec-
tations, specialized librarian data services, such as the
Library of Congress Name Authority5, could be used in
future research to enrich the dataset of name entities.

Name entities are collected in three distinct ways:

1. ISBN matching: for each book the different author
names found via ISBN search on external sources
and the RFR author name field build up an entity.
The canonical form is the one that is matched with
Wikipedia or DBpedia; else the one provided by
the greatest number of sources.

2. Matching of Rakuten authors: we build entities
using fuzzy search on the author name field on
DBpedia and consider the DBpedia value to be
canonical. We limit the number of false positives in
fuzzy search by tokenizing both names, and keep-
ing only the names where at least one token from
the name on RFR is approximately found in the
external resource (Levenshtein distance < 2).

3. Name variants: DBpedia, BnF, and JRC-
names (Steinberger et al., 2011; Maud et al., 2016)
directly provide data about people (not limited to
book authors) and their name variants.

4https://www.wikipedia.org
5id.loc.gov/authorities/names.html
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As an example, by using the wikiPageRedirects field
in DBpedia we can build a large entity for the canoni-
cal name “Anton Tchekhov”, containing “Anton Tche-
chov”, “Antòn Pàvlovič Chéchov”, “Checkhov”, “Anton
Chekov”, and many more.

After creating the name entity dataset, we normalize
all names to latin-1. We obtain about 750,000 entities,
for a total of 2.1 million names.

2.4 Annotated Rakuten France data
In order to evaluate the overall system, we need product
data from RFR for which the canonical author name has
been carefully annotated and can be considered as the
ground truth. To this end, we have considered a subset
of 1000 books from the RFR dataset, discarding books
written by more than one author for simplicity.6 We find
that 467 books have a canonical author name that differs
from RFR’s original (unnormalized) author name. Also,
310 do not have an ISBN or do not match on any of
the bibliographic resources listed in Section 2.2. Among
them, 208 books have a canonical name that differs from
the input catalog name provided by the seller.

3 Experimental setup
The overview of the system can be found in Fig. 1. Its
first component, the matching via ISBN against external
databases, has already been presented in Section 2.2. In
the rest of this section, we will shed light on the three
machine learning components of the system.

3.1 Siamese approximate name matching
We want to learn a mapping that assigns a similarity
score to a pair of author names such that name variants
of the same entity will have high similarity, and names
that belong to different entities will have low similarity.
Once learned, this mapping will enable us to assign an
entity to any given name.

To this end, we might use a classical string metric
such as the Levenshtein distance or the n-gram dis-
tance (Kondrak, 2005). However, those are not specific
to people’s names, and might return a large distance (low
similarity) in cases such as the inversion between first
name and last name or the abbreviation of the first name
to an initial. Thus, we want to use the dataset of name
entities to learn a specialized notion of similarity—this
is known as distance metric learning (Kulis et al., 2013).

To this purpose, we use a pair of neural networks
with shared weights, or Siamese neural network (Brom-
ley et al., 1994). Each network is a recurrent neural
network (RNN) composed of a character-level embed-
ding layer with 256 units, a bidirectional long short-
term memory (LSTM) (Hochreiter and Schmidhuber,
1997) with 2 × 128 units, and a dense layer with 256
units. Each network takes a name as input and outputs a
representation—the two representations are then com-
pared using cosine similarity with a target value equal to

6The annotated RFR dataset is publicly available at
https://rit.rakuten.co.jp/data_release.

1 for name variants of the same entity, and to 0 otherwise.
We preprocess the input by representing all characters
in ASCII and lowercase. We consider a sequence length
of 32 using zero padding.

The Siamese network is trained with contrastive
loss (Hadsell et al., 2006) in order to push the similarity
towards 1 for similar pairs, and below a certain margin
(that we set to 0) for dissimilar pairs. The optimization
is done using Adam (Kingma and Ba, 2014), with a
learning rate of 10−3 and a gradient clipping value of 5.
We use batches of 512 samples, consider a negative to
positive pairs ratio of 4 : 1, and randomly generate new
negative pairs at every epoch.

At test time, we search for the canonical name whose
representation is closest to that of the query, using only
the high-quality name entities from DBpedia, BnF, and
JRC-names. To this end, we do approximate nearest
neighbor search using Annoy7.

3.2 Name correction with seq2seq networks
We use a generative model to correct and normalize
authors’ names directly. The dataset of name entities
is again employed to train a sequence-to-sequence
(seq2seq) model (Sutskever et al., 2014) to produce the
canonical form of a name from one of its variants. The
dataset is further augmented by including additional
variants where the first name is abbreviated to an initial.

The seq2seq model is an encoder-decoder using
RNNs, with a character embedding layer, as in the case
of the Siamese network. The encoder is a bi-directional
LSTM with 2× 256 units, while the decoder is a plain
LSTM with 512 units connected to a softmax layer that
computes a probability distribution over the characters.

The training is performed by minimizing the categor-
ical cross-entropy loss, using teacher forcing (Williams
and Zipser, 1989). The optimization setting is identical
to that of the Siamese nework, with batches of 1024 sam-
ples. For inference, we collect the 10 output sequences
with highest probability using beam search.

3.3 Ranking of the proposals
For any given book with an ISBN and an author’s name,
all three techniques shown in Fig. 1 provide one or sev-
eral candidate canonical names. As we aim at providing
an automated tool to enhance the quality of the book
products, the final system should provide a ranked list
of candidates with a calibrated confidence level. For
this purpose we train a logistic regression to estimate
the probability that a proposal is the canonical form for
an author’s name. This information is then used as a
confidence score to rank the different candidate names
returned by the three normalization approaches.

Specifically, we represent a proposal with a set of 12
features: 11 indicating whether it is found in the bib-
liographic sources, generated from the seq2seq model,
matched with the Siamese network or equal to the input
name, and one last feature corresponding to the cosine

7https://github.com/spotify/annoy
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distance between the representation of the proposal and
that of the input name. The selected features reflect that
the confidence of the global system should increase with
(i) the consensus among the different sources, and (ii)
the similarity of the candidate to the input name.

For this component we use the annotated dataset in-
troduced in Section 2.4, splitting the books between
training and test sets, with a ratio of 50% : 50%, gener-
ating a total of 11185 proposals.

4 Results
The three machine learning components discussed in
the previous section have been individually evaluated
on their specific task. Furthermore the final system has
been evaluated in terms of correctly normalized book
authors in a real case scenario.

Siamese approximate name matching We evaluate
the Siamese network on a held out test set, and compare
it to an n-gram distance, by checking that the nearest
neighbor of a name variant is the canonical name of
the entity to which it belongs. We find an accuracy of
79.8% for the Siamese network, against 71.1% for the
n-gram baseline with n = 3. We have also checked
metrics when introducing a threshold distance above
which we consider that no matching entity is found, and
found systematic improvement over the baseline. In the
final system, we set the threshold to infinity.

Siamese networks are more effective than simpler
rule-based approaches and more specifically they per-
form better than the n-gram baseline on the following
cases:

• Vittorio Hugo → Victor Hugo: capturing name
variants in different languages;

• Bill Shakespeare→William Shakespeare: captur-
ing common nicknames

Name correction with seq2seq networks Similarly
to the previous approach, the seq2seq network is evalu-
ated on a held out test set by checking that one of the gen-
erated name variants is the canonical name of the entity
to which it belongs. As expected, name normalization
using seq2seq network gives poorer performances than
approximate matching within a dataset of known au-
thors, but constitutes a complementary approach that is
useful in case of formatting issues or incomplete names.
This approach alone reaches a top-10 accuracy of 42%
on the entire test set, 26% on a test set containing only
names with initials, and 53% on a test set containing
only minor spelling mistakes.

Some examples where seq2seq performs better than
the other methods are as follows:

• V. Hugo→ Victor Hugo: first name prediction for
authors we don’t have in the canonical database;

• Vicor Hugo→Victor Hugo: misspelling correction
for authors we don’t have in the canonical database.

Table 2: Global system top-k accuracy at the book level.

Type of books #samples acc@1 acc@3
all 500 72% 85%
unnorm. input author 235 49% 67%
no ISBN match 151 50% 64%
unnorm. + no ISBN 109 35% 49%

Ranking of the proposals With a decision threshold
of p = 0.5, the trained classifier has an accuracy of 93%
for both positive and negative candidates in the test set.
The coefficients of the estimator reveal the importance
of the features and, thus, of the related components. The
three most important contributions are the match with
the Siamese network, the match via ISBN in Babelio,
and the similarity with the input catalog name, confirm-
ing the relevance of a multi-approach design choice.

Global system In order to reflect the actual use of
the global system on e-commerce catalog data, the final
evaluation is performed at the book level, by considering
all the proposals provided by the different components
for a given book. The metric used is the top-k accuracy
on the ranked list of proposals for each book; results
are summarized in Table 2. We find that 72% of the
books have the author’s name normalized by the highest
ranked proposal. Excluding from the evaluation books
where the ground truth for the author’s name equals the
catalog value, this accuracy drops to 49%. In the case
of books without ISBN or that do not match on any of
the bibliographic resources, thus relying on machine
learning-based components only, we find that 50% of
the books are normalized by the top proposal. Finally,
for the combination of the above two restrictions, we
find a top-1 accuracy of 35%.

5 Related works

There is a long line of work on author name disambigua-
tion for the case of bibliographic citation records (Hus-
sain and Asghar, 2017). While related, this problem dif-
fers from the one of book authors. Indeed, unlike most
books, research publications usually have several au-
thors, each of them having published papers with other
researchers. The relationships among authors, which
can be represented as a graph, may be used to help dis-
ambiguate the bibliographic citations.

Named entity linking (Shen et al., 2015), where one
aims at determining the identity of entities (such as a
person’s name) mentioned in text, is another related
problem. The crucial difference with the disambiguation
of book authors is that entity linking systems leverage
the context of the named entity mention to link unam-
biguously to an entity in a pre-populated knowledge
base.

The conformity of truth in web resources is also
a related problem, addressed in the literature by
TruthFinder (Yin et al., 2008) algorithms. Similarly, the
proposed global model in which we combine sources
learns to some extent the level of trust of the different
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sources. Unlike our technique, the TruthFinder approach
needs to start from a book we can unambiguously iden-
tify in several sources and, thus, needs its ISBN.

Distance metric learning with neural networks has
been used for merging datasets on names (Srinivas et al.,
2018), for normalizing job titles (Neculoiu et al., 2016),
and for the disambiguation of researchers (Zhang et al.,
2018). Sequence-to-sequence learning has been used
for the more general task of text normalization (Sproat
and Jaitly, 2016), and for sentence-level grammar error
identification (Schmaltz et al., 2016).

To the best of our knowledge, the problem of normal-
ization of book authors name has not been tackled in the
previous literature, except for a work on named entity
linking for French writers (Frontini et al., 2015).

6 Conclusions
We provided a first attempt at solving the problem of au-
thor name normalization in the context of books sold on
e-commerce websites. To this end, we used a composite
system involving open data sources for books, approx-
imate match with Siamese networks, name correction
with sequence-to-sequence networks, and ranking of the
proposals. We find that 72% of the books have the au-
thor’s name normalized by the highest ranked proposal.

In order to facilitate future research, we are releasing
data from Rakuten France: a large dataset containing
product information, and a subset of it with expert hu-
man annotation for the authors’ names. They are acces-
sible at rit.rakuten.co.jp/data_release.

Multiple challenges remain and are left for future re-
search. First, the system should be extended to handle
the case of books with multiple authors. In addition, the
book title could be used to help disambiguate between
authors and to query external bibliographic resources.
This work can also be seen as an intermediate step to-
wards a knowledge base for book author names with
name variants, extending public ones such as BnF, using
the ISNI8 for easier record linkage whenever available.
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Abstract

The automatic analysis of expressions of opin-
ion has been well studied in the opinion min-
ing area, but a remaining problem is robustness
for user-generated texts. Although consumer-
generated texts are valuable since they contain
a great number and wide variety of user eval-
uations, spelling inconsistency and the variety
of expressions make analysis difficult. In order
to tackle such situations, we applied a model
that is reported to handle context in many nat-
ural language processing areas, to the problem
of extracting references to the opinion target
from text. Experiments on tweets that refer to
television programs show that the model can
extract such references with more than 90%
accuracy.

1 Introduction

For some decades, opinion mining has been
among the more extensively studied natural
language applications, as plenty of consumer-
generated texts have become widely available on
the Internet. Consumer-generated texts in the real
world are not always ”clean” in the sense that
vocabulary not in dictionaries is frequently used,
so some measures for handling out-of-vocabulary
(OOV) words are required. (Turney, 2002) gave a
solution to this problem in the form of a semantic
orientation measure, defined by pointwise mutual
information, to automatically calculate the polar-
ity of words.

However, these kinds of measures, usually
called sentiment analysis, are only one aspect of
opinion mining; another big problem to be tackled
is the detection of the target of the opinion. Unlike
analyzing opinions about, say, a well-known prod-
uct that is referred to by name without many vari-
ations, analyzing opinions about an inconcrete ob-
ject such as media content requires the extraction
of the opinion target. Real tweets that refer to tele-
vision (TV) programs frequently do not explicitly

mention the proper full name of the program. Al-
though official hashtags supplied by broadcasters
are sometimes used, unofficial hashtags may also
appear, and on occasion, paraphrased versions of
the content may be used without either hashtags or
the program name. Thus some method for finding
paraphrases in that context is required in order to
extract the target of such tweets.

Following the advent of Deep Neural Networks
(DNNs), many context processing models have
been proposed. One of the most successful models
is Long Short-term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), which we adopt as the
basis for context processing. The recurrent archi-
tecture of LSTM is thought to handle long-term
dependencies.

Our task is to detect references to TV programs
as described in section 3. Viewers of TV programs
generate many tweets, and broadcasters pay much
attention to what viewers say, including what spe-
cific part of a program is being discussed. Produc-
ers and directors want to know as specifically as
possible what viewers talk about, in order to as-
sess in detail the impact that their programs have
on audiences.

Formally, our task is to extract relevant parts
from a sentence, which is similar to named en-
tity recognition (NER) in the sense that it is a se-
quence detection problem, but rather more seman-
tic. Our motivation is to clarify how well various
NER models work on our task. The contribution
of this paper is the performance comparison, on
our task, of three NER methods that are reported
to perform at state-of-the-art levels. We also con-
ducted the same experiment on the CoNLL 2003
NER task, to allow comparison against our task.

2 Related Work

Related to our task in this study is the extrac-
tion of opinion targets in sentiment analysis that
was conducted as a shared task in SemEval 2016,
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called aspect-based sentiment analysis (Pontiki
et al., 2016), where opinion target extraction was
one measure of performance for a sentence-level
subtask. Unlike other sentiment analysis tasks,
such a task requires the extraction of entity types
including the opinion target and attribute labels
as aspects of the opinion. However, entities to
be extracted remain at the word level, and the
candidates are given, such as “RESTAURANT”,
“FOOD”, etc. Aspects to be extracted are similar
in that one word can be chosen among given can-
didates, such as “PRICE”, “QUALITY” and so on.
In our task, the opinion target to be extracted is not
restricted to a word but rather can be a phrase, and
is not in general specified in advance. There have
been many studies related to paraphrases, one of
which was a shared task in SemEval 2015, known
as paraphrase identification (Xu et al., 2015).

As regards phrase extraction, NER has a long
history from (Tjong Kim Sang and De Meulder,
2003). The state-of-the-art models are thought to
be (Huang et al., 2015; Lample et al., 2016; Ma
and Hovy, 2016).

3 Task and Data

The task is to extract references to TV programs
in the text part of tweets. We call such expressions
”referers”. Figure 1 shows these notions with an
example. The referer part is not always the proper
name of the program or an officially-defined hash-
tag, but can be a paraphrased reference to the pro-
gram content.

Figure 1: Terminology with an example

The targeted TV program is a Japanese TV
drama, described in Table 1. We prepared a pop-
ulation of tweets that refer to TV programs by se-
lecting tweets manually in a best-effort manner:
tweets that contain wider general terms are likely
to contain some portion of targeted data (includ-
ing the broadcaster name NHK, for this study) if
transmitted during the broadcast time of the pro-
gram. Tweets were then selected manually to pre-
pare research data.

The referer parts in the text are annotated man-
ually as a region, using the brat rapid annotation
tool by (Stenetorp et al., 2012). Since such anno-

tations are performed at the character level before
the tokenization process, labels for the sequence
tagging problem are converted to the positions of
tokens during the tokenization process. The cod-
ing scheme for the region of the reference is IOB
tags (Ramshaw and Marcus, 1995).

The tweets and targeted program names are
both in Japanese, and since Japanese has no spaces
between words, a Japanese tokenizer is used to
separate words. We used SentencePiece (Kudo,
2018), a kind of subword tokenizer that handles
OOVs and de-tokenization well. SentencePiece is
trained with the same training data as the main
task. Raw data are as described in Table 2. Se-
quence lengths in terms of words and characters
are given as averages and standard deviations. Ta-
ble 3 shows the characteristics of annotated tags.
The referer part is annotated more finely, i.e. sub-
categorized by type of reference such as people,
scene, music, etc., but for this study, we gather
them into a single type of reference. Almost one
third of the tokens has some kind of reference to
the targeted program, and many chunks consist
of more than one token, since there are many I-
REFERENCE tags in the corpus. The data thus
prepared are used for both training and evaluation.

Broadcast time 2019.4.1 8:00-8:15
Broadcaster NHK (GTV channel)
Program title Natsuzora1

Genre television drama series

Synopsis The story of an animator
who decides to go to Tokyo.

Table 1: Targeted TV program

# tweets 3,745
# chars per. tweet 30.1(ave.) 19.5(SD.)
# words per. tweet 11.6(ave.) 9.4(SD.)
# vocab of chars 1,693
# vocab of words 7,727

Table 2: Statistics of Raw Data

# B-REFERENCE 7,871
# I-REFERENCE 5,558
# O 29,829

Table 3: Statistics of Reference Tags

1https://en.wikipedia.org/wiki/
Natsuzora
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4 Model and Training Procedure

We treat the extraction of referer sections as a se-
quence tagging problem, and the state-of-the-art
model for such a sequence tagging problem is a
LSTM model combined with CRF, as reported in
(Huang et al., 2015). We used a modified version
of LSTM-CRF 2, implemented by TensorFlow 3.

The models used have three types of layers. In-
puts for the model are a sequence of tokenized
words, and to deal with large vocabulary tasks,
distributed representations are used. The first
layer is a trainable embedding layer that inputs se-
quences of words. The second layer is a recurrent
layer, LSTM, where contexts are handled. The
third layer is a CRF layer. The Viterbi decoding
becomes the model output. For robustness pur-
poses, a dropout (Hinton et al., 2012) layer is in-
serted at each layer, and can be thought of as a
kind of regularizer.

Models are trained to maximize the f1 score
(harmonic mean of precision and recall), and train-
ing is stopped when there is no further improve-
ment. We tried three variants of these models, de-
tails of which are described as follows.

4.1 Bidirectional LSTM-CRF
The basic type of LSTM-CRF model was dis-
cussed in (Huang et al., 2015). The model consists
generally of three layers: embedding, recurrent,
and CRF.

Although several pre-trained models are avail-
able for the embedding layer, such as GLoVE
(Pennington et al., 2014) or Word2Vec (Mikolov
et al., 2013), we elected to train the embedding it-
self during the training procedure.

For the recurrent layer, contexts are handled by
the LSTM type cell, whose input is whole se-
quence of words (distributed reps.) of a text, and
whose output is a sequence of the same length as
the input. The input is treated bi-directionally, so
that a reversed word order is equivalent, in order to
handle both forward and backward context depen-
dencies. Forward and backward computations are
performed separately, and they are concatenated
just before the next CRF layer.

At the CRF layer, the concatenated outputs from
the preceding recurrent layer are input to a linear-
chain CRF. Like the original CRF (Lafferty et al.,
2001), output labels are also used in the estimation
of subsequent outputs.

2https://github.com/guillaumegenthial/
tf_ner

3TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. http://tensorflow.org/

4.2 Character Embeddings
Given the sparsity problem with vocabularies,
characters (the components of words) are used and
combined with words. Like (Lample et al., 2016),
characters are fed into the embedding layer and
their parameters are also trained like the word in-
put layer. The embeddings of both words and char-
acters are concatenated, for input to the following
recurrent layer.

4.3 Character Convolutions
There is also a model that uses convolutions for
character inputs. (Ma and Hovy, 2016) used a con-
volutional neural network for characters, which
then performed max-pooling. We also evaluated
this model.

5 Experiments

5.1 Data allocation
Data with referer tags, as described in section 3,
were divided into sets for training, validation, and
evaluation, in the proportions 90%, 5%, and 5%,
respectively.

The three models described in the previous sec-
tion were compared on two tasks. One task is the
original CoNLL 2003 Named Entity Recognition
task (Tjong Kim Sang and De Meulder, 2003) in
English. Named entities here are persons, loca-
tions, organizations, and names of miscellaneous
entities, found in the Reuters news corpus. The
second task is the task for this study, described in
section 3.

We used texts without part-of-speech tags. De-
tails of the training parameters are given in Ta-
ble 4. Character type parameters are only used
for those models that include character-level mod-
eling. The training took 10 to 20 minutes on a
laptop computer. Training was stopped at around
4,000 iterations.

Mini-batch size 20
Char. embedding dims. 100
Word embedding dims. 100

Char LSTM size 25
Word LSTM size 100

Dims. of context representations 300
Dropout rate 0.5

Table 4: Training Parameters

5.2 Results
The results are shown in Table 5. Figures for accu-
racy, precision, and recall have the same meanings
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Task Model Accuracy(%) Precision(%) Recall(%)

CoNLL 2003

Majority Voting 82.54 100.00 0.05
LSTM-CRF 94.15 75.61 69.97

With char-emb. 95.92 80.35 77.90
With conv. of char-emb. 96.19 81.00 79.76

Extraction of referer part
for TV program extraction

from tweets

Majority Voting 78.12 7.73 5.11
LSTM-CRF 90.27 76.53 82.95

With char-emb. 91.23 77.38 82.70
With conv. of char-emb. 91.06 76.71 82.95

Table 5: Results

as in CoNLL 2003. Accuracy is an overall correct
ratio including O tags (which means containing no
kind of tags of interest). Precision is a measure
for extracted instances, while recall relates to rel-
evant instances, as usual in information retrieval
parlance. The three models described in section 4
are compared together with majority voting as a
trivial baseline model. The trivial model chooses
the most frequent output seen in the training data
as the trained output. Bold-faced figures are the
best results among the four models compared.

Figures for the CoNLL 2003 NER task are al-
most the same as those given for the state-of-the-
art models, so the implementation seems correct.
On the CoNLL 2003 NER task, models that use
convolution of character embeddings were the best
performing, as reported in (Ma and Hovy, 2016).
The 100% precision attained by majority voting
comes at the price of extremely low recall, so it is
not of much use; majority voting works very con-
servatively, only working when confident of the
occurrence.

Figures for our task are original, and first re-
ported here as far as we know. Unlike the NER
task, the best performing model except for recall
is LSTM-CRF with simple character embeddings,
while simple word-level LSTM-CRF with convo-
lutional character embeddings performed best for
recall. Convolution of character embeddings per-
formed a little worse than the model without con-
volutions. This may be due to over-modeling of
characters, when in fact they are not so impor-
tant for this task, while character level modeling
remains effective.

6 Discussions

The experiments showed that referer sections for
TV programs were well extracted using the state-
of-the-art models for sequence tagging. However,
the performance on this task was somewhat dif-
ferent than that on the NER task. This is be-

cause the extracted parts are longer than named
entities, and tend to form explanatory phrase ex-
pressions. These expressions can be thought of as
phrase-level coreferences, or paraphrases, which
are thought to relate linguistically to the high-
level understanding of natural languages, such as
rhetorical structures.

One possibility is to improve the embedding
layer. Several phrase-level embeddings have been
studied, and they may be useful for this kind of
task. As words and characters are combined,
phrases can also be combined to represent input
sequences, and such models are probably worth
trying.

A second possibility is to improve the recurrent
layer. For deeper context handling, simply stack-
ing LSTM layers is proposed. Techniques from
semantic parsers may also help in capturing se-
mantic chunks from the whole sentence. Whether
further handling of contexts is possible is of much
interest.

7 Conclusions and Future Work

We applied sequence tagging models to study the
performance of extracting referer sections from
relevant tweets for a targeted TV program. The
extraction accuracy achieved by LSTM-CRF was
significantly better than that attained by majority
voting. Further treatment of deep contexts is sug-
gested by comparisons of the experimental results
on NER tasks, which remains a topic for future
work. We suspect that some variations of deep
neural networks may be able to solve this prob-
lem, especially for this kind of domain, because
although noisy, large amounts of data addressing
the same topic are available.
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Abstract

We work with Algerian, an under-resourced
non-standardised Arabic variety, for which
we compile a new parallel corpus consist-
ing of user-generated textual data matched
with normalised and corrected human annota-
tions following data-driven and our linguisti-
cally motivated standard. We use an end-to-
end deep neural model designed to deal with
context-dependent spelling correction and nor-
malisation. Results indicate that a model
with two CNN sub-network encoders and an
LSTM decoder performs the best, and that
word context matters. Additionally, pre-
processing data token-by-token with an edit-
distance based aligner significantly improves
the performance. We get promising results for
the spelling correction and normalisation, as a
pre-processing step for downstream tasks, on
detecting binary Semantic Textual Similarity.

1 Introduction

Natural language processing (NLP) research has
achieved impressive results, notably thanks to the
use of deep neural networks (DNNs) which has
pushed the field forward, achieving unprecedented
performance for various tasks. However, research
is often focused on large, standardised, monolin-
gual and well-edited corpora that exist for a few
well-resourced languages. We believe that such
corpora will not generalise to all languages and
domains, particularly regarding the colloquial va-
rieties used in new communication channels. In
fact, the large unstructured data coming from such
channels is not only unedited, it also poses serious
challenges to the current NLP processing pipelines
and approaches as a whole.

Traditionally, the standard language ideology
has dominated linguistic studies: it has been fre-
quently assumed that languages are naturally uni-
form and monolingual. Nevertheless, the new

online data reveals that standardisation is nei-
ther natural nor universal, it is rather a human
invention (Milroy, 2001), and variation is the
norm. This variation presents several challenges
to studying and processing dialects in social me-
dia (Jørgensen et al., 2015). These challenges
are even more pronounced in multilingual soci-
eties where people use more than one language
or language variety at the same time. We con-
sider the case of the colloquial language used in
Algeria (hereafter referred to as ALG) which com-
bines both linguistic challenges mentioned above:
(i) it is non-standardised, and (ii) it is a mixture of
languages which involves code-switching between
Modern Standard Arabic (MSA) and local Arabic,
French, Berber, and English. (We refer the inter-
ested reader to the work of Adouane et al. (2018),
who provides an overview of the linguistic land-
scape in Algeria.)

In interactive scenarios, people usually use
spoken-like language and spontaneous orthogra-
phy which reflects local variations. Our observa-
tions confirm those of Eisenstein (2013), namely
that speakers have some-kind of tacit knowledge
of spelling which is not completely arbitrary.
However, it is hard to distinguish between local
varieties and draw a clear borderline between them
due to the free mobility of people, their ability to
interact online, and the fact that these varieties are
closely related and therefore hard to describe for-
mally. Therefore, we find that using location to
map dialectal variation (Doyle, 2014) is not use-
ful. In many cases, the spelling is not consistent
even by a single person within the same conversa-
tion. There is nothing intrinsically wrong with this
inconsistency for there is no standard form to take
as a reference. Besides, spelling variation does not
hinder mutual understanding.

Current NLP approaches based on learning un-
derlying regularities from data is not suitable to
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sparse noisy data. Furthermore, the data written in
Arabic script is already rich in orthographic am-
biguity because vowels are not written, except in
very specific settings. Our focus is to process such
user-generated textual data, reflecting the real use
of a language. Therefore, for computational pur-
poses, we want to automatically reduce the data
sparsity caused by spelling inconsistency by nor-
malising it based on spelling decisions that we de-
signed, and build a tool that can be used for pre-
processing such texts for other NLP tasks.

This paper is an attempt to take advantage of
DNNs to reduce spelling inconsistency by per-
forming several transformations (normalisation,
disambiguation, etc.) detailed in Section 3 as a
single machine-learning task. It is significantly
different from the well-established spelling error
correction mainly because we have to deal with a
non-standardised code-switched language. In ad-
dition to the fact that ALG is an under-resourced
language with respect to the size, quality and the
diversity of the available labelled data, it suf-
fers from the absence of other tools and linguis-
tic resources required by current NLP techniques
such as tokenisers, syntactic parsers, morphologi-
cal taggers, lexicons, etc.

As contributions, (i) we introduce a new user-
generated corpus for ALG with its parallel spelling
normalised and corrected version produced by hu-
man annotators. (ii) We describe our spelling de-
cisions aiming to reduce orthographic ambiguity
and inconsistency for NLP tasks. These decisions
are not the only possible ones, and can be debated
and further refined. (iii) We propose a general
end-to-end model for context sensitive text nor-
malisation of non-standardised languages. We opt
for end-to-end deep learning approach (with only
a simple automatic pre-processing) because it is
not only expensive and time consuming to build
equivalent rule-based tools from bottom up, but it
is also hard to exhaustively define spelling norms
given the high linguistic variation.

The paper is organised as follows. In Sec-
tion 2 we survey related work. In Section 3, we
present our newly compiled parallel corpus and
explain our data processing decisions. In Sec-
tion 4, we give information about data statistics
and data alignment. In Section 5, we describe our
models. In Section 6, we describe our experiments
and discuss the results. We conclude in Section 7
with potential future improvements.

2 Related Work

The task of normalising user-generated non-
standardised data is closely related to the one of
historical text normalisation (Pettersson, 2016),
namely they present similar challenges for the cur-
rent NLP – little sparse data. While the latter has
a standardised spelling as a reference, the former
does not because many colloquial languages have
not undergone the standardisation process. Boll-
mann (2019) surveys the approaches used for his-
torical text normalization for a set of languages.
Both tasks are mainly framed as (statistical/neural)
machine translation mostly at a token level where
the source and the target language are the same or
a standardised version of one another.

Similarly to the previous work, we formu-
late our task as a sequence-to-sequence (seq2seq)
learning problem, but in contrast we take word
context into account. A large body of work has
been done to address the problem of seq2seq
prediction and has achieved impressive results
for diverse NLP tasks. Encoder-decoder mod-
els are most frequently used for seq2seq predic-
tion with varying the architectures of the encoder
like Recurrent Neural Network (RNN) in (Cho
et al., 2014; Sutskever et al., 2014), bidirectional
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) in (Bahdanau et al.,
2014), Convolutional Neural Networks (CNN) in
(Vinyals et al., 2015).

Our CNN-based architecture (see Section 5) is
reminiscent of what has been proposed for ma-
chine translation by Gehring et al. (2017) but in-
stead they use CNN for both encoder and de-
coder with multi-step attention. A difference
with our model is that we use two sub-networks
(LSTM/CNN and CNN/CNN) as an encoder,
jointly trained to learn contextual representations
of words. Then we use an LSTM as decoder in-
stead of a CNN. Compared to the model of Bah-
danau et al. (2014), an important difference is that
we do not jointly train alignment and seq2seq pre-
diction. Instead we perform alignment separately
as a pre-processing step using edit-distance.

None of the mentioned models have been tested
on the same prediction task as ours or on a re-
lated language. As the most closely related work
for spell checking, Ghosh and Kristensson (2017)
propose a seq2seq neural attention network sys-
tem for automatic text correction and comple-
tion. They combine a character-based CNN and
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a Gated Recurrent Unit (GRU) (Cho et al., 2014)
as encoder and a word-based GRU as decoder
using a 12 million word English corpus. Re-
cently, Sooraj et al. (2018) employed a character-
based LSTM language model to detect and cor-
rect spelling errors for Malayalam. In the same
line of research, Etoori et al. (2018) propose an
attention model with a bidirectional character-
based LSTM encoder-decoder trained end-to-end
for Hindi and Telugu spelling correction using
synthetic datasets.

Contrary to the task we are trying to address in
this paper, the mentioned work deals either with
spelling correction for monolingual standardised
languages or historical text normalisation for stan-
dardised languages. This makes our task linguisti-
cally more challenging because our data includes
more languages hence the model has to find the
correct spelling of a word not only based on its
context but also based on its language.

There has been work done for Arabic automatic
error correction mainly for MSA including the
work of Shaalan et al. (2012) and others included
in the Arabic shared task (Mohit et al., 2014). Still
they are inadequate to process non-standardised
Arabic varieties given the significant phonolog-
ical, morphological and lexicon differences be-
tween MSA and Arabic dialects (Watson, 2007).
To the best of our knowledge, this is the first effort
to process user-generated non-standardised dialec-
tal Arabic textual data end-to-end.

3 Data Preparation

3.1 Corpus creation

As a basis we take the extended version of the
unlabelled dataset of Adouane et al. (2018). Our
extended version of it consists of 408,832 auto-
matically pre-processed user-generated short texts
from social media, such as forum discussions, and
contains more than 6 million words. The auto-
matic pre-processing involves removal of punctu-
ation, emoticons and reduction of repeated letters
to a maximum of two. Indeed, Arabic orthogra-
phy does not use more than two adjacent occur-
rences of the same letter, and repeats in social
media texts are mainly typos or emphasis. For
this work, we further pre-processed this dataset
by removing any existing diacritics representing
short vowels because they are used rarely and in-
consistently, even in the texts generated by the
same user. We assume that such idiosyncratic

variation will not affect our task in terms of se-
mantics and bring about more robustness to lan-
guage processing, especially because diacritics are
not commonly used outside of the formal regis-
ter. We also normalised many commonly used
(often french-based) Latin script abbreviations to
their full versions using the most frequent spelling
in Arabic script including psk/because, r7/recipe,
bnj/good morning, b1/well, 2m1/see you tomor-
row, dsl/sorry, on+/moreover, tj/always, etc.

All texts are written in Arabic script and dis-
play spelling variations, typos and misspellings
wrt. MSA, diglossic code-switching between
MSA and local colloquial Arabic varieties, bilin-
gual code-switching between Arabic varieties;
French; Berber and English. From this further pre-
processed unlabelled dataset, we created a paral-
lel corpus of manually normalised texts. For this
purpose, we randomly selected 185,219 texts and
had 5 human annotators, who are native speak-
ers with (computational) linguistics background,
to edit and process them. The process took 6
months mainly working on lexical and syntactic
ambiguities which require linguistically informa-
tive decisions, and all annotators checked the an-
notations of each other. We give here a few exam-
ples of spelling variation, but the corpus contains
50,456 words and 26,199 types to be normalised
or corrected. Note that we will use word to re-
fer to lexical words and tokens to refer to lexical
words plus digits and interjections.

3.2 Annotation standard
In order to guide the annotators in producing par-
allel normalised text, we designed the following
annotation standard which involves (i) spelling
correction and (ii) spelling normalisation tasks.
3.2.1 Spelling correction for MSA
Misspelled MSA words are corrected using MSA
orthography based on their context. , éK
Z @ 	Y 	« , 	J
 	� 	�
é ���̄ A 	JÓ ,PZ@ 	Qk. (clean, nutritional, Algeria, discussion)

are corrected as �é ���̄ A 	JÓ ,QK @ 	Qk. , �éJ
K @ 	Y 	« , 	J
 	¢	�.
3.2.2 Typographical error correction
The texts have been written on different kinds of
keyboards resulting in lot of typos which mainly
include missing spaces like in ñ k. Q 	j�J ��A ëñ Ê 	m×ð or

additional spaces like in �é Ê K
 Aª Ë which have been

respectively corrected as ð h. Q 	m��' ��AëñÊ 	gAÓð (and

they did not let her to go out and) and �é Ê K
Aª Ë (the
family). There are also keyboard related typos like
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reversing the order of letters or substituting one
letter by another like in ø
 YJ. Ëð where H. should be

replaced by ø
 to get the correct intended word
ø
 YJ
Ëð (my son).

These typos can be detected from their context by
manual checking. Usually they are not valid words
and tend to be consistently generated by the same
user which suggests that they may be related to
their typing style and conditions. In AîDJ
 	ª 	̄ AîDJ
 	k the

user used the same wrong letter ø twice instead of

P and the correct form is AëQ�
 	ª 	̄ AëQ�
 	g (the better is
in something else).

3.2.3 Spelling normalisation

Non-MSA words including local Arabic vari-
eties, French, Berber, English and neologisms are
spelled spontaneously in Arabic script where users
use improvised phonetically-based orthography.

A. Local Arabic varieties To deal with the
spelling variation in colloquial varieties, a conven-
tional orthography for dialectal Arabic (CODA)
has been proposed for Egyptian (Eskander et al.,
2013) and has been extended for Algerian
(Saadane and Habash, 2015) and recently for sev-
eral other Arabic varieties (Habash et al., 2018).
We share the overall goals with the authors of
CODA that a conventional orthography for de-
veloping NLP tools should preserve phonological,
morphological and syntactic information of di-
alectal texts, should not diverge substantially from
the existing forms, and should be easy to learn and
write by the annotators.

However, CODA is primarily a recommenda-
tion of guidelines with several open questions re-
lated to how these guidelines could be imple-
mented in new scenarios. In our case the most
relevant open question is how to deal with mul-
tilingual code-switched data found in ALG. Using
the existing recommendations from CODA would
be in several cases impractical because several
phonological distinctions required by the varieties
in ALG could not be encoded and would have to
be listed as exceptions. In other cases, the appli-
cation of CODA would also require a substantial
rewriting of the original user-generated text. In-
stead we use data statistics as heuristics to find the
canonical forms.

We first train word embeddings using FastText
(Joulin et al., 2016) on the entire unlabelled data.
We collect a list of all words in the corpus and for
each word we use FastText to predict the 10 most
similar words and their frequencies. This normally
returns the spelling variations of that word. A hu-
man annotator then decides whether the returned
cluster should be considered as a spelling varia-
tion and assigns the most frequent spelling as the
canonical form for all word occurrences in this
cluster.

This is not a trivial task to be performed fully
automatically because the model often returns un-
related words for less frequent words (case of the
majority of words in the dataset). Hence a human
expertise is needed. Contrary to CODA where
every word has a single orthographic rendering,
if a word has more than one frequently occur-
ring spelling we keep such variations because they
reflect local lexical or phonological differences
which may be useful for sociolinguistic studies.
For example, we keep both spelling variations of
question words è @Y �̄ , ��@Y�̄ and èC«ð , ��C« (when
and why) because they occurred very frequently
and could be mapped to the same form if needed.

In cases where the difference between MSA and
local Arabic spelling of a word is based on phonet-
ically close sounds such as the sounds � [s] and

� [sQ] as in �éªÖÞ� , �éªÖÞ� (reputation) or between �H

[t] and   [tQ] as in ��K
Q£ , ��K
Q�K (road), and the mean-
ing is preserved, MSA spelling is used. These
cases are hard to identify automatically and re-
quire human expertise. Making spelling MSA-like
as practically as possible will facilitate the reuse
of existing MSA resources. Nevertheless, in cases
where a word does not exist in MSA and has sev-
eral different spellings, the most frequent one is
used provided that it is not homonymous with an-
other existing word. Such words include frequent
local Arabic words like BAÓ@ , ½ 	� , ÈAg. C« (so,
now, for) with 27, 59 and 39 spellings respectively,
along with the newly created words like 	� �
Q 	K (I

practise sports) and 	á 	�ÓQ	K (I fast).
B. Non-Arabic words The dataset includes

French, Berber and English words, and the limi-
tation of the Arabic script creates more ambiguity
regrading how to spell non-existing sounds like /g,
p, v/. The most frequent spelling with long vowels
is used. For example, the French word “journal”
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(newspaper) occurs with 6 spellings all mapped to
ÈA 	KPñk. which is the most frequent spelling.

3.2.4 Word sense disambiguation
Using various languages with spelling variation
at the same time creates considerable ambiguity,
especially when all the varieties are written in
the Arabic script. One particular frequent source
of lexical ambiguity concerns the spelling of the
French definite articles (le, la, les) spelled as , ú
Í
ñ Ë , B , either separated or concatenated to the
word they associate with. However, the Arabic
spelling is ambiguous because each of the above
words means something else in MSA or local Ara-
bic. For instance, ú
Í when written as a separate
word could either be a prepositional phrase (for
me) in MSA or a relative pronoun (who / that /
which) in local Arabic. For this reason we decided
to spell French definite articles attached as prefixes
like the Arabic definite article È@ . This allows

disambiguation of cases like: ��AÓ ú
Í (hair strand
dyeing) in French and (who is not) in local Arabic.

The Berber word for “window” is spelt as �é �̄ A£
which means energy in MSA. Since Berber does
not have a standardised spelling in Arabic script1,
we decided to change the spelling to �é �̄ A �K which
is another spelling found in the dataset. Further-
more, lexical ambiguity is caused by the absence
of sounds (and corresponding graphemes) in Ara-
bic like /g,v,p/. “Group” is spelled : , H. ððQ �̄

H. ðQ 	« , H. ñ 	ª �̄ , H. ðQ �̄ , H. ðQk. where H. ðQ 	« and
H. ðQ �̄ mean “sunset” and “closeness” in MSA. To

disambiguate these senses H. ñ 	ª �̄ is used for
“group”.

3.2.5 Negation particle

The various spellings of the word A Ó cause sig-
nificant lexical and syntactic ambiguity. When
written separately, it could be a relative pronoun
or an interjection in MSA, a feminine possessive
pronoun in French, ’mother’, ’water’ or a nega-
tive particle in local Arabic. We decided to spell
this negation particle as a proclitic with a long Alif
when used with verbs ( A Ó instead of Ð). This re-
moves ambiguity for cases like the local Arabic
negated verb 	àA¿ AÓ (there was not) from the MSA

noun 	àA¾Ó (place) and the local Arabic 	àA¿ AÓ @Yë
(that’s it). All negated verbs in local Arabic are

1Berber has its own script called Tifinagh and a standard-
ised Latin spelling.

spelled with AÓ as proclitic and �� as enclitic. As
a result it is easier to get the non-negated form by
stripping off the negation clitics. By removing the
initial AÓ and the final �� from ��¢J
«AÓ (he did not

call) we get ¡J
« (he called).

3.2.6 Word segmentation and tokenisation

Users tend to spell prepositions, reduced question
words and conjunctions as proclitics. This creates
an unnecessary sparse and large vocabulary. To
reduce the size of the vocabulary, we write such
proclitics as separate full forms, among others: ��ð
, ¼ , 	̈ , A �� , ��@ð , 	¬ , ð@ , ú
» , ú


	̄ , Ð , h ,

Bð , è , É« , ¨ , ©�K , CK. . We split ú
Í and AÓ when

they occur as relative pronouns attached to a verb.
	àñ º J
 ��ð (who is him) is tokenised to 	àñ º K
 ��@ð ,
�éÓ 	PBAÓ (from the crisis) as �éÓ 	PB@ 	áÓ , ñËQK
Y 	Jk (I will

make him) ñËQK
Y 	K h@P, and split relative pronouns

in ø
 A 	JÒ�J�KAÓ (what you wish) as ø
 A 	JÒ�J�K AÓ and 	àA¾J
 Ë

(who was) as 	àA¿ ú
Í. Other ambiguous cases in-

clude A 	K @Pð which could be either A 	K @P 	áK
ð (where are

we) or A 	K @P ð (and we are) or A 	KZ @Pð (behind us)
depending on the context.

3.2.7 Abbreviations and acronyms

We collapse acronyms written as several tokens
to a single token and extend abbreviated words to
their full form based on their context. For instance,

�@ Ð

@ �B is collapsed to �AÓA�B (SMS), and ¼ Ð

is extended to �èQ�
J.»
	¬Q 	ªÓ (tablespoon).

4 Data Statistics and Alignment

4.1 Data statistics

The final processed parallel corpus, described in
Section 3 consists of 185,219 unique (input, out-
put) text pairs where the input is from the automat-
ically pre-processed data and the output is from
the manually corrected and normalised data. The
input corpus has 3,175,788 words, and 272,421
types (unique words) where 90.20% of them oc-
curred less than 10 times and 59.60% occurred
only once in the entire corpus. These figures serve
to give an idea about how sparse the data is. The
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longest text has 112 words. The output corpus
has 3,125,332 words and 246,222 types (unique
words). The longest text has 112 words. The dif-
ference in the vocabulary size between the two
corpora (50,456 words and 26,199 types) is pri-
marily because of the introduced transformations.

4.2 Data alignment

Another difference between the two corpora is that
the lengths of the input and the output may vary
as a result of different tokenisation. This is not
a problem in terms of machine learning, because
the models described in Section 5 are designed
to deal with variable length input and output se-
quences. However, because our two sequences are
from the same language with the same meaning
(the only difference is in spelling) we expect that
alignment at the token level will lead to improved
performance (see Section 6.1).

To this end, we have developed an aligner
whose task is to make sure that every single unit
(token) in the input (with potential misspelling)
matches a unit (token) in the output. This may
seem trivial until one remembers that misspellings
may include added or deleted spaces. Our aligner
works by computing the minimal edits to trans-
form the input into the output (using the standard
Levenshtein distance algorithm).

These minimal edits are not the basis for train-
ing (they will be discarded) unless they concern
spaces. If a space is added, then to preserve word
alignment we replace the corresponding space in
the output by a special symbol (#). In inference
mode (see Section 5.4), this symbol will be re-
placed by a space. If on the contrary a space
is deleted, then it is added back (and words are
aligned again). A special extra symbol ($) is
added to mark that a spurious space was added and
should be eventually deleted again when the model
is used in inference mode. This alignment algo-
rithm provides correct results whenever the Leven-
shtein distance at the sequence level is the sum of
the Levenshtein distances for each unit (token) that
is misspellings are not so large as to make delet-
ing/inserting whole words a shorter operation than
changing characters within words; and this condi-
tion is satisfied in our corpus.

5 Models

We frame the task of spelling correction and nor-
malisation as a sequence-to-sequence (seq2seq)

prediction problem, i.e., given an input sequence
what is the best predicted output sequence. Note
that sequence refers to user texts of any length in-
cluding one token or more. We use an encoder-
decoder architecture which consists of two neu-
ral networks where the first one reads an input se-
quence and transforms it into a vector representa-
tion, and the second one, representing a language
model, conditions the generation of output sym-
bols on the input sequence representation and gen-
erates an output sequence (Cho et al., 2014).

Sequence Encoder (3 x CNN)

or  

Token Decoder (LSTM)

Dense layer

معندناش كلي قوطى ھریسا

ماعندناش كولي قوطي ھریسة

Input layer

Embedding layer

Encoder layers

Decoder layer

Output layer

input characters in [0..48]

LSTM 2 x CNN
Token Encoder

Character  Encoder

Figure 1: Model architecture.

As shown in Figure 1, the encoder consists of two
sub-neural networks, namely token encoder and
sequence encoder.

5.1 Token encoder
It reads the input sequence character by character
and outputs a vector representation for each token
in the sequence. Two configurations are used: ei-
ther an LSTM encoder or a CNN encoder.

• LSTM encoder: represented in yellow and
takes as input character embeddings with vo-
cabulary size of 49, 100 dimensions, token
representation size of 50 and a dropout rate
of 30%.

• CNN encoder: represented in red and takes
as input character embeddings. It is com-
posed of 2 CNN layers with 50 filters of size
5, a RELU activation, a dropout rate of 20%
followed by max pooling in the temporal di-
mension.
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5.2 Sequence encoder

Represented in blue and consists of 3 CNN lay-
ers with 200 filters for the two first layers and 100
for the third layer, all filters have size 3, a RELU
activation and dropout rate of 5%.

5.3 Token decoder

It is composed of one character-based LSTM layer
with the same hyper-parameters as the LSTM en-
coder, followed by a dense layer.

5.4 Training and inference

All models are trained end-to-end to maximise the
likelihood of the output sequence conditioned on
the input sequence for 150 epochs using a batch
size of 64 and Adam optimiser. Gradients with a
norm greater than 5 are clipped.

For inference (generating an output character
sequence), we use beam-search with a size of 20.
Note that beam-search is used only to generate
an output sequence and does not influence nei-
ther model training nor validation. The models
generate characters starting from the start symbol
(<) and stop at the end symbol (>) or at a prede-
fined sequence length given as a hyper-parameter,
whichever comes first.

6 Experiments and Results

In order to test our models and the gain from the
aligner (see Section 4.2), we experiment with both
versions of data: the non-aligned and the aligned
data. It is worth mentioning that the only differ-
ence between them is that the aligned one contains
extra symbols (# and $) marking missing or extra
spaces. An extra space – thus word– is also added
for every dollar sign. Moreover, to measure the ef-
fect of the context, we feed the data either token-
by-token or sentence by sentence.

We split both the datasets into 75% (138,917
samples) for training, 5% (9,261 samples) for de-
velopment, and 20% (37,041 samples) for valida-
tion. The reported hyper-parameters in Section 5
were fine-tuned on the development set.

We conduct two evaluations: (i) how well the
suggested models perform on the seq2seq task,
and (ii) how good is the best performing model
for spelling correction and normalisation task, and
what is its effect as a pre-processing step on
downstream tasks like Semantic Textual Similarity
(STS). We evaluate (i) using character-level accu-
racy, and we evaluate (ii) by calculating Precision,

Recall and the F-score for the class of tokens that
should be changed. Hence, Recall is the ratio of
the correctly changed tokens to the number of to-
kens that should be changed, and Precision is the
ratio of the correctly changed tokens to the num-
ber of tokens that are changed. F-score is the har-
monic average of both.
6.1 Comparing models on Seq2seq task

In Table 1 we report the overall character level ac-
curacy of the 4 best performing models for each
configuration and experiment: (1) LSTM-Token-
seq: the model with the Token LSTM + Sequence
encoder (yellow and blue parts of Figure 1) and
Token decoder, (2) CNN-Token-seq: the model
with the Token CNN + Sequence encoder (red
and blue parts of Figure 1) and Token decoder.
Both (1) and (2) are trained and evaluated on non-
aligned data with a sequence of tokens as input.
(3) CNN-Token-seq-alig the same as model (2) but
trained and evaluated on aligned data. (4) CNN-
Token-token-alig: the same as (3) but with one to-
ken as input (token-by-token).

Results indicate that the LSTM encoder in (1)
does not suit our task / data and fails to learn
the sequential representations with an overall char-
acter accuracy of only 23.90%. This could be
because of the high sparsity of the data which
makes it hard to learn regularities. In contrast, the
CNN encoder in (2) performs much better, with
an overall character accuracy of 89.20%, suggest-
ing that learning sequences of patterns through
convolutions suits better our task / data than se-
quence modelling with LSTM. This is in line with
what has been reported for machine translation in
(Gehring et al., 2017).

The CNN encoder performs even better with
the aligned data in (3). The difference can be at-
tributed to the positive effect of the aligner which
boosts the accuracy by 7%. The 9.1% drop in the
accuracy in (4) compared to (3) is due to the lack
of word context. This indicates that word context
is essential, especially for word sense disambigua-
tion in such highly varied data.

6.2 Quality and effect

• Quality We use the best performing model (3)
and run the inference mode, (see Section 5.4),
on the validation set which contains 567,308
words of which 507,429 words are already
correctly spelled and 59,880 words must be
changed, either corrected or normalised. We
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Models Input Data Validation
1 LSTM-Token-seq sequence of tokens non-aligned 23.90
2 CNN-Token-seq sequence of tokens non-aligned 89.20
3 CNN-Token-seq-alig sequence of tokens aligned 96.20
4 CNN-Token-token-alig one token aligned 87.10

Table 1: Accuracy of models (%) on Seq2seq task.

perform quantitative and qualitative analysis
of the generated sequences in terms of the
changed spellings at a word level. Model (3)
achieves an overall F-score of 64.74%, Recall of
88.58% and Precision of 51.02% on the words
to change. It correctly spells 53,041 words
from the total words to change and fails to cor-
rectly change 6,839 words. However, it in-
troduces 50,914 incorrect changes (newly mis-
spelled words or infelicitous corrections).

• Error analysis Examining the generated se-
quences shows that most errors are at the level
of one character (duplicating or substituting one
character) and the generated words are very
similar to the reference. This is similar to the
conclusion of Tiedemann (2009) that many er-
rors of a character level phrase-based statistical
machine translation for Norwegian and Swedish
are of small length. Furthermore, we find that
most of the not properly corrected words ac-
tually do not have enough representative in-
stances, i.e., most of them occurred only once
in the validation data and were not seen during
the training. The high sparsity of the data is an
interesting challenge for the current neural net-
works for which more research is needed.

With the settings of our experiments, the high
Recall of the model at a word level indicates that
it can be used for detecting errors and words to
normalise but not for automatically fixing them
because of its low Precision. Actually the re-
ported low Precision is not that dramatic as it
might seem because it is aggressive, i.e., a sin-
gle wrong character means the entire word is
wrong. Besides improving our inference set-
tings, a better metric for evaluating such cases
is needed.

• Effect We evaluate the effect of spelling correc-
tion and normalisation, as a pre-processing step
for downstream tasks, on detecting binary Se-
mantic Textual Similarity. We chose this task
because it is one of the few available tasks for

ALG we are aware of. We apply our spelling
correction and normalisation on the ALG data
reported by (Adouane et al., 2019). We repli-
cate the best performing model for which the
authors report an accuracy of 92.76%, and we
get an accuracy of 94.40% with the same set-
tings. The gain indicates that the spelling cor-
rection and normalisation is potentially a useful
pre-processing step for downstream tasks.

7 Conclusion and Future Work

We compiled a new parallel corpus for ALG with
linguistically motivated decisions for spelling cor-
rection and normalisation. Considerations such as
being practical to implement and suitability for our
goals are taken into account. We designed, imple-
mented and tested 2 deep neural network architec-
tures trained end-to-end to capture the knowledge
encoded in the corrected and normalised corpus.
The results showed that a CNN token-sequence
encoder and an LSTM decoder performed the best
when including context information. Additionally,
applying a token aligner on the input data yielded
better performance compared to the non-aligned
data. Even though, with the current inference set-
tings, the model generated some errors at a charac-
ter level mainly due to the data sparsity, it is gen-
eral and does not require extra resources except a
parallel corpus. Hence it could be applied to other
languages with the same settings.

In future work, we plan to improve the current
inference mode by investigating other settings, im-
prove the decoder by pre-training on the corrected
and normalised data and a large MSA corpus to
avoid generating incorrect character sequences.
Moreover, we will evaluate the model extrinsically
by using it to pre-process data for tasks such as
code-switch detection, and topic detection to see
how much it helps or hinders attempts to tackle
these tasks.
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Abstract
We compare different LSTMs and transformer
models in terms of their effectiveness in nor-
malizing dialectal Finnish into the normative
standard Finnish. As dialect is the common
way of communication for people online in
Finnish, such a normalization is a necessary
step to improve the accuracy of the existing
Finnish NLP tools that are tailored for norma-
tive Finnish text. We work on a corpus consist-
ing of dialectal data from 23 distinct Finnish
dialect varieties. The best functioning BRNN
approach lowers the initial word error rate of
the corpus from 52.89 to 5.73.

1 Introduction

Normalization is one of the possible pre-
processing steps that can be applied to various text
types in order to increase their compatibility with
tools designed for the standard language. This ap-
proach can be taken in an essentially similar man-
ner with dialectal texts, historical texts or collo-
quial written genres, and can be beneficial also
as one processing step with many types of spoken
language materials.

Our study focuses to the normalization of di-
alect texts, especially within the format of tran-
scribed dialectal audio recordings, published pri-
marily for linguistic research use. However, the
dialectal correspondences in this kind of material
are comparable to phenomena in other texts where
dialectal features occur, the results are expected to
be generally applicable.

This paper introduces a method for dialect tran-
script normalization, which enables the possibility
to use existing NLP tools targeted for normative
Finnish on these materials. Previous work con-
ducted in English data indicates that normaliza-
tion is a viable way of improving the accuracy of
NLP methods such as POS tagging (van der Goot
et al., 2017). This is an important motivation as the

non-standard colloquial Finnish is the de facto lan-
guage of communication on a multitude of internet
platforms ranging from social media to forums and
blogs. In its linguistic form, the colloquial dialec-
tal Finnish deviates greatly from the standard nor-
mative Finnish, a fact that lowers the performance
of the existing NLP tools for processing Finnish
on such text.

2 Related work

Automated normalization has been tackled in the
past many times especially in the case of histori-
cal text normalization. A recent meta-analysis on
the topic (Bollmann, 2019) divides the contempo-
rary approaches into five categories: substitution
lists like VARD (Rayson et al., 2005) and Norma
(Bollmann, 2012), rule-based methods (Baron
and Rayson, 2008; Porta et al., 2013), edit dis-
tance based approaches (Hauser and Schulz, 2007;
Amoia and Martinez, 2013), statistical methods
and most recently neural methods.

For statistical methods, the most prominent re-
cent ones have been different statistical machine
translation (SMT) based methods. These methods
often assimilate the normalization process with a
regular translation process by training an SMT
model on a character level. Such methods have
been used for historical text (Pettersson et al.,
2013; Hämäläinen et al., 2018) and contemporary
dialect normalization (Samardzic et al., 2015).

Recently, many normalization methods utilized
neural machine translation (NMT) analogously to
the previous SMT based approaches on a char-
acter level due to its considerable ability in ad-
dressing the task. Bollmann and Søgaard (2016)
have used a bidirectional long short-term mem-
ory (bi-LSTM) deep neural network to normalize
historical German on a character level. The au-
thors have also tested the efficiency of the model
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when additional auxiliary data is used during the
training phase (i.e. multi-task learning). Based on
their benchmarks, normalizations using the neural
network approach outperformed the ones by con-
ditional random fields (CRF) and Norma, where
models trained with the auxiliary data generally
had the best accuracy.

Tursun and Cakici (2017) test out LSTM and
noisy channel model (NCM), a method commonly
used for spell-checking text, to normalize Uyghur
text. In addition to the base dataset (≈ 200
sentences obtained from social networks, auto-
matically and manually normalized), the authors
have generated synthetic data by crawling news
websites and introducing noise in it by substitut-
ing characters with their corresponding corrupted
characters at random. Both of the methods have
normalized the text with high accuracy which il-
lustrates the their effectiveness. Similarly, Man-
dal and Nanmaran (2018) had employed an LSTM
network and successfully normalized code-mixed
data with an accuracy of 90.27%.

A recent study on historical English letters
(Hämäläinen et al., 2019) compares different
LSTM architectures finding that bi-directional re-
current neural networks (BRNN) work better than
one-directional RNNs, however different attention
models or deeper architecture do not have a posi-
tive effect on the results. Also providing additional
data such as social metadata or century informa-
tion makes the accuracy worse. Their findings
suggest that post-processing is the most effective
way of improving a character level NMT normal-
ization model. The same method has been suc-
cessfully applied in OCR post-correction as well
(Hämäläinen and Hengchen, 2019).

3 Data

Finnish dialect materials have been collected sys-
tematically since late 1950s. These materials are
currently stored in the Finnish Dialect Archive
within Institute for the Languages of Finland, and
they amount all in all 24,000 hours. The ini-
tial goal was to record 30 hours of speech from
each pre-war Finnish municipality. This goal was
reached in the 70s, and the work evolved toward
making parts of the materials available as pub-
lished text collections. Another approach that was
initiated in the 80s was to start follow-up record-
ings in the same municipalities that were the tar-
gets of earlier recording activity.

Later the work on these published materials has
resulted in multiple electronic corpora that are cur-
rently available. Although they represent only a
tiny fraction of the entire recorded material, they
reach remarkable coverage of different dialects
and varieties of spoken Finnish. Some of these
corpora contain various levels of manual annota-
tion, while others are mainly plain text with as-
sociated metadata. Materials of this type can be
characterized by an explicit attempt to represent
dialects in linguistically accurate manner, having
been created primarily by linguists with formal
training in the field. These transcriptions are usu-
ally written with a transcription systems specific
for each research tradition. The result of this type
of work is not simply a text containing some di-
alectal features, but a systematic and scientific
transcription of the dialectal speech.

The corpus we have used in training and testing
is the Samples of Spoken Finnish corpus (Institute
for the Languages of Finland, 2014). It is one of
the primary traditional Finnish dialect collections,
and one that is accompanied with hand-annotated
normalization into standard Finnish. The size of
corpus is 696,376 transcribed words, of which
684,977 have been normalized. The corpus cov-
ers 50 municipalities, and each municipality has
two dialect samples. The materials were originally
published in a series between 1978-2000. The
goal was to include various dialects systematically
and equally into the collection. The modern dig-
ital corpus is released under CC-BY license, and
is available with its accompanying materials and
documentation in the Language Bank of Finland.1

The data has been tokenized and the normative
spellings have been aligned with the dialectal tran-
scriptions on a token level. This makes our task
with normalization model easier as no preprocess-
ing is required. We randomly sort the sentences in
the data and split them into a training (70% of the
sentences), validation (15% of the sentences) and
test (15% of the sentences) sets.

4 Dialect normalization

Our approach consists of a character level NMT
model that learns to translate the dialectal Finnish
to normative spelling. We experiment with two
different model types, one being an LSTM based
BRNN (bi-directional recurrent neural network)
approach as taken by many in the past, and the

1http://urn.fi/urn:nbn:fi:lb-201407141
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other is a transformer model as it has been reported
to outperform LSTMs in many other sequence-to-
sequence tasks.

For the BRNN model, we use mainly the Open-
NMT (Klein et al., 2017) defaults. This means that
there are two layers both in the encoder and the de-
coder and the attention model is the general global
attention presented by Luong et al. (2015). The
transformer model is that of Vaswani et al. (2017).
Both models are trained for the default 100,000
training steps.

We experiment with three different ways of
training the models. We train a set of models on
a word level normalization, which means that the
source and target consist of single words split into
characters by white spaces. In order to make the
models more aware of the context, we also train a
set of models on chunked data. This means that
we train the models by feeding in 3 words at a
time; the words are split into characters and the
word boundaries are indicated with an underscore
character ( ). Lastly we train one set of models
on a sentence level. In this case the models are
trained to normalize full sentences of words split
into characters and separated by underscores.

In terms of the size of the training data, the word
level data consists of 590k, the chunk level of 208k
and the sentence level of 35k parallel rows. All of
the models use the same split of training, testing
and validation datasets as described earlier. The
only difference is in how the data is fed into the
models.

5 Results & Evaluation

We evaluate the methods by counting the word er-
ror rate2 (WER) of their output in comparison with
the test dataset. WER is a commonly used metric
to assess the accuracy of text normalization.

Table 1 shows the WERs of the different meth-
ods. The initial WER of the non normalized di-
alectal text in comparison with the normalized text
is shown in the column No normalization. As we
can see from this number, the dialectal text is very
different from the standardized spelling. Both the
word level and chunk level normalization methods
reach to a very high drop in the WER meaning that
they manage to normalize the text rather well. Out
of these, the chunk level BRNN achieves the best
results. The performance is the worst in the sen-

2We use the implementation provided in
https://github.com/nsmartinez/WERpp

tence level models, even to a degree that the trans-
former model manages to make the WER higher
than the original.

5.1 Error analysis

Table 2 illustrates the general performance of the
model, with errors marked in bold. The example
sentence fragments are chosen by individual fea-
tures they exhibit, as well as by how well they rep-
resent the corpus data.

Since the model accuracy is rather high, the er-
rors are not very common in the output. We can
also see clearly that the chunk model is able to pre-
dict the right form even when form is reduced to
one character, as on line 5.

Since the dialectal variants often match the stan-
dard Finnish, over half of the forms need no
changes. The model learns this well. Vast ma-
jority of needed changes are individual insertions,
replacements or deletions in the word end, as il-
lustrated in Table 2 at lines 2, 4, 6, 7, 15, 16, 17
and 18. However, also word-internal changes are
common, as shown at lines 11 and 12. Some dis-
tinct types of common errors can be detected, and
they are discussed below.

In some cases the errors are clearly connected
to the vowel lengthening that does not mark or-
dinary phonological contrast. Line 3 shows how
the dialectal pronoun variant of he ‘he / she’, het,
is occasionally present in dialect material as heet,
possibly being simply emphasized in a way that
surfaces with an unexpected long vowel. This kind
of sporadic vowel lengthening is rare, but seems to
lead regularly to a wrong prediction, as these pro-
cesses are highly irregular. This example also il-
lustrates that when the model is presented a rare or
unusual form, it seems to have a tendency to return
prediction that has overgone no changes at all.

The model seems to learn relatively well the
phonotactics of literary Finnish words. However,
especially with compounds it shows a trait to clas-
sify word boundaries incorrectly. A good exam-
ple of this is ratapölökynterv̀aau

ˇ
s””kon ‘railroad

tie treatment machine’, for which the correct anal-
ysis would be ‘rata#pölkyn#tervaus#kone’3, but
the model proposes ‘rata#pölkyn#terva#uskoinen’
which roughly translates as ‘railroad tie creosote
believer’. The latter variant is semantically quite
awkward, but morphologically possible. This

3Here # is used for the illustrative purpose to indicate
word boundaries within the compound
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No normalization Words Chunks of 3 Sentences
BRNN Transformer BRNN Transformer BRNN Transformer

WER 52.89 6.44 6.34 5.73 6.1 46.52 53.23

Table 1: The word error rates of the different models in relation to the test set

source correct target prediction
1 joo joo joo
2 ettE että että
3 heet he heet
4 uskovah uskovat uskovat
5 n niin niin
6 <ettE että että
7 sinn sinne sinne
8 <ei ei ei
9 ole ole ole

10 , , ,
11 kukhaan kukaan kukaan
12 ymmärtänny ymmärtänyt ymmärtänyt
13 mennä mennä mennä
14 . . .
15 ArtjärveN Artjärven Artjärven
16 kirkolt kirkolta kirkolta
17 mennäh mennään mennään
18 sinneh sinne sinne
19 Hiiteläh Hiitelään Hiitelässä

Table 2: Examples from input, output and prediction

phonotactic accuracy makes selection of correct
analysis from multiple predicted variants more dif-
ficult, as it is not possible to easily detect mor-
phologically valid and invalid forms. The longer
words such as this also have more environments
where normalization related changes have to be
done, which likely makes their correct prediction
increasingly difficult.

In word level model there are various errors re-
lated to morphology that has eroded from the di-
alectal realizations of the words, or correspond to
a more complicated sequences. Long vowel se-
quences in standard Finnish often correspond to
diphthongs or word internal -h- characters, and
these multiple correspondence patterns may be
challenging for the model to learn. Chunk model
performs few percentages better than word model
in predictions where long vowel sequences are
present, which could hint that the model bene-
fits from wider syntactic window the neighbouring
words can provide. On line 19 a case of wrongly
selected spatial case is illustrated.

There are cases where dialectal wordforms are
ambiguous without context, i.e. standard Finnish
cases adessive (-lla) and allative (-lle) are both
marked with single character (-l). Various sandhi-
phenomena at the word boundary also blurren the
picture by introducing even more possible inter-
pretations, such as vuoristol laitaa, where the cor-
rect underlying form of the first element would
be vuoriston ‘mountain-GEN’. The decision about
correct form cannot be done with information pro-
vided only by single forms in isolation. The chunk
level model shows small but consistent improve-
ments in these cases. This is expected, as the word
level model simply has no context to make the cor-
rect prediction.

It is important to note that since the model
is trained on linguistic transcriptions, its perfor-
mance is also limited to this context. For example,
in the transcriptions all numbers, such as years and
dates, are always written out as words. Thereby
the model has never seen a number, and is doesn’t
process them either. Improving the model with
additional training data that accounts this phe-
nomena should, on the other hand, be relatively
straightforward. Similarly the model has had only
very limited exposure to upper case characters and
some of the punctuation characters used in ordi-
nary literary language, which should all be taken
into account when attempting to use the model
with novel datasets.

6 Conclusion & Future work

The normalization method we have proposed
reaches remarkable accuracy with this dialectal
transcription dataset of spoken Finnish. The er-
ror rate is so low that even if manual normaliza-
tion would be the ultimate target, doing this in
combination with our approach would make the
work manifold faster. We have tested the results
with large enough material that we assume simi-
lar method would work in other conditions where
same preliminary conditions are met. These are
sufficiently large amount of training data and sys-
tematic transcription system used to represent the
dialectal speech.
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Future work needs to be carried out to evaluate
the results on different dialectal Finnish datasets,
many of which have been created largely within
the activities described earlier, but which are also
continuously increasing as research on Finnish is a
very vibrant topic in Finland and elsewhere. This
method could also be a very efficient in increas-
ing the possibilities for natural language process-
ing of other contemporary spoken Finnish texts.
Our method could also be easily used within OCR
correction workflows, for example, as a step after
automatic error correction.

Situation is essentially similar, to our knowl-
edge, also in other countries with comparable his-
tory of dialectal text collection. Already within
Finnish archives there are large collections of di-
alectal transcriptions in Swedish, as well as in the
endangered Karelian and Sami languages. Apply-
ing our method into these resources would also di-
rectly improve their usability. However, it has to
be kept in mind that our work has been carried out
in a situation where the manually annotated train-
ing data is exceptionally large. In order to under-
stand how widely applicable our method is for an
endangered language setting, it would be impor-
tant to test further how well the model performs
with less data.

The performance with less data is especially
crucial with low-resource languages. Many en-
dangered languages around the world have text
collections published in the last centuries, which,
however, customarily use a linguistic transcription
system that deviates systematically from the cur-
rent standard orthography. Such a legacy data can
be highly useful in language documentation work
and enrich modern corpora, but there are chal-
lenges in normalization and further processing of
this data (Blokland et al., 2019). The approach
presented in our paper could be applicable into
such data in various language documentation sit-
uations, and the recent interest the field has dis-
played toward language technology creates good
conditions for further integration of these methods
(Gerstenberger et al., 2016).

We have released the chunk-level BRNN nor-
malization model openly on GitHub as a part of an
open-source library called Murre4. We hope that
the normalization models developed in this paper
are useful for other researchers dealing with a va-
riety of downstream Finnish NLP tasks.

4https://github.com/mikahama/murre
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Abstract 

In relevance classification, we hope to 

judge whether some utterances expressed 

on a topic are relevant or not. A usual 

method is to train a specific classifier 

respectively for each topic. However, in 

that way, it easily causes an underfitting 

problem in supervised learning model, 

since annotated data can be insufficient for 

every single topic. In this paper, we explore 

the common features beyond different 

topics and propose our cross-topic 

relevance embedding aggregation 

methodology (CREAM) that can expand 

the range of training data and apply what 

has been learned from source topics to a 

target topic. In our experiment, we show 

that our proposal could capture common 

features within a small amount of 

annotated data and improve the 

performance of relevance classification 

compared with other baselines.  

1 Introduction 

Relevance classification is a task of automatically 

distinguishing relevant information for a specific 

topic (Kimura et al., 2019). It can be regarded as a 

preprocessing task of stance detection, since 

potential stances should be refined into relevant 

ones to improve accuracy and efficiency. In Table 

1, we show a simple example of relevance 

classification task in NTCIR-14. 

Here utterance1 is relevant to the topic not only 

for the contained topic words but also for its related 

semantics, and then we could leverage its features 

available for further stance detection. On the 

contrary, utterance2 is irrelevant to the topic, and 

its further calculation of stance detection is 

meaningless. Previously, the relevance task could 

be approached in an unsupervised way by 

calculating pairwise semantic distances between 

topic and utterance (Achananuparp et al., 2008; 

Kusner et al., 2015). However, in most instances, 

their performance is not as good as a supervised 

approach. As to the supervised method, 

traditionally, a specific topic-oriented classifier 

could be trained for prediction on a single topic 

(Hasan and Ng, 2013; Y Wang et al., 2017), but this 

method actually builds up an isolation among 

different topics and wastes existing annotated data 

for new predictions.    

Cross-topic classification, which enables the 

classifier to adapt different topics even in different 

domains, is an alternative to a supervised approach 

(Augenstein et al., 2016; Xu et al., 2018). It allows 

the model to assimilate the common features from 

existing topics and make inferences for a new topic. 

For example, in the NTCIR-14 relevance 

classification task, we could start with an existing 

classifier containing a well-prepared set of ground-

truth data from some other Tsukiji Market history 

or economic topics, to give a prediction about 

Tsukiji Market relocation topic.  

In this paper, aiming to alleviate insufficient 

annotated data problems for a specific topic, we 

have concentrated on cross-topic relevance 

classification by our novel CREAM proposal. The 

basic idea of the CREAM method is to capture the 

common pairwise features between existing topic 

and utterance, and then apply them to relevance 

prediction on a target topic. By analyzing F1-

scores in experiment results, we have known that 

CREAM has shown its better performance on a 

known topic’s relevance classification compared 

with baselines. In addition, an associated value to 
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Topic:  we should move Tsukiji Market to Toyosu. 

Utterance1: I do not agree to move Tsukiji Market 

because of its long history. Relevance: relevant 

Utterance2: The number of foreign tourists to Japan 

has been on the rise.           Relevance: irrelevant 

Table 1: An example of relevance classification.  
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the unknown topic relevance has also been 

evaluated. 

2 Related Work 

To establish a cross-topic relevance classification 

model for supervised learning, here we regard it as 

a two-step procedure including pairwise text 

embedding and binary text classifier. Besides, the 

literatures around stance detection bright us 

inspiration as well. 

2.1 Text Embedding 

There are 3 well-known embedding methods 

named Word2Vec (Mikolov et al., 2013), GloVe 

(Pennington et al., 2014) and fastText (Joulin et al., 

2016) for word-level representation. Although 

GloVe and fastText show higher performance on 

some specific aspects, there's no escaping the fact 

that Word2Vec (CBOW, Skip-Gram) is most 

popular and widely used among different 

languages.  
As to sentence-level embeddings, the Word2Vec 

inventor Mikolov proposed doc2vec (Quoc et al., 

2014), as its name implies, to learn sentence or 

document embeddings. What’s more, averaged 

word embeddings (Han and Baldwin, 2016) is also 

a common sentence-level embedding method.  

2.2 Text Classifier 

There are several classical ML/DL models utilized 

for text classification such as Support Vector 

Machine (SVM) (Vapnik, 1998; Vapnik, 2013), 

and an RNN variant Long Short-term Memory 

(LSTM) (Hochreiter and Schmidhuber, 1997). It is 

noteworthy that SVM has an advantage in 

processing low-resource data. 

Besides, nowadays we also could utilize a pre-

trained model such as BERT (Devlin et al., 2018) 

or ELMO (Matthew et al., 2018) as a contextual 

text classifier. However, note that they are always 

pre-trained by a tremendous amount of open data 

(E.X. Wikipedia), we still need fine-tuning data on 

a large scale for root domain recognition. 

2.3 Stance Detection 

Stance detection, which is the task of classifying 

the attitude expressed in text towards a target, also 

provides us with valuable inspiration on text 

classification. For example, Augenstein 

(Augenstein et al., 2016) tried to utilize conditional 

LSTM encoding to build a representation for 

stance and target independently, and an end-to-end 

memory network (Mohtarami et al., 2018), which 

integrates CNN with LSTM, has also been 

presented to solve this classification task. What’s 

more, a simple but tough-to-beat baseline (Riedel 

et al., 2017) shows the potential of TF-IDF and 

cosine similarity on this pairwise classification 

task. Note that relevance classification can be 

regarded as a preprocessing of stance detection, 

since irrelevant stances should be excluded before 

being classified into support, against or even a 

neutral stance. 

3 Methodology 

In this section, we would like to give a 

comprehensive introduction about our proposed 

cross-topic method CREAM, for supervised 

relevance classification. The overall architecture of 

CREAM is depicted in Figure 1. As described in 

the previous section, we briefly divide the whole 

model into 2 parts including text embedding and 

text classifier. In the text embedding part, we have 

implemented Word Embedding Layer and 

Sentence Aggregation Layer, and as to the text 

classifier, the SVM Layer and Prediction Layer 

would achieve their functions. The expected input 

includes a pair of topic text and topic-oriented 

utterance in the same domain, and the output 

would be predicted binary relevance label. In the 

following, we would illustrate the implementation 

details of each layer in CREAM. 

3.1 Word Embedding Layer  

Here we adopt pre-trained Word2Vec embeddings 

to represent each word of two inputs (a topic text T 

containing n words and a topic-oriented utterance 

U, e.g., topic and utterance1 in Table 1). Note that 

utterance could be much longer than topic text, so 

here we select the same number of words as topic 

T from utterance U. For each selected word of T, 

 

Figure 1: The overall architecture of CREAM.  
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we select one word with the highest Word2Vec 

similarity from U. The outputs of this layer are two 

sequences of word vectors with the same length 

1{ ,...., }nT t t
→ →

=  and 1{ ,..., }nU u u
→ →

= .   

3.2 Sentence Aggregation Layer  

The sentence aggregation layer is the key to our 

cross-topic method CREAM. Here we manage to 

aggregate topic and utterance vectors by two steps 

to represent common features.  

 Separated Aggregation: In this step, we aim to 

provide a sentence-level embedding for T and U 

respectively. Here we separately aggregate T

word vectors for topic and utterance by averaged 

word embeddings:  

                
n

ii
t

T
n

→

→

=
     

n

ii
u

U
n

→

→

=
                    (1) 

Topic-Utterance Aggregation: Here we further 

concentrate on applying an aggregation between 

topic and utterance to represent the common 

features of relevance. As we have known there 

exists a classical conclusion from Word2Vec:

king man woman queen
→ → → →

− + = , we could get an inference 

that there exist some common features between 

word pairs (king, man) and (queen, woman) since 
king man queen woman
→ → → →

− = −  is still workable.  

As to sentence-level relevance classification, 

here we also conduct a vector subtraction between 

topic T
→

  and utterance U
→

  to represent relevance 

vector R
→

 as below.  

                             T U
R

T

→ →
→ −
=                                 (2) 

It is noteworthy that here we normalize each 

dimension value of relevance vector R
→

  by 

dividing T  to limit the subtraction result in the 

same range. Therefore, assuming that we have a 

relevance vector 1R
→

 (topic1) and 2R
→

 (topic2), they 

would be treated equally for the same cross-topic 

training if they all denote the same relevant 

relationship (e.g., 1R
→

 represents a utterance is  

relevant to topic1, 2R
→

represents another utterance 

is relevant to topic2).  

3.3 Cross-Topic SVM Layer  

In this layer, we decide to adopt a supervised 

learning model SVM for cross-topic binary 

classification. The reason is because of low-

resource data we have stated in chapter 2.2. In our 

case, SVM can efficiently perform a non-linear 

classification using kernel function (Mark et al., 

1964) to fit the maximum-margin hyperplane in a 

transformed feature space. Here the following 

sigmoid kernel function for relevance vectors 
1R

→

and 
2R

→   makes SVM acted as multi-layer neural 

networks even they are different topics. 

   
1 2 1 2( , ) tanh( )K R R a R R b

→→ → →
= −                    (3) 

After applying the kernel function, the target 

function of maximum-margin hyperplane could be 

written in: 

* *( ( , ) )i i i

i S

y sign t K R x h
→



= −                    (4) 

Here ℎ∗, 𝛼∗ are optimal parameters to distinguish 

binary hyperplane, and t is the correct class label 

for training.  

3.4 Prediction Layer  

We predict the relevance label of each topic-

utterance pair via sigmoid-fitting method: 

               
1

1 exp( + )
i

i

p
Ay B

=
+                            (5) 

Where we apply the sigmoid operation to get the 

predicted probability for relevant and irrelevant 

classes with parameters A and B.  

4 Experiments 

In this section, we would introduce the evaluation 

results of our proposed methodology. We have 

evaluated our CREAM on the NTCIR-14 QALab 

dataset (Kimura et al., 2019). Note that NTCIR-14 

QALab dataset maybe is the first dataset focusing 

on relevance classification besides fact-check and 

stance detection. Besides our own method, we 

have also taken three baseline approaches to cross-

topic relevance classification. 

Word Mover’s Distance (WMD): this classical 

unsupervised learning method is often utilized to 

calculate a word travel cost between two 

documents. Here we predict the relevance label 

based on switch cost boundary from utterance to its 

topic. 

Bidirectional LSTM (BiLSTM): this approach 

receives encoded-word sequences (topic and 

utterance) and makes a concatenation to merge 

them into one sequence. Finally, the concatenated 

vector would be fed into its prediction layer to give 

a relevance label prediction. 

BERT: There is no doubt that BERT is the state-

of-the-art model to solve NLP issues such as text 

classification. It is well-known that BERT could 

receive pairwise texts as inputs and output the label 

between them. Therefore, BERT is also applicable 

to this relevance classification theoretically. Here 
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we beforehand input labelled topic and utterance 

separately into pre-trained BERT for fine-tuning.    

4.1 Experiment dataset 

NTCIR-14 QALab: This dataset is a Japanese 

collection for the relevance classification task, 

which contains around 10000 topic-oriented 

utterances on 14 different topics. Although task 

organizers do manual labeling by crowdsourcing, 

it is still difficult to provide an even larger amount 

of labeled dataset for each topic. Therefore, the 

traditional method with low-resource data would 

easily cause an underfitting problem.  

4.2 Experiment Setup 

Our initial word embeddings are obtained from the 

pre-trained Wikipedia word vectors (Suzuki et al., 

2016).  

In experiment 1, we divide our dataset into 

training data (1620) and test data (180) with the 

proportion 9:1. Note that there is no new topic in 

test data of experiment 1 since all topics have been 

included for training in the learning phase. 

In experiment 2, we hope to verify the 

performance of our method compared with others 

on unknown topic relevance prediction. Therefore, 

we extract 13 topics’ data for training to predict the 

last one topic in cross-validation. 

4.3 Experiment Results 

We mainly use F1-score to evaluate classification 

performance. Figure 2 illustrates the F1-score and 

averaged precision/recall as well among four 

methods in experiment 1, and the averaged 

evaluation results of cross-validation in 

experiment 2 have been summarized in Figure 3. 

Furthermore, the relationship between the 

threshold of word mover’s distance and F1 score is 

shown as an example in Figure 4. We just go 

through all the potential thresholds to find out the 

optimal one on the peak point to give a prediction 

for test data. 

5 Discussion 

As shown in Figure 2, we have known our 

CREAM has improved performance of relevance 

classification through experiment 1 since its F1-

score is higher than others. The potential reasons 

of improvement are listed in the below. 

• The sentence aggregation layer could extract 

common features between topic-utterance 

pairs and demonstrate the pairwise relevance 

degree by sentence aggregation processing. 

• The cross-topic SVM layer shows high 

performance especially in low-resource data 

even compared with BiLSTM and BERT 

model. The BERT model pre-trained with 

open data perhaps is limited by the fine-

tuning need for larger-scale data. 

As to the unknown topic’s relevance prediction 

in experiment 2, the result of our method is close 

to the unsupervised WMD method which shows a 

 

Figure 2: The averaged precision recall and F1-

score of CREAM and baselines in experiment 1. 

 

Figure 3: The averaged precision recall and F1-

score of CREAM and baselines in experiment 2. 

 

Figure 4:  The relationship between the threshold 

of word mover’s distance and F1 score. 
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powerful predictive power to new data. We believe 

our CREAM method has an associated value on 

relevance prediction for unknown topics since the 

impact of a specific topic has been deducted by 

topic-utterance aggregation across different topics. 

6 Conclusion and Future Work 

In this paper, we have proposed a novel cross-topic 

aggregation model named CREAM to generalize 

the common features for solving low-resource data 

problems in relevance classification. Experiment 

results show its excellent performance on a known 

topic’s relevance classification by F1-score over 

baselines. Meanwhile, we have also known that 

CREAM has an associated value to the unknown 

topic relevance prediction.  

In the future, CREAM for relevance 

classification deserves more experiments with 

different datasets. For example, we could evaluate 

our methodology on multilingual datasets, in order 

to make it more impressive. Moreover, we could 

also input extern synonyms from the domain-based 

thesaurus to expand topic texts. Finally, self-

attention mechanisms can be a promising 

improvement for imbalance length problems 

between topic and utterance instead of Word2Vec-

style extraction. 
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Abstract

We study methods for learning sentence em-
beddings with syntactic structure. We focus
on methods of learning syntactic sentence-
embeddings by using a multilingual parallel-
corpus augmented by Universal Parts-of-
Speech tags. We evaluate the quality of the
learned embeddings by examining sentence-
level nearest neighbours and functional dis-
similarity in the embedding space. We also
evaluate the ability of the method to learn syn-
tactic sentence-embeddings for low-resource
languages and demonstrate strong evidence for
transfer learning. Our results show that syntac-
tic sentence-embeddings can be learned while
using less training data, fewer model parame-
ters, and resulting in better evaluation metrics
than state-of-the-art language models.

1 Introduction

Recent success in language modelling and repre-
sentation learning have largely focused on learn-
ing the semantic structures of language (Devlin
et al., 2018). Syntactic information, such as part-
of-speech (POS) sequences, is an essential part
of language and can be important for tasks such
as authorship identification, writing-style analysis,
translation, etc. Methods that learn syntactic rep-
resentations have received relatively less attention,
with focus mostly on evaluating the semantic in-
formation contained in representations produced
by language models.

Multilingual embeddings have been shown to
achieve top performance in many downstream
tasks (Conneau et al., 2017; Artetxe and Schwenk,
2018). By training over large corpora, these mod-
els have shown to generalize to similar but unseen
contexts. However, words contain multiple types
of information: semantic, syntactic, and morpho-
logic. Therefore, it is possible that syntactically
different passages have similar embeddings due

to their semantic properties. On tasks like the
ones mentioned above, discriminating using pat-
terns that include semantic information may result
in poor generalization, specially when datasets are
not sufficiently representative.

In this work, we study methods that learn
sentence-level embeddings that explicitly capture
syntactic information. We focus on variations
of sequence-to-sequence models (Sutskever et al.,
2014), trained using a multilingual corpus with
universal part-of-speech (UPOS) tags for the tar-
get languages only. By using target-language
UPOS tags in the training process, we are able
to learn sentence-level embeddings for source lan-
guages that lack UPOS tagging data. This prop-
erty can be leveraged to learn syntactic embed-
dings for low-resource languages.

Our main contributions are: to study whether
sentence-level syntactic embeddings can be
learned efficiently, to evaluate the structure of
the learned embedding space, and to explore the
potential of learning syntactic embeddings for
low-resource languages.

We evaluate the syntactic structure of
sentence-level embeddings by performing
nearest-neighbour (NN) search in the embedding
space. We show that these embeddings exhibit
properties that correlate with similarities between
UPOS sequences of the original sentences.
We also evaluate the embeddings produced by
language models such as BERT (Devlin et al.,
2018) and show that they contain some syntactic
information.

We further explore our method in the few-shot
setting for low-resource source languages without
large, high quality treebank datasets. We show its
transfer-learning capabilities on artificial and real
low-resource languages.

Lastly, we show that training on multilingual
parallel corpora significantly improves the learned

153



syntactic embeddings. This is similar to exist-
ing results for models trained (or pre-trained) on
multiple languages (Schwenk, 2018; Artetxe and
Schwenk, 2018) for downstream tasks (Lample
and Conneau, 2019).

2 Related Work

Training semantic embeddings based on multilin-
gual data was studied by MUSE (Conneau et al.,
2017) and LASER (Artetxe and Schwenk, 2018) at
the word and sentence levels respectively. Multi-
task training for disentangling semantic and syn-
tactic information was studied in (Chen et al.,
2019). This work also used a nearest neigh-
bour method to evaluate the syntactic properties
of models, though their focus was on disentangle-
ment rather than embedding quality.

The syntactic content of language models was
studied by examining syntax trees (Hewitt and
Manning, 2019), subject-object agreement (Gold-
berg, 2019), and evaluation on syntactically al-
tered datasets (Linzen et al., 2016; Marvin and
Linzen, 2018). These works did not examine mul-
tilingual models.

Distant supervision (Fang and Cohn, 2016;
Plank and Agic, 2018) has been used to learn POS
taggers for low-resource languages using cross-
lingual corpora. The goal of these works is to learn
word-level POS tags, rather than sentence-level
syntactic embeddings. Furthermore, our method
does not require explicit POS sequences for the
low-resource language, which results in a simpler
training process than distant supervision.

3 Method

3.1 Architecture
We iterated upon the model architecture pro-
posed in LASER (Artetxe and Schwenk, 2018).
The model consists of a two-layer Bi-directional
LSTM (BiLSTM) encoder and a single-layer
LSTM decoder. The encoder is language agnos-
tic as no language context is provided as input. In
contrast to LASER, we use the concatenation of
last hidden and cell states of the encoder to initial-
ize the decoder through a linear projection.

At each time-step, the decoder takes an embed-
ding of the previous POS target concatenated with
an embedding representing the language context,
as well as a max-pooling over encoder outputs.
Figure 1 shows the architecture of the proposed
model.

Table 1: Hyperparameters

Parameter Value
Number of encoder layers 2
Encoder forward cell size 128
Encoder backward cell size 128
Number of decoder layers 1
Decoder cell size 512
Input BPE vocab size 40000
BPE embedding size 100
UPOS embedding size 100
Language embedding size 20
Dropout rate 0.2
Learning rate 1e-4
Batch size 32

The input embeddings for the encoder were cre-
ated using a jointly learned Byte-Pair-Encoding
(BPE) vocabulary (Sennrich et al., 2016) for all
languages by using sentencepiece1.

3.2 Training

Training was performed using an aligned paral-
lel corpus. Given a source-target aligned sentence
pair (as in machine translation), we:

1. Convert the sentence in the source language
into BPE

2. Look up embeddings for BPE as the input to
the encoder

3. Convert the sentence in a target language into
UPOS tags, in the tagset of the target lan-
guage.

4. Use the UPOS tags in step 3 as the targets for
a cross-entropy loss.

Hence, the task is to predict the UPOS sequence
computed from the translated input sentence.

The UPOS targets were obtained using Stand-
fordNLP (Qi et al., 2018) 2. Dropout with a drop
probability of 0.2 was applied to the encoder. The
Adam optimizer (Kingma and Ba, 2015) was used
with a constant learning rate of 0.0001. Table 1
shows a full list of the hyperparameters used in
the training procedure.

3.3 Dataset

To create our training dataset, we followed an ap-
proach similar to LASER. The dataset contains 6

1https://github.com/google/sentencepiece
2https://stanfordnlp.github.io/stanfordnlp/index.html
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Figure 1: Proposed architecture.

languages: English, Spanish, German, Dutch, Ko-
rean and Chinese Mandarin. These languages use
3 different scripts, 2 different language orderings,
and belong to 4 language families.

English, Spanish, German, and Dutch use a
Latin-based script. However, Spanish is a Roman-
tic language while the others are Germanic lan-
guages. Chinese Mandarin and Korean are in-
cluded because they use non-latin based scripts
and originate from language families distinct from
the other languages. Although the grammatical
rules vary between the selected languages, they
share a number of key characteristics such as
the Subject-Verb-Object ordering, except Korean
(which mainly follows the Subject-Object-Verb or-
der). We hope to extend our work to other lan-
guages with different scripts and sentence struc-
tures, such as Arabic, Japanese, Hindi, etc. in the
future.

The dataset was created by using translations
provided by Tatoeba3 and OpenSubtitles4 (Lison
and Tiedemann, 2016). They were chosen for their
high availability in multiple languages.

Statistics of the final training dataset are shown
in Table 2. Rows and columns correspond to
source and target languages respectively.

3.3.1 Tatoeba

Tatoeba is a freely available crowd-annotated
dataset for language learning. We selected all sen-
tences in English, Spanish, German, Dutch, and
Korean. We pruned the dataset to contain only
sentences with at least one translation to any of
the other languages. The final training set contains
1.36M translation sentence pairs from this source.

3https://tatoeba.org/eng/
4http://opus.nlpl.eu/OpenSubtitles-v2018.php

3.3.2 OpenSubtitles
We augmented our training data by using the 2018
OpenSubtitles dataset. OpenSubtitles is a publicly
available dataset based on movie subtitles (Lison
and Tiedemann, 2016). We created our training
dataset from selected aligned subtitles by taking
the unique translations among the first million sen-
tences, for each aligned parallel corpus. We fur-
ther processed the data by pruning to remove sam-
ples with less than 3 words, multiple sentences,
or incomplete sentences. The resulting dataset
contains 1.9M translation sentence pairs from this
source.

4 Experiments

We aim to address the following questions:

1. Can syntactic structures be embedded? For
multiple languages?

2. Can parallel corpora be used to learn syntac-
tic structure for low-resource languages?

3. Does multilingual pre-training improve syn-
tactic embeddings?

We address question 1 in Secs. 4.1 and 4.2 by
evaluating the quality of syntactic and semantic
embeddings in several ways. Questions 2 and 3
are addressed in Sec. 4.3 by studying the transfer-
learning performance of syntactic embeddings.

4.1 Quality of Syntactic Embeddings

We studied the quality of the learned syntactic
embeddings by using a nearest-neighbour (NN)
method.

First, we calculated the UPOS sequence of all
sentences in the Tatoeba dataset by using a tagger.
Sentences were then assigned to distinct groups
according to their UPOS sequence, i.e., all sen-
tences belonging to the same group had the same
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Table 2: Training Dataset Statistics

English German Spanish Chinese Korean Dutch
English - 521.87k 194.51k 41.33k 31.81k 190.86k
German 520.64k - 217.96k 5.67k 0.21k 12.20k
Spanish 193.01k 217.46k - 159.67k 28.68k 144.82k
Chinese 40.79k 5.62k 159.73k - 0.05k 0.32k
Korean 31.05k 1.37k 28.89k 0.07k - 56.93k
Dutch 215.18k 25.75k 155.35k 0.66k 56.92k -

UPOS sequence.
For all languages except Korean, a held-out test

set was created by randomly sampling groups that
contained at least 6 sentences. For Korean, all
groups containing at least 6 sentences were kept
as the test set since the dataset is small.

During evaluation, we applied max-pooling to
the outputs of the encoder to obtain the syntactic
embeddings of the held-out sentences5.

For each syntactic embedding, we find its top
nearest neighbour (1-NN) and top-5 nearest neigh-
bours (5-NN) in the embedding space for the held-
out sentences, based on their UPOS group.

Given n sentences S = {s0, . . . , sn−1} and
their embeddings E = {e0, . . . , en−1}, for each
si there is a set of k gold nearest neighbours
G(i, k) = {g0, . . . , gk−1}, G(i, k) ⊆ S such that
d(si, g) ≤ d(si, s) for all g ∈ G(i, k) and s ∈
S \G(i, k), where d(·, ·) is the cosine distance.

Given embedding ei, we calculate cosine dis-
tances {d(ei, ej) for ej ∈ E, ej 6= ei} and sort
them into non-decreasing order dj0 ≤ dj1 ≤ · · · ≤
djn−2 . We consider the ordering to be unique as
the probability of embedding cosine distances be-
ing equal is very small.

The set of embedded k-nearest neighbours of si
is defined as

N(i, k) = {sj for j ∈ {j0, . . . , jk−1}}.

Finally, the k-nearest neighbours accuracy for si
is given by

|N(i, k) ∩G(i, k)|
k

.

A good embedding model should cluster the
embeddings for similar inputs in the embedding
space. Hence, the 5-NN test can be seen as an in-
dicator of how cohesive the embedding space is.

5Evaluation data will be hosted at
https://github.com/ccliu2/syn-emb

Table 3: Syntactic Nearest-Neighbour Accuracy (%)

ISO 1-NN/5-NN Total/Groups
English en 97.27/93.36 2784/160
German de 93.45/86.77 1282/91
Spanish es 93.81/86.24 1503/81
Chinese zh 71.26/61.44 167/22
Korean ko 28.27/18.40 527/40
Dutch nl 74.17/51.71 3171/452

The results are shown in Table 3. The differ-
ences in the number of groups in each language
are due to different availabilities of sentences and
sentence-types in the Tatoeba dataset.

The high nearest neighbours accuracy indicates
that syntax information was successfully captured
by the embeddings. Table 3 also shows that the
syntactic information of multiple languages was
captured by a single embedding model.

4.1.1 Language Model
A number of recent works (Hewitt and Man-
ning, 2019; Goldberg, 2019) have probed lan-
guage models to determine if they contain syn-
tactic information. We applied the same nearest
neighbours experiment (with the same test sets)
on a number of existing language models: Uni-
versal Sentence Encoder (USE) (Cer et al., 2018),
LASER, and BERT. For USE we used models
available from TensorHub6. For LASER we used
models and created embeddings from the official
repository 7.

For BERT, we report the results using max
(BERTmax) and average-pooling (BERTavg), ob-
tained from the BERT embedding toolkit8 with
the multilingual cased model (104 languages, 12-
layers, 768-hidden units, 12-heads), and ‘pooled-
output’ (BERToutput) from the TensorHub version

6https://www.tensorflow.org/hub
7https://github.com/facebookresearch/LASER
8https://github.com/imgarylai/bert-embedding
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of the model with the same parameters.
We computed the nearest neighbours experi-

ment for all languages in the training data for
the above models. The results are shown in Ta-
ble 4. The results show that general purpose
language models do capture syntax information,
which varies greatly across languages and models.

The nearest neighbours accuracy of our syn-
tactic embeddings in Table 3 significantly outper-
forms the general purpose language models. Ar-
guably these language models were trained using
different training data. However, this is a reason-
able comparison because many real-world appli-
cations rely on released pre-trained language mod-
els for syntactically related information. Hence,
we want to show that we can use much smaller
models trained with direct supervision, to obtain
syntactic embeddings with similar or better qual-
ity. Nonetheless, the training method used in this
work can certainly be extended to architectures
similar to BERT or USE.

4.2 Functional Dissimilarity

The experiments in the previous section showed
that the proposed syntactic embeddings formed
cohesive clusters in the embedding space, based
on UPOS sequence similarities. We further stud-
ied the spatial relationships within the embed-
dings.

Word2Vec (Mikolov et al., 2013) examined spa-
tial relationships between embeddings and com-
pared them to the semantic relationships between
words. Operations on vectors in the embedding
space such as King−Man+Woman = Queen
created vectors that also correlated with similar
operations in semantics. Such semantic compar-
isons do not directly translate to syntactic embed-
dings. However, syntax information shifts with
edits on POS sequences. Hence, we examined
the spatial relationships between syntactic embed-
dings by comparing their cosine similarities with
the edit distances between UPOS sequence pairs.

Given n UPOS sequences U = {u0, ..., un−1},
we compute the matrix L ∈ Rn×n, where lij =
l(ui, uj), the complement of the normalized Lev-
enshtein distance between ui and uj .

Given the set of embedding vectors
{e0, ..., en−1} where ei is the embedding for
sentence si, we also compute D ∈ Rn×n, where
dij = d(ei, ej). We further normalize dij to be
within [0, 1] by min-max normalization to obtain

D̂ = minMax(D).
Following (Yin and Shen, 2018), we define the

functional dissimilarity score by

‖L− D̂‖F
n

.

Intuitively, UPOS sequences that are similar
(smaller edit distance) should be embedded close
to each other in the embedding space, and embed-
dings that are further away should have dissimilar
UPOS sequences. Hence, the functional dissimi-
larity score is low if the relative changes in UPOS
sequences are reflected in the embedding space.
The score is high if such changes are not reflected.

The functional dissimilarity score was com-
puted using sentences from the test set in CoNLL
2017 Universal Dependencies task (Nivre et al.,
2017) for the relevant languages with the provided
UPOS sequences. Furthermore, none of the evalu-
ated models, including the proposed method, were
trained with CoNLL2017 data.

We compared the functional dissimilarity scores
of our syntactic representations against embed-
dings obtained from BERT and LASER, to further
demonstrate that simple network structures with
explicit supervision may be sufficient to capture
syntactic structure. All the results are shown in
Table 5. We only show the best (lowest) results
from BERT.

4.3 Transfer Performance of Syntactic
Embeddings

Many NLP tasks utilize POS as features, but hu-
man annotated POS sequences are difficult and ex-
pensive to obtain. Thus, it is important to know if
we can learn sentences-level syntactic embeddings
for low-sources languages without treebanks.

We performed zero-shot transfer of the syntac-
tic embeddings for French, Portuguese and In-
donesian. French and Portuguese are simulated
low-resource languages, while Indonesian is a true
low-resource language. We reported the 1-NN and
5-NN accuracies for all languages using the same
evaluation setting as described in the previous sec-
tion. The results are shown in Table 6 (top).

We also fine-tuned the learned syntactic embed-
dings on the low-resource language for a varying
number of training data and languages. The results
are shown in Table 6 (bottom). In this table, the
low-resource language is denoted as the ‘source’,
while the high-resource language(s) is denoted as
the ‘target’. With this training method, no UPOS
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Table 4: Syntactic Nearest-Neighbour for Language Models (%)

English German Spanish Chinese Korean Dutch
Model 1-NN/5-NN 1-NN/5-NN 1-NN/5-NN 1-NN/5-NN 1-NN/5-NN 1-NN/5-NN
USE 71.83/55.68 59.87/44.26 53.05/38.06 39.23/30.18 21.22/12.43 28.66/12.77
BERTmax 90.19/86.36 83.66/77.63 83.89/79.92 67.96/68.40 20.30/11.92 37.67/19.51
BERTavg 89.06/84.70 79.54/74.82 78.24/75.61 65.75/67.07 20.30/11.47 37.04/19.46
BERToutput 77.75/63.44 66.20/51.89 65.21/50.41 52.49/46.34 16.39/10.98 24.27/10.67
LASER 86.33/76.66 76.56/62.88 72.49/59.72 56.89/45.15 26.63/15.90 50.75/31.00

Table 5: Functional Dissimilarity Scores (Lower is Better)

Model English German Spanish Chinese Korean Dutch
BERTavg 0.3463 0.3131 0.2955 0.2935 0.3001 0.3131
LASER 0.1602 0.1654 0.2074 0.3099 0.2829 0.1654
Proposed Work 0.1527 0.1588 0.1588 0.2267 0.2533 0.1588

tag information was provided to the model for
the ‘source’ languages, where supervising infor-
mation comes solely from parallel sentences and
UPOS tags in high-resource languages.

The results show that for a new language
(French and Portuguese) that is similar to the fam-
ily of pre-training languages, there are two ways
to achieve higher 1-NN accuracy. If the num-
ber of unique sentences in the new language is
small, accuracy can be improved by increasing the
size of the parallel corpora used to fine-tune. If
only one parallel corpus is available, accuracy can
be improved by increasing the number of unique
sentence-pairs used to fine-tune.

For a new language that is dissimilar to the fam-
ily of pre-training languages, e.g. Indonesian in
Table 6, the above methods only improved nearest
neighbours accuracy slightly. This may be caused
by differing data distribution or by tagger inaccu-
racies. The results for Indonesian do indicate that
some syntactic structure can be learned by using
our method, even for a dissimilar language.

A future direction is to conduct a rigorous anal-
ysis of transfer learning between languages from
the same versus different language families.

5 Conclusion

We examined the possibility of creating syntactic
embeddings by using a multilingual method based
on sequence-to-sequence models. In contrast to
prior work, our method only requires parallel cor-
pora and UPOS tags in the target language.

We studied the quality of learned embeddings
by examining nearest neighbours in the embed-

Table 6: Syntactic Nearest-Neighbour on New lan-
guages (%)

Lang (ISO) 1-NN/5-NN Total/Group
French (fr) 35.86/22.11 6816/435
Protuguese (pt) 48.29/23.15 4608/922
Indonesian (id) 21.00/35.92 657/59

Number of Parallel Sentence Pairs
Source -Target(s) 2k 10k
ISO 1-NN/5-NN 1-NN/5-NN
fr-en 47.37/32.18 58.41/42.87
fr-(en,es) 46.82/31.92 58.01/42.65
pt-en 56.75/30.14 64.52/36.94
pt-(en,es) 57.94/30.63 65.00/37.06
id-en 27.09/47.64 31.35/56.01

ding space and investigating their functional dis-
similarity. These results were compared against
recent state-of-the-art language models. We also
showed that pre-training with a parallel corpus
allowed the syntactic embeddings to be trans-
ferred to low-resource languages via few-shot
fine-tuning.

Our evaluations indicated that syntactic struc-
ture can be learnt by using simple network archi-
tectures and explicit supervision. Future direc-
tions include improving the transfer performance
for low-resource languages, disentangling seman-
tic and syntactic embeddings, and analyzing the
effect of transfer learning between languages be-
long to the same versus different language fami-
lies.
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Abstract

We propose a Chinese spell checker – FASPell
based on a new paradigm which consists of
a denoising autoencoder (DAE) and a de-
coder. In comparison with previous state-
of-the-art models, the new paradigm allows
our spell checker to be Faster in computa-
tion, readily Adaptable to both simplified and
traditional Chinese texts produced by either
humans or machines, and to require much
Simpler structure to be as much Powerful in
both error detection and correction. These four
achievements are made possible because the
new paradigm circumvents two bottlenecks.
First, the DAE curtails the amount of Chi-
nese spell checking data needed for super-
vised learning (to <10k sentences) by lever-
aging the power of unsupervisedly pre-trained
masked language model as in BERT, XLNet,
MASS etc. Second, the decoder helps to elim-
inate the use of confusion set that is deficient
in flexibility and sufficiency of utilizing the
salient feature of Chinese character similarity.

1 Introduction

There has been a long line of research on detect-
ing and correcting spelling errors in Chinese texts
since some trailblazing work in the early 1990s
(Shih et al., 1992; Chang, 1995). However, de-
spite the spelling errors being reduced to substitu-
tion errors in most researches1 and efforts of mul-
tiple recent shared tasks (Wu et al., 2013; Yu et al.,
2014; Tseng et al., 2015; Fung et al., 2017), Chi-
nese spell checking remains a difficult task. More-
over, the methods for languages like English can
hardly be directly used for the Chinese language
because there are no delimiters between words,
whose lack of morphological variations makes the
syntactic and semantic interpretations of any Chi-
nese character highly dependent on its context.

1Likewise, this paper only covers substitution errors.

1.1 Related work and bottlenecks
Almost all previous Chinese spell checking mod-
els deploy a common paradigm where a fixed set
of similar characters of each Chinese character
(called confusion set) is used as candidates, and a
filter selects the best candidates as substitutions for
a given sentence. This naive design is subjected to
two major bottlenecks, whose negative impact has
been unsuccessfully mitigated:

• overfitting to under-resourced Chinese
spell checking data. Since Chinese spell
checking data require tedious professional
manual work, they have always been under-
resourced. To prevent the filter from over-
fitting, Wang et al. (2018) propose an auto-
matic method to generate pseudo spell check-
ing data. However, the precision of their spell
checking model ceases to improve when the
generated data reaches 40k sentences. Zhao
et al. (2017) use an extensive amount of ad
hoc linguistic rules to filter candidates, only
to achieve worse performance than ours even
though our model does not leverage any lin-
guistic knowledge.

• inflexibility and insufficiency of confusion
set in utilizing character similarity. The
feature of Chinese character similarity is very
salient as it is related to the main cause of
spelling errors (see subsection 2.2). How-
ever, the idea of confusion set is troublesome
in utilizing it:

1. inflexibility to address the issue that
confusing characters in one scenario
may not be confusing in another. The
difference between simplified and tradi-
tional Chinese shown in Table 1 is an
example. Wang et al. (2018) also sug-
gest that confusing characters for ma-
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chines are different from those for hu-
mans. Therefore, in practice, it is very
likely that the correct candidates for sub-
stitution do not exist in a given confu-
sion set, which harms recall. Also, con-
sidering more similar characters to pre-
serve recall will risk lowering precision.

2. insufficiency in utilizing character simi-
larity. Since a cut-off threshold of quan-
tified character similarity (Liu et al.,
2010; Wang et al., 2018) is used to pro-
duce the confusion set, similar charac-
ters are actually treated indiscriminately
in terms of their similarity. This means
the information of character similarity
is not sufficiently utilized. To compen-
sate this, Zhang et al. (2015) propose a
spell checker that has to consider many
less salient features such as word seg-
mentation, which add more unnecessary
noises to their model.

1.2 Motivation and contributions

The motivation of this paper is to circumvent the
two bottlenecks in subsection 1.1 by changing the
paradigm for Chinese spell checking.

As a major contribution and as exemplified by
our proposed Chinese spell checking model in Fig-
ure 1, the most general form of the new paradigm
consists of a denoising autoencoder2 (DAE) and a
decoder. To prove that it is indeed a novel contri-
bution, we compare it with two similar paradigms
and show their differences as follows:

1. Similar to the old paradigm used in previous
Chinese spell checking models, a model un-
der the DAE-decoder paradigm also produces
candidates (by DAE) and then filters the can-
didates (by the decoder). However, candi-
dates are produced on the fly based on con-
texts. If the DAE is powerful enough, we
should expect that all contextually suitable
candidates are recalled, which prevent the in-
flexibility issue caused by using confusion
set. The DAE will also prevent the overfit-
ting issue because it can be trained unsuper-
visedly using a large number of natural texts.
Moreover, character similarity can be used by
the decoder without losing any information.

2the term denoising autoencoder follows the same sense
used by Yang et al. (2019), which is arguably more general
than the one used by Vincent et al. (2008).

2. The DAE-decoder paradigm is sequence-
to-sequence, which makes it resemble the
encoder-decoder paradigm in tasks like ma-
chine translation, grammar checking, etc.
However, in the encoder-decoder paradigm,
the encoder extracts semantic information,
and the decoder generates texts that embody
the information. In contrast, in the DAE-
decoder paradigm, the DAE provides candi-
dates to reconstruct texts from the corrupted
ones based on contextual feature, and the de-
coder3 selects the best candidates by incorpo-
rating other features.

Besides the new paradigm per se, there are two
additional contributions in our proposed Chinese
spell checking model:

• we propose a more precise quantification
method of character similarity than the ones
proposed by Liu et al. (2010) and Wang et al.
(2018) (see subsection 2.2);

• we propose an empirically effective decoder
to filter candidates under the principle of get-
ting the highest possible precision with mini-
mal harm to recall (see subsection 2.3).

1.3 Achievements
Thanks to our contributions mentioned in subsec-
tion 1.2, our model can be characterized by the fol-
lowing achievements relative to previous state-of-
the-art models, and thus is named FASPell.

• Our model is Fast. It is shown (subsection
3.3) to be faster in filtering than previous
state-of-the-art models either in terms of ab-
solute time consumption or time complexity.

• Our model is Adaptable. To demonstrate this,
we test it on texts from different scenarios
– texts by humans, such as learners of Chi-
nese as a Foreign Language (CFL), and by
machines, such as Optical Character Recog-
nition (OCR). It can also be applied to both
simplified Chinese and traditional Chinese,
despite the challenging issue that some er-
roneous usages of characters in traditional
texts are considered valid usages in simpli-
fied texts (see Table 1). To the best of our
knowledge, all previous state-of-the-art mod-
els only focus on human errors in traditional
Chinese texts.

3The term decoder here is analogous as in Viterbi decoder
in the sense of finding the best path along candidates.
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Table 1: Examples on the left are considered valid
usages in simplified Chinese (SC). Notes on the right
are about how they are erroneous in traditional Chi-
nese (TC) and suggested corrections. This inconsis-
tency is because multiple traditional characters were
merged into identical characters in the simplification
process. Our model makes corrections for this type of
errors only in traditional texts. In simplified texts, they
are not detected as errors.

SC Examples Notes on TC usage

周末 (weekend)
旅游 (trip)
制造 (make)

周→週 周 only in周到, etc.
游→遊 游 only in游泳, etc.
制→製 制 only in制度, etc.

• Our model is Simple. As shown in Fig-
ure 1, it has only a masked language model
and a filter as opposed to multiple feature-
producing models and filters being used in
previous state-of-the-art proposals. More-
over, only a small training set and a set of
visual and phonological features of charac-
ters are required in our model. No extra data
are necessary, including confusion set. This
makes our model even simpler.

• Our model is Powerful. On benchmark
data sets, it achieves similar F1 performances
(subsection 3.2) to those of previous state-of-
the-art models on both detection and correc-
tion level. It also achieves arguably high pre-
cision (78.5% in detection and 73.4% in cor-
rection) on our OCR data set.

2 FASPell

As shown in Figure 1, our model uses masked lan-
guage model (see subsection 2.1) as the DAE to
produce candidates and confidence-similarity de-
coder (see subsection 2.2 and 2.3) to filter can-
didates. In practice, doing several rounds of the
whole process is also proven to be helpful (sub-
section 3.4).

2.1 Masked language model
Masked language model (MLM) guesses the to-
kens that are masked in a tokenized sentence. It
is intuitive to use MLM as the DAE to detect and
correct Chinese spelling errors because it is in line
with the task of Chinese spell checking. In the
original training process of MLM in BERT (De-
vlin et al., 2018), the errors are the random masks,
which are the special token [MASK] 80% of the

国   际   电   台   苦   名   丰   持   人

国 际 电 台 知 名 主 持 人

听 话 著 音 广 目 者

世 家 节 视 报 台 演 主 手

台 界 讲 播 冠 闻 支 节 持

國 際
0.9994          0.9999          0.9999          0.9999         0.2878          0.9626          0.9994          0.9981         0.9999

0.0002          0.0000          0.0000          0.0000         0.1999          0.0019          0.0002          0.0002         0.0000

0.0000          0.0000          0.0000          0.0000         0.0429          0.0015          0.0000          0.0001         0.0000

0.0000          0.0000          0.0000          0.0000         0.0252          0.0014          0.0000          0.0001         0.0000

Masked Language Model

国   际   电   台   著   名    主   持   人

 

rank=1

rank=2

rank=3

rank=4

✓ ✓

✖ ✖

Confidence-Similarity Decoder

Figure 1: A real example of how an erroneous sentence
which is supposed to have the meaning of "A famous
international radio broadcaster" is successfully spell-
checked with two erroneous characters苦 and丰 being
detected and corrected using FASPell. Note that with
our proposed confidence-similarity decoder, the final
choice for substitution is not necessarily the candidate
ranked the first.

time, a random token in the vocabulary 10% of
the time and the original token 10% of the time. In
cases where a random token is used as the mask,
the model actually learns how to correct an erro-
neous character; in cases where the original tokens
are kept, the model actually learns how to detect if
a character is erroneous or not. For simplicity pur-
poses, FASPell adopts the architecture of MLM as
in BERT (Devlin et al., 2018). Recent variants –
XLNet (Yang et al., 2019), MASS (Song et al.,
2019) have more complex architectures of MLM,
but they are also suitable.

However, just using a pre-trained MLM raises
the issue that the errors introduced by random
masks may be very different from the actual errors
in spell checking data. Therefore, we propose the
following method to fine-tune the MLM on spell
checking training sets:

• For texts that have no errors, we follow the
original training process as in BERT;

• For texts that have errors, we create two types
of training examples by:
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1. given a sentence, we mask the erroneous
tokens with themselves and set their tar-
get labels as their corresponding correct
characters;

2. to prevent overfitting, we also mask to-
kens that are not erroneous with them-
selves and set their target labels as them-
selves, too.

The two types of training examples are bal-
anced to have roughly similar quantity.

Fine-tuning a pre-trained MLM is proven to be
very effective in many downstream tasks (Devlin
et al., 2018; Yang et al., 2019; Song et al., 2019),
so one would argue that this is where the power of
FASPell mainly comes from. However, we would
like to emphasize that the power of FASPell should
not be biasedly attributed to MLM. In fact, we
show in our ablation studies (subsection 3.2) that
MLM itself can only serve as a very weak Chinese
spell checker (its performance can be as poor as
F1 being only 28.9%), and the decoder that uti-
lizes character similarity (see subsection 2.2 and
2.3) is also significantly indispensable to produc-
ing a strong Chinese spell checker.

2.2 Character similarity

Erroneous characters in Chinese texts by humans
are usually either visually (subsection 2.2.1) or
phonologically similar (subsection 2.2.2) to corre-
sponding correct characters, or both (Chang, 1995;
Liu et al., 2010; Yu and Li, 2014). It is also true
that erroneous characters produced by OCR pos-
sess visual similarity (Tong and Evans, 1996).

We base our similarity computation on two
open databases: Kanji Database Project4 and Uni-
han Database5 because they provide shape and
pronunciation representations for all CJK Unified
Ideographs in all CJK languages.

2.2.1 Visual similarity
The Kanji Database Project uses the Unicode
standard – Ideographic Description Sequence
(IDS) to represent the shape of a character.

As illustrated by examples in Figure 2, the IDS
of a character is formally a string, but it is essen-
tially the preorder traversal path of an ordered tree.

4http://kanji-database.sourceforge.
net/

5https://unicode.org/charts/unihan.
html

／＼ 
／＼ 

/" /" 

／＼ 

／＼ ／＼ 

/"/\/"/" 

贫 :

分 贝
八 刀 人冂

⿱⿱⿰丿乁⿹𠃌丿⿵⿰丨𠃌⿰丿乁

⿱

⿱
⿱

⿱

⿱

⿵

⿵

⿰ ⿰⿰⿹

丿 丿 丿乁 乁𠃌 𠃌丨

① ②

③

--------------------------------------------------

Figure 2: The IDS of a character can be given in dif-
ferent granularity levels as shown in the tree forms in
¬-® for the simplified character 贫 (meaning poor).
In FASPell, we only use stroke-level IDS in the form
of a string, like the one above the dashed ruling line.
Unlike using only actual strokes (Wang et al., 2018),
the Unicode standard Ideographic Description Charac-
ters (e.g., the non-leaf nodes in the trees) describe the
layout of a character. They help us to model the sub-
tle nuances in different characters that are composed of
identical strokes (see examples in Table 2). Therefore,
IDS gives us a more precise shape representation of a
character.

In our model, we only adopt the string-form
IDS. We define the visual similarity between two
characters as one minus normalized6 Levenshtein
edit distance between their IDS representations.
The reason for normalization is twofold. Firstly,
we want the similarity to range from 0 to 1 for the
convenience of later filtering. Secondly, if a pair
of more complex characters have the same edit dis-
tance as a pair of less complex characters, we want
the similarity of the more complex characters to be
slightly higher than that of the less complex char-
acters (see examples in Table 2).

We do not use the tree-form IDS for two rea-
sons even as it seems to make more sense intu-
itively. Firstly, even with the most efficient algo-
rithm (Pawlik and Augsten, 2015, 2016) so far, tree
edit distance (TED) has far greater time complex-
ity than edit distance of strings (O(mn(m + n))
vs. O(mn)). Secondly, we did try TED in prelimi-
nary experiments, but there was no significant dif-
ference from using edit distance of strings in terms
of spell checking performance.

6Since the maximal value of Levenshtein edit distance is
the maximum of the lengths of the two strings in question, we
normalize it simply by dividing it by the maximum length.
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Table 2: Examples of the computation of character similarities. IDS is used to compute visual similarity (V-sim)
and pronunciation representations in Mandarin Chinese (MC), Cantonese Chinese (CC), Japanese On’yomi (JO),
Korean (K) and Vietnamese (V) are used to compute phonological similarity (P-sim). Note that the normalization
of edit distance gives us the desired fact that less complex character pair (午,牛) has smaller visual similarity than
more complex character pair (田, 由) even though both of their IDS edit distances are 1. Also, note that 午 and
牛 have more similar pronunciations in some languages than in others; the combination of the pronunciations in
multiple languages gives us a more continuous phonological similarity.

IDS MC CC JO K V V-sim P-sim

午 (noon)
牛 (cow)

⿱⿰丿一⿻一丨
⿻⿰丿一⿻一丨

wu3
niu2

ng5
ngau4

go
gyuu

o
wu

ngọ
ngưu

0.857 0.280

田 (field)
由 (from)

⿵⿰丨𠃌⿱⿻一丨一

⿻⿰丨𠃌⿱⿻一丨一
tian2
you2

tin4
jau4

den
yuu

cen
yu

điền
do

0.889 0.090

2.2.2 Phonological similarity
Different Chinese characters sharing identical pro-
nunciation is very common (Yang et al., 2012),
which is the case for any CJK language. Thus, If
we were to use character pronunciations in only
one CJK language, the phonological similarity of
character pairs would be limited to a few discrete
values. However, a more continuous phonologi-
cal similarity is preferred because it can make the
curve used for filtering candidates smoother (see
subsection 2.3).

Therefore, we utilize character pronunciations
of all CJK languages (see examples in Table 2),
which are provided by the Unihan Database. To
compute the phonological similarity of two char-
acters, we first calculate one minus normalized
Levenshtein edit distance between their pronunci-
ation representations in all CJK languages (if ap-
plicable). Then, we take the mean of the results.
Hence, the similarity should range from 0 to 1.

2.3 Confidence-Similarity Decoder

Candidate filters in many previous models are
based on setting various thresholds and weights for
multiple features of candidate characters. Instead
of this naive approach, we propose a method that
is empirically effective under the principle of get-
ting the highest possible precision with minimal
harm to recall. Since the decoder utilizes contex-
tual confidence and character similarity, we refer
to it as the confidence-similarity decoder (CSD).
The mechanism of CSD is explained, and its ef-
fectiveness is justified as follows:

First, consider the simplest case where only one
candidate character is provided for each original
character. For those candidates that are the same
as their original characters, we do not substitute

the original characters. For those that are dif-
ferent, we can draw a confidence-similarity scat-
ter graph. If we compare the candidates with the
ground truths, the graph will resemble the plot
¬ of Figure 3. We can observe that the true-
detection-and-correction candidates are denser to-
ward the upper-right corner; false-detection candi-
dates toward the lower-left corner; true-detection-
and-false-correction candidates in the middle area.
If we draw a curve to filter out false-detection
candidates (plot  of Figure 3) and use the rest
as substitutions, we can optimize character-level
precision with minimal harm to character-level
recall for detection; if true-detection-and-false-
correction candidates are also filtered out (plot ®

of Figure 3), we can get the same effect for cor-
rection. In FASPell, we optimize correction per-
formance and manually find the filtering curve us-
ing a training set, assuming its consistency with its
corresponding testing set. But in practice, we have
to find two curves – one for each type of similarity,
and then take the union of the filtering results.

Now, consider the case where there are c > 1
candidates. To reduce it into the previously de-
scribed simplest case, we rank the candidates for
each original character according to their contex-
tual confidence and put candidates that have the
same rank into the same group (i.e., c groups in
total). Thus, we can find a filter as previously de-
scribed for each group of candidates. All c filters
combined further alleviate the harm to recall be-
cause more candidates are taken into account.

In the example of Figure 1, there are c = 4
groups of candidates. We get a correct substitution
丰→主 from the group whose rank = 1, another
one苦→著 from the group whose rank = 2, and
no more from the other two groups.
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Figure 3: All four plots show the same confidence-similarity graph of candidates categorized by being true-
detection-and-true-correction (T-d&T-c), true-detection-and-false-correction (T-d&F-c) and false-detection (F-d).
But, each plot shows a different way of filtering candidates: in plot ¬, no candidates are filtered; in plot , the
filtering optimizes detection performance; in plot ®, as adopted in FASPell, the filtering optimizes correction
performance; in plot ¯, as adopted by previous models, candidates are filtered out by setting a threshold for
weighted confidence and similarity (0.8× confidence+0.2× similarity < 0.8 as an example in the plot). Note
that the four plots use the actual first-rank candidates (using visual similarity) for our OCR data (Trnocr) except
that we randomly sampled only 30% of the candidates to make the plots more viewable on paper.

3 Experiments and results

We first describe the data, metrics and model con-
figurations adopted in our experiments in subsec-
tion 3.1. Then, in subsection 3.2, we show the per-
formance on spell checking texts written by hu-
mans to compare FASPell with previous state-of-
the-art models; we also show the performance on
data that are harvested from OCR results to prove
the adaptability of the model. In subsection 3.3,
we compare the speed of FASPell and three state-
of-the-art models. In subsection 3.4, we investi-
gate how hyper-parameters affect the performance
of FASPell.

3.1 Data, metrics and configurations
We adopt the benchmark datasets (all in traditional
Chinese) and sentence-level7 accuracy, precision,

7Note that although we do not use character-level metrics
(Fung et al., 2017) in evaluation, they are actually important
in the justification of the effectiveness of the CSD as in sub-
section 2.3

Table 3: Statistics of datasets.

Dataset # erroneous sent # sent Avg. length

Trn13

Trn14

Trn15

Tst13
Tst14
Tst15

350
3432
2339

996
529
550

700
3435
2339
1000
1062
1100

41.8
49.6
31.3
74.3
50.0
30.6

Trnocr

Tstocr

3575
1000

3575
1000

10.1
10.2

recall and F1 given by SIGHAN13 - 15 shared
tasks on Chinese spell checking (Wu et al., 2013;
Yu et al., 2014; Tseng et al., 2015). We also har-
vested 4575 sentences (4516 are simplified Chi-
nese) from OCR results of Chinese subtitles in
videos. We used the OCR method by Shi et al.
(2017). Detailed data statistics are in Table 3.

We use the pre-trained masked language
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Table 4: Configurations of FASPell. FT means the
training set for fine-tuning; CSD means the training set
for CSD; r means the number of rounds and c means
the number of candidates for each character. U is the
union of all the spell checking data from SIGHAN13 -
15.

FT CSD Test set r c FT steps

U − Tst13
U − Tst14
U − Tst15

Trn13

Trn14

Trn15

Tst13
Tst14
Tst15

1
3
3

4
4
4

10k
10k
10k

(-) Trnocr Tstocr 2 4 (-)

model8 provided by Devlin et al. (2018). Set-
tings of its hyper-parameters and pre-training
are available at https://github.com/
google-research/bert. Other configura-
tions of FASPell used in our major experiments
(subsection 3.2 - 3.3) are given in Table 4. For
ablation experiments, the same configurations are
used except when CSD is removed, we take the
candidates ranked the first as default outputs. Note
that we do not fine-tune the mask language model
for OCR data because we learned in preliminary
experiments that fine-tuning worsens performance
for this type of data9.

3.2 Performance

As shown in Table 6, FASPell achieves state-of-
the-art F1 performance on both detection level and
correction level. It is better in precision than the
model by Wang et al. (2018) and better in recall
than the model by Zhang et al. (2015). In compar-
ison with Zhao et al. (2017), It is better by any met-
ric. It also reaches comparable precision on OCR
data. The lower recall on OCR data is partially be-
cause many OCR errors are harder to correct even
for humans (Wang et al., 2018).

Table 6 also shows that all the components of
FASPell contribute effectively to its good perfor-
mance. FASPell without both fine-tuning and
CSD is essentially the pre-trained mask language
model. Fine-tuning it improves recall because
FASPell can learn about common errors and how
they are corrected. CSD improves its precision
with minimal harm to recall because this is the un-

8https://storage.googleapis.com/bert_
models/2018_11_03/chinese_L-12_H-768_
A-12.zip

9 It is probably because OCR errors are subject to random
noise in source pictures rather than learnable patterns as in
human errors. However, since the paper is not about OCR,
we do not elaborate on this here.

Table 5: Speed comparison (ms/sent). Note that the
speed of FASPell is the average in several rounds.

Test set FASPell Wang et al. (2018)

Tst13
Tst14
Tst15

446
284
177

680
745
566

derlying principle of the design of CSD.

3.3 Filtering Speed10

First, we measure the filtering speed of Chinese
spell checking in terms of absolute time consump-
tion per sentence (see Table 5). We compare the
speed of FASPell with the model by Wang et al.
(2018) in this manner because they have reported
their absolute time consumption11. Table 5 clearly
shows that FASPell is much faster.

Second, to compare FASPell with models
(Zhang et al., 2015; Zhao et al., 2017) whose ab-
solute time consumption has not been reported,
we analyze the time complexity. The time com-
plexity of FASPell is O(scmn + sc log c), where
s is the sentence length, c is the number of can-
didates, mn accounts for computing edit distance
and c log c for ranking candidates. Zhang et al.
(2015) use more features than just edit distance, so
the time complexity of their model has additional
factors. Moreover, since we do not use confusion
set, the number of candidates for each character of
their model is practically larger than ours: x × 10
vs. 4. Thus, FASPell is faster than their model.
Zhao et al. (2017) filter candidates by finding the
single-source shortest path (SSSP) in a directed
graph consisting of all candidates for every token
in a sentence. The algorithm they used has a time
complexity of O(|V |+ |E|) where |V | is the num-
ber of vertices and |E| is the number of edges in
the graph (Eppstein, 1998). Translating it in terms
of s and c, the time complexity of their model is
O(sc+ cs). This implies that their model is expo-
nentially slower than FASPell for long sentences.

10Considering only the filtering speed is because the
Transformer, the Bi-LSTM and language models used by pre-
vious state-of-the-art models or us before filtering are already
well studied in the literature.

11 We have no access to the 4-core Intel Core i5-7500 CPU
used by Wang et al. (2018). To minimize the difference of
speed caused by hardware, we only use 4 cores of a 12-core
Intel(R) Xeon(R) CPU E5-2650 in the experiments.
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Table 6: This table shows spell checking performances on both detection and correction level. Our model –
FASPell achieves similar performance to that of previous state-of-the-art models. Note that fine-tuning and CSD
both contribute effectively to its performance according to the results of ablation experiments. (− FT means
removing fine-tuning; − CSD means removing CSD.)

Test set Models Detection Level Correction Level

Acc. (%) Prec. (%) Rec. (%) F1 (%) Acc. (%) Prec. (%) Rec. (%) F1 (%)

Tst13

Wang et al. (2018)
Yeh et al. (2013)
FASPell
FASPell − FT
FASPell − CSD
FASPell − FT − CSD

(-)
(-)

63.1
40.9
41.0
47.9

54.0
(-)

76.2
75.5
42.3
65.2

69.3
(-)

63.2
40.9
41.1
47.8

60.7
(-)

69.1
53.0
41.6
55.2

(-)
62.5
60.5
39.6
31.3
35.6

(-)
70.3
73.1
73.2
32.2
48.4

(-)
62.5
60.5
39.6
31.3
35.4

52.1
66.2
66.2
51.4
31.8
40.9

Tst14

Zhao et al. (2017)
Wang et al. (2018)
FASPell
FASPell − FT
FASPell − CSD
FASPell − FT − CSD

(-)
(-)

70.0
57.8
49.0
56.3

(-)
51.9
61.0
54.5
31.0
38.4

(-)
66.2
53.5
18.1
42.3
26.8

(-)
58.2
57.0
27.2
35.8
31.6

(-)
(-)

69.3
57.7
44.9
52.1

55.5
(-)

59.4
53.7
25.0
26.0

39.1
(-)

52.0
17.8
34.2
18.0

45.9
56.1
55.4
26.7
28.9
21.3

Tst15

Zhang et al. (2015)
Wang et al. (2018)
FASPell
FASPell − FT
FASPell − CSD
FASPell − FT − CSD

70.1
(-)

74.2
61.5
65.5
63.7

80.3
56.6
67.6
74.1
49.3
59.1

53.3
69.4
60.0
25.5
59.1
35.3

64.0
62.3
63.5
37.9
53.8
44.2

69.2
(-)

73.7
61.3
60.0
57.6

79.7
(-)

66.6
72.5
40.2
38.3

51.5
(-)

59.1
24.9
48.2
22.7

62.5
57.1
62.6
37.1
43.8
28.5

Tstocr
FASPell
FASPell − CSD

18.6
34.5

78.5
65.8

18.6
34.5

30.1
45.3

17.4
18.9

73.4
36.1

17.4
18.9

28.1
24.8

3.4 Exploring hyper-parameters
First, we only change the number of candidates
in Table 4 to see its effect on spell checking per-
formance. As illustrated in Figure 4, when more
candidates are taken into account, additional de-
tections and corrections are recalled while max-
imizing precision. Thus, increase in the number
of candidates always results in the improvement of
F1. The reason we set the number of candidates
c = 4 in Table 4 and no larger is because there is a
trade-off with time consumption.

Second, we do the same thing to the number of
rounds of spell checking in Table 4. We can ob-
serve in Figure 4 that the correction performance
on Tst14 and Tst15 reaches its peak when the
number of rounds is 3. For Tst13 and Tstocr, that
number is 1 and 2, respectively. A larger num-
ber of rounds sometimes helps because FASPell
can achieve high precision in detection in each
round, so undiscovered errors in last round may be
detected and corrected in the next round without
falsely detecting too many non-errors.

4 Conclusion

We propose a Chinese spell checker – FASPell that
reaches state-of-the-art performance. It is based
on DAE-decoder paradigm that requires only a

small amount of spell checking data and gives up
the troublesome notion of confusion set. With
FASPell as an example, each component of the
paradigm is shown to be effective. We make our
code and data publically available at https://
github.com/iqiyi/FASPell.

Future work may include studying if the DAE-
decoder paradigm can be used to detect and cor-
rect grammatical errors or other less frequently
studied types of Chinese spelling errors such as
dialectical colloquialism (Fung et al., 2017) and
insertion/deletion errors.
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Figure 4: The four plots in the first row show how
the number of candidates for each character affects F1
performances. The four in the second row show the
impact of the number of rounds of spell checking.
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Abstract

The Princeton WordNet is a powerful tool
for studying language and developing nat-
ural language processing algorithms. With
significant work developing it further, one
line considers its extension through aligning
its expert-annotated structure with other lex-
ical resources. In contrast, this work ex-
plores a completely data-driven approach to
network construction, forming a wordnet us-
ing the entirety of the open-source, noisy, user-
annotated dictionary, Wiktionary. Compar-
ing baselines to WordNet, we find compelling
evidence that our network induction process
constructs a network with useful semantic
structure. With thousands of semantically-
linked examples that demonstrate sense usage
from basic lemmas to multiword expressions
(MWEs), we believe this work motivates fu-
ture research.

1 Introduction

Wiktionary is a free and open-source collaborative
dictionary1 (Wikimedia). With the ability for any-
one to add or edit lemmas, definitions, relations,
and examples, Wiktionary has the potential to be
larger and more diverse than any printable dic-
tionary. Wiktionary features a rich set of exam-
ples of sense usage for many of its lemmas which,
when converted to a usable format, supports lan-
guage processing tasks such as sense disambigua-
tion (Meyer and Gurevych, 2010a; Matuschek
and Gurevych, 2013; Miller and Gurevych, 2014)
and MWE identification (Muzny and Zettlemoyer,
2013; Salehi et al., 2014; Hosseini et al., 2016).
With natural alignment to other languages, Wik-
tionary can likewise be used as a resource for ma-
chine translation tasks (Matuschek et al., 2013;
Borin et al., 2014; Göhring, 2014). With these
uses in mind, this work introduces the creation

1https://www.wiktionary.org/

of a network—much like the Princeton Word-
Net (Miller, 1995; Fellbaum, 1998)—that is con-
structed solely from the semi-structured data of
Wiktionary. This relies on the noisy annotations
of the editors of Wiktionary to naturally induce a
network over the entirety of the English portion of
Wiktionary. In doing so, the development of this
work produces:

• an induced network over Wiktionary, en-
riched with semantically linked examples,
forming a directed acyclic graph (DAG);

• an exploration of the task of relationship dis-
ambiguation as a means to induce network
construction; and

• an outline for directions of expansion, includ-
ing increasing precision in disambiguation,
cross-linking example usages, and aligning
English Wiktionary with other languages.

We make our code freely available2, which in-
cludes code to download data, to disambiguate
relationships between lemmas, to construct net-
works from disambiguation output, and to interact
with networks produced through this work.

2 Related work

2.1 WordNet

The Princeton WordNet, or WordNet as it’s more
commonly referred to, is a lexical database orig-
inally created for the English language (Miller,
1995; Fellbaum, 1998). It consists of expert-
annotated data, and has been more or less contin-
ually updated since its creation (Harabagiu et al.,
1999; Miller and Hristea, 2006). WordNet is built
up of synsets, collections of lexical items that all

2 Code will be available at https://github.com/
hunter-heidenreich/lsni-paper
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have the same meaning. For each synset, a def-
inition is provided, and for some synsets, usage
examples are also presented. If extracted and at-
tributed properly, the example usages present on
Wiktionary could critically enhance WordNet by
filling gaps. While significant other work has been
done in utilizing Wiktionary to enhance WordNet
for purposes like this (discussed in the next sec-
tions), this work takes a novel step by constructing
a wordnet through entirely computational means,
i.e. under the framing of a machine learning task
based on Wiktionary’s data.

2.2 Wiktionary
Wiktionary is an open-source, Wiki-based, open
content dictionary organized by the WikiMedia
Foundation (Wikimedia). It has a large and active
volunteer editorial community, and from its noisy,
crowd-sourced nature, includes many MWEs, col-
loquial terms, and their example usages, which
could ultimately fill difficult-to-resolve gaps left
in other linguistic resources, such as WordNet.

Thus, Wiktionary has a significant history of ex-
ploration for the enhancement of WordNet, includ-
ing efforts that extend WordNet for better domain
coverage of word senses (Meyer and Gurevych,
2011; Gurevych et al., 2012; Miller and Gurevych,
2014), automatically derive new lemmas (Jurgens
and Pilehvar, 2015; Rusert and Pedersen, 2016),
and develop the creation of multilingual word-
nets (de Melo and Weikum, 2009; Gurevych et al.,
2012; Bond and Foster, 2013). While these works
constitute important steps in the usage of extracted
Wiktionary contents for the development of Word-
Net, none before this effort has attempted to utilize
the entirety of Wiktionary alone for the construc-
tion of such a network.

Most similarly, Wiktionary has been used
in a sense-disambiguated fashion (Meyer and
Gurevych, 2012b) and to construct an ontology
(Meyer and Gurevych, 2012a). Our work does
not create an ontology, but instead attempts to
create a semantic wordnet. In this context, our
work can be viewed as building on notions of
sense-disambiguating Wiktionary to construct a
WordNet-like resource.

2.3 Relation Disambiguation
The task of taking definitions, a semantic relation-
ship, and sub-selecting the definitions that belong
to that relationship is one of critical importance to
our work. Sometimes called sense linking or rela-

tionship anchoring, this task has been previously
explored in the creation of machine-readable dic-
tionaries (Krovetz, 1992), ontology learning (Pan-
tel and Pennacchiotti, 2006, 2008), and German
Wikitionary (Meyer and Gurevych, 2010b).

As mentioned above, Meyer and Gurevych ex-
plore relationship disambiguation in the context
of Wiktionary, motivating a sense-disambiguated
Wiktionary as a powerful resource (Meyer and
Gurevych, 2012a,b). This task is frequently
viewed as a binary classification: Given two linked
lemmas, do these pairs of definitions belong to the
relationship? While easier to model, this fram-
ing can suffer from a combinatorial explosion as
all pairs of definitions must be compared. This
work attempts to model the task differently, dis-
ambiguating all definitions in the context of a re-
lationship and its lemmas.

3 Model

3.1 Framework

This work starts by identifying a set of lemmas,
W , and a set of senses, S. It then proceeds, as-
suming that S forms the vertex set of a Directed
Acyclic Graph (DAG) with edge set E, organizing
S by refinement of specificity. That is, if senses
s, t ∈ S have a link (t, s) ∈ E—to s—then s is
one degree of refinement more specific than t.

Next, we suppose a lemma u ∈ W has relation
∼ (e.g., synonymy) indicated to another lemma
v ∈W . Assuming∼ is recorded from u to v (e.g.,
from u’s page), we call u the source and v the
sink. Working along these lines, the model then
assumes a given indicated relation ∼ is qualified
by a sense s; this semantic equivalence is denoted
u

s∼ v.
Like others (Landauer and Dumais, 1997; Blei

et al., 2003; Bengio et al., 2003), this work as-
sumes senses exist in a latent semantic space. Pro-
cessing a dictionary, one can empirically discover
relationships like u s∼ v and v t∼ w. But for a
larger network structure one must know if s = t—
that is, do s and t refer to the same relationship—
and often neither s nor t are known, explicitly.
Hence, this work sets up approximations of s and
t for comparison. Given a lemma, u ∈ W , sup-
pose a set of definitions, Du, exists and form the
basis for disambiguation of a lemma’s senses. We
then assume that for any d ∈ Du there exists one
or more senses, s ∈ S, such that d =⇒ s, that is,
the definition d conveys the sense s.
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Having assumed a DAG structure for S, this
work denotes specificity of sense by using the for-
malism of a partial order, �, which, for senses
s, t ∈ S having s � t, indicates that the sense s
is comparable to t and more specific. Note that—
as with any partial order—senses can be, and are
often non-comparable.

Intuitively, a given definition d might convey
multiple senses d =⇒ s, t of differing speci-
ficities, s � t. So for a given definition d, the
model’s goal is to find the sense t that is least spe-
cific in being conveyed. Satisfying this goal im-
plies resolving the sense identification function,
f : D → S, for which any lemma u ∈ W and
definition d ∈ Du with d =⇒ s ∈ S, it is as-
sured that s � f(d). Since no direct knowledge of
any s ∈ S is assumed known for any annotated re-
lationship between lemmas, systems must approx-
imate senses according to the available resources,
e.g., definitions or example usages.

3.2 Task development

On Wiktionary, every lemma has its own page.
Each page is commonly broken down into sec-
tions such as languages, etymologies, and parts-
of-speech (POS). Under each POS, a lemma fea-
tures a set of definitions that can be automatically
extracted. An example of the word induce on En-
glish Wiktionary can be seen in Figure 1.

A significant benefit of using Wiktionary as a
resource to build a wordnet lies in the wealth of
examples it offers. Examples come in two fla-
vors: basic usage and usage from reference mate-
rial. Currently, each example is linked to its orig-
ination definition and lemma, however, in future
works, these examples could be segmented and
sense disambiguated, offering new network links
and densely connected example usages.

For each lemma, Wiktionary may offer relation-
ship annotations between lemmas. These relation-
ships span many categories including acronyms,
alternative forms, anagrams, antonyms, com-
pounds, conjugations, derived terms, descendants,
holonyms, hypernyms, hyponyms, meronyms, re-
lated terms, and synonyms. For this work’s pur-
poses, only antonyms and synonyms are consid-
ered, exploiting their more typical structure on
Wiktionary and clear theoretical basis in semantic
equivalence to induce a network. Exploring more
of these relationships is of interest in future work.

Additionally, a minority of annotations present

‘gloss’ labels, which indicate the definitions that
apply to relationships. So from the data there is
some knowledge of exact matching, but due to
their limited, noisy, and crowd-sourced nature, the
labelings may not cover all definitions that belong.

We assume annotations exhibit relationships be-
tween lemmas. Finding one: u

s∼ v, if u is
the source, we assume there exists some defini-
tion d ∈ Du that implies the appropriate sense:
d =⇒ s. This good practice assumption mod-
els editor behavior as a response to exposure to a
particular definition on the source page. Provided
this, an editor won’t necessarily annotate the rela-
tionship on the sink page—even if the sink page
has a definition that implies the sense s. Thus, our
task doesn’t require identification of a definition
on the sink’s page. More precisely, no d ∈ Dv

might exist that implies s (d =⇒ s) for an anno-
tated relationship, u s∼ v.

Altogether, for an annotated relationship the
task aims to identify the sense-conveying subset:

D
u

s∼v = {d ∈ Du ∪Dv | d =⇒ s}

for which at least one definition must be drawn
from Du. Note that the model does not assume
that arbitrary d, d̃ ∈ D

u
s∼v map through the sense

identification function to the same most general
sense. Presently, these details are resolved by a
separate algorithm (developed below), leaving di-
rect modeling of the sense identification function
to future work.3

3.3 Semantic hierarchy induction

This section outlines preliminary work inferring a
semantic hierarchy from pairwise relationships. If
A is the set of relationships, a model’s output, C,
will be a collection of sense-conveying subsets,
D
u

s∼v, in one-to-one correspondence: A ↔ C.
So, for all D ∈ P(C), one has a covering of
(some) senses by pairwise relationships, D

u
s∼v ∈

D.
Under our assumptions, any collection of sense

conveying subsets D ∈ P(C) with non-empty in-
tersection restricts to a set of definitions that must
convey at least one common sense, s′. Notably,
s′ must be at least as general as any qualifying
a particular annotated relationship, i.e., s � s′

for any s (implicitly) defining any D
u

s∼v ∈ D.

3 A major challenge to this approach is the increased com-
plexity required for the development of evaluation data.
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Figure 1: The Verb section of the induce page on English Wiktionary. Definitions are enumerated, with example
usages as sub-elements or drop-down quotations. Relationships for this page are well annotated, with gloss labels
to indicate the definition that prompted annotation.

So this work induces the sense-identification func-
tion, f , through pre-images: for D ∈ P(C), an im-
plicit sense, s, is assumed such that that f−1(s) ⊆⋂

DDu
s∼v. Now, if a covering D′ ⊃ D exists with

non-empty intersection, then its (smaller) intersec-
tion comprises definitions that convey a sense, s′

which is more-general than s. So to precisely re-
solve f through pre-images the model must ‘hole
punch’ the more-general definitions, constructing
the hierarchy by allocating the more general defi-
nitions in the intersection of D′ to the more general
senses:

f−1(t) =

(⋂

D
D
u

s∼v

)
\
( ⋂

D′⊃D

⋂

D′
D
u′s

′
∼v′

)
.

This allocates each definition to exactly one im-
plicit sense approximation, t, which is the most
general sense indicated by the definition. Addi-
tionally, all senses then fall under a DAG hierarchy
(excepting the singletons, addressed below) as set
inclusion, D′ ⊃ D defines a partial order. This
deterministic algorithm for hierarchy induction is
presented in Algorithm 1.

Considering the output of a model, C, if d is
not covered by C the model assumes a singleton
sense. These include definitions not selected dur-
ing relationship disambiguation as well as the def-
initions of lemmas that feature no relationship an-
notations. Singletons are then placed in the DAG
at the lowest level, disconnected from all other
senses. Figure 2 visually represents this full se-
mantic hierarchy.

Algorithm 1 Construction of semantic hierarchy
through pairwise collection.
Require: C: Collection of D

u
s∼v

levels← List()
prev ← C
while prev 6= ∅ do
next← List()
defs← ∅
for p, p′ ∈ prev do

if p 6= p′ and p ∩ p′ 6= ∅ then
Append(next, p ∩ p′)
Union(defs, p ∩ p′)

end if
end for
filtered← List()
for p ∈ prev do
Append(filtered, p \ defs)

end for
Append(levels, filtered)
prev ← next

end while
return levels
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Figure 2: A visualization of 3 lemmas intersecting to
create a semantic hierarchy.

4 Evaluation

4.1 Characteristics of Wiktionary data

Data was downloaded from Wiktionary on 1/23/19
using the Wikimedia Rest API4. To evaluate per-
formance, a ‘gold’ dataset was created to com-
pare modeling strategies. In totality, 298,377
synonym and 44,758 antonym links were gener-
ated from Wiktionary. ‘Gold’ links were ran-
domly sampled, selecting 400 synonym and 100
antonym links. For each link, source and sink
lemmas were considered independently. Defini-
tions were included if they could plausibly refer
to the other lemma. This process is supported
by the available examples, testing if one lemma
can replace the other lemma in the example us-
ages. This dataset was constructed in contrast
to other Wiktionary relationship disambiguation
tasks due to the modeling differences and desire
for more synonym- and antonym-specific evalua-
tions (Meyer and Gurevych, 2012a,b).

4.2 Evaluation strategy

This work’s evaluation considers precision, recall,
and variants of the Fβ score (biasing averages of
precision and recall). As there is selection on both
source and sink sides, we consider several averag-
ing schemes. For a final evaluation, each sample
is averaged at the side-level and averaged across
all relationships. Macro-averages compute an un-
weighted average, while micro-averages weight

4 https://en.wikipedia.org/api/rest_v1/

performance based on the number of definitions
involved in the selection process. Intuitively, mi-
cro metrics weight based on size, while macro
metrics ignore size (treating all potential links and
sides as equal).

4.3 Setting up baselines
For baselines, we present two types of models,
which we refer to as return all and vector simi-
larity. The return all baseline model assumes that
for a given relationship link, all definitions be-
long. This is not intended as a model that could
produce a useful network as many definitions and
lemmas would be linked that clearly do not belong
together. This achieves maximum recall at the ex-
pense of precision, demonstrating a base level of
precision that must be exceeded.

The vector similarity baseline model takes
advantage of semantic vector representations
for computing similarity (Bengio et al., 2003;
Mikolov et al., 2013; Pennington et al., 2014;
Joulin et al., 2017). It computes the similarity be-
tween lemmas and definitions, utilizing thresholds
that flag to either retain similarities above (max),
below (min), or with magnitude above the thresh-
old (abs).

Wiktionary features many MWEs and uncom-
mon lemmas requiring use of a vectorization strat-
egy that allows for handling of lemmas not ob-
served in the representation’s training. Thus, Fast-
Text was selected for its ability to represent out-of-
vocabulary lemmas through its bag-of-character n-
gram modeling (Bojanowski et al., 2017). To com-
pute similarity between lemmas and definitions,
this model aggregates word vectors of the individ-
ual tokens present in a definition. Following other
work (Lilleberg et al., 2015; Wu et al., 2018), TF-
IDF weighted averages of word vectors were uti-
lized in a very simple averaging scheme.

Initial results indicated that a simple cosine sim-
ilarity with a linear kernel performed marginally
above the return all baseline5. Thus, kernel tricks
(Cristianini and Shawe-Taylor, 2000) were ex-
plored (to positive effect). The Gaussian kernel
is often recommended as a good initial kernel to
try as a baseline (Schölkopf et al., 1995; Joachims,

5 This is interesting to note, since previous work has found
that word embeddings like GloVe and word2vec contain a
surprising amount of word frequency effects that pollute sim-
ple cosine similarity (Schnabel et al., 2015). This may ex-
plain why vanilla cosine similarity performed poorly with
FastText vectors here and provides more evidence against us-
ing it as the default similarity measure.
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1998). It is formulated using a radial basis func-
tion (RBF), only dependent on a measure of dis-
tance. The Laplacian kernel is a slight variation of
the Gaussian kernel, measuring distance as the L1
distance where the Gaussian measures distance as
L2 distance. Both kernels fall in the RBF category
with a single regularization parameter, γ, and were
used in comparison to cosine similarity.

For these kernels, a grid search over γ was con-
ducted from 10−3 to 103 at steps of powers of 10.
Similarly, similarity comparison thresholds were
considered from −1.0 to 1.0 at steps of 0.05 for
all 3 thresholding schemes (min, max, abs).

When selecting a final model, F1 scores were
not considered as recall scores outweighed preci-
sion under a simple harmonic mean. This resulted
in models with identical performance to the return
all model or worse. Instead, models were consid-
ered against full-precision and F0.1 scores.

4.4 Semantic Structure Correlation

Creating a wordnet solely from Wiktionary’s
noisy, crowd-sourced data begs the question:
Does the generated network structure resemble
the structure present in Princeton’s WordNet? To
get a sense of this, we compare the capacities
of each of these resources as a basis for seman-
tic similarity modeling (using Pearson correlation
(Pearson, 1895)). This work considers three no-
tions of graph-based semantic similarity that are
present in WordNet: path similarity (PS), Lea-
cock Chodorow similarity (LCH) (Leacock and
Chodorow, 1998), and Wu Palmer similarity (WP)
(Wu and Palmer, 1994).

The point of this experiment is not to enforce
a notion that this network should mirror the struc-
ture of WordNet. Given Wiktionary’s size, it likely
possesses a great deal of information not repre-
sented by WordNet (resolved our other experiment
on word similarity, Sec. 5.3). But if there is some
association between the semantic representation
capacities of these two networks we may possi-
bly draw some insight into a more basic question:
“has this model produced some relevant semantic
structure?”

For this experiment, only nouns and verbs are
considered as they are the only POS for which
WordNet defines these metrics. Additionally,
these metrics are defined at the synset level. There
is no direct mapping between synsets in our net-
work and WordNet, therefore, scores are consid-

ered at a lemma level. By computing values of
all pairs of synsets between lemmas, three values
per metric are generated: minimum, maximum,
and average. Additionally, only lemmas that differ
in minimum and maximum similarity are retained,
restricting the experiment to the most polysemous
portions of the networks.

5 Results

5.1 Baseline model performance

Table 1 shows baseline model performance on the
relationship disambiguation task and highlights
model parameters. During evaluation, the Lapla-
cian kernel was found to consistently outperform
the Gaussian kernel. For this reason, this work
presents the scores from the return all baseline and
two variants of the Laplacian kernel model—one
optimized for precision and the other for F0.1.

Note that in the synonym case, max-threshold
selection performed best, while in the antonym
case min- and abs-threshold fared better. This
aligns well with the notion that while synonyms
are semantically similar, antonyms are seman-
tically anti-similar—an interesting consideration
for future model development.

Overall, from the scores in Table 1 one can see
that the vector similarity models improve over the
return all, but that there is much work to be done
to further improve precision and recall.

5.2 Comparison against WordNet

WordNet publishes several statistics6 that one can
use for quantitative comparison with the network
constructed herein. Reviewing the count statis-
tics shows that Wiktionary is an order of magni-
tude larger than WordNet and that Wiktionary fea-
tures 344,789 linked example usages to WordNet’s
68,411.

Polysemy. Table 2 report polysemy statistics.
Despite the difference in creation processes, the
induced networks do not have polysemy averages
drastically different from WordNet.

In comparing the three networks induced, there
is a common theme of increase in polysemy when
shifting from recall to precision. This makes sense
due to the fact that the return all model will merge
all possible lemmas that overlap in relationship an-
notations resulting in lower polysemy statistics,

6 Statistics are taken from WordNet’s website for Word-
Net 3.0, last accessed on 8/11/2019: https://wordnet.
princeton.edu/documentation/wnstats7wn
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Model
Synonyms Antonyms

Thresh. Recall Precision Thresh. Recall Precision
Macro Micro Macro Micro Macro Micro Macro Micro

Ret. All 1.000 1.000 0.602 0.268 1.000 1.000 0.527 0.280
Precision max0.35 0.433 0.258 0.847 0.541 min−0.35 0.266 0.196 0.820 0.600
F0.1 max0.30 0.535 0.404 0.814 0.532 abs0.25 0.730 0.763 0.619 0.397

Table 1: Model performance with threshold selection. All γ = 0.1, except for antonym precision where γ = 100.

whereas a precision-based model will result in
pair-wise clusters that do not overlap as broadly,
resulting in more complex hierarchies.

Structural differences. Intentionally, the pre-
sented notion of a semantic hierarchy functions
similarly to the hypernym connections within
WordNet. Moving up the semantic hierarchy pro-
duces sense approximations from definitions that
are more general, and moving down the hierarchy
produces more specific senses. However, in the
induced networks, this is a notion applied to every
POS—WordNet only produces these connections
for nouns and verbs. An example taken from the
F0.1 network is that of the adjective good (refer-
ring to Holy) being subsumed by a synset featur-
ing the adjective proper (referring to suitable, ac-
ceptable, and following the established standards).

5.3 Word Similarity

In previous works, WordNet and Wiktionary have
been used to create vector representations of
words. A common method for evaluating the qual-
ity of word vectors is performance on word simi-
larity tasks. Performance on these tasks is evalu-
ated through Spearman’s rank correlation (Spear-
man, 2010) between cosine similarity of vector
representations and human annotations.

Using Explicit Semantic Analysis (ESA), a
technique based on concept vectors, our network
constructs vectors using a word’s tf-idf scores
over concepts, as has been done in prior works
(Gabrilovich and Markovitch, 2007; Zesch et al.,
2008; Meyer and Gurevych, 2012b). We define
our concepts as senses of the F0.1 network and
compute cosine similarity in this representation.

We compare performance against other ESA
methods (Zesch et al., 2008; Meyer and Gurevych,
2012b) on common datasets: Rubenstein and
Goodenough’s 65 noun pairs (1965, RG-65),
Miller and Charles’s 30 noun pairs (1991, MC-
30), Finklestein et. al’s 353 word similarity pairs
(2002, WS-353, split into Fin-153 and Fin-200

due to different annotators), and Yang and Pow-
ers’s 130 verb pairs (2006, YP-130). Our results
are summarized in Table 3.

We also compare F0.1 against latent word vector
representations like word2vec’s continuous bag-
of-words (CBOW) and skip-grams (SG) (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), and
FastText (Bojanowski et al., 2017). These results
are presented in Table 4.

In analyzing these results, the F0.1 network per-
forms well. Against other ESA methods, it is
highly competitive, achieving the highest perfor-
mance in two datasets. When strictly comparing
performance against ESA with WordNet as the
source, it has approximately equal or better per-
formance in all datasets except YP-130. We hy-
pothesize that this is due to a lack of precision in
verb disambiguation, reinforced by the low pol-
ysemy seen above. Additionally, the work from
Zesch et al. (2008) evaluated on subsets of the
data in which all three resources had coverage. In
their work, YP-130 performance is computed for
only 80 of the 130 pairs.

Comparing F0.1 to latent word vectors, it has
the highest performance on noun datasets and is
competitive on WS-353. While not directly com-
parable, it achieves this through 26 million tokens
of structured text in contrast to billions of tokens
of unstructured text that train latent vectors.

5.4 Network Correlation Results

Table 5 displays correlation values between graph-
based semantic similarity metrics of F0.1 and
WordNet. Pairs of 1,009 verb and 1,303 noun lem-
mas were considered. In generating similarities,
disconnected lemma pairs were discarded, produc-
ing 31,373 verb and 16,530 noun pairs. The table
shows that for nouns, the two networks produce
similarity values that are weakly to moderately
correlated, however, verbs produce values that are,
at most, very weakly correlated, if at all.

Due to the fact that F0.1 produced better results
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With Monosemous Words Without Monosemous Words
POS WordNet F0.01 Precision Return All WordNet F0.01 Precision Return All
Noun 1.24 1.17 1.18 1.10 2.79 2.94 2.99 2.66
Verb 2.17 1.20 1.22 1.10 3.57 3.18 3.33 2.78
Adjective 1.18 1.18 1.18 1.10 2.71 2.59 2.62 2.33
Adverb 1.25 1.11 1.12 1.08 2.50 2.34 2.36 2.25

Table 2: Average polysemy statistics.

Dataset RG-65 MC-30 Fin-153 Fin-200 YP-130
F0.1 0.831 0.849 0.723 0.557 0.687
WordNet* (Zesch et al., 2008) 0.82 0.78 0.61 0.56 0.71
Wikipedia* (Zesch et al., 2008) 0.76 0.68 0.70 0.50 0.29
Wiktionary* (Zesch et al., 2008) 0.84 0.84 0.70 0.60 0.65
Wiktionary (Meyer and Gurevych, 2012b) - - - - 0.73

Table 3: Spearman’s rank correlation coefficients on word similarity tasks. Best values are in bold.

Dataset RG-65 MC-30 WS-353
F0.1 0.831 0.849 0.669
FastText - - 0.73
CBOW (6B) 0.682 0.656 0.572
SG (6B) 0.697 0.652 0.628
GloVe (6B) 0.778 0.727 0.658
GloVe (42B) 0.829 0.836 0.759
CBOW (100B) 0.754 0.796 0.684

Table 4: Spearman’s correlation on word similarity
tasks. Best values are in bold. Number of tokens in
training data is featured in parentheses, if reported.
FastText is reported from (Bojanowski et al., 2017),
and all others are from (Pennington et al., 2014).

Noun Verb
PS min 0.266 0.132
PS max 0.495 0.189
PS avg 0.448 0.082
LCH min 0.207 0.120
LCH max 0.384 0.056
LCH avg 0.359 -0.013
WP min 0.116 0.090
WP max 0.219 0.005
WP avg 0.226 -0.025

Table 5: Correlations between F0.1 and WordNet simi-
larity metrics: path similarity (PS), Leacock Chodorow
similarity (LCH), and Wu Palmer similarity (WP).

on noun similarity tasks, we hypothesize that this
indicates better semantic structure for nouns than
for verbs, further emphasizing that a possible lim-
itation of the current baseline produced is its lack

of precision when it comes to polysemous verbs.
However, the positive correlation values seen for
nouns, coupled with noun similarity performance,
offer strong indications that the F0.1 does provide
useful semantic structure that can be further in-
creased through better modeling.

6 Future work

Here, several directions are highlighted along
which we see this work being extended.

Better models. The development of more accu-
rate models for predicting definitions involved in
the pair-wise relations will produce more interest-
ing and useful networks, especially with the mag-
nitude of examples of sense usage. Precision of
verb relations seems to be a critical component of
a better model.

Supervision. Relationship prediction is cur-
rently unsupervised. While it is an interesting task
to model in this fashion, crowd sourcing the an-
notation of this data would be possible through
services like Amazon Mechanical Turk. This
would allow for the potential of exploring su-
pervised models for predicting relationship links,
particularly for relationships like synonymy and
antonymy which are familiar concepts for a broad
community of potential annotators.

WordNet semi-supervision. Another logical
transformation of this task would be to use Word-
Net to inform the induction of a network in a semi-
supervised fashion. There are many ways to go
about this such as using statistics from WordNet
to create a loss function, or using the structure of
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WordNet as a base. As this work aimed to create a
network solely from the data of Wiktionary, these
ideas were not explored. However, using WordNet
in this fashion is one of the directions of greatest
interest for exploration in the future.

Sense usage examples. The examples present
in Wiktionary have only begun to be used in this
work. When examples are pulled, the source def-
inition and lemma are linked. However, these ex-
amples have the potential to be linked to other
senses and lemmas. This would an immense
amount of structured, sense-usage data that could
be used for many machine learning tasks.

Multilingual networks Wiktionary has been
explored as a multilingual resource in previous
works (de Melo and Weikum, 2009; Gurevych
et al., 2012; Meyer and Gurevych, 2012b; Bond
and Foster, 2013) largely due to the natural align-
ment across languages. Extending this approach to
a multilingual setting could prove to be extremely
useful for machine translation, and could allow
low resource languages to benefit from alignment
with other languages that have more annotations.

7 Conclusion

This paper introduced the idea of constructing a
wordnet solely using the data from Wiktionary.
Wiktionary is a powerful resource, featuring mil-
lions of pages that describe lemmas, their senses,
example usages, and the relationships between
them. Previous work has explored aligning re-
sources like this with other networks like the
Princeton WordNet. However, no work has fully
explored the idea of building an entire network
from the ground up using just Wiktionary.

This work explores simple baselines for con-
structing a network from Wiktionary through
antonym and synonym relationships and com-
pares induced networks with WordNet to find sim-
ilar structures and statistics that appear to high-
light strong future directions of particular inter-
est, including but not limited to improving net-
work modeling, linking more semantic exam-
ples, and reinforcing network construction using
expert-annotated networks, like WordNet.

As conducted, this work is an initial step in
transforming Wikitionary from an open-source
dictionary into a powerful tool, dataset, and frame-
work, with the hope of driving and motivating fur-
ther work at endeavors studying languages and de-
veloping language processing systems.
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Abstract

Contemporary datasets on tobacco consump-
tion focus on one of two topics, either pub-
lic health mentions and disease surveillance,
or sentiment analysis on topical tobacco prod-
ucts and services. However, two primary con-
siderations are not accounted for, the language
of the demographic affected and a combina-
tion of the topics mentioned above in a fine-
grained classification mechanism. In this pa-
per, we create a dataset of 3144 tweets, which
are selected based on the presence of collo-
quial slang related to smoking and analyze it
based on the semantics of the tweet. Each
class is created and annotated based on the
content of the tweets such that further hierar-
chical methods can be easily applied.

Further, we prove the efficacy of standard text
classification methods on this dataset, by de-
signing experiments which do both binary as
well as multi-class classification. Our experi-
ments tackle the identification of either a spe-
cific topic (such as tobacco product promo-
tion), a general mention (cigarettes and related
products) or a more fine-grained classification.
This methodology paves the way for further
analysis, such as understanding sentiment or
style, which makes this dataset a vital contri-
bution to both disease surveillance and tobacco
use research.

1 Introduction

As Twitter has grown in popularity to 330 million
monthly active users, researchers have increas-
ingly been using it as a source of data for tobacco
surveillance (Lienemann et al., 2017). Tobacco-
related advertisements, tweets, awareness posts,
and related information is most actively viewed
by young adults (aged 18 to 29), who are ex-
tensive users of social media and also represent
the largest population of smokers in the US and

Canada 1. Furthermore, it allows us to understand
patterns in ethnically diverse and vulnerable au-
diences (Lienemann et al., 2017). Social media
provides an active and useful platform for spread-
ing awareness, especially dialog platforms, which
have untapped potential for disease surveillance
(Platt et al., 2016). These platforms are useful in
stimulating the discussion on societal roles in the
domain of public health (Platt et al., 2016). Sharpe
et al. (2016) has shown the utility of social media
by highlighting that the number of people using
social media channels for information about their
illnesses before seeking medical care.

Correlation studies have shown that the most
probable leading cause of preventable death glob-
ally is the consumption of tobacco and tobacco
products (Prochaska et al., 2012). The disease
most commonly associated with tobacco con-
sumption is lung cancer, with two million cases
reported in 2018 alone 2. While cigarettes are
condemned on social media, this has been rivaled
by the rising popularity and analysis of the sup-
posed benefits of e-cigarettes (Dai and Hao, 2017).
Information pertaining to new flavors and inno-
vations in the industry and surrounding culture
have generated sizable traffic on social media as
well (Hilton et al., 2016). Studies show that so-
cial acceptance is a leading factor to the use and
proliferation of e-cigarettes, with some reports
claiming as many as 2.39 million high school and
0.63 million middle school students having used
an e-cigarette at least once (Malik et al., 2019;
Mantey et al., 2019). However, there are strong
claims suggesting the use of e-cigarettes as a ’gate-
way’ drug for other illicit substances (Unger et al.,

1https://www.cdc.gov/tobacco/data_
statistics/fact_sheets/adult_data/cig_
smoking/

2https://www.wcrf.org/dietandcancer/
cancer-trends/lung-cancer-statistics
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Figure 1: Procedure for Data Collection. We started out with approximately 7 million Tweets which were mined
based on 24 slang terms. These were pre-processed to select relevant tweets with decent traction on Twitter. A
final cleaned dataset of 3144 tweets is presented.

2016).
In this paper, we aim at classifying tweets relat-

ing to cigarettes, e-cigarettes, and other tobacco-
related products into distinct classes. This classifi-
cation is fine-grained in order to assist in the anal-
ysis of the type of tweets which affect the users
the most for each product or category. The exten-
sive, manually annotated dataset of 3144 tweets
pertains to tobacco use classification into adver-
tisement, general information, personal informa-
tion, and non-tobacco drug classes. Such classifi-
cation provides insight into the type of tweet and
associated target audience. For example, present
cessation programs target users who are ready to
quit rather than people who use it regularly, which
can be solved using twitter and other online so-
cial media (Prochaska et al., 2012). Unlike many
previous studies, we also include common slang
terms into the classification scheme so as to be
able to work with the social media discourse of
the target audience.

Finally, we present several text-classification
models for the fine-grained classification tasks
pertaining to tobacco-related tweets on the re-
leased dataset3. In doing so, we extend the work
in topical Twitter content analysis as well as the
study of public health mentions on Twitter.

2 Related Work

Myslı́n et al. (2013) explored content and senti-
3https://github.com/kartikeypant/

smokeng-tobacco-classification

ment analysis of Tobacco-related Twitter posts and
performed analysis using machine learning clas-
sifiers for the detection of tobacco-relevant posts
with a particular focus on emerging products like
e-cigarettes and hookah. Their work depends on a
triaxial classification along and uses basic statisti-
cal classifiers. However, their feature-engineered
keyword-based systems do not account for slang
associated with tobacco consumption.

Vandewater et al. (2018) performs a classifica-
tion study based on identifying brand associated
with a post using basic text analytics using key-
words and image-based classifiers to determine
the brands that were most responsible to posting
about their brands on social media. Cortese et al.
(2018) does a similar analysis on the consumer
side, for female smokers on Instagram, targeting
the same age group, but based entirely on feature
extraction on images, particularly selfies.

More recently, Malik et al. (2019) explored pat-
terns of communication of e-cigarette company
Juul use on Twitter. They categorized 1008 ran-
domly selected tweets across four dimensions,
namely, user type, sentiment, genre, theme. How-
ever, they explore the effects of only Juul, and
not other cigarettes or e-cigarettes, further limit-
ing their experiment to only Juul-based analysis
and inferences.

In the domain of Disease Surveillance, Aramaki
et al. (2011) explored the problem of identifying
influenza epidemics using machine-learning based
tweet classifiers along with search engine trends
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Name Label Annotation
Class

Mention of Non-Tobacco Drugs OD -1
Unrelated or Ambiguous Mention UM 0
Personal or Anecdotal Mention PM 1

Informative or Advisory Mention IM 2
Advertisements AD 3

Table 1: Label and ID associated with each class.

for medical keywords and medical records for the
disease in a local environment. For doing so, they
use SVM based classifiers for extracting tweets
that mention actual influenza patients. However,
since they use only SVM based classifiers, they
are limited in their accuracy in classification.

Dai et al. (2017) also focuses on public health
surveillance, and uses word embeddings on a topic
classifier in order to identify and capture seman-
tic similarities between medical tweets by disease
and tweet type for a more robust yet very filtered
classification, not accounting for the variety of lin-
guistic features in tweets such as slang, abbrevia-
tions and the like in the keyword-based classifica-
tion mechanism. Jiang et al. (2018) works on a
similar problem using machine learning solutions
such as an LSTM classifier.

3 Dataset Creation

In this section, we explain the development of the
dataset that we present along with this paper. We
summarize the methods for collecting and filter-
ing through the tweets to arrive at the final dataset
and provide some examples of the types of tweets
and features we focused on. We also provide the
dataset annotation schema and guidelines.

3.1 Data Collection
Using the Twitter Application Programming Inter-
face (API4), we collected a sample of tweets be-
tween 1st October 2018 and 7th October 2018 that
represented 1% of the entire Twitter feed. This 1%
sample consisted of an average 1,035,206 million
tweets per day. Out of the 7,246,442 tweets, only
tweets written in English and written by users with
more than 100 followers have selected for the next
step in order to clear spam written by bots.

In order to extract tobacco related tweets from
this dataset, we constructed a list of keywords rel-
evant to general tobacco usage, including hookah

4https://developer.twitter.com/en/products/tweets/sample.html

and e-cigarettes. Our initial list consisted of 32
such terms compiled from online slang dictionar-
ies, but we pruned this list to 24 terms. These
were smoking, cigarette, e-cig*, cigar, tobacco,
hookah, shisha, e-juice, e-liquid, vape, vaping,
cheroot, cigarillo, roll-up, ashtray, baccy, rollies,
claro, chain-smok*, vaper, ciggie, nicotine, non-
smoker, non-smoking.

By taking the dataset for a full week, we thus
avoided potential bias based on the day of the
week, which has been observed for alcohol related
tweets, which spike in positive sentiment on Fri-
days and Saturdays (Cavazos-Rehg et al., 2015).
For each of the 7 days, all tweets matching any
of the listed keywords were included. Tweets
matching these tobacco related keywords reflected
0.00043% of all tweets in the Twitter API 1%
sample. The resulting final dataset thus contained
3144 tweets, with a mean of 449 tweets per day.

3.2 Data Annotation

The collected data was then annotated based on the
categories mentioned in Table 1. These categories
were chosen on the basis of frequency of occur-
rence, motivated by the general perception of to-
bacco and non-tobacco drug related tweets. These
included advertisements as well anecdotes, infor-
mation and cautionary tweets. We further noticed
that a similar pattern was seen for e-cigarettes and
also pertained to some other drugs. While we
have explored e-cigarettes in this classification, we
have marked the mention of other drugs that were
tagged with the same keywords.

A formal definition of each of the categories is
given below.

• Unrelated or Ambiguous Mention: This
category of tweets contain tweets containing
information unrelated to tobacco or any other
drug, or pertaining to ambiguity in the intent
of the tweet, such as sarcasm.
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Label Examples

UM
”What are you smoking bruh ?”
”The smoking gun on Kavanaugh! URL ”

PM
”im smoking and doing whats best for me”
”I haven’t had a cigarette in $NUMBER$ months why do I want one so bad now??”

IM
”Obama puffed. Clinton did cigar feel.Churchill won major wars on whisky.”
”The FDA’s claim of a teen vaping addiction epidemic doesn’t add up. #ecigarette #health”

AD
”Which ACID Kuba Kuba are you aiming for? #De4L #ExperienceAcid #cigar #cigars URL”
”Spookah Lounge: A concept - a year round Halloween-themed hookah lounge”

OD
”Making my money and smoking my weed”
”Mobbin in da Bentley smoking moonrocks.”

Table 2: Examples for each category represented by its label.

• Personal or Anecdotal Mention: Tweets are
classified as containing a personal or anecdo-
tal mention if they imply either personal use
of tobacco products or e-cigarettes, or pro-
vide instances of use of the products by them-
selves or others.

• Informative or Advisory Mention: This
class of tweets consist of a broad range of
topics such as:

– mention or discussion on statistics of to-
bacco and e-cigarette use or consump-
tion

– mention associated health risks or bene-
fits

– portray the use of tobacco products or e-
cigarettes by a public figure

– emphasize social campaigns for anti-
smoking, smoking cessation and related
products such as patches

• Advertisements: All tweets written with the
intent of the sale of tobacco products, e-
cigarettes and associated products or services
are marked advertisements. In this classifica-
tion, intent is considered using the mention of
price as an objective measure.

• Mention of Non-Tobacco Drugs: Tweets
which mention the use, sale, anecdotes
and information about drugs other than e-
cigarettes or tobacco products are annotated
in this category.

3.3 Inter-annotator Agreement
Annotation of the dataset to detect the presence of
tobacco substance use was carried out by two hu-
man annotators having linguistic background and

proficiency in English. A sample annotation set
consisting of 10 tweets per class was selected ran-
domly from all across the corpus. Both annota-
tors were given the selected sample annotation set.
These sample annotation set served as a reference
baseline of each category of the text.

In order to validate the quality of annotation, we
calculated the Inter-Annotator Agreement (IAA)
for the fine-grain classification between the two
annotation sets of 3,144 tobacco-related tweets us-
ing Cohen’s Kappa coefficient (Fleiss and Cohen,
1973). The Kappa score of 0.791 indicates that the
quality of the annotation and presented schema is
productive.

4 Methodology

In this section we describe the classifiers designed
for this task of fine grained classification. The
classifier architecture is based upon a combina-
tion of choosing word representations, along with
a discriminator that is compatible with that rep-
resentation. We use the TF-IDF for the suport
vector machines and GloVe embeddings (Penning-
ton et al., 2014) with our convolutional neural
network architecture and recurrent architectures
(LSTM and Bi-LSTM). We also used FastText and
BERT embeddings (both base and large) with their
native classifiers to note the change in the accura-
cies.

4.1 Support Vector Machines (SVM)

The first learning model used for classification
in our experiment was Support Vector Machines
(SVM) (Cortes and Vapnik, 1995). We used term
frequency-inverse document frequency (TF-IDF)
as a feature to classify the annotated tweets in our
data set (Salton and Buckley, 1988). TF-IDF cap-
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tures the importance of the given the word in a
document, defined in Equation 1.

tfidf(t, d,D) = f(t, d)× log
N

|{dεD : tεd}| (1)

where f(t, d) indicates the number of times term t
appears in context, d and N is the total number of
documents |dεD : tεd| represents the total number
of documents where t occurs.

The SVM classifier finds the decision boundary
that maximizes the margin by minimizing ||w|| to
find the optimal hyperplane for all the classifica-
tion tasks:

min f : 1
2‖w‖2

s.t. y(i)
(
wTx(i) + b

)
≥ 1, i = 1, . . . ,m

(2)
where w is the weight vector, x is the input vec-

tor and b is the bias.

4.2 Convolutional Neural Networks (CNN)

In this subsection, we outline the Convolutional
Neural Networks (Fukushima, 1988) for classifi-
cation and also provide the process description for
text classification in particular. Convolutional neu-
ral networks are multistage trainable neural net-
works architectures developed for classification
tasks (Lecun et al., 1998). Each of these stages
consist of the types of layers described below:

• Embedding Layer: The purpose of an em-
bedding layer is to transform the text inputs
into a form which can be used by the CNN
model. Here, each word of a text document is
transformed into a dense vector of fixed size.

• Convolutional Layers: A Convolutional
layer consists of multiple kernel matrices that
perform the convolution mathematical oper-
ation on their input and produce an output
matrix of features upon the addition of a bias
value.

• Pooling Layers: The purpose of a pooling
layer is to perform dimensionality reduction
of the input feature vectors. Pooling layers
use sub-sampling to the output of the convo-
lutional layer matrices combing neighbour-
ing elements. We have used the commonly
used max-pooling function for the pooling.

• Fully-Connected Layer: It is a classic fully
connected neural network layer. It is con-
nected to the Pooling layers via a Dropout
layer in order to prevent overfitting. Softmax
activation function is used for defining the fi-
nal output of this layer.

The following objective function is commonly
used in the task:

Ew =
1

n

P∑

p=1

NL∑

j=1

(oLj,p − yj,p)2 (3)

where P is the number of patterns, oLj,p is the out-
put of jth neuron that belongs to Lth layer, NL is
the number of neurons in output of Lth layer, yj,p
is the desirable target of jth neuron of pattern p
and yi is the output associated with an input vec-
tor xi to the CNN.

We use Adam Optimizer (Kingma and Ba,
2014) to minimize the cost function Ew.

4.3 Recurrent Neural Architectures
Recurrent neural networks (RNN) have been em-
ployed to produce promising results on a variety
of tasks, including language model and speech
recognition (Mikolov et al., 2010, 2011; Graves
and Schmidhuber, 2005). An RNN predicts the
current output conditioned on long-distance fea-
tures by maintaining a memory based on history
information.

An input layer represents features at time t.
One-hot vectors for words, dense vector features
such as word embeddings, or sparse features usu-
ally represent an input layer. An input layer has
the same dimensionality as feature size. An out-
put layer represents a probability distribution over
labels at time t and has the same dimensionality
as the size of the labels. Compared to the feed-
forward network, an RNN contains a connection
between the previous hidden state and current hid-
den state. This connection is made through the re-
current layer, which is designed to store history in-
formation. The following equation is used to com-
pute the values in the hidden, and output layers:

h(t) = f(Ux(t) + Wh(t− 1)). (4)

y(t) = g(Vh(t)), (5)

where U , W , and V are the connection weights
to be computed during training, and f(z) and g(z)

185



Model/Experiment Personal Health Mentions Tobacco-related Mentions
SVM 82.17% 83.44%
CNN 84.08% 82.48%
LSTM 84.39% 83.32%
BiLSTM 83.92% 82.97%
FastText 83.76% 81.05%
BERTBase 85.19% 85.50%
BERTLarge 87.26% 85.67%

Table 3: Binary Classification accuracies for specific topic (Personal Health Mention) or general theme (Tobacco-
related Mentions).

are sigmoid and softmax activation functions as
follows.

f(z) =
1

1 + e−z
, (6)

g(zm) =
ezm∑
k e

z
k

(7)

In this paper, we apply Long Short Term Mem-
ory (LSTM) and Bidirectional Long Short Term
Memory(Bi-LSTM) to sequence tagging (Hochre-
iter and Schmidhuber, 1997; Graves and Schmid-
huber, 2005; Graves et al., 2013).

LSTM networks use purpose-built memory
cells to update the hidden layer values. As a re-
sult, they may be better at finding and exploiting
long-range dependencies in the data than a stan-
dard RNN. The following equation implements
the LSTM model:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (8)

ft = σ(Wxfxt+Whfht−1+Wcfct−1+ bf ) (9)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (10)

ht = ottanh(ct) (11)

In sequence tagging task, we have access to
both past and future input features for a given time.
Thus, we can utilize a bidirectional LSTM net-
work (Bi-LSTM) as proposed in (Graves et al.,
2013).

4.4 FastText

FastText classifier has proven to be efficient for
text classification (Joulin et al., 2016). It is often at

par with deep learning classifiers in terms of accu-
racy, and much faster for training and evaluation.
FastText uses bag of words and bag of n-grams
as features for text classification. Bag of n-grams
feature captures partial information about the lo-
cal word order. FastText allows updating word
vectors through back-propagation during training
allowing the model to fine-tune word representa-
tions according to the task at hand (Bojanowski
et al., 2016). The model is trained using stochastic
gradient descent and a linearly decaying learning
rate.

4.5 BERT

While previous studies on word representations
focused on learning context-independent repre-
sentations, recent works have focused on learning
contextualized word representations. One of the
more recent contextualized word representation is
BERT (Devlin et al., 2019).

BERT is a contextualized word representation
model, pre-trained using bidirectional transform-
ers(Vaswani et al., 2017). It uses a masked lan-
guage model that predicts randomly masked in a
sequence. It uses the task of next sentence predic-
tion for learning the embeddings with a broader
context. It outperforms many existing techniques
on most NLP tasks with minimal task-specific ar-
chitectural changes. It is pretrained on 3.3B words
from various sources including BooksCorpus and
the English Wikipedia.

Based on the transformer architecture used,
BERT is classified into two types: BERTBase and
BERTLarge. BERTBase uses a 12-layered trans-
former with 110M parameters. BERTLarge uses
a 24-layered transformer with 340M parameters.
We use the cased variant of both models.
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Methods Accuracy F1 Score Recall
SVM 65.45% 0.678 0.657
CNN 66.72% 0.668 0.599
LSTM 64.97% 0.641 0.583
BiLSTM 65.29% 0.643 0.597
FastText 69.43% 0.696 0.669
BERTBase 70.86% 0.708 0.709
BERTLarge 71.34% 0.714 0.713

Table 4: Evaluation scores for the Fine-grained classification experiment.

5 Experiments

In this section, we describe three experiments on
the dataset created in the section above. The ex-
periments are designed to show how well existing
models perform on the naive binary classification
based on this dataset as well as the fine-grained
five-class classification system. The first experi-
ment is based on detecting just personal or anec-
dotal mentions. The second is based on identify-
ing whether a tweet is about tobacco or not. The
last experiment is a full fine-grained classification
experiment.

The following experiments were conducted
keeping an 80-20 split between training and test
data, with 2517 tweets in the training dataset and
629 tweets in the test dataset. All tweets were
shuffled randomly before the train-test split.
BERTLarge was observed to perform the best

in all three experiments, followed closely by
BERTBase in all the experiments that were con-
ducted.

5.1 Experiment 1: Detecting Personal
Mentions of Tobacco Use

The first experiment in the study was to detect
tweets containing personal mentions of tobacco
use. Tweets containing personal mentions of to-
bacco use are the ones marking implicit or ex-
plicit use of a tobacco substance by the poster.
The objective of this experiment is to analyze the
best method to identify tweets which talk about
tobacco in an anecdotal manner, which can be
used to understand the semantic similarity be-
tween such tweets. Table 3 illustrates the results
for this experiment.

5.2 Experiment 2: Identifying
Tobacco-related Mentions

The next experiment in the study was to detect all
tobacco-related tweets related. These include the

following categories of tweets: personal mentions
of tobacco-use, general information about tobacco
or its use, advertisements. Thus, the experiment
was to determine whether the tweet belonged to
one of the above categories or not. The objec-
tive here is also to gauge semantic information in
tweets with mentions of tobacco, suggesting that
tweets using the similar slang might be talking
about other drugs or ambiguous or unrelated in-
formation. Table 3 illustrates the results for this
experiment.

5.3 Experiment 3: Performing Fine-grained
Classification of Tobacco-related
Mentions

The last experiment conducted in the study was
to classify the tweets into all five categories: UM,
PM, IM, AD, OD. Table 4 illustrates the results of
the experiment. This is essentially the fine grained
classification experiment which relies on semantic
information as well as lexical choice. We see that
models from all the three experiments perform dif-
ferently given the type of task. Table 4 illustrates
the results for this experiment.

6 Discussion

In this section, we analyze our contributions from
the perspective of advancing work in the fields of
topical content analysis as well as the study of
public health mentions in tweets, with regards to
tobacco products, as well as e-cigarettes and re-
lated products. Given the effects of both as well as
the significant overlap in the demographic of con-
sumers of tobacco products and Twitter users, we
found it necessary to understand the nature of the
tweets produced and consumed by them.

Our dataset, a collection of 3144 tweets, ac-
cumulated and filtered over the period of just a
week, implies that tobacco and related drugs are
tweeted about and spoken of quite frequently, but
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Figure 2: Distribution of tweets among different cate-
gories

Category Retweets Favorites
UM 1079.05 0.794
PM 12171.60 0.904
IM 680.24 3.918
AD 140.81 4.586
OD 873.08 0.868

Table 5: Average retweets and favorites across classes

the linguistic cues common among these tweets
was not considered until now. The inclusion of
tweets into the corpus based on slang terminology
is an attempt to analyze the Twitter landscape in
the language of the audience which most highly
correlates with the demographic of consumers for
the aforementioned products. To the best of our
knowledge, using common slang as a basis of
dataset creation and filtration for this task has not
been attempted before.

Contemporary methods in the field focus on two
basic characterizations, user based and sentiment
based. User based classification such as Malik
et al. (2019) and Jo et al. (2016) are based on
the analyzing activity from a particular user or set
of users, while sentiment based analyses such as
Paul and Dredze (2011); Allem et al. (2018) and
Myslı́n et al. (2013) are based on understanding
the sentiment of the users on the basis of a new
product, category or a more generalized percep-
tion of smoking in general. On the other hand,
public health mention research such as Jawad et al.
(2015) focuses on effect of a particular type of
tweet, generally health campaigns. Fundamen-

tally, the classes we have chosen for the collected
data are based on the same principle as the data
collection mechanism, with the aim to bridge the
gap between the classification studies and the pub-
lic health surveillance research. This is because
our categories cover the breadth of the tweets
evenly, directed towards semantically understand-
ing the nature of the tweets. This information is
vital for addressing the validity and reach of cam-
paigns, advertisements and other efforts.

Figure 2 shows the distribution of the number
of tweets in each class. We see that in the span
of a week, informative or advisory and personal
mentions are the most widely posted. The tweets
that provide general information about smokers or
the habits of smoking tobacco or e-cigarettes are
generated the most, implying that a larger section
of the population tweets of smoking in an anecdo-
tal manner. Similarly, Table 5 shows an interest-
ing trends for the favorites. Advertisements have
a higher average favorite count than most other
classes, while anecdotal and advisory tweets are
the most retweeted on average. This difference is
an interesting observation, primarily because on
further work such as sentiment analysis and do-
ing short text style transfer (Luo et al., 2019) for
these categories may provide an effective strategy
for advertisers and campaigners alike.

7 Conclusion and Future Work

In this paper, we created a dataset of tweets and
classified them in order to understand the social
media atmosphere around tobacco, e-cigarettes
and other related products. Our schema for cat-
egorization targets posts on public health as much
as tobacco related products, therefore allowing us
to know the number and type of tweets used in
public health surveillance for the above mentioned
products. Most importantly, we consider slang as a
very important aspect of our data collection mech-
anism, which has allowed us to factor in the con-
tent which is circulated and exposed to the major-
ity of the consumers of social media and the afore-
mentioned products both.

This contribution can be further extended by
working with other social media platforms, where
the methods introduced above can be easily repli-
cated. Social media specific slang can be taken
into account to make a more robust dataset for this
task. Furthermore, on the public health surveil-
lance aspect, more metadata using the tweets can
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be extracted, which gives an idea of the type of
tweets or posts needed to grab the attention of
a wider audience on topics of public health and
awareness for the grave topic of tobacco products
and e-cigarettes.
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Abstract

In the context of document quality assessment,
previous work has mainly focused on predict-
ing the quality of a document relative to a pu-
tative gold standard, without paying attention
to the subjectivity of this task. To imitate peo-
ple’s disagreement over inherently subjective
tasks such as rating the quality of a Wikipedia
article, a document quality assessment system
should provide not only a prediction of the ar-
ticle quality but also the uncertainty over its
predictions. This motivates us to measure the
uncertainty in document quality predictions, in
addition to making the label prediction. Ex-
perimental results show that both Gaussian
processes (GPs) and random forests (RFs)
can yield competitive results in predicting the
quality of Wikipedia articles, while provid-
ing an estimate of uncertainty when there is
inconsistency in the quality labels from the
Wikipedia contributors. We additionally eval-
uate our methods in the context of a semi-
automated document quality class assignment
decision-making process, where there is asym-
metric risk associated with overestimates and
underestimates of document quality. Our ex-
periments suggest that GPs provide more reli-
able estimates in this context.

1 Introduction

The volume of textual web content generated col-
laboratively — through sites such as Wikipedia,
or community question answering platforms such
as Stack Overflow — has been growing progres-
sively. Such collaborative paradigms give rise to
a problem in quality assessment: how to ensure
documents are reliable and useful to end users.

Given the volume of such documents, and
velocity with which they are being produced,
there has been recent interest in automatic qual-
ity assessment using machine learning techniques
(Dang and Ignat, 2016a; Dalip et al., 2017; Shen

Figure 1: A screenshot of the “Warden Head Light”
Talk page. Wikipedia Project Lighthouses as-
signs a B-class quality label to this article, while
Wikipedia Project Australia assigns a Start-class
quality label.

et al., 2017). However, previous work has treated
this problem using off-the-shelf predictors, which
fail to take into account two key aspects. First,
any quality rating is inherently subjective: differ-
ent end users can heavily disagree on the quality of
a document. For example, as shown in Figure 1,
the Wikipedia article Warden Head Light1 is as-
signed to different labels from different Wikipedia
Projects:2 B (in the green block) by Wikipedia
Project Lighthouses, and Start (in the orange
block) by Wikipedia Project Australia;3 among a
30K datatset we collected, there are 7% such arti-
cles (even including high-quality articles), where
contributors disagree over the article quality. Sec-
ond, previous work has ignored decision-making

1https://en.wikipedia.org/w/index.php?
title=Warden_Head_Light&oldid=759074867

2A Wikipedia Project is a group of Wikipedia contributors
who work together to improve Wikipedia articles that they are
interested in.

3We return to describe the full label set in Section 2.
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procedures (such as expert reviewing, and featur-
ing articles on the Wikipedia main page) that are
impacted by the results of the prediction, which
can vary in non-trivial ways.

In this work, we address these two gaps by
modelling the uncertainty in the quality labels
by treating predictions as probability distributions.
In order to obtain these distributions, we experi-
ment with both Bayesian models (Gaussian Pro-
cesses, GPs, Rasmussen and Williams, 2006)
and frequentist, ensemble-based methods (Ran-
dom Forests, RFs, Breiman, 2001), applying them
to English Wikipedia articles. Our results show
that these approaches are competitive with the
state-of-the-art in terms of predictive performance,
while also providing estimates of uncertainty in
the form of predictive distributions.

As a case study on the utility of uncertainty es-
timates, we analyse a typical Wikipedia scenario,
where articles with predicted high quality are sent
to expert reviewers to confirm their status. Such
reviewing procedures are costly: if a low-quality
article is predicted to be a featured article (the
highest quality in Wikipedia), the triggered man-
ual review can substantially waste time and hu-
man effort. Conversely, if a high-quality article
is predicted to be of a lower-quality class, there is
no cost to the editor community.4 This is an ex-
ample of asymmetric risk, where underestimates
and overestimates have different penalties. In this
paper, we show how to use uncertainty estimates
from predictions in order to make a quality pre-
diction that minimises this asymmetric risk.

In summary, this paper makes the following
contributions:

(i) We are the first to propose to measure the
uncertainty of article quality assessment sys-
tems. We find that both GPs and RFs can
achieve performance competitive with the
state-of-the-art, while providing uncertainty
estimates over their predictions in the form
of predictive distributions.

(ii) To model asymmetric risk scenarios in
Wikipedia, we propose to combine the pre-
dictive distributions provided by our meth-
ods with asymmetric cost functions. Experi-
mental results show that GPs are superior to
RFs under such scenarios.

(iii) We constructed a 30K Wikipedia article
4Although there may be an opportunity cost (in terms of

not showcasing high-quality articles), and the potential de-
motivation of the associated editors.

dataset containing both gold-standard la-
bels and Wikipedia Project labels, which
we release for public use along with
all code associated with this paper at
https://github.com/AiliAili/
measure_uncertainty.

2 Preliminaries

In this section, we detail the specific scenario
addressed in this study: quality assessment of
Wikipedia articles. We also describe the procedure
to construct our dataset.

2.1 Problem Definition
In line with previous work (Warncke-Wang et al.,
2015; Dang and Ignat, 2016a,b, 2017), we con-
sider six quality classes of Wikipedia articles,
ordered from highest to lowest: Featured Ar-
ticle (“FA”), Good Article (“GA”), B-class Ar-
ticle (“B”), C-class Article (“C”), Start Article
(“Start”), and Stub Article (“Stub”). A descrip-
tion of the quality grading criteria can be found in
the Wikipedia grading scheme page.5

The quality assessment process over a
Wikipedia article is done in a collaborative
way, through discussions on the corresponding
article’s Talk page.6 Wikipedia contributors
also carefully review articles that are GA and FA
candidates. In particular, FA articles are eligible to
appear on the main page of the website. A reliable
automatic quality assessment model should take
these decision making aspects into account.

Problem statement. In this paper, our aim is to
predict the quality of unseen Wikipedia articles,
paired with an estimate of uncertainty over each
prediction, which we evaluate in a risk-aware deci-
sion making scenario. Figure 2 summarises model
application and actions depending on the uncer-
tainty: (1) quality-indicative features are first ex-
tracted from a Wikipedia article; (2) a model pre-
dicts the article quality and provides an indication
of how confident it is of its prediction; and (3)
different actions are taken based on the predicted
quality and confidence value, such as expert re-
view and featuring on the Wikipedia main page if
an article is predicted to be FA/GA with high con-
fidence.

5https://en.wikipedia.org/wiki/
Template:Grading_scheme

6Such as the Talk page for the “Warden Head Light”
article: https://en.wikipedia.org/wiki/Talk:
Warden_Head_Light
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Figure 2: Model application and decision-making
procedure.

2.2 Data Collection

We constructed an evaluation dataset by collecting
articles from Wikipedia in a balanced way. From
each quality class, we crawled 5K articles from its
corresponding repository.7 As mentioned in Sec-
tion 1, quality assessment is subjective and multi-
ple editors/Wikipedia Projects may disagree when
assigning a quality label to an article. We can ob-
serve this behaviour by inspecting an article’s cor-
responding Talk page, which records quality labels
from different Wikipedia Projects.8 For roughly
7% of the articles, there is a disagreement between
editors/Wikipedia Projects. Take Figure 1 in Sec-
tion 1 as an example, although the primary la-
bel of the Wikipedia article Warden Head Light
is B, two other quality labels are assigned to it:
B class (in the green block) by Wikipedia Project
Lighthouses, and Start class (in the orange block)
by Wikipedia Project Australia. Since we are in-
terested in investigating how an automatic qual-
ity assessment system performs when there is a
disagreement, we also crawl these secondary la-
bels when building our dataset. Finally, we re-
move markup that relates to the document quality
classes, such as {Featured Article} or {geo-start},
to alleviate any overt indication of the quality label
in the text of the article.

The resulting dataset contains 29,097 Wikipedia
articles, which we partition into two subsets for
separate evaluation in Section 4: (1) consistent ar-
ticles, where primary and secondary labels fully
agree; and (2) inconsistent articles, where there
is disagreement among secondary labels, with at
least one of them agreeing with the primary label.
We emphasise that we keep all secondary labels
for the latter, without performing any label aggre-
gation (e.g., voting). Our aim is to make qual-

7For example, we obtain FA articles by crawling pages
from the FA repository: https://en.wikipedia.
org/wiki/Category:Featured_articles

8Different Wikipedia articles can be rated by different
Wikipedia Projects. And the number of quality labels in a
Talk page depends on how many Wikipedia Projects rate this
article.

Train Dev Test Total

FA
consistent 3956 470 538

4998
inconsistent 28 4 2

GA
consistent 3887 468 495

4878
inconsistent 16 6 6

B
consistent 3138 400 416

4843
inconsistent 702 85 102

C
consistent 3036 382 381

4523
inconsistent 570 69 85

Start
consistent 3725 451 472

4924
inconsistent 223 28 25

Stub
consistent 3863 470 492

4931
inconsistent 83 12 11

Total — 23227 2845 3025 29097

Table 1: A breakdown of our Wikipedia dataset.

ity predictions as close as possible to the primary
labels while also providing uncertainty estimates
of such predictions: lower uncertainty over con-
sistent articles and higher uncertainty over incon-
sistent articles. The dataset is then stratified into
training, development, and test sets, as detailed in
Table 1.

3 Methods

A key aspect of the task is the ordinal nature of
the quality labels, e.g., a Start article is close in
quality to a C, but much worse than an FA. Sur-
prisingly though, most previous studies (Dang and
Ignat, 2016a,b, 2017; Shen et al., 2017) formu-
late the problem as multi-class classification and
use accuracy as the evaluation metric. Such mod-
elling and evaluation procedures completely disre-
gard the ordinal nature of the labels, which in turn
does not correspond to real world scenarios: the
cost of mispredicting a Start article as C is differ-
ent to mispredicting it as an FA (standard classifi-
cation metrics such as accuracy assume equal cost
for all mispredictions).

To better address the scenarios we are inter-
ested in, we treat quality assessment as a regres-
sion problem, in terms of both modelling and eval-
uation. In order to do this, we encode the quality
class labels as real values by mapping them to the
interval [−2.5, 2.5] with increments of 1. These
labels are −2.5, −1.5, −0.5, 0.5, 1.5, and 2.5,
respectively, where higher values indicate higher
quality.9 We perform this step to be able to use
off-the-shelf regression models, while also center-

9Having equal intervals is a heuristic: we discuss this lim-
itation in Section 6.
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ing the labels. The remainder of this section de-
tails the regression methods we use, as well as two
types of features we employ to represent each ar-
ticle. Both methods provide uncertainty estimates
through predictive distributions (Gaussian distri-
butions in our case).

3.1 Gaussian Processes
A principled approach to obtain predictive distri-
butions is to use GPs (Rasmussen and Williams,
2006), a Bayesian non-parametric framework
widely considered the state-of-the-art for regres-
sion (Hensman et al., 2013). Given a latent func-
tion f , which explains the relationship between an
input vector x and its corresponding output value
y, the model assumes that f is distributed accord-
ing to a GP, i.e.,

f(x) ˜ GP(m(x), k(x,x′)),

where m(x) is a mean function, and k(x,x′) is a
covariance or kernel function.

Following common practice, we fix the mean
function to zero, as our output values are centered.
Most of the information obtained from the train-
ing data can be encoded in the kernel function, of
which the most common one is the Radial Basis
Function (RBF), defined as

k(x,x′) = σv exp


−1

2

d∑

j=1

1

`2j
(xj − x′j)2


,

where σv is the variance hyperparameter control-
ling the scale of the labels, and `j is the lengthscale
for the jth dimension of the input. The length-
scales are learned by maximising the marginal
likelihood (Rasmussen and Williams, 2006), re-
sulting in a feature selection procedure known
as Automatic Relevance Determination (ARD):
lower lengthscales indicate features with higher
discriminative power. We use this procedure to
perform a feature analysis in Section 4.1. Besides
the RBF, we also experiment with a range of other
kernels used in GP models: see Rasmussen and
Williams (2006, Chap. 4) for details.

Standard GP inference takesO(n3) time, where
n is the number of instances in the training data.
As this is prohibitively expensive given the size of
our dataset, we employ Sparse GPs (Titsias, 2009;
Gal et al., 2014), a scalable extension that approx-
imates an exact GP by using a small set of latent
inducing points. These are learned by maximising

a variational lower bound on the marginal likeli-
hood: see Titsias (2009) for details.

3.2 Random Forests

As an alternative method to obtain predictive dis-
tributions, we use RFs (Breiman, 2001), which
are ensembles of decision trees (regression trees
in our case). Each tree is trained on a bootstrapped
sample of the training set and within each tree, a
random subset of features is used when splitting
nodes. To obtain predictive distributions, we as-
sume that the individual tree predictions follow an
“empirical” Gaussian distribution. The mean and
the variance are computed from the full set of pre-
dictions obtained by the RF. While this approach
is less principled — since there is no reason to
believe the distribution over individual predicted
values is Gaussian — it can work well in practice.
For instance, RFs have been used before to obtain
uncertainty estimates in the context of Bayesian
Optimisation (Hutter et al., 2011).

3.3 Features and Preprocessing

Following Dang and Ignat (2016a), we use hand-
crafted features, in the form of 11 structural
features and 10 readability scores, which are
listed in Dang and Ignat (2016a) and Shen et al.
(2017).10 Structural features can reflect the qual-
ity of Wikipedia articles in different ways. For ex-
ample, References, Pagelinks, and Citation show
how the article content is supported by informa-
tion from different sources, indicating whether the
article is reliable and thus indicating higher/lower
quality, while features Level2, and Level3+ indi-
cate how the content is organised, which is another
quality indicator of Wikipedia articles. Readabil-
ity scores reflect the usage of language and com-
prehension difficulty of a Wikipedia article. For
example, Difficult Words (Chall and Dale, 1995),
Dale-Chall (Dale and Chall, 1948), and Gunning-
Fog (Gunning, 1969) use the number or percent-
age of difficult words to measure the comprehen-
sion difficulty of a text, where a difficult word is a
word not in a list of predefined words that fourth-
grade American students can reliably understand.
These hand-crafted features are extracted from
Wikipedia articles using the open-source packages

10Dang and Ignat (2016a) explore nine readability scores,
to which we add an extra readability score denoted Consen-
sus. This score represents the estimated school grade level
required to understand the content.
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wikiclass11 and textstat.12

As features from the revision history, such as
the number of revisions and the article–editor net-
work, are indirect quality indicators, we only focus
on direct quality indicators from the content itself.

4 Experimental Study

In this section, we detail four sets of experiments:
(1) intrinsic comparison of our methods with re-
spect to their predictive distributions; (2) com-
parative experiments with the state-of-the-art with
respect to point estimates only; (3) experiments
measuring the performance of our methods in a
transfer setting, where the goal is to predict sec-
ondary labels; and (4) a case study where auto-
matic labels are used to filter articles for manual
revisions and we use distributions to incorporate
risk in the quality predictions. All our models are
trained on the primary labels but we explicitly re-
port our results on two different test sets: one with
consistent and one with inconsistent labels, as ex-
plained in Section 2.2.

4.1 Intrinsic Evaluation

Our first set of experiments evaluates the perfor-
mance of methods intrinsically, with respect to
their predictive distributions.

GP settings. We use GP models from the
GPflow toolkit (Matthews et al., 2017). In particu-
lar, we use a Sparse GP with 300 inducing points,
which are initialised with k-means clusters learned
on the training set and we explore different kernels
(RBF, Arccosine (Cho and Saul, 2009), Matérn 32,
Matérn 52, Rational Quadratic (RQ)).

RF settings. We use the RF implementation in
scikit-learn (Pedregosa et al., 2011), with 300
trees and a maximum depth of 40, fine-tuning over
the development set. All other hyperparameters
are set to default values.

Evaluation metrics. Standard metrics to evalu-
ate regression models such as Root Mean Squared
Error (RMSE) and Pearson’s correlation (r) are
only based on point estimate predictions. These
are not ideal for our setting since we aim to as-
sess predictive distributions instead. For such set-
tings, Candela et al. (2005) proposed the Negative

11https://github.com/wiki-ai/wikiclass
12https://pypi.python.org/pypi/

textstat/0.5.1

NLPD (consistent) NLPD (inconsistent)

RF 0.978† 1.642
GPRBF 1.224 1.364†
GParc0 1.280 1.460
GParc1 1.266 1.428
GParc2 1.286 1.426
GPMatérn32 1.275 1.427
GPMatérn52 1.275 1.425
GPRQ 1.271 1.442

Table 2: Intrinsic evaluation results. GParc0,
GParc1, and GParc2 denote GP using an Arcco-
sine kernel with orders of 0, 1, and 2. GPMatérn32,
GPMatérn52, and GPRQ denote GP using Matérn32,
Matérn52, and RQ, respectively. The best result is
indicated in bold, and marked with “†” if the im-
provement is statistically significant (based on a
one-tailed Wilcoxon signed-rank test; p < 0.05).

Log Predictive Density (“NLPD”) as an alterna-
tive metric, which is commonly used in the lit-
erature (Chalupka et al., 2013; Hernández-Lobato
and Adams, 2015; Beck et al., 2016) to evaluate
probabilistic regression models.

Given a test set containing the input and its ref-
erence score (xi, yi), NLPD is defined as

NLPD = − 1

n

n∑

i=1

log p(ŷi = yi|xi),

where n is the number of test samples and p(ŷi|xi)
is the predictive distribution for input xi. For
Gaussian distributions, NLPD penalises both over-
confident wrong predictions and underconfident
correct predictions.

Results. Table 2 shows the average NLPD over
10 runs on both test sets. Clearly, RFs outperform
GPs on the consistent set while the opposite hap-
pens on the inconsistent set. In general, this shows
that GPs tend to give more conservative predictive
distributions compared to RFs. This is beneficial
when there is label disagreement, and therefore,
high uncertainty over the labels. However, it also
translates into worse performance when labels are
consistent, where the higher confidence obtained
by RFs give better results. In terms of kernels, we
obtained the best results using RBF for both test
sets.

Feature Analysis. To find out which features
contribute most to the performance of our mod-
els, we analyse the lengthscales from GP and the
feature weigths from RF. Figure 3 shows the top
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Figure 3: Feature importance values in the GP
model (left) and RF model (right) . A full descrip-
tion of all features can be found in Dang and Ignat
(2016a) and Shen et al. (2017).

five features in each model: four of those shared
by both GP and RF, indicating their importance
as quality indicators in both methods. In particu-
lar, the length of an article is a consistently good
indicator: a possible explanation is that short ar-
ticles lack enough content to be considered high
quality articles. The presence of structured indica-
tors such as number of references and non-citation
templates is also interesting, as it is evidence of
the contribution of non-textual information in the
quality assessment process.

4.2 Point Estimate Comparison
In terms of point estimates, the state-of-the-art in
our task is a neural model based on a BILSTM ar-
chitecture (Shen et al., 2017). As we model qual-
ity prediction of Wikipedia articles as a regression
problem, where a linear transformation is used as
the final layer instead of a softmax, the neural net-
work model does not provide predictive distribu-
tions, limiting their applicability in the scenarios
which we focus on in this work. However, to put
our proposed methods into perspective, we com-
pare their performance with these neural models
in terms of point estimates. Specifically, we use
the mean of the distributions for both GP and RF
as predictions and use standard regression metrics
(RMSE and Pearson’s r correlation) to assess the
performance of our models against BILSTM.

For the GP model, we restrict our evaluation in
this section (and in the remainder of this paper)
to the one with an RBF kernel, as it performed
significantly better in Section 4.1. We compare
with two BILSTM models: (1) with pre-trained
word embeddings, using GloVe (Pennington et al.,
2014) (“BILSTM+” hereafter); and with ran-
domly initialised word embeddings (“BILSTM−”
hereafter). See Shen et al. (2017) for a detailed
description of all hyperparameters.

Results. From Table 3, we see that while
BILSTM+ outperform our methods in the consis-

consistent inconsistent
RMSE r RMSE r

BILSTM+ 0.795† 0.897† 0.951 0.522
BILSTM− 0.810 0.891 0.936 0.548†
RF 0.805 0.892 0.942 0.527
GPRBF 0.822 0.887 0.932 0.545

Table 3: Point estimate comparison results.

tent set, the difference is small and we obtain good
results nevertheless. In particular, correlation is
close to 0.9 for all methods. Therefore, we can see
that GPs and RFs obtain comparable results with
the state-of-the-art while providing additional in-
formation through the predictive distributions.

The importance of having distributions as pre-
dictions becomes clear when we see the results for
the inconsistent set, in Table 3. Here, not only
do GPs perform on par with the BILSTM mod-
els, but the overall correlation is much lower (be-
tween 0.52 and 0.55). This highlights the harder
task of predicting quality labels under disagree-
ment, which further motivates the additional un-
certainty information coming from predictive dis-
tributions.

4.3 Prediction of Secondary Labels

As explained in Section 2.2, the inconsistent ar-
ticles are ones where the primary label is in dis-
agreement with the secondary ones, from different
Wikipedia Projects. In this section, we assess how
our models fare under a transfer scenario, where
the goal is to predict these secondary labels. Such
a scenario can be useful, for instance, if we want
to incorporate information from Projects to decide
the quality of a document.

To measure the performance with secondary la-
bels as references, one option is to aggregate the
labels of an article into a single one (through vot-
ing or averaging, for instance) and use that value
as the reference. Instead, we opt to embrace the
disagreement, and propose a weighted extension
of NLPD, namely wNLPD, which we define as

wNLPD = − 1

n

n∑

i=1

log

mi∑

j=1

wjp(ŷi = yj |xi),

where mi is the number of secondary labels for
article xi, and wj is the weight for label j.
If we have prior information about the reliabil-
ity of some label sources (for instance, different
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wNLPD wRMSE

RF 1.460 1.158
GPRBF 1.412† 1.152†

Table 4: Results for prediction of secondary labels.

Wikipedia Projects), one can plug this informa-
tion into the weights. Here we assume equal relia-
bility and use uniform weights wj = freq(j)/mi,
where freq is the count of label j among secondary
labels. The metric degrades to standard NLPD
when labels are consistent. We also evaluate point
estimate performance using a similar weighting
scheme for RMSE (which we denote as wRMSE).

Results. Table 4 summarises the results. Notice
that in this setting we only report results for the in-
consistent test set, as the consistent one has no dis-
agreement (and therefore, numbers would match
the ones in Section 4.1). Here we also see that
GPs achieve significantly better performance than
RFs, although by a much lower margin compared
to the results on the primary labels (Table 2). This
reflects the harder aspect of this setting. We hy-
pothesize we can obtain better performance in this
scenario by incorporating the secondary labels at
training time, which we leave for future work.

4.4 Case Study: Quality Prediction as
Filtering for Manual Revision

As mentioned in Section 1, one use for a quality
prediction system is to filter documents for man-
ual revision. In the case of Wikipedia, such revi-
sions are mandatory for articles to be assigned as a
Good Article or a Featured Article. This incurs in
an asymmetric risk: the cost of mispredicting an
article as GA and FA is higher than other labels,
as these trigger expensive, manual labour. Such a
scenario can be modelled through asymmetric loss
functions (Varian, 1975).

If a quality model provides predictive distribu-
tions, one can obtain optimal quality decisions
under an asymmetric loss function through the
framework of Minimum Bayes Risk (MBR). This
setting has been studied before by Christoffersen
and Diebold (1997) and more recently applied by
Beck et al. (2016) in the context of machine trans-
lation post-editing. However, these assume a re-
gression scenario. While we employ regression
models in our work for ease of modelling reasons,
the final decisions in the pipeline are discrete (al-
though still ordinal).

Figure 4: Discretisation of a continuous predictive
distribution. The shaded area shows the probabil-
ity of quality label Start (−1.5).

To adapt the MBR framework into our case, we
first define the risk δ(q) of predicting the quality
label q as

δ(q) =
∑

q̂

L(q̂, q)p(q̂|x),

where L(q̂, q) is an (asymmetric) loss function
over the discrete quality labels and p(q̂|x) is the
discretised probability of quality label q̂ for doc-
ument x under one of our proposed models. We
detail these two terms below.

Discretised distribution Given a predictive dis-
tribution obtained by a regression model we can
discretise it by using the cumulative density func-
tion (cdf). Define `(q̂) as the real value which
we encode quality label q̂, as described in Sec-
tion 3. With this, we obtain the discretised proba-
bility mass function

p(q̂|x) =





1− cdf(`(q̂)− 0.5) if q̂ = FA
cdf(`(q̂) + 0.5) if q̂ = Stub
cdf(`(q̂) + 0.5)− cdf(`(q̂)− 0.5) otherwise,

where the cdf is obtained from the predictive dis-
tribution. As we only consider Gaussian distri-
butions for predictions, we can easily use off-the-
shelf implementations to obtain the cdf. Figure 4
gives an example of how to obtain the probability
of an instance being predicted to be Start (−1.5).

Asymmetric loss function To incorporate
asymmetry into the quality label prediction, we
define it as

L(q̂, q) =





0 if q̂ = q
α if q̂ 6= q, q̂ /∈ S, q ∈ S
1 otherwise

,
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Figure 5: Asymmetric risk vs. α (best viewed
in color). Here, GPcon/RFcon denote risk val-
ues achieved by GP/RF over consistent arti-
cles, respectively; GPinc/RFinc denote risk values
achieved by GP/RF over inconsistent articles.

where S is a high-risk label set and α > 1 is the
penalty associated with a higher risk prediction. In
our scenario, we set S = {GA,FA}, as these are
the labels we want to give larger penalties when
there is a misprediction. Notice that this loss is
only an example tailored to our specific setting:
other scenarios might warrant different definitions.

Evaluation Under a deployment scenario, one
would evaluate δ(q) for all possible 6 labels and
choose the one with minimum risk. However,
since in our case we have access to true test set
labels, we can just average all δ(q) for the gold
labels q in order to assess the models we are inter-
ested in (GPs and RFs). As in the previous sec-
tions, we report average results over 10 runs for
both consistent and inconsistent test sets.

Results. In Figure 5 we plot the average risk
while varying the penalty cost α. As in the in-
trinsic evaluation result, we see that GPs tend to
perform better in the inconsistent set. On the other
hand, the results in the consistent set are very sim-
ilar, and no conclusions can be made about which
method performs best. Overall, the results are
favourable towards GPs but the inconclusive re-
sults for consistent labels shows that there is room
for improvements in uncertainty modelling, which
we leave for future work.

5 Related Work

The quality assessment of Wikipedia articles is a
task that assigns a quality label to a Wikipedia
article, reflecting the quality assessment pro-
cess carried out by the Wikipedia community.

Hand-crafted feature-based approaches use fea-
tures from the article itself (e.g., article length),
meta-data features (the number of revisions of an
article), and a combination of these two. Various
features derived from Wikipedia articles have been
used for assessing the quality of Wikipedia arti-
cles (Blumenstock, 2008; Lipka and Stein, 2010;
Warncke-Wang et al., 2013, 2015; Dang and Ig-
nat, 2016a). For example, Blumenstock (2008)
and Lipka and Stein (2010) use article length and
writing styles (represented by binarised charac-
ter trigram features) to differentiate FA articles
from non-featured articles, respectively. Warncke-
Wang et al. (2015) proposed 11 structural features
(such as the number of references and whether
there is an infobox or not) to assess the quality of
Wikipedia articles. Dang and Ignat (2016a) fur-
ther proposed nine readability scores (such as the
Flesch reading-ease score (Kincaid et al., 1975))
to assess the quality of Wikipedia articles. Based
on these last two studies, an online Objective Re-
vision Evaluation Service has been built to mea-
sure the quality of Wikipedia articles (Halfaker
and Taraborelli, 2015). Features derived from the
meta-data of Wikipedia articles — e.g., the num-
ber of revisions a Wikipedia article has received
— have been proposed to assess the quality of
Wikipedia articles (Stvilia et al., 2005; Stein and
Hess, 2007; Adler et al., 2008; Dalip et al., 2009,
2017, 2014). For example, Stein and Hess (2007)
and Adler et al. (2008) use the authority of editors
to measure the quality of Wikipedia articles, as de-
termined by the quality of articles they edited.

Different neural network architectures have
been exploited to learn high-level representations
of Wikipedia articles. For example, Dang and
Ignat (2016b) use a distributed memory version
of Paragraph Vector (Le and Mikolov, 2014) to
learn Wikipedia article representations, which are
used to predict the quality of Wikipedia articles.
Dang and Ignat (2017) and Shen et al. (2017) ex-
ploit LSTMs (Hochreiter and Schmidhuber, 1997)
to learn document-level representations to train a
classifier and predict the quality label of an un-
seen Wikipedia article. Observing that the vi-
sual rendering of a Wikipedia article can cap-
ture implicit quality indicators (such as images
and tables), Shen et al. (2019) use Inception V3
(Szegedy et al., 2016) to capture visual represen-
tations, which are used to classify Wikipedia arti-
cles based on their quality. They further propose
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a joint model, which combines textual representa-
tions from bidirectional LSTM with visual repre-
sentations from Inception V3, to predict the qual-
ity of Wikipedia articles.

Beck et al. (2016) explore prediction uncer-
tainty in machine translation quality estimation
(QE), where post-editing rate is the dependent
variable. In QE, the post-editing rate — which
is computed by dividing the post-editing time by
the length of the translation hypothesis — is a
positive real value. The performance of a GP
model was studied in both underestimate and over-
estimate scenarios. Beck and Cohn (2017); Beck
(2017) employ GPs to model text representation
noise in emotion analysis, where Pearson’s corre-
lation and NLPD are used as the evaluation met-
rics. Our work is different from these two stud-
ies as we model the subjectivity of quality assess-
ment explicitly, which can mimic people’s differ-
ent opinions over the quality of a document.

There is also a rich body of work on identify-
ing trustworthy annotators and predicting the cor-
rect underlying labels from multiple annotations
(Hovy et al., 2013; Cohn and Specia, 2013; Pas-
sonneau and Carpenter, 2014; Graham et al., 2017;
Paun et al., 2018). For example, Hovy et al. (2013)
propose an item-response model to identify trust-
worthy annotators and predict the true labels of
instances in an unsupervised way. However, our
task is to measure the uncertainty of a model over
its predictions (as distinct from attempting to learn
the “true” label for an instance from potentially
biased/noisy annotations), in addition to correctly
predicting the gold label, in the context of as-
sessing the quality of Wikipedia articles. Addi-
tionally, we have a rich representation of the data
point (i.e. document) that we are attempting to
label, whereas in work on interpreting multiply-
annotated data, there is little or no representation
of each data point that has been annotated. Finally,
we do not have access to the IDs of annotators
across documents, and thus cannot model anno-
tator reliability or bias.

6 Conclusion and Future Work

In this paper, we proposed to measure the un-
certainty of Wikipedia article quality assessment
systems using Gaussian processes and random
forests, utilising the NLPD evaluation metric to
measure performance over consistent and incon-
sistent articles. Experimental results show that

both GPs and RFs are less certain over inconsis-
tent articles, where people tend to disagree over
their quality, and GPs are more conservative in
their predictions over such articles. To imitate a
real world scenario where decision-making pro-
cesses based on model predictions can lead to
different costs, we proposed an asymmetric cost,
which takes the prediction uncertainty into consid-
eration. Empirical results show that GPs are a bet-
ter option if overestimates are heavily penalised.

In the future, we are interested in conducting a
user study to find out how Wikipedians respond to
the utility of uncertainty information provided to
them. On the modelling side, having equal inter-
vals between adjacent quality classes is a heuristic,
which is potentially inappropriate in the case of
Wikipedia. Thus we are also planning to model the
quality assessment of Wikipedia articles as an or-
dinal regression problem, where the gap between
adjacent quality labels can vary.
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Abstract

Approaches to knowledge extraction (KE) in
the health domain often start by annotating text
to indicate the knowledge to be extracted, and
then use the annotated text to train systems to
perform the KE. This may work for annotat-
ing named entities or other contiguous noun
phrases (drugs, some drug effects), but be-
comes increasingly difficult when items tend
to be expressed across multiple, possibly non-
contiguous, syntactic constituents (e.g. most
descriptions of drug effects in user-generated
text). Other issues include that it is not al-
ways clear how annotations map to actionable
insights, or how they scale up to, or can form
part of, more complex KE tasks. This paper
reports our efforts in developing an approach
to extracting knowledge about drug nonadher-
ence from health forums which led us to con-
clude that development cannot proceed in sep-
arate steps but that all aspects—from concep-
tualisation to annotation scheme development,
annotation, KE system training and knowl-
edge graph instantiation—are interdependent
and need to be co-developed. Our aim in this
paper is two-fold: we describe a generally ap-
plicable framework for developing a KE ap-
proach, and present a specific KE approach,
developed with the framework, for the task
of gathering information about antidepressant
drug nonadherence. We report the conceptual-
isation, the annotation scheme, the annotated
corpus, and an analysis of annotated texts.

1 Introduction

Depression is experienced by 1 in 4 people in the
UK. More than two thirds of patients are mostly
managed with antidepressant medication, yet non-
adherence rates are very high. One study found
that 4.2% of patients who were prescribed antide-
pressants did not take them at all, and 23.7% filled
only a single prescription (van Geffen et al., 2009).
Nonadherence is a major obstacle in the effective

treatment of depression, but cannot currently be
predicted or explained adequately (van Dulmen
et al., 2007). An influential WHO report (Sabaté
et al., 2003) concluded: “[i]ncreasing the effec-
tiveness of adherence interventions may have a far
greater impact on the health of the population than
any improvement in specific medical treatments”.
Nonadherence is hard to investigate via controlled
studies meaning alternative sources of information
are needed. Recent results indicate a strong sig-
nal relating to usage of psychiatric medications on
health forums and social media (Tregunno, 2017),
and that social media users report nonadherence
and reasons for it (Onishi et al., 2018).

The work reported in this paper aimed (i) to de-
velop a conceptualisation of the information space
around drug nonadherence, defining the relevant
concepts, properties and relations; (ii) to develop
an annotation scheme based on the conceptualisa-
tion; (iii) to annotate a corpus of depression health
forum posts with the scheme; and (iv) to use the
annotated data to examine the prevalence, and co-
occurrence, of different kinds of nonadherence in-
formation (testing signal strength). We examine
the interdependent and mutually constraining re-
lationship between conceptualisation, annotation
scheme and knowledge extraction processes.

The ultimate goal is to perform automatic
knowledge extraction (KE) in order to provide
valuable non-adherence information from a large
sample about why and how non-adherence occurs.
We hope this will in turn lead to better prescribing,
better adherence and more informed discussions
between patient and prescriber around medication.

2 Nonadherence and Health Forums

Different terms have been used to describe the
“suboptimal taking of medicine by patients”
(Hugtenburg et al., 2013). Among these, non-
compliance and nonadherence both mean not tak-
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Quitting your meds can be awful, for sure. I started trying to get off Zoloft by myself 5 years ago. I went cold
turkey which was a complete disaster. Next I tried cutting down by large amounts which was slightly less of a
disaster. Finally I tapered off very slowly. ONE WHOLE YEAR to get from 200mg to zero. With the tapering off
the brain zaps were much less severe. Simply takes a long time to wean yourself off these drugs.

I reduced my mirtazapine from 45mg first to 30mg, and then to 15mg, then stopped it altogether. After two weeks
I was feeling awful so I decided to restart it at 15mg.

So I stopped Fluoxetine about a month ago sort of by accident. After I missed a few doses I just decided to keep
going. So far I’ve only had rather minor symptoms. One of my symptoms has been an electric shock sensation
from my brain down my spine/body. This happens especially when I get up, sit down or move suddenly.

Last week my doctor increased my Lamictol dosage to 200 MG. I am beginning to notice serious cognitive deficits.
For example constantly losing/misplacing things.. Has anyone else experienced this situation?

Figure 1: Four example depression forum posts created to closely resemble real posts.

ing a drug as instructed (the intended meaning
in the present context), but nonadherence is the
term now preferred as reflecting a more equal
prescriber-patient relationship (Hugtenburg et al.,
2013). Two types of nonadherence are distin-
guished, intentional, where a patient “actively de-
cides” not to follow instructions, and unintentional
nonadherence, including forgetting and not know-
ing how to take a drug (Hugtenburg et al., 2013).

Consider the four example posts from health
forums for specific antidepressants in Figure 1.
Some of the sentences contain explicit statements
that the modifications described were instigated by
the patient (“I started trying to get off Zoloft by
myself 5 years ago”; “After two weeks I was feel-
ing awful so I decided to restart it at 15mg”; “So
I stopped Fluoxetine about a month ago sort of by
accident”). Other modifications described in the
first three posts (unlike in the fourth) are likely to
also have been instigated by the patient, but clini-
cian involvement cannot be ruled out.

These are typical examples of how patients talk
about nonadherence in health forums: explicit
statements (‘my doctor told me to do one thing,
but I did another’) are rare (7% of posts on the
depression forums we have been looking at, see
also Section 5). More typically, a drug modifica-
tion is described along with the side effect and/or
other reason(s) that gave rise to it, but the extent to
which the prescribing physician was involved in
deciding to make the modification can only be in-
ferred, with varying degrees of certainty, from the
language, or on the basis of medical knowledge
(e.g. a modification is known to be dangerous).

3 Conceptualisation and KE Task

Posts like the ones in Figure 1 clearly contain in-
formation about the why and how of drug nonad-

herence, but how can it be automatically extracted
and rendered useful? In this section we discuss
the main issues in developing a knowledge extrac-
tion (KE) approach for a specific domain and a
specific KE task, nonadherence event extraction in
our case. To introduce the different components in
developing an approach to KE (overview see Fig-
ure 2, we use as an illustrative running example the
simpler task of drug effect extraction which is—in
contrast to the far more complex task of nonad-
herent event extraction we are addressing here—
already a well established research task1 (Leaman
et al., 2010; Nikfarjam et al., 2015). Drug effect
detection is an important subtask of nonadherence
event extraction, because drug effects as perceived
by the patient play an important role in nonadher-
ence and are often the reason for it. The last post in
Figure 1 is a typical example, containing a claim
that a drug referred to as “Lamictol”, is causing an
effect described as “cognitive deficits”.

3.1 From Text to Meaning
Suppose that we have a method capable of iden-
tifying drug and effect mentions in text and de-
termining which ones are linked (i.e. which drug
causes which effect), and that we extract a linked
drug and effect pair from the fourth post in Fig-
ure 1 for which we could choose the following
notation: cause(“Lamictol”,“cognitive deficits”).
Suppose from this and other posts we extract five
such linked pairs as follows:

cause(“Lamictol”,“serious cognitive deficits”)
cause(“Lamictol”,“constantly losing/misplacing

things”)
cause(“Lamictal”,”uncoordinated”)
cause(“lamotrigine”,”so forgetful”)
cause(“Lamotrigene”,”keep losing my phone and

going upstairs and forgetting what for”)

(1)

1See e.g. Task 2 at this year’s SMM4H Shared Task event:
https://healthlanguageprocessing.org/smm4h/challenge/

203



If this was the actual output of our method, it
would be nothing more than a list of drug-effect
mentions in a given set of texts, possibly with
counts of multiple occurrences of identical men-
tions (none in Example 1 above). One important
type of knowledge would be entirely inaccessible,
namely that the above five pairs in fact all claim
the same side effect for the same drug (lamot-
rigine, a mood-stabilising medication sometimes
prescribed for depression).2 In order to extract
that knowledge (crucial to be able e.g. to act upon
side effect reports depending on novelty or report
frequency), the identified word strings need to be
mapped to a more abstract level of representation
where knowledge is encoded in terms of concepts,
rather than word strings. It is only once this pro-
cess, known as entity linking3 (Han et al., 2011;
Hachey et al., 2013; Rao et al., 2013; Smith et al.,
2018), has been performed that the five linked
pairs above can be interpreted as five mentions of
the same drug effect. In this crucial step, we move
from extracting word strings (surface representa-
tions) to extracting concept structures (meaning
representations); from something that can be com-
pared in terms of string similarity and counted, to
something that can be incorporated into a knowl-
edge graph and reasoned about.

3.2 Concept Model and KE Template

In the case of drug effect extraction it is clear
what we want to extract, and how it is struc-
tured. A very simple conceptualisation suffices to
express that understanding: a single parent con-
cept, drug effect, consisting of a drug, an effect
and a causal relation, possibly implicit. Depend-
ing on application context, further concepts, such
as duration or severity, could also be added (these
would be required e.g. if the application task was
automatic completion of Yellow Card reports).
One of many possible notations for this conceptu-
alisation is the following (for a complete concept
model the range of possible values of the compo-
nent concepts would also have to specified):

DRUG EFFECT [DRUG; EFFECT; SEVERITY; DURATION ] (2)

The above can be seen as providing both a concept
model representing a piece of domain knowledge,

2Whether they are considered the same depends on the
concept set linked to, in our case SIDER (Kuhn et al., 2015).

3A.k.a. normalisation, e.g. for adverse effect normalisa-
tion see Task 3 at this year’s SMM4H Shared Task event:
https://healthlanguageprocessing.org/sm m4h/challenge/

Figure 2: Components in developing KE approach.

and a template to be instantiated by a specific KE
tool (depending on the application task, only sub-
sets of concepts might be used for KE). A possible
instantiation produced by a KE tool via entity de-
tection and linking for the last post in Figure 1 is
the following (initial underscores indicating termi-
nal concepts as opposed to word strings):

DRUG EFFECT [
DRUG= lamotrigine;
EFFECT= confusional state;
SEVERITY= moderate;
DURATION= continuous; ]

(3)

In order to produce the above we have to have cre-
ated a suitable conceptualisation (concept model),
a KE template, a KE task construal and methods
for implementing it, here detecting word spans
corresponding to the above concepts and for map-
ping the word spans to concepts. In order to be
able to do the latter, we also need texts which have
been labelled for entities such as drugs and effects
and the links between them. All these aspects are
shown to the left of Figure 2 which provides an
overview of elements and steps involved in devel-
oping a KE approach. In the next sections we look
at how conceptualisation and annotation scheme
interact with possible KE tasks (Section 3.3), fol-
lowed by issues in determining the details of the
annotation scheme (Section 3.4).

3.3 Text Annotation and KE Task
Useful one-off analysis can be conducted on the
basis of manual mark-up of text, but for knowl-
edge extraction from large quantities of new texts,
automatic processes are needed. Two common
types of KE model are word sequence (post, sen-
tence, phrase, etc.) classifiers and labellers. These
tend to be supervised models, i.e. they require la-
belled training data the creation of which, espe-
cially initially, requires human annotation effort.

How the data is annotated limits what kind of
KE tasks and models it can be used for. Con-
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versely, aiming for a particular KE task has im-
plications for the kinds of annotations that are
needed. For the KE task described above, i.e.
mapping from health forum posts (Figure 1) to
instantiated KE templates (Example 3), the most
straightforward way to interpret the annotation
task would be to annotate each post (as a whole)
with an instantiated KE template for every men-
tion of a drug effect contained in the post. How-
ever, this would make the annotators’ task cog-
nitively extremely challenging (requiring multiple
judgments to be made in conjunction), and very
time-intensive (involving look up of concepts in
databases and inventories). Moreover, it is not ob-
vious how to define a corresponding KE modelling
task and training regime. It is also not feasible to
define one output class for each possible instanti-
ated template, because that would lead to an un-
manageable combinatorial explosion of classes.

In the relatively simple case of adverse drug ef-
fect extraction, the divide-and-conquer approach
that tends to be used instead (Nikfarjam et al.,
2015; Metke-Jimenez and Karimi, 2016) con-
strues the task, as mentioned above, as a sequence
of subtasks, first identifying all mentions of drugs
and effects in the text, then linking them to con-
cepts and to each other. For the first step to be pos-
sible, drug mentions and effect mentions need to
be identified in the text, for which corresponding
mark-up needs to be available in the training data.
Similarly, any links between the marked up enti-
ties also need to be present in the annotations. The
identified text strings can then be mapped (linked)
in a separate step to drug (e.g. lamictol) and ef-
fect (e.g. confusional state) concepts, potentially
with separately retrained off-the-shelf tools.

The above discussion points to an annotation
scheme involving a DRUG concept (but not con-
cepts for individual drugs), and an EFFECT con-
cept (but not concepts for specific effects), and for
corresponding labels to be inserted into texts as
mark up. However, more issues arise when map-
ping these conclusions to an annotation scheme.

3.4 Towards an Annotation Scheme

Some of the questions that arise in text annota-
tion are (1) whether conceptually grounded anno-
tations should attach to word strings (a) with the
meaning ‘these words together express the given
concept’, or (b) with the meaning ‘somewhere in
this text there is an occurrence of the concept’;

(2) whether labels should be (a) terminal concepts
(e.g. lamictol) or (b) classes of terminal concepts
(e.g. Drug); (3) how to treat instances where an
entity or event is mentioned, but is not asserted to
have occurred or have been observed, which hap-
pens e.g. with negation, questions or hypothetical
considerations; and (4) how to present the task to
annotators in such a way that the cognitive load is
within manageable limits and annotations can be
replicated with sufficient consistency.

Not all concepts can clearly and easily be asso-
ciated with specific words in the text. While men-
tions of a drug or effect entity always have cor-
responding words in the text (entity annotations
fall under (1a) above), this is not necessarily the
case of concepts naturally seen as relations be-
tween other concepts. Consider again the last post
in Figure 1: there are no substrings that can be as-
sociated with Lamictol causing cognitive deficits.
Rather, it is the first two sentences in their en-
tirety that imply (but do not state explicitly) the
causal link. It tends to be considered not appro-
priate to mark up such relations in text, and they
attach instead to one or more already marked up
word strings (meaning they fall under (1b) above).

Regarding (2) above, aside from the issues
raised in Section 3.3, available resources are a
deciding factor: e.g. it would take annotators far
longer to determine the specific drug concept la-
bel for a drug mention than it would to simply la-
bel each such mention with a generic drug label.

Regarding (3), while KE would typically aim
to extract information with factual status from text
(e.g. all drug effects patients claim to have expe-
rienced), far from all mentions of such informa-
tion have factual status (drug effect mentions an be
negated, part of a question, etc.). Simply treating
e.g. a negated drug effect as not a drug effect is un-
likely to be helpful in a machine learning context,
because negated and non-negated versions will
look identical except for a negation marker else-
where in the text, potentially resulting in a large
number of spurious negative examples. It is more
likely to help generalisation to treat all drug effect
mentions identically, and to additionally mark up
in annotations, and subsequently learn, the charac-
teristics of negation. The same holds for generali-
sations, questions and similar phenomena.

Regarding (4), it is virtually impossible to
achieve perfect consistency between annotators,
or even self-consistency, with mark-up annotation
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DRUG NONADHERENCE [
+DRUG MODIFICATION [ instigated by = patient

intentional || patient unintentional ] ]

DRUG MODIFICATION [
drug : Drugs
change : DOSE CHANGE || FORM CHANGE || PROD

UCT CHANGE
+reason : DRUG EFFECT || DRUG PROPERTY ||

Other Reason
instigated by : Instigator
+mod effect : EFFECT || Other Outcome ]

DOSE CHANGE [
?from dose : ( Numbers, Units, Time Span )
?to dose : ( Numbers, Units, Time Span )
dose mod type : DoseModTypes ]

FORM CHANGE [
?from form : Form Types
?to form : Form Types ]

PRODUCT CHANGE [
?from product : Drug Products
?to product : Drug Products ]

DRUG EFFECT [
drug : Drugs
medDRA preferred term : MPTs
duration : ( Numbers, Units )
severity : Severity Levels ]

DRUG PROPERTY [
drug : Drugs
property : Drug Properties ]

Drugs = {x|x is a drug entry in SIDER}
Drug Products = {x|x is a drug product entry in SIDER}
MPTs = {x|x is an MPT entry in SIDER}
Drug Properties = { effective, ineffective, like, dis-

like, cheap, expensive, ...}
Numbers = {x|x ∈ IR}
Units = { ml, mg, ...}
Time Span = { halfday, day, week, ...}
Form Types = { tablet, powder, solution, cream, ...}
DoseModTypes = { start, stop, increase, decrease}
Other Reason = { life event, insurance financial,

view belief, ...}
Instigator = { patient intentional, patient unintentional,

clinician, both together, other}
Other Outcome = { negative, positive, neutral}
Severity Levels = { mild, moderate, severe}

Figure 3: Nonadherence concept model (UML-like no-
tation). + = 1 or more; || = xor; ? = at least 1 of two.

schemes. For simpler concepts corresponding to
fewer possible word strings, such as named enti-
ties of type drug, issues are comparatively simple,
and inter-annotator agreement (IAA, the extent to
which annotators agree where drug mentions be-
gin/end) would be high. As is apparent even in the
simple example word strings in Example 1, there
is comparatively higher variation in word strings
describing side effects: if the last two examples

were extracted from the longer strings I’m being
so forgetful and I just keep losing my phone..., re-
spectively, in our experience there tends to be con-
siderable variation among annotators about where
to place the start of the effect mention.

One way to address this is to ensure that the
concepts underlying annotation labels are highly
coherent and crisply defined, so that there is high
concurrence among annotators in how to interpret
and apply them. This underlines the need to co-
develop conceptualisation and annotation scheme,
because they provide the formal grounding that
can help ensure coherence and crispness. For high
IAA, the tasks annotators are asked to perform
need to be focused and homogeneous, and the vi-
sual interfaces as uncluttered as possible. If this is
not the case it can make the task too difficult, and
also quickly lead to frustration among annotators.

4 An Approach to Nonadherence KE

In this section, we scale up the insights from Sec-
tion 3 to an approach to knowledge extraction
(KE) in the nonadherence domain, a substantially
more complex task than drug effect detection. We
adopt the definition of nonadherence as not taking
a drug as instructed (Section 2), and assume that
the relationship between a patient and a drug starts
with a prescription and instructions issued by a
clinician. We see nonadherence as one or more
modifications to the original prescription regimen,
or to a previous modification, made without the
approval of the prescribing clinician. Our first task
then is to model the concept of modification, after
which we can define nonadherence as modifica-
tions instigated by the patient. Our goal is to de-
sign a concept model, KE template and annotation
scheme for nonadherence that support KE meth-
ods that extract information about the how and why
of drug nonadherence.

4.1 Concept Model

Information about how and why nonadherent drug
modifications occur will necessarily involve a spe-
cific drug. To address the how part, we need
to know what type of modification was carried
out. Nonadherent modifications in all examples
we have encountered involve some change to the
dose that is taken, if stopping, starting and forget-
ting to take a drug are considered dose modifica-
tions. Other types of modifications also apply to
drug form (tablet, capsule, etc.), or drug brand
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(e.g. generic vs. branded). To address the why part,
we also need to know the reason for the modifica-
tion and its effect, because it often becomes the
reason for a further modification. Our nonadher-
ence concept model is shown in Figure 3. Starting
from the top, it defines drug nonadherence as one
or more drug modifications instigated by the pa-
tient either intentially or unintentionally. A drug
modification is composed of a drug, a change, op-
tionally a reason and an effect, plus a specifica-
tion of instigation. A reason is either a drug effect,
drug property or another reason. A drug effect is
as defined in Section 3; a drug property identifies
the drug it relates to and covers non-effect proper-
ties such as cost, how well it works and whether
the patient likes it. Other reasons include reasons
relating to life events, insurance issues and beliefs
held by the patient. Others are possible, and as
indicated in the model, we have not defined a fi-
nal set of terminal concepts for some of the preter-
minals (preterminal concepts are indicated by ital-
ics). In order to define the possible terminal con-
cepts for the preterminal drugs, drug products and
effects concepts, we use the SIDER knowledge
base (Kuhn et al., 2015).

4.2 KE Template and Task
The concept model in Figure 3 is task-agnostic.
For the specific task of nonadherence event extrac-
tion from health forum posts it needs to be mapped
to a KE template, task specification and annotation
scheme that are necessarily task-specific. Follow-
ing inspection of about 200 random texts from our
corpus of 150K posts (Section 5), and based on
the concept model above, we construe the nonad-
herence KE task as follows:

1. Binary classification of posts into first person narration vs.
others.

2. Binary classification of posts into containing modification
mentions vs. others.

3. Anaphora resolution: replace drug, drug form and drug
dose anaphora with full references.

4. Entity detection: drug, dose, effect, modification.

5. Entity linking: drug, effect, modification (yielding modi-
fication type); text normalisation: dose.

6. Topic segmentation: drug related, other.

7. NE relation detection via binary classification (applied to
drug-related topic fields only):

• drug, dose, context→ dose of?
• drug, effect, context→ drug effect?
• dose, effect, context→ dose effect?
• modification, drug, context→ drug modification?
• modification, dose, context→ drug modification?

• drug modification, effect, context→ mod reason?
• drug modification, context→ clinician, patient in

tentional, patient unintentional, both together,
not stated?

• drug modification, context→ stop, start, increase,
decrease, unclear?

Note that we do not currently include product or
form changes in the task construal. Moreover, we
are leaving identification of drug properties, and
modification reasons other than effects to future
work. While the first six tasks above would need to
be implemented, in this order, in a pipeline, there
is no intention to imply that the subtasks under (7)
would be implemented separately and in a specific
order. Rather, there is likely to be benefit from
jointly modelling some or even all of them.

The above KE process is aimed at filling KE
templates derived from the concept model in Fig-
ure 3 (and the annotation scheme in the next sec-
tion). Initially, we are using the following tem-
plate for each drug modification identified by the
KE process, here instantiated for the second and
third sentences in the first post in Figure 1:

DRUG MODIFICATION [
DRUG= sertraline;
DOSE= unknown;
MOD REASON= unknown;
MOD TYPE= stop;
INSTIGATED BY= patient intentional; ]

(4)

Ideally we would also like to extract information
about the severity and duration of drug effects, and
the order in which they occur, but have had to ex-
clude those for the time being as infeasibly hard
from health forum posts.

4.3 Nonadherence Annotation Scheme
The annotation scheme we have devised to match
the concept model, KE task and KE template
above, consists of 8 entities and 3 events, as shown
in Figure 4. The entities are annotated as labels at-
tached to identified word strings in the text, with
the meaning of (1a) in Section 3.4. Events are not
associated with word spans, but link two or more
entities; events also have sets of attributes.

In order to minimise cognitive load for our
annotators, we made several implementational
choices that are not reflected in Figure 4, partly
influenced by the brat evaluation tool we are us-
ing for annotating texts.4 E.g. we annotated
DRUG EFFECT and DRUG PROPERTY events in one
round, and DRUG MODIFICATION events in another,

4brat.nlplab.org
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Entities:
Drug, Drugs, Drug Dose, Drug Form, Drug Brand, Drug Effect, Drug Property, Other Reason.
Events:
DRUG EFFECT:

Argument 1: (Drug|Drugs|Drug Form|Drug Dose|Drug Brand)+
Argument 2: Drug Effect.
Attributes (binary, optional): Question, Negation, Generalisation, Speculation, ReducedCertainty.

DRUG PROPERTY:
Argument 1: (Drug|Drugs|Drug Form|Drug Dose|Drug Brand)+
Argument 2: Drug Property
Attributes (binary, optional): Question, Negation, Generalisation, Speculation, ReducedCertainty.

DRUG MODIFICATION:
Argument 1: Drug|Drug Form|Drug Dose|Drug Brand
Argument 2 (reason(s) for modification): (DRUG EFFECT|DRUG PROPERTY|Other Reason)*
Attributes (binary, optional): Question, Negation, Generalisation, Speculation, ReducedCertainty.
Attributes (multiple valued, obligatory):

Instigated By = {not stated, clinician, patient intentional, patient unintentional, both together}.
Mod Type = {increase, decrease, start, stop, unclear}.

Relations:
antecedent: links pronouns and common noun references to their most recent antecedent (named reference).
dose of, form of, brand of: link dose, form and brand mentions to the drugs they relate to.

Figure 4: Nonadherence annotation scheme.

separate round; we annotated antecedent links as
chains of antecedent relations to the nearest full
reference, using all intervening anaphoric refer-
ences, in order to minimise clutter in the interface.

4.4 Agreement among annotators

The scheme was developed in several iterations of
development /testing, each time improving con-
cept model, scheme and Inter-Annotator Agree-
ment (InterAA). For annotations with the final ver-
sion of the scheme we allowed four hours per 50
posts (average post length is 83 words). InterAA
for entities, as measured by averaged brateval
scores (F1 on combined label/span matches) com-
puted on 50 random posts, between our two main
annotators, ranges from 0.74 for Drug Effect, and
0.64 for Drug, to 0.39 for Drug Property. The cor-
responding IntraAA scores are 0.85, 0.8 and 0.75
for one annotator, and 0.75, 0.73, and 0.81 for the
other (numbers for Drug Property indicate anno-
tators are interpreting the guidance differently).

5 Data Collection and Analysis

We opted for arms-length data scraping and de-
identification where a trusted third party scraped
health forum posts, and de-identified the texts,
making available to us the masked version of the
dataset only. The partner accessed and down-
loaded all posts on the 11 drug-specific forums on
www.depressionforums.org at the end of 20 Dec
2018, yielding 148,575 posts. The posts were pro-
cessed and converted to text-only form, forum post
IDs were removed and replaced with new dataset-

specific post IDs, and personally identifiable in-
formation (PII) was masked, e.g. usernames were
replaced by the token [USER] and person names
by [NAME]. In addition, the partner performed
adverse event (AE) (Nielsen, 2011) and sentiment
scoring (Xu and Painter, 2016) for each post. AE
scores express the probability p that the post con-
tains mention of an adverse event (AE), thresh-
olded at p=0.7. Sentiment scores range from -5 to
5, with negative sentiment thresholded at -1, and
positive sentiment at 1, with scores from -1 to 1
indicating neutral sentiment.

Post were distributed over the 11 forums as
shown in Table 1 in terms of number of posts
and percentage of total (columns 2 and 3); also
shown are median post length, percentage of posts
with AEs, and percentages of posts with posi-
tive/negative/neutral sentiment. Some trends can
be observed in Table 1. Post length tends to go up
as forum size increases. Some forums contain sub-
stantially higher rates of AE mentions than others:
prevalence ranges from 47.6% of posts for Abil-
ify, to 63.9% for Citalopram. These correlate to
some extent with sentiment scores: e.g. 22.5% of
Abilify posts were classified as negative in senti-
ment, compared to 28.1% for Citalopram. There
is no correlation (Pearsons r=0.17) between % AE
mention and % positive sentiment; there is a strong
inverse correlation (r=-0.74) between % AE and
% neutral sentiment, and some correlation (r=0.3)
between % AE and % negative sentiment.

We have so far annotated 2,000 posts in Phase 1.
In the annotated posts, there are 3,882 individual
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Forum Posts %-age Median % AE % pos % neg % neut
tokens mention sentim. sentim. sentim.

55-citalopram-celexa-lexapro-escitalopram 31,286 21.1% 87 63.9% 50.2% 21.7% 28.1%
46-other-depression-and-anxiety-medications 21,408 14.4% 80 56.3% 47.7% 24.7% 27.6%
56-wellbutrin-bupropion 20,098 13.5% 93.5 62.6% 51.0% 21.8% 27.2%
53-zoloftlustral-sertraline 19,597 13.2% 87 64.4% 50.2% 21.2% 28.5%
54-effexor-venlafaxine-pristiq-desvenlafaxine 15,014 10.1% 82 63.8% 46.5% 23.1% 30.4%
50-cymbalta-duloxetine 12,439 8.4% 85 62.1% 49.0% 22.0% 28.9%
52-prozac-fluoxetine 11,166 7.5% 80 54.3% 47.7% 23.2% 29.0%
51-remeron-mirtazapine 8,142 5.5% 80 61.4% 51.7% 22.6% 25.7%
57-paxilseroxat-paroxetine 4,476 3.0% 68 52.2% 45.9% 23.4% 30.7%
103-abilify-aripiprazole 3,223 2.2% 56 47.6% 52.2% 25.3% 22.5%
102-viibryd-vilazodone 1,726 1.2% 59 55.7% 42.9% 26.4% 30.7%
Total 148,575 100.0% 83 60.9% 49.2% 22.6% 28.2%

Table 1: Data set statistics, adverse drug event (AE) and sentiment scores.

Drug Drugs Drug Dose Drug Form Drug Effect Drug Property Que. Neg. Gen. Spec. Red.
2,320 216 615 51 2,845 1,037 137 360 313 169 308

Table 2: Occurrence counts for Phase 1 annotations (Que=Question, Neg=Negation, Gen=Generalisation, Spe=
Speculation, Red=ReducedCertainty; see Section 4.3).

Drug Effect and Drug Property annotations alto-
gether. 999 posts have at least one such annota-
tion; 258 posts have exactly 1, 197 have 2, 151
have 3, 108 have 4, and 285 have 5 or more (up to
28). Table 2 presents occurrence counts for enti-
ties and events from Phase 1.

6 Related Research

Structured information resources in health infor-
matics range from ordered lists of terms, glos-
saries and medical thesauri (MeSH5, UMLS (Bo-
denreider, 2004)), to ontologies like SNOMED
CT (Donnelly, 2006) and BioPax (Demir et al.,
2010). Such resources have underlying concept
models, from the very simple (e.g. in a drug list
each entry is a member of the class drug) to the
much more complex, e.g. ontologies incorporating
complex relations, properties and structures.

KE work in health informatics involves implicit
or explicit underlying concept models. Exam-
ples include adverse drug effect detection (Karimi
et al., 2015; Yates et al., 2015), usually involving
two main stages—entity identification and entity
linking—although some simply classify posts as
containing a drug-effect mention or not (Bollegala
et al., 2018). Others have applied further layers
of interpretation such as sentiment extraction, e.g.
headache is negative (Cameron et al., 2013).

Conceptualisations have been developed for
more complex health domains. Mowery et al. clas-
sify posts as containing evidence of depression to

5http://www.nlm.nih.gov/mesh/meshhome.html

yield a first layer of information which is then in-
stantiated by either a specific symptom or psy-
chosocial stressor (Mowery et al., 2015). Other
studies have addressed suicide (Desmet and Hoste,
2014; Huang et al., 2017), flu avoidance (Collier
et al., 2011), cyber-bullying (Van Hee et al., 2015),
and rumours (Zubiaga et al., 2016).

7 Conclusion

In this paper our aim has been to pin down and
clarify the interdependent and mutually constrain-
ing elements involved in developing an approach
to knowledge extraction, encompassing the under-
lying concept model, KE task construal and cor-
responding KE template, as well as the annotation
scheme. We have discussed the issues that arise
when addressing each of the elements, the choices
that need to be made and the trade-offs involved.

All this reflects our experience of developing an
annotation scheme for drug nonadherence. While
we have discussed the steps involved in develop-
ing a KE approach in the context of the nonadher-
ence domain, we found that many of the steps and
issues are not domain-specific, and are also appli-
cable to KE in other domains.
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De Pauw, Véronique Hoste, and Walter Daelemans.
2015. Guidelines for the fine-grained analysis of cy-
berbullying.

Yingzi Xu and Jeffery L Painter. 2016. Application of
classification and clustering methods on mvoc (med-
ical voice of customer) data for scientific engage-
ment.

Andrew Yates, Nazli Goharian, and Ophir Frieder.
2015. Extracting adverse drug reactions from social
media. In Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geral-
dine Wong Sak Hoi, and Peter Tolmie. 2016.
Analysing how people orient to and spread rumours
in social media by looking at conversational threads.
PloS one, 11(3):e0150989.

211



Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 212–216
Hong Kong, Nov 4, 2019. c©2019 Association for Computational Linguistics

What A Sunny Day :
Toward Emoji-Sensitive Irony Detection

Aditi Chaudhary∗ Shirley Anugrah Hayati∗ Naoki Otani∗ Alan W Black
Language Technologies Institute

Carnegie Mellon University
{aschaudh, shayati, notani, awb}@cs.cmu.edu

Abstract

Irony detection is an important task with ap-
plications in identification of online abuse and
harassment. With the ubiquitous use of non-
verbal cues such as emojis in social media, in
this work we study the role of these structures
in irony detection. Since the existing irony de-
tection datasets have <10% ironic tweets with
emoji, classifiers trained on them are insen-
sitive to emojis. We propose an automated
pipeline for creating a more balanced dataset.

1 Introduction

Social media text often contains non-verbal cues,
such as emojis, for users to convey their inten-
tion. Statistics have shown that more than 45%
of internet users in the United States have used an
emoji in social media1. Due to this prevalent usage
of emoji, some works attempt to exploit the oc-
curences of emoji for tackling NLP tasks, such as
sentiment analysis (Chen et al., 2019), emotion de-
tection, and sarcasm detection (Felbo et al., 2017),
as the presence of emoji can change the meaning a
text as an emoji can have positive or negative tone.

We are interested in analyzing the role of emoji
in irony since this specific linguistic phenomenon
is related to sentiment analysis and opinion mining
(Pang et al., 2008). Irony can also relate to more
serious issues, such as criticism (Hee et al., 2018)
or online harassment (Van Hee et al., 2018). Based
on our analysis on existing irony dataset from Se-
mEval 2018 (Van Hee et al., 2018), only 9.2% of
the ironic tweets contain an emoji. Furthermore,
they crawled tweets using irony-related hashtags
(i.e. #irony, #sarcasm, #not). This does not cap-
ture all variations of ironic occurrences, especially
those caused by emojis.

∗ equal contributions
1https://expandedramblings.com/index.php/interesting-

emoji-statistics/

How an emoji changes the meaning of irony
tweets is illustrated by the following example. If
we have this tweet: “What a sunny day ”, it does
not sound ironic. However, “What a sunny day ”
is ironic. From these examples, we can see that we
cannot ignore the importance of emoji to identify
irony.

Due to the sparcity of ironic tweets containing
emoji, our goal is to augment the existing dataset
such that the model requires both textual and emoji
cues for irony detection.

We first analyze the behavior of emojis in ironic
and non-ironic expressions. We find that the pres-
ence of emojis can convert a non-ironic text to an
ironic text by causing sentiment polarity contrasts.
We develop heuristics for data augmentation and
evaluate the results. Then, we propose a simple
method for generating ironic/non-ironic texts us-
ing sentiment polarities and emojis.

2 Related Work

A common definition of verbal irony is saying
things opposite to what is meant (McQuarrie and
Mick, 1996; Curcó, 2007). Many studies have di-
verse opinions regarding sarcasm and irony being
different phenomenon (Sperber and Wilson, 1981;
Grice, 1978, 1975) or being the same (Reyes et al.,
2013; Attardo et al., 2003). In this work, we do not
make a distinction between sarcasm and irony.

Previous work on irony detection relied on
hand-crafted features such as punctuation and
smiles (Veale and Hao, 2010) or lexical features,
such as gap between rare and common words, in-
tensity of adverbs and adjectives, sentiments, and
sentence structure (Barbieri and Saggion, 2014).

More recently, Van Hee et al. (2016) explore
constructions of verbal irony in social media texts,
reporting that detection of contrasting polarities
is a strong indicator and use sentiment analysis
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Train All Ironic Non-IronicIrony 1 2 3
# Tweets 3817 1901 1383 (73%) 316 (17%) 202 (10%) 1916
# Tweets containing emoji 406 175 162 (93%) 7 (4%) 6 (3%) 231
# Unique emojis 158 104 122
Test
# Tweets 784 311 164 (53%) 85 (27%) 62 (20%) 473
# Tweets containing emoji 88 33 27 (82%) 3 (9%) 3 (9%) 55
# Unique emojis 81 23 70

Table 1: Dataset statistics

Ironic Non-ironic
Emoji Count Emoji Count

42 (29.0%) 49 (31.2%)
26 (17.9%) 22 (14.0%)

12 (8.3%) 16 (10.2%)
11 (7.6%) 14 (8.9%)
10 (6.9%) 14 (8.9%)
9 (6.2%) 11 (7.0%)
9 (6.2%) 11 (7.0%)
9 (6.2%) 11 (7.0%)
9 (6.2%) 9 (5.5%)
8 (5.5%) 8 (4.8%)

Table 2: Top 10 most frequent emojis in ironic tweets and
non-ironic tweets along with the count and percentage of each
emoji.

for the same. Machine learning algorithms such
as SVMs informed with sentiment features have
shown good performance gains in irony detection
(Van Hee, 2017, 2018).

Some neural network-based methods have been
conducted. LSTM has proven to be successful for
predicting irony. Wu et al. (2018), that ranks first
for SemEval 2018: Shared Task on Irony in En-
glish Tweets Task A, utilizes multitask-learning
dense LSTM network. The second-ranked par-
ticipants, Baziotis et al. (2017), uses bidirectional
LSTM (biLSTM) and self-attention mechanism
layer. Ilić et al. (2018)’s architecture is based on
Embeddings from Language Model (ELMo) (Pe-
ters et al., 2018) and passes the contextualized em-
beddings to a biLSTM. Ilić et al. (2018)’s model
becomes the state of the art for sarcasm and irony
detection in 6 out of 7 datasets from 3 different
data sources (Twitter, dialog, Reddit).

3 Proposed Approach

3.1 Dataset Analysis

We analyze the SemEval 2018: Irony Detection in
English Tweets dataset (Van Hee et al., 2018). Ta-
ble 1 shows the data statistics for both ironic and
non-ironic tweets. Row 2 shows the tweet distri-

bution with respect to the presence of emojis. We
can see that only 11% of the all tweets contain
an emoji, out of which 46% are ironic. In order
to study the robustness of current irony detection
model to ironic text containing emoji, it is nec-
essary to augment the existing dataset with addi-
tional tweets containing emojis due to the limited
amount of ironic tweets with emojis.

We hypothesize that the emojis used for ironic
tweets may be different from the emojis used for
non-ironic tweets. Table 2 shows ten emojis that
most frequently appear in ironic tweets and non-
ironic tweets in the English dataset. appears
most often in both ironic (42 times) tweets and
non-ironic (49 times) tweets. For other frequent
emojis, except for , the emojis in ironic tweets
are different from the emojis in non-ironic tweets.
Emojis in the ironic tweets mostly does not have
positive sentiment, if we do not want to say neg-
ative, such as , , , , and while the
most frequent emojis in the non-ironic tweets are
dominated by positive emojis, such as , , ,

, and . Moreover, some tweets may contain
multiple emojis. We found that out of 175 ironic
tweets that contain emoji, 45% of them contain
multiple emojis. We consider to follow this distri-
bution when we are building our ironic tweet gen-
eration pipeline.

3.2 Manual Data Augmentation

To further analyze the role of emoji in ironic ex-
pressions, we conduct qualitative analysis while
controlling the effect of the text content. Con-
cretely, we generate ironic and non-ironic texts
by manipulating emoji without changing the texts.
The resulting texts give us an insight about emoji
use and can also be used as an evaluation resource
for developing emoji-sensitive irony detection.

Our manual inspection focuses on the three
cases of emoji manupulation below.

1. Case 1 - Irony with emoji→ non-irony: We
randomly sample 50 ironic tweets containing
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Original Example Transformed Example

Case 1 My year is ending perfectly (Ironic) My year is ending perfectly (Non-Ironic)
Case 2 Finally went to the doctor and feeling so much better. (Non-Ironic) Finally went to the doctor and feeling so much better . (Ironic)
Case 3 Another day in paradise haha (Ironic) Another day in paradise haha (Non-Ironic)

Table 3: Examples of annotated tweets with respect to the different cases.

emojis from the original dataset and inspect
whether replacing/removing the emojis con-
verts these ironic tweets to non-ironic tweets.

2. Case 2 - Non-irony without emoji →
irony: We randomly sample 50 non-ironic
tweets without containing emojis and inspect
whether adding emoji turns these non-ironic
tweets to ironic tweets.

3. Case 3 - Irony without emoji→ non-irony:
For another set of randomly sampled 50
ironic tweets not containing any emojis orig-
inally, we inspect whether addition of any
emojis converts these ironic tweets to non-
ironic tweets.

For each original tweet in each case, three anno-
tators assign a label ‘1‘ in case a conversion is pos-
sible and ‘0‘ otherwise. Additionally, for tweets
that can be converted, each of the annotators pro-
vides one transformed tweet. Table 3 shows some
example tweets. After this annotation step, we ob-
tained 171 transformed tweets in total.

We calculate the inter-annotator agreement for
each case in Table 4. Case 2 has the worst agree-
ment. This is possibly because it is difficult to
convert non-ironic tweets to ironic tweets only by
adding emoji.

For instance, two out of the three annotators felt
the following non-ironic tweet “@MiriamMock-
bill must b in the #blood lol x” can be transformed
into an ironic tweet “@MiriamMockbill must b in
the #blood lol x ” by adding emojis, however the
irony in the transformed tweet is not very evident.

Next, we validate the quality of the gener-
ated texts. Each example of the generated texts
is given to the two annotators. The annotators
must rate the given example as ’ironic’ or ’non-
ironic’. The agreement was moderately high.
We achieved 100% agreement on 100 out of 171
tweets (58.4%). We call this dataset consisting
of the generated 100 tweets plus their 60 origi-
nal tweets Imoji dataset and use it in a subsequent
analysis. To the best of our knowledge, this is
the first dataset which contain multiple ironic/non-

Fleiss’ κ % Agreement

Case 1 0.49 62%
Case 2 0.02 30%
Case 3 0.23 52%

Table 4: Fleiss’ κ and percent agreement scores for calculat-
ing inter-annotator agreement.

ironic expressions with the same text body and dif-
ferent emojis.

3.3 Automatic Data Augmentation
Analysis of Imoji dataset suggests that emojis
tend to be used for causing “irony by clash” in
most cases. Positive emoji is likely to be paired
with negative texts in ironic expressions, and vice
versa.

3.3.1 Method
Following the insight drawn from Imoji dataset,
we propose a simple data augmentation using sen-
timent analysis dataset so that we can build an
ironic detector more robust to emoji.

1. We collected emoji-sentiment lexicon from
Emoji Sentiment Ranking (Kralj Novak et al.,
2015). This resource contains the emojis’
frequency and sentiment polarity. Then, we
preprocessed the emojis in from this Emoji
Sentiment Ranking, resulting in 48 strongly
positive 48 emojis and 48 strongly nega-
tive emojis. We filter out low-frequency
emoji (bottom 50% frequency), ignore non-
emotional symbols (e.g. arrows), and extract
top 10% emoji in terms of normalized senti-
ment scores for each of positive and negative
sentiments.

2. Collect tweets with positive and negative
sentiments from SemEval 2018 Affect in
Tweets Task 3 dataset (Mohammad et al.,
2018). This dataset contains total of 2,600
tweets with negative emotions, such as sad-
ness, anger and fear, joy tweets, and sarcastic
tweets. Crowdsourcers were asked to anno-
tate them as positive or negative tweets.

3. Generate ironic/non-ironic tweets by adding
emoji at the end of texts.
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Text Tweet Emoji Label
now that I have my future planned out, I feel so much happier + - Ironic (Yes)
#goals #life #igotthis #yay
Never let me see you frown - + Ironic (?)
MC: what are you listen to these days?Bogum: these days I feel gloomy, - + Ironic (No)
I listen to ccm (spiritual song) often. Church oppa mode. :)
Love your new show @driverminnie + + Non-ironic (Yes)

Table 5: Generated ironic examples. Tweet refers to tweet sentiment and emoji refers to emoji sentiment

3.3.2 Evaluation of Automatic Generation
We conduct manual analysis of the generated
tweets. Table 5 displays the generated ironic and
non-ironic tweets.

The first example is generated by combining
positive sentiment tweet with negative sentiment
emoji, and we agree that it is an ironic text. For
the second example, it is quite unclear whether the
text is ironic or not. may not make the text
ironic if the writer’s purpose is really not to see
the other person frown even though the sentiment
of the text without emoji itself is slightly negative.
The third example is not ironic although it is gen-
erated by combining negative tweet with positive
emoji. “Bogum” is a Korean actor and “oppa” is
commonly used by fangirls to call older Korean
male. Thus, using in the text makes sense
and does not make it ironic. The last example
is a generated non-ironic text by adding positive
emoji to positive tweet. Based on this analysis,
we decided to use only tweets with positive sen-
timents as seeds to generate accurate ironic/non-
ironic tweets.

4 Experiments

4.1 Preprocessing
To normalize special strings in tweets like URLs,
mentions and hashtags, we run ekphrasis2 (Bazi-
otis et al., 2017) to normalize texts. We also
correct non-standard spellings. We collect senti-
ment analysis datasets for automatic data augmen-
tation from SemEval 2018 Shared Task (Moham-
mad et al., 2018). Then we obtained 768 addi-
tional irony detection instances.

4.2 Baseline Model
We use the NTUA-SLP system (Baziotis et al.,
2018) from SemEval 2018. It uses standard two-
layer biLSTMs and a self-attention mechanism to
encode a tweet into a fixed-sized vector and makes
a prediction by a logistic regression classifier tak-
ing the encoded tweet as input. Embedding layers

2https://github.com/cbaziotis/ekphrasis

Acc Prec Rec F1 Acc Prec Rec F1
0.0

0.2

0.4

0.6

0.8

1.0

                         Emoji only
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Ours
SE15

Figure 1: Result on irony detection in Imoji dataset. Base-
line referes to SemEval 2018 train set, ours is baseline and
our generated data (+767 instances), SE15 is baseline and
SemEval 2015 dataset (+767 instances). Performances are
mean averages over 10 trials, and error bars denote standard
deviations.

are initialized with 300D pre-trained word embed-
dings, word2vec model trained on tweets for En-
glish ((Baziotis et al., 2017)).

4.3 Result
We train the model on our augmented data and
test it on the Imoji dataset as shown in Figure
1. To make sure that the performance change by
our augmented data (Ours) is not only from the
increased number of training instances, we also
collect the same number of ironic detection in-
stances as the generated instances from another
dataset containing irony annotations (Ghosh et al.,
2015). Interestingly, the classifier trained on our
augmented dataset achieve much higher recall.

5 Conclusion

In this work, we presented an automatic pipeline
for generating ironic data using sentiment analy-
sis. We observe that our method works well for
the irony based on polarity contrast. In summary,
the experimental results show our augmented data
helped classifiers improve their sensitivity to emo-
jis in irony detection tasks without damaging the
overall performance of irony detection on the
whole datasets. An interesting future direction is
to apply our method to multilingual irony dataset.
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Abstract

Geolocation, predicting the location of a post
based on text and other information, has a
huge potential for several social media appli-
cations. Typically, the problem is modeled
as either multi-class classification or regres-
sion. In the first case, the classes are geo-
graphic areas previously identified; in the sec-
ond, the models directly predict geographic
coordinates. The former requires discretiza-
tion of the coordinates, but yields better perfor-
mance. The latter is potentially more precise
and true to the nature of the problem, but of-
ten results in worse performance. We propose
to combine the two approaches in an attention-
based multitask convolutional neural network
that jointly predicts both discrete locations and
continuous geographic coordinates. We evalu-
ate the multi-task (MTL) model against single-
task models and prior work. We find that MTL
significantly improves performance, reporting
large gains on one data set, but also note that
the correlation between labels and coordinates
has a marked impact on the effectiveness of in-
cluding a regression task.

1 Introduction
Knowing the location of a social media post is use-
ful for a variety of applications: from improving
content relevance for the socio-cultural environ-
ment of a geographic area (Rakesh et al., 2013),
to the understanding of demographic distributions
for disaster relief (Lingad et al., 2013).

However, most social media posts do not in-
clude location. On Twitter, one of the most stud-
ied social media, geotagging is enabled for at most
5% of the posts (Sloan and Morgan, 2015; Cebeil-
lac and Rault, 2016). In order to address this issue,
samples of geolocated data have been used to cre-
ate corpora of geo-tagged texts. Those corpora al-
low us to train supervised models to predict the ge-
ographic location for a post, relying on the post’s

text and, possibly, users’ interaction information
and other meta-data provided by the social media.
While a lot of work has gone into this problem, it
is still far from solved.

The task is usually framed as a multi-class clas-
sification problem, but actual location information
is normally given as a pair of continuous-valued
latitude/longitude coordinates (e.g.: 51.5074◦ N,
0.1278◦ W). Using these coordinates in classifi-
cation requires translation into labels correspond-
ing to a geographic area (e.g., cities, states, coun-
tries). This translation is another non-trivial task
(Wing and Baldridge, 2014), and necessarily loses
information. Much less frequently, geolocation
is framed as regression, i.e., direct prediction of
the coordinates. While potentially more accurate,
regression over geographic coordinates presents
a host of challenges (values are continuous but
bounded, can be negative, and distances are non-
Euclidean, due to the Earth’s curvature). It is
therefore usually less effective than classification.

Ideally, we would like to combine the advan-
tages of both approaches, i.e., let the regres-
sion over continuous-valued coordinates guide the
discrete location classification. So far, how-
ever, no work has tried to combine the two ap-
proaches. With recent advances in multi-task
learning (MTL), we have the opportunity to com-
bine them. In this paper, we do exactly that.

We combine classification and regression in
a multi-task attention-based convolutional neural
network (MTL-Att-CNN), which jointly learns to
predict the geographic labels and the relative co-
ordinates. We evaluate on two data sets widely
used in the geolocation literature, TWITTER-US
and TWITTER-WORLD (Section 3). In line with
prior research on MTL (Alonso and Plank, 2017;
Bingel and Søgaard, 2017), we do find that auxil-
iary regression can indeed help classification per-
formance, but under a somewhat surprising con-
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dition: when there are enough classification la-
bels. We show this by evaluating on two differ-
ent schemes for discretizing coordinates into la-
bels. The first (Rahimi et al., 2017b) identifies ir-
regular areas via k-d trees, and is the most com-
mon in the literature. The second (Fornaciari and
Hovy, 2019b) directly identifies towns of at least
15K inhabitants and allows the evaluation of the
method in a more realistic scenario, but results in
3–6 times more labels.

Contributions 1) We propose a novel multi-
task CNN model, which learns geographic la-
bel prediction and coordinate regression together.
2) Based on Fornaciari and Hovy (2019b), we
propose an alternative coordinate discretization,
which correlates more with geocoordinates (Sec-
tion 3). We find that label granularity impacts the
effectiveness of MTL.

2 Related Work

Most successful recent approaches to geolocation
use Deep Learning architectures for the task (Liu
and Inkpen, 2015; Iso et al., 2017; Han et al.,
2016). Many authors (Miura et al., 2016; Baker-
man et al., 2018; Rahimi et al., 2018; Ebrahimi
et al., 2018; Do et al., 2018; Fornaciari and Hovy,
2019a) follow a hybrid approach, combining the
text representation with network information and
further meta-data. However, recent works explore
the effectiveness of purely textual data for geolo-
cation (Tang et al., 2019).

Other researchers have directly predicted the
geographic coordinates associated with the texts.
Eisenstein et al. (2010) was the first to formulate
the problem as a regression task predicting the co-
ordinate values as numerical values. Lourentzou
et al. (2017) use very simple labels, but create a
neural model which separately performs both the
classification task and the prediction of the geo-
graphic coordinates. They evaluate the relative
performance of each approach.

Rahimi et al. (2017a) created a dense repre-
sentation of bi-dimensional points using Mixture
Density Networks (Bishop, 1994). They motivate
the higher complexity of such multi-dimensional
representations with the limits of the loss min-
imization in uni-modal distributions for multi-
target scenarios. In particular, they underline that
minimizing the squared loss is equivalent to po-
sitioning the predicted point in the middle of the
possible outputs, when more flexible representa-

tions would be useful for geographic prediction:
“a user who mentions content in both NYC and
LA is predicted to be in the centre of the U.S.”.

We address this point with a model which
jointly solves the classification and regression
problem, similar to the approach by Subrama-
nian et al. (2018), who combine regression with
a classification-like “ordinal regression” in order
to predict both the number of votes for a petition
as well as the voting threshold it reaches.

There is a rich literature on the use of multi-
task learning (Caruana, 1996; Caruana et al., 1996;
Caruana, 1997) in NLP, highlighting the impor-
tance of choosing the right auxiliary tasks (Alonso
and Plank, 2017; Bingel and Søgaard, 2017; Ben-
ton et al., 2017; Lamprinidis et al., 2018).

3 Data

Corpora We use two publicly available data
sets commonly used for geolocation, known as
TWITTER-US and TWITTER-WORLD. They were
released by Roller et al. (2012) and Han et al.
(2012) respectively. Both data sets consist of ge-
olocated tweets written in English, coming from
North America and from everywhere in the World.
Each instance consists of a set of tweets from a sin-
gle user, associated with a pair of geographic coor-
dinates (latitude and longitude). TWITTER-US has
449 694 instances, TWITTER-WORLD 1 386 766.
Both corpora have predefined development and
test sets of 10 000 records each. These corpora
were used in the shared task of W-NUT 2016, pro-
viding the basis for comparison with other models
in the literature.

Labels Since the location is represented as coor-
dinates, there is no single best solution for translat-
ing them into meaningful labels (i.e., geographic
areas). We follow two distinct discretizing ap-
proaches, resulting in different label sets. First,
to allow comparison with prior work, we imple-
ment the coordinate clustering method proposed
by Rahimi et al. (2017b). It relies on the k-d tree
procedure (Maneewongvatana and Mount, 1999)
and led to the identification of 256 geographic
areas for TWITTER-US and 930 for TWITTER-
WORLD. These areas, however, are quite large
and do not always correspond to any meaningful
territorial division (e.g., city, county, state, etc).

In order to create labels sets corresponding
more closely to existing geographic distinctions,
we follow the Point2City - P2C, another algorithm
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based on k-d tree with additional steps, proposed
by Fornaciari and Hovy (2019b). This results in
more fine-grained geographic labels.

P2C clusters all points closer than 11 km (which
correspond to the first decimal point on the lon-
gitude axis), then iteratively merges the centroids
until no centroids are closer than 11 km to each
other. Finally, these points are labeled with the
name of the closest city of at least 15 000 inhab-
itants, according to the information provided by
the free database GeoNames. We refer the reader
to Fornaciari and Hovy (2019b) for more details
of the method.

The mean distance between P2C labels and the
respective actual city centers is less than 3.5 km.
P2C results in 1 593 labels for TWITTER-US and
2 975 for TWITTER-WORLD, a factor of respec-
tively 6 and 3 greater than the method used by
Rahimi et al. (2017b). We provide our labels and
our models on GitHub Bocconi-NLPLab.

Pre-processing and feature selection We pre-
process the text by converting it to lowercase, re-
moving URLs and stop-words. We reduce num-
bers to 0, except for those appearing in mentions
(e.g., @abc123). In order to make the vocabulary
size computationally tractable, we restrict the al-
lowed words to those with a minimum frequency
of 5 for each corpus. Since this removes about
80% of the vocabulary, losing possibly relevant in-
formation, we convert a part of the low-frequency
words into replacement tokens. In particular, con-
sidering the training set only, we selected all those
appearing uniquely in the same place according to
the P2C labels. We discarded the low frequency
terms found in more than one geographic area. In
this way, the resulting vocabulary size is 1.470M
words for TWITTER-US and 470K for TWITTER-
WORLD.

We follow Han et al. (2014) and Forman (2003)
in limiting both vocabularies to the same number
of tokens, i.e., 470K tokens, by filtering the terms
according to their Information Gain Ratio (IGR).
This is a measure of the degree of informativeness
for each term, according to its distribution among
a set of labels – geographic areas in our case.

4 Methods
We train embeddings for both corpora, and use
them as input to the multi-task learning model.

Embeddings Since tweets are natively short
texts further reduced by removing stop words,

we use a small context window size of 5 words.
We trained our embeddings on the training sets
of each corpus. As we are interested in poten-
tially rare geographically informative words, we
use the skip-gram model, which is more sensi-
tive to low-frequency terms than CBOW (Mikolov
et al., 2013) and train for 50 epochs. We use an
embedding size of 512, choosing a power of 2
for memory efficiency, and the size as a compro-
mise between a rich representation and the com-
putational tractability of the embeddings matrix.
For the same reason, we limit the length of each
instance to 800 words for TWITTER-US and 400
words for TWITTER-WORLD, which preserves the
entire text for 99.5% of the instances in each cor-
pus.

MTL-Att-CNN We implement a CNN with the
following structure. The input layer has the
word indices of the text, converted via the em-
bedding matrix into a matrix of shape words ×
embeddings. We convolve two parallel channels
with max-pooling layers and convolutional win-
dow sizes 4 and 8 over the input. The two window
sizes account for both short and relatively long
patterns in the texts. In both channels, the initial
number of filters is 128 for the first convolution,
and 256 in the second one. We join the output
of the convolutional channels and pass it through
an attention mechanism (Bahdanau et al., 2014;
Vaswani et al., 2017) to emphasize the weight of
any meaningful pattern recognized by the convo-
lutions. We use the implementation of Yang et al.
(2016). The output consists of two independent,
fully-connected layers for the predictions, respec-
tively in the form of discrete labels for classifica-
tion and of continuous latitude and longitude val-
ues for regression.

Gradient Normalization Multi-task networks
are quite sensitive to the choice of auxiliary tasks
and the associated loss (Benton et al., 2017). If
the loss function outputs of different tasks differ in
scale, backpropagation also involves errors at dif-
ferent scales. This can imbalance the relative con-
tributions of each task on the overall results: the
“lighter” task can therefore be disadvantaged up
to the point to become untrainable, since the back-
propagation becomes dominated by the task with
the larger error scale. To prevent this problem,
we first normalize the coordinates to the range
0 − 1. Since coordinates include negative values,
we transform them by adding 180 and dividing by
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TWITTER-US

method model # labels Acc Acc@161 mean median

Han et al. (2014) NB + IGR 378 26% 45% - 260
Rahimi et al. (2017b) MLP + k-means 256 - 55% 581 91

k-d labels STL-Att-CNN 256 21.06% 44.51% 845.23† 272.15
MTL-Att-CNN 256 20.75% 44.35% 856.60 276.99

P2C labels STL-Att-CNN 1,593 31.22% 44.48% 944.89 304.99
MTL-Att-CNN 1,593 31.36% 44.64% 889.98∗∗ 293.26

TWITTER-WORLD

Han et al. (2014) NB + IGR 3135 13% 26% - 913
Rahimi et al. (2017b) MLP + k-means 930 - 36% 1417 373

k-d labels STL-Att-CNN 930 30.67% 48.13% 1656.06 202.68
MTL-Att-CNN 930 30.70% 48.46% 1640.16 195.18

P2C labels STL-Att-CNN 2,975 35.67% 47.95% 1695.85 203.50
MTL-Att-CNN 2,975 36.07% 48.48%∗ 1643.29∗∗ 195.54

Table 1: Performance of prior work and proposed model. NB= Naive Bayes, MLP=Multi-Layer Perceptron,
CNN=Convolutional Neural Net, STL=Single Task, MTL=Multi Task. Significance on MTL vs. STL: ∗ : p ≤ 0.05
, ∗∗ : p ≤ 0.01, † : p ≤ 0.005

360. As loss function, we compute the Euclidean
distance between the predicted and the target coor-
dinates.1 We rescale all distances to within 0−1 as
well, i.e., to the same scale as the softmax output
of the classification task.

For the main task (i.e., classification), we use
the Adam optimizer (Kingma and Ba, 2014). This
gradient descent optimizer is widely used as it uses
moving averages of the parameters (i.e., the mo-
mentum), in practice adjusting the step size during
the training (Bengio, 2012). The Adam optimizer,
though, requires a high number of parameter. For
the auxiliary task (i.e., regression), we simply used
standard gradient descent.

5 Experiments
We carry out 8 experiments, 4 on TWITTER-
US and 4 on TWITTER-WORLD. For each data
set, we compare the performance of multi-task
(MTL) and single-task (i.e., classification) mod-
els (STL), both with the labels of Rahimi et al.
(2017b) and our own label set. For each of the
8 conditions, we report results averaged over three
runs to reduce the impact of the random initial-
izations. For each condition, we compute sig-
nificance between STL and MTL via bootstrap
sampling (Berg-Kirkpatrick et al., 2012; Søgaard
et al., 2014).

1We also experimented with incorporating radians into the
distance measure, but did not find any particular improve-
ment, since it is learned directly during the training process.

TWITTER-US and TWITTER-WORLD are two
remarkably different data sets. Not only they ad-
dress areas of different size, with different geo-
graphic density of the entities to locate, they also
differ in vocabulary size (larger in TWITTER-US),
even considering different pre-processing proce-
dures. Therefore, the performance difference
many studies report is not surprising.

The outcomes are shown in Table 1. On both
data sets, MTL yields the best results for exact
accuracy. On TWITTER-US, we outperform Han
et al. (2014) in exact accuracy, but cannot compare
to Rahimi et al. (2017b), and do not reach their
acc@161 or distance measures. For TWITTER-
WORLD, we report the best results for both types
of accuracy and median distance. Interestingly,
mean distance is higher, suggesting a very long tail
of far-away predictions.

The effectiveness of MTL increases with label
granularity. This makes sense, since under a more
fine-grained label scheme, the correlation between
coordinates and labels is higher, which is exactly
what we learn in the auxiliary task. Under the
broader labeling scheme by Rahimi et al. (2017b),
label areas are of irregular size, and so the correla-
tion with the coordinates varies. With the k-d tree
labels, the mean distance between the coordinates
and the cluster centroids is 50 Km for TWITTER-
US and 40 km for TWITTER-WORLD, while with
our labels the mean distance is 16 and 7 km, re-
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spectively. With highly granular P2C labels, MTL
consistently outperforms STL; in contrast, with
wider areas, STL mean distance beats MTL in
TWITTER-US. The auxiliary regression adds valu-
able information to the classification task: MTL
improves significantly over STL.

6 Ablation study
In order to verify the impact of the network com-
ponents on the overall performance, we carry out
a brief ablation study. In particular, we are in-
terested in the attention mechanism, implemented
following Yang et al. (2016). To this end, we train
a MTL model without attention mechanism. We
note that they are not directly comparable to those
shown in table 1, since they used different, ran-
domly initialized embeddings, and should be in-
terpreted with caution. The results do suggest,
though, that we can expect the attention mecha-
nism to increase performance by about 10 points
percent (both for accuracy and for acc@161), and
to increase median distance by about 150 km. This
effect holds for both multi-task and single-task
models.

7 Conclusion
IN this paper, we propose a novel multi-task
learning framework with attention for geoloca-
tion, combining label classification with regres-
sion over geo-coordinates.

We find that the granularity of the labels (and
their correlation with the coordinates) has a direct
impact on the effectiveness of MTL, with more
labels counter-intuitively resulting in higher exact
accuracy. Besides the labels commonly adopted in
the literature, we also evaluate with a greater num-
ber and more specific locations (arguably a more
realistic way to evaluate the geolocation for many
real life applications). This effect holds indepen-
dent of whether the model is trained with attention
or not.

The auxiliary regression task is helpful for clas-
sification when using more fine-grained labels,
which address specific rather than broad areas.
Our models are optimized for exact accuracy,
rather than to Acc@161, and we report some of the
best accuracy measures for TWITTER-WORLD,
and competitive results for TWITTER-US.
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communication et territoires, 30(3/4):231–248.

Tien Huu Do, Duc Minh Nguyen, Evaggelia Tsili-
gianni, Bruno Cornelis, and Nikos Deligiannis.
2018. Twitter user geolocation using deep multi-
view learning. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6304–6308. IEEE.

Mohammad Ebrahimi, Elaheh ShafieiBavani, Ray-
mond Wong, and Fang Chen. 2018. A unified neural
network model for geolocating twitter users. In Pro-
ceedings of the 22nd Conference on Computational
Natural Language Learning, pages 42–53.

Jacob Eisenstein, Brendan O’Connor, Noah A Smith,
and Eric P Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the
2010 conference on empirical methods in natural
language processing, pages 1277–1287. Association
for Computational Linguistics.

George Forman. 2003. An extensive empirical
study of feature selection metrics for text classi-
fication. Journal of machine learning research,
3(Mar):1289–1305.

Tommaso Fornaciari and Dirk Hovy. 2019a. Dense
Node Representation for Geolocation. In Proceed-
ings of the 5th Workshop on Noisy User-generated
Text (WNUT).

Tommaso Fornaciari and Dirk Hovy. 2019b. Identify-
ing Linguistic Areas for Geolocation. In Proceed-
ings of the 5th Workshop on Noisy User-generated
Text (WNUT).

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Ge-
olocation prediction in social media data by finding
location indicative words. Proceedings of COLING
2012, pages 1045–1062.

Bo Han, Paul Cook, and Timothy Baldwin. 2014. Text-
based twitter user geolocation prediction. Journal of
Artificial Intelligence Research, 49:451–500.

Bo Han, Afshin Rahimi, Leon Derczynski, and Timo-
thy Baldwin. 2016. Twitter Geolocation Prediction
Shared Task of the 2016 Workshop on Noisy User-
generated Text. In Proceedings of the 2nd Workshop
on Noisy User-generated Text (WNUT), pages 213–
217.

Hayate Iso, Shoko Wakamiya, and Eiji Aramaki. 2017.
Density estimation for geolocation via convolu-
tional mixture density network. arXiv preprint
arXiv:1705.02750.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Sotiris Lamprinidis, Daniel Hardt, and Dirk Hovy.
2018. Predicting news headline popularity with
syntactic and semantic knowledge using multi-task
learning. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 659–664.

John Lingad, Sarvnaz Karimi, and Jie Yin. 2013. Loca-
tion extraction from disaster-related microblogs. In
Proceedings of the 22nd international conference on
world wide web, pages 1017–1020. ACM.

Ji Liu and Diana Inkpen. 2015. Estimating user lo-
cation in social media with stacked denoising auto-
encoders. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, pages 201–210.

Ismini Lourentzou, Alex Morales, and ChengXiang
Zhai. 2017. Text-based geolocation prediction of
social media users with neural networks. In 2017
IEEE International Conference on Big Data (Big
Data), pages 696–705. IEEE.

Songrit Maneewongvatana and David M Mount. 1999.
It’s okay to be skinny, if your friends are fat. In Cen-
ter for Geometric Computing 4th Annual Workshop
on Computational Geometry, volume 2, pages 1–8.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi,
and Tomoko Ohkuma. 2016. A simple scalable neu-
ral networks based model for geolocation prediction
in twitter. In Proceedings of the 2nd Workshop on
Noisy User-generated Text (WNUT), pages 235–239.

Afshin Rahimi, Timothy Baldwin, and Trevor Cohn.
2017a. Continuous representation of location for
geolocation and lexical dialectology using mixture
density networks. In Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Afshin Rahimi, Trevor Cohn, and Tim Baldwin.
2018. Semi-supervised user geolocation via
graph convolutional networks. arXiv preprint
arXiv:1804.08049, pages 2009–2019.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2017b. A neural model for user geolocation and lex-
ical dialectology. arXiv preprint arXiv:1704.04008,
pages 209–216.

Vineeth Rakesh, Chandan K Reddy, and Dilpreet
Singh. 2013. Location-specific tweet detection and
topic summarization in twitter. In Proceedings of

222



the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining,
pages 1441–1444. ACM.

Stephen Roller, Michael Speriosu, Sarat Rallapalli,
Benjamin Wing, and Jason Baldridge. 2012. Super-
vised text-based geolocation using language models
on an adaptive grid. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 1500–1510. Association for
Computational Linguistics.

Luke Sloan and Jeffrey Morgan. 2015. Who tweets
with their location? understanding the relationship
between demographic characteristics and the use of
geoservices and geotagging on twitter. PloS one,
10(11):e0142209.

Anders Søgaard, Anders Johannsen, Barbara Plank,
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Abstract

Prior research has shown that geolocation can
be substantially improved by including user
network information. While effective, it suf-
fers from the curse of dimensionality, since
networks are usually represented as sparse ad-
jacency matrices of connections, which grow
exponentially with the number of users. In or-
der to incorporate this information, we there-
fore need to limit the network size, in turn
limiting performance and risking sample bias.
In this paper, we address these limitations by
instead using dense network representations.
We explore two methods to learn continuous
node representations from either 1) the net-
work structure with node2vec (Grover and
Leskovec, 2016), or 2) textual user mentions
via doc2vec (Le and Mikolov, 2014). We
combine both methods with input from so-
cial media posts in an attention-based convolu-
tional neural network and evaluate the contri-
bution of each component on geolocation per-
formance. Our method enables us to incorpo-
rate arbitrarily large networks in a fixed-length
vector, without limiting the network size. Our
models achieve competitive results with sim-
ilar state-of-the-art methods, but with much
fewer model parameters, while being applica-
ble to networks of virtually any size.

1 Introduction

Current state-of-the-art methods for user geolo-
cation in social media rely on a number of data
sources. Text is the main source, since people use
location-specific terms (Salehi et al., 2017). How-
ever, research has shown that text should be aug-
mented with network information, since people in-
teract with other from their local social circles.
Even though social media allows for worldwide
connections, most people have a larger number of
connections with people who live close-by (from
their school, workplace, or friend network). The

most successful predictive models are therefore ar-
chitectures that combine these different kinds of
inputs (Rahimi et al., 2018; Ebrahimi et al., 2018).

However, incorporating network information is
the computational bottleneck of these hybrid ap-
proaches: we want to represent the whole network,
but we have to do so efficiently. We show that
both are possible with dense representations, and
indeed improve performance over previous sparse
graph network representations. Following graph
theory (Bondy et al., 1976), networks are typically
represented as connections between entities in a
square adjacency matrix, whose size corresponds
to the number of users in the network. This means,
though, that the matrix grows quadratically with
the number of nodes/users. For large-scale social
media analysis, where the number of users is of-
ten in the millions, this property creates a com-
putational bottleneck: Incorporating such a ma-
trix in a neural architecture, for example through
graph-convolution (Kipf and Welling, 2017), eas-
ily increases the parameters by orders of magni-
tude, making training more expensive and increas-
ing the risk of overfitting.

Previous work has therefore usually resorted to
sampling methods. While sampling addresses the
space issue, it necessarily loses a large amount of
information, especially in complex networks, and
introduces the risk of sampling biases.

Compounding the problem is the fact that adja-
cency matrices, despite their size, are very sparse,
and do not represent information efficiently. This
problem is analogous to sparse word and text rep-
resentations, which were successfully replaced by
dense embeddings (Mikolov et al., 2013a).

We show how to incorporate dense network
representations in two ways: 1) with an existing
word2vec-based method based on network struc-
ture, node2vec (Grover and Leskovec, 2016), and
2) with a new, doc2vec-based method of document
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representations (Le and Mikolov, 2014) over the
set of user mentions in the text of posts (M2V).
Both allow us to represent mentions as dense vec-
tors that encode the network interactions so that
similar users will have similar representations.
However, they capture different aspects of inter-
actions: people we are connected with vs. people
we mention.

We compare the geolocation performance of
models that combine a text view with the net-
work views of both node2vec and the doc2vec-
based method. We measure the contribution of
each component to performance. Our results show
that dense network representations significantly
improve over sparse network representations, but
that mention representations (M2V) are more im-
portant than structure representations (node2vec).

Contributions The contributions of the study
are the following:

• We propose a document embeddings applica-
tion that builds effective network representa-
tions through dense vectors, with no need of
sampling procedures even in large networks;

• We show that the node representations can
be tuned via two parameters which model the
width and strength of their interactions.

2 Related work

Different kinds of data sources and methods can be
used for the geolocation of users in Social Media.
The the most straightforward approach is to ex-
ploit the geographic information conveyed by the
linguistic behavior of the user. The first studies re-
lied on the idea of exploiting Location-Indicative
Words (LIW) (Han et al., 2012, 2014). More re-
cently, neural models have been applied to the
same strategy (Rahimi et al., 2017; Tang et al.,
2019), improving performance.

The problem, however, can be modeled in dif-
ferent ways, including the different designs of the
geographic areas to predict, such as grids (Wing
and Baldridge, 2011), hierarchical grids (Wing
and Baldridge, 2014), or different kinds of clusters
(Han et al., 2012, 2014). In this paper, we test our
models both on the set of geographic areas - i.e.,
labels - used in the shared task of the Workshop
on Noisy User-generated Text - W-NUT (Han
et al., 2016), and the more fine-grained clusters ob-
tained through the method of Fornaciari and Hovy
(2019b). Geographic coordinates themselves can

also be exploited, as Fornaciari and Hovy (2019a)
showed in a multi-task model that jointly predicts
continuous geocoordinates and discrete labels.

In general, geolocation with multi-source mod-
els is becoming more popular, as indicated by their
increased use in state-of-the-art performances.
Miura et al. (2016, 2017) considered text, meta-
data and network information, modeling the last
as a combination user and city embeddings. Sim-
ilarly to our study, Rahimi et al. (2015) exploited
the mentions, even though they used them to build
undirected graphs. Ebrahimi et al. (2017, 2018)
also used mentions to create an undirected graph,
that they pruned and fed into an embedding layer
followed by an attention mechanism, in order to
create a network representation.

The study of Rahimi et al. (2018) is an exam-
ple of network segmentation for use in a neural
model. They propose a Graph Convolutional Neu-
ral Network (GCN), where network and text data
are vertically concatenated in a single channel,
rather than employed as parallel channels into the
same model. Do et al. (2017, 2018) present the
Multi-Entry Neural Network (MENET), a model
which, similarly to our study, employs node2vec
and, separately, includes doc2vec as methods for
extraction of document features.

These works represent the state-of-the-art
benchmark with respect to the implementation
of network views in the models. Other models
(Ebrahimi et al., 2017, 2018; Do et al., 2018) also
include metadata or other source of information.

3 Methods

3.1 The data sets
We test our methods on three data sets: GEOTEXT

(Eisenstein et al., 2010), TWITTER-US (Roller
et al., 2012) and TWITTER-WORLD (Han et al.,
2012). They contain English tweets, concate-
nated by author, with geographic coordinates asso-
ciated with each author. GEOTEXT contains 10K
texts, TWITTER-US 450K and TWITTER-WORLD

1.390M. The corpora are each split into training,
development and test sets.

3.2 Learning network representations
3.2.1 node2vec
Grover and Leskovec (2016) presented node2vec,
a method to obtain dense node representations
through a skip-gram model. Those representa-
tions, however, are obtained through a tiered sam-
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pling procedure. While that allows node2vec to
explore large networks, by balancing the breadth
and depth of the search for the neighbours’ iden-
tification, it does introduce a random factor. In
addition, since node2vec uses the word2vec skip-
gram model (Mikolov et al., 2013c), the sequence
of the nodes does not carry any meaning, essen-
tially functioning as a further random neighbors
selection. In the geolocation scenario, though, net-
work breadth is more important than depth, as sim-
ilarity between entities grows with their proximity:
we would like to preserve this is information en-
tirely, even and especially in large networks. For
this reason, we follow the authors settings for the
detection of nodes’ homophily, rather than their
structural similarity in the network, and set the
node2vec parameters p = 1 and q = 0.5 (Grover
and Leskovec, 2016, p. 11).

3.2.2 mentions2vec - M2V

We introduce a novel network representation
method which does not depend on graph theory.
We bypass the adjacency matrices and directly
learn the social interactions from the content of
social media messages. In many social media this
is straightforward, as the users’ mentions are in-
troduced by the at sign ‘@’, but in general other
forms of Named Entity Recognition (NER) might
be considered for the same purpose.

Concretely, we filter from the text everything
but the user mentions and apply doc2vec to the re-
sulting “texts” (Mikolov et al., 2013b). Basically,
we are representing the users according to their
communicative behavior directed at other users,
in the temporal order these mentions appear in.
Therefore, similarly to node2vec, M2V creates a
dense representation of the user interactions.

As pointed out earlier, node2vec is applied to a
sequence of nodes sampled form the whole net-
work that does not account for temporal order-
ing. In contrast, M2V does not address nodes,
but mentions, which are themselves an evidence
of personal connection. The consequence of this
choice is two-fold. First, there is no need for a
sampling procedure: the whole set of interactions
can be considered, even for wide networks. Sec-
ond, the order of the mentions in the texts reflects
the time sequence of the interactions, possibly en-
coding patterns of social behaviors.

Text M2V N2V

Conv/MaxPool Conv/MaxPool

Conv/MaxPool Conv/MaxPool

Attention

Dense Dense

Attention Attention

Dense

Output

Figure 1: The Multiview Attention-based Convolu-
tional Model. The inputs are the texts, mentions2vec
(M2V) and node2vec (N2V)

3.3 Labels

For our experiments we use two different sets of
labels: those used in the W-NUT 2016 task (Han
et al., 2016), and our own labels (Fornaciari and
Hovy, 2019b). Our label identification method,
called point2city (P2C), clusters all points closer
than 25 km and associates each cluster with the
closest town of at least 15K people. For further
details, see Fornaciari and Hovy (2019b). The re-
sulting labels are highly granular and precise in
the identification of meaningful administrative re-
gions.

3.4 Feature selection

The label sets were involved in the preprocess-
ing as follows. Using only the training data, we
first select the terms with frequency greater or
equal to 10 and 5 for TWITTER-US and TWITTER-
WORLD, respectively. This choice is motivated by
the different vocabulary size of the two data sets.
Any term with frequency greater than 2, but below
these thresholds, which is associated with only
one label, we replace with label-representative to-
kens. Low-frequency terms found in more than
one place are considered geographically ambigu-
ous and discarded. This allows us to reduce
remarkably the vocabulary size, maintaining the
useful geographic information of the huge amount
of low frequency terms. Considering the terms’
Zipf distribution (Powers, 1998), this procedure
allows us to replace a small number of types, but a
great number of tokens.

Following Han et al. (2012), we further filter
the vocabulary by applying Information Gain Ra-
tio (IGR), selecting the terms with the highest val-
ues until we reach a manageable vocabulary size:
750K and 470K for TWITTER-US and TWITTER-
WORLD.
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TWITTER-US

Authors, method + labels nr. labels Acc Acc@161 mean median

Han et al. (2014), NB + IGR 378 26% 45% - 260
Wing and Baldridge (2014), HierLR k-d “fewer classes” - 48% 687 191
Rahimi et al. (2017), MLP + k-tree 256 - 55% 581 91

AttCNN + k-d tree 256 27.86% 57.85% 565.64 64.25
AttCNN-N2V + k-d tree 256 28.2% 56.99% 550.77 68.41
AttCNN-M2V + k-d tree 256 29.84%∗ 56.77% 546.97 67.91
AttCNN-M2V-N2V + k-d tree 256 29.12% 56.16% 563.52 77.63

AttCNN + P2C 914 51.22% 61.97% 523.42 0
AttCNN-N2V + P2C 914 51.9% 62.36% 518.34 0
AttCNN-M2V + P2C 914 53.04%∗∗ 63.64%∗∗ 483.09∗ 0
AttCNN-M2V-N2V + P2C 914 52.93%∗∗ 62.91%∗∗ 510.98∗∗ 0

Table 1: Model performance and significance levels with respect to text-only models: ∗ : p ≤ 0.05, ∗∗ : p ≤ 0.01

TWITTER-WORLD

Authors, method + labels nr. labels Acc Acc@161 mean median
Han et al. (2014), NB + IGR 3135 13% 26% - 913
Wing and Baldridge (2014), HierLR k-d “fewer classes” - 31% 1670 509
Rahimi et al. (2017), MLP + k-tree 930 - 36% 1417 373

AttCNN + k-d tree 930 20.0% 36.39% 1458.63 414.29
AttCNN-N2V + k-d tree 930 22.3%∗∗ 40.02%∗∗ 1363.11∗∗ 330.69∗∗

AttCNN-M2V + k-d tree 930 29.26%∗∗ 46.05%∗∗ 1155.5∗∗ 230.17∗∗

AttCNN-M2V-N2V + k-d tree 930 28.76%∗∗ 46.31%∗∗ 1191.19∗∗ 223.96∗∗

AttCNN + P2C 2818 28.39% 42.5% 1195.92 274.06
AttCNN-N2V + P2C 2818 28.48% 42.18% 1220.02 280.66
AttCNN-M2V + P2C 2818 34.58%∗∗ 47.91%∗∗ 1134.08∗∗ 194.03∗∗

AttCNN-M2V-N2V + P2C 2818 33.98%∗∗ 47.19%∗∗ 1180.21∗∗ 208.03∗∗

Table 2: Model performance and significance levels with respect to text-only model AttCNN: ∗ : p ≤ 0.05,
∗∗ : p ≤ 0.01

3.5 Multiview Attention-based Convolutional
Models

Our models are multi-view neural networks with
three input channels: the text view, node2vec, and
mentions2vec. The text view, in turn, contains
two channels of convolutional/max pooling lay-
ers (with window size 4 and 8) followed by an
attention mechanism. Both node2vec and men-
tions2vec are fed into a dense layer, followed by
an attention mechanism. All the outputs are then
concatenated and fed into a fully connected output
layer. For a graphical representation, see Figure 1.

We report the performance metrics commonly
considered in the literature: accuracy, acc@161
- i.e., the accuracy within 161 km, or 100 miles,
from the target point. This allows us to mea-
sure the accuracy of predictions within a reason-
able distance from the target point. We also re-
port mean and median distance between the pre-
dicted and the target points. We evaluate signifi-
cance via bootstrap sampling, following Søgaard

et al. (2014). The code for the methods described
in this paper are available at github.com/Bocconi-
NLPLab.

4 Results

Tables 1 and 2 show the performance of our mod-
els with and without N2V/M2V, in TWITTER-US
and TWITTER-WORLD. Compared to the previ-
ous studies using only textual features, our ba-
sic model AttCNN shows comparable (TWITTER-
WORLD) or better performance (TWITTER-US).

Therefore we consider our base AttCNN model
as baseline comparison for the hybrid models
AttCNN-N2V, AttCNN-M2V and AttCNN-M2V-
N2V. We test two label sets (k-d tree and P2C),
and the significance level remarkably changes in
these two conditions.

In TWITTER-US, with coarse granularity la-
bels, there is no performance improvement with
dense node representations. In contrast, the mod-
els with M2V show a significant effect with fine
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(a) k-d tree (b) k-d tree

(c) P2C (d) P2C

Figure 2: Labels’ coordinates in TWITTER-USand TWITTER-WORLD

granularity labels. In TWITTER-WORLD, the
dense node representations significantly improve
the models’ performance, with both kind of la-
bels, even though AttCNN-N2V does not show
improvements with P2C labels.

5 Discussion

Mentions2vec is a computationally affordable
method for dense network representations, de-
signed to capture social interactions. It proves
very effective under most experimental conditions.
The results suggest that dense users’ network rep-
resentation enhance geolocation performance, in
particular when fine-grained labels identify spe-
cific geographic areas, rather than when a small
number of labels refers to larger areas, where more
different social communities can be found. Figure
2 shows the different density of labels identified
by k-d tree and P2C. These settings are particu-
larly useful for M2V, which considers the users’
linguistic behavior. In contrast, Node2vec does
not lead to significant improvement in TWITTER-
US, presumably because the sampling procedure
of node2vec does not allow to detect homophily
with sufficient clarity. Mentions2vec, which does
not suffer from this limitation, appears to be more
effective in that context. However, in general,
the labels’ granularity affects the usefulness of the
methods. In TWITTER-US, using labels which
cover large areas is detrimental for techniques
which address geographical homophily, that is,

relatively small cultural/linguistic areas. Even
so, it makes sense to use these techniques, as in
favourable conditions (for example in TWITTER-
WORLD), they lead to remarkable performance
improvements.
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Abstract

Geolocating social media posts relies on the
assumption that language carries sufficient ge-
ographic information. However, locations are
usually given as continuous latitude/longitude
tuples, so we first need to define discrete geo-
graphic regions that can serve as labels. Most
studies use some form of clustering to dis-
cretize the continuous coordinates (Han et al.,
2016). However, the resulting regions do not
always correspond to existing linguistic areas.
Consequently, accuracy at 100 miles tends to
be good, but degrades for finer-grained dis-
tinctions, when different linguistic regions get
lumped together. We describe a new algo-
rithm, Point-to-City (P2C), an iterative k-d
tree-based method for clustering geographic
coordinates and associating them with towns.
We create three sets of labels at different levels
of granularity, and compare performance of a
state-of-the-art geolocation model trained and
tested with P2C labels to one with regular k-d
tree labels. Even though P2C results in sub-
stantially more labels than the baseline, model
accuracy increases significantly over using tra-
ditional labels at the fine-grained level, while
staying comparable at 100 miles. The results
suggest that identifying meaningful linguistic
areas is crucial for improving geolocation at a
fine-grained level.

1 Introduction
Predicting the location of a Social Media post
involves first and foremost ways to identify the
words that indicate geographic location. Secondly,
and perhaps even more fundamentally, though, we
also need to determine an effective notion of what
a “location” is, i.e., what do our labels represent:
a state, a city, a neighborhood, a street? In many
NLP tasks, labels are ambiguous and open to inter-
pretation (Plank et al., 2014). In geolocation, the
information initially given is an unambiguous lati-
tude/longitude pair, but this format captures a level

of detail (precise down to a centimeter) that is both
unnecessary and unrealistic for most practical ap-
plications. Collapsing coordinates to geographic
categories is therefore a common step in geoloca-
tion. However, this discretization step is open to
interpretation: what method should we choose?

Previous work includes three different ap-
proaches to discretizing continuous values into lo-
cation labels (see also Section 2):

1.) Geodesic grids are the most straightforward,
but do not “lead to a natural representation of
the administrative, population-based or language
boundaries in the region” (Han et al., 2012).

2.) Clustering coordinates prevents the iden-
tification of (nearly) empty locations and keeps
points which are geographically close together
in one location. Unfortunately, in crowded re-
gions, clusters might be too close to each other,
and therefore divide cultural/linguistic areas into
meaningless groups.

3.) Predefined administrative regions, like
cities, can provide homogeneous interpretable ar-
eas. However, mapping coordinates to the clos-
est city can be ambiguous. Previous work typi-
cally considered cities with a population of at least
100K (Han et al., 2012, 2014). This approach has
the opposite problem of clustering: different lin-
guistic areas might be contained within a single
administrative region.

Here, we propose Point-To-City (P2C), a new
method mapping continuous coordinates to loca-
tions. It combines the strengths of the last two ap-
proaches, keeping coordinates which appear close
to each other in the same location, while also rep-
resenting them in terms of meaningful administra-
tive regions, with adjustable granularity. We show
that these two criteria also result in superior pre-
diction performance for geolocation.

Relying on k-d trees (Maneewongvatana and
Mount, 1999), P2C iteratively clusters points
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within a specified maximum distance d, and maps
them to the coordinates of the closest town with a
minimum population size.

We evaluate P2C on two data sets commonly
used for geolocation. We create three different
conditions by using three different values for d as
maximum distance between points, and compare
the results to those obtained using k-d tree labels
(as used in the W-NUT shared task (Han et al.,
2016)). For all four labeling schemes, we train an
attention-based convolutional neural network, and
evaluate mean and median distance between target
and predicted point, and accuracy within 161 km
(Acc@161). We also show the standard accuracy
score relative to the specific labels, usually much
worse than Acc@161, and often not reported in
the literature.

Our results show that P2C reliably produces
Acc@161 performance which is comparable with
state-of-the-art models. For exact accuracy, how-
ever, P2C labels always result in substantially bet-
ter performance than previous methods, in spite
of the larger set of classes. This suggests that
P2C captures more meaningful location distinc-
tions (backed up by a qualitative analysis), and that
previous labels capture only broader, linguistically
mixed areas. More generally, our results show that
language reflects social and geographical distinc-
tions in the world, and that more meaningful real-
world labels help language-based prediction mod-
els to perform their task more efficiently.

Contributions The contributions of this paper
are the following: 1.) we propose P2C, a k-d tree
based procedure to cluster geographic points as-
sociated with existing towns within a certain dis-
tance between town and cluster centroid. 2.) we
show that P2C produces more meaningful, inter-
pretable cultural and linguistic locations 3.) we
show that P2C labels substantially improve model
performance in exact, fine-grained classification

2 Related work

Geolocation prediction can, in principle, be mod-
eled both as regression and as classification prob-
lem. In practice, however, given the difficulty of
predicting continuous coordinate values, regres-
sion is often carried out in conjunction with the
classification (Eisenstein et al., 2010; Lourentzou
et al., 2017; Fornaciari and Hovy, 2019b). In gen-
eral, however, the task is considered a classifi-
cation problem, which requires solutions for the

identification of geographic regions as labels.
Geodesic grids were used for the geolocation of

posts on Flickr, Twitter and Wikipedia (Serdyukov
et al., 2009; Wing and Baldridge, 2011).

Hulden et al. (2015) noticed that “using smaller
grid sizes leads to an immediate sparse data prob-
lem since very few features/words are [selectively]
observed in each cell”.

In order to enhance the expressiveness of the ge-
ographic cells, Wing and Baldridge (2014), con-
structed both flat and hierarchical grids relying on
k-d tree, and testing their methods at different lev-
els of granularity. The same labels were used in
the study of Rahimi et al. (2018).

Han et al. (2012, 2014), who released
TWITTER-WORLD, use the information provided
by the Geoname dataset1 in order to identify a set
of cities around the world with at least 100K in-
habitants. Then they refer their geo-tagged texts
to those cities, creating easily interpretable ge-
ographic places. Cha et al. (2015) proposed a
voting-based grid selection scheme, with the clas-
sification referred to regions/states in US.

Most works use deep learning techniques for
classification (Miura et al., 2016). Often, they
include multi-view models, considering differ-
ent sources (Miura et al., 2017; Lau et al.,
2017; Ebrahimi et al., 2018; Fornaciari and Hovy,
2019a). In particular, Lau et al. (2017) imple-
mented a multi-channel convolutional network,
structurally similar to our model. Rahimi et al.
(2018) proposes a Graph-Convolutional neural
network, though the text features are represented
by a bag-of-words, while we rely on word embed-
dings.

The ability of the labels to reflect real anthropo-
logical areas, however, affects primarily the mod-
els which rely on linguistic data. This is the
case of the studies of Han et al. (2012) and Han
et al. (2014) who based their predictions on the
so-called Location-Indicative Words (LIW). Re-
cently, neural models have been built with the
same purpose (Rahimi et al., 2017; Tang et al.,
2019).

3 Methods
Data sets We apply our method to two widely
used data sets for geolocation: TWITTER-US
(Roller et al., 2012), and TWITTER-WORLD (Han
et al., 2012). They are all collections of En-

1http://www.geonames.org
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glish tweets aggregated by author and labeled
with geographic coordinates. TWITTER-US and
TWITTER-WORLD contain 450K and 1.39M texts,
respectively. They are each divided into their own
training, development, and test sets. Readers are
referred to the respective papers for additional de-
tails. We round the coordinates to the second dec-
imal number. A distance of 0.01 degrees corre-
sponds to less than 1.1 km on the longitude axis
(the distance is not constant on the latitude axis).
Smaller distinctions are not relevant for any com-
mon NLP task.

Data set d labels mean median

TW.-US .1 1554 7.07 3.81
.25 914 9.10 5.64
.5 418 15.54 12.21

W-NUT 256 – –

TW.-WORLD .1 3047 0.45 0.00
.25 2818 1.77 0.00
.5 2350 3.28 2.39

W-NUT 930 – –

Table 1: Number of labels and mean/median distance
in km between instances and the cluster town center.
For W-NUT, distance can not be computed, as cen-
troids are not close to meaningful places

Point-To-City (P2C) For the classification, we
need to identify labels corresponding to existing
cultural/linguistic areas, so that the geographic in-
formation conveyed through language can be fully
exploited.To this end, P2C iteratively creates clus-
ters of points, and afterwards associates the final
clusters with specific towns.

The parameter d controls the maximum spheri-
cal distance we allow between points assigned to
the same cluster at the initialization step. We run
P2C considering three values: 0.1, 0.25, and 0.5
coordinate decimal points, which correspond to
11.12 km (6.91 miles), 27.80 km (17.27 miles),
and 55.60 km (34.55 miles) on the longitude axis.
We use these values to explore the feasibility
of finer (and more challenging) predictions than
those usually accepted in the literature.

One of the most popular metrics in previous
studies (see Section 2 and 4) is the accuracy of
the predictions within 161 km, or 100 mi, from
the target point. In contrast, we are interested in
the accuracy relative to the precise prediction of
the labels, and we want labels representing points
aggregated according to a distance much smaller
than 161 km/100 mi: even the highest value we

choose for d, 0.5, is about one third the distance of
accuracy at 161 km (Acc@161). However, since
P2C iteratively creates clusters of clusters, it is
possible that the original points belonging to dif-
ferent clusters are further apart than the thresh-
old of d. For this reason, we selected values of d
which are about three to fifteen times smaller than
161 km/100 mi.

Given d and a set of coordinate points/instances
in the data set, P2C iterates over the following
steps until convergence:

1. for each point, apply k-d trees to find clusters
of points where each pair has a reciprocal dis-
tance less than d;

2. remove redundant clusters by ordering their
elements (e.g., (A,B) vs. (B,A));

3. remove subsets of larger clusters (e.g. (A,B)
vs. (A,B,C));

4. compute clusters’ centroids as the average
coordinates of all points belonging to the
cluster;

5. assign the points which fall into more than
one cluster to the one with the nearest cen-
troid;

6. substitute each instance’s coordinates with
the centroid coordinates of the corresponding
cluster.

The algorithm converges when the final number of
points cannot be further reduced, since they all are
farther apart from each other than the maximum
distance d. After assigning each instance its new
coordinates, we follow Han et al. (2012, 2014) in
using the GeoNames data set to associate clus-
ters with cities, by substituting the instance coordi-
nates with those of the closest town center. In our
case, however, rather than collecting cities with a
population of at least 100K, we consider all towns
with a population of at least 15K.

This last step further reduces the set of points
associated with our instances. Table 1 shows the
resulting number of labels, and the mean distance
in km between the new instance coordinates and
the respective town center.

This choice of 15K inhabitants is coherent with
the settings of d: we aim to account for lin-
guistic/social environments more specific than the
broad and compound communities of densely pop-
ulated cities. This is helpful for high resolution
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method model # labels Acc Acc@161 mean median

TWITTER-US

Han et al. (2014) NB + IGR 378 26% 45% - 260
Wing and Baldridge (2014) HierLR k-d “fewer classes” - 48% 687 191
Rahimi et al. (2017) MLP + k-d tree 256 - 55% 581 91

Att-CNN + k-d tree 256 26.17% 55.27% 580.7 93.02
Att-CNN + P2C .1 1554 44.04%∗ 59.76%∗ 544.35∗ 47.19∗

Att-CNN + P2C .25 914 49.08%∗ 60.4%∗ 537.0∗ 39.71∗

Att-CNN + P2C .5 418 54.73%∗ 58.56% 537.79∗ 0∗

TWITTER-WORLD

Han et al. (2014) NB + IGR 3135 13% 26% - 913
Wing and Baldridge (2014) HierLR k-d “fewer classes” - 31% 1670 509
Rahimi et al. (2017) MLP + k-d tree 930 - 36% 1417 373

Att-CNN + k-d tree 930 18.35% 33.85% 1506.33 469.48
Att-CNN + P2C .1 3047 22.57%∗ 39.41%∗ 1372.3∗ 328.42∗

Att-CNN + P2C .25 2818 26.68%∗ 39.94%∗ 1269.13∗ 299.04∗

Att-CNN + P2C .5 2350 32.64%∗ 41.8%∗ 1257.36∗ 292.09∗

Table 2: Performance of prior work and of the proposed model with W-NUT and P2C labels. ∗ : p ≤ 0.01.

geolocation both in the case of crowded regions
and of areas with low density of inhabitants. How-
ever, we found that in spite of qualified informa-
tion, such as the annual Worlds Cities report of
the United Nations, it is actually difficult to set
an optimal threshold. In fact, not even that doc-
ument provides a detailed profile of small towns at
a global level. Therefore we rely on the format of
the information offered by Geonames.

The code for computing P2C is available at
github.com/Bocconi-NLPLab.

Feature selection The two corpora have very
different vocabulary sizes. Despite fewer in-
stances, TWITTER-US contains a much richer vo-
cabulary than TWITTER-WORLD: 14 vs. 6.5 mil-
lions words. This size is computationally infeasi-
ble. In order to maximize discrimination, we filter
the vocabulary with several steps.

In order not to waste the possible geographic in-
formation carried by the huge amount of low fre-
quency terms, we use replacement tokens as fol-
lows: We again take only the training data into
account. First, we discard the hapax legomena,
that is the words with frequency 1, as there is no
evidence that these words could be found else-
where. Then, we discard words with frequency
greater than 1, if they appear in more than one
place. We replace low frequency terms which ap-
pear uniquely in on place with a replacement token
specific for that place, i.e., label. Finally, we sub-
stitute these words with their replacement token in
the whole corpus, including development and test

set. Since the word distribution follows the Zipf
curve (Powers, 1998) we are able to exploit the
geographic information of millions of words using
only a small number of replacement tokens. The
use of this information is fair, as it relies on the in-
formation present in the training set only. In terms
of performance, however, the effect of the replace-
ment tokens is theoretically not different from that
resulting from the direct inclusion of the single
words in the vocabulary.The benefit is in terms of
noise reduction, for the selective removal of geo-
graphically ambiguous words, and computational
affordability.

Following Han et al. (2012), we further filter
the vocabulary via Information Gain Ratio (IGR),
selecting the terms with the highest values until
we reach a computationally feasible vocabulary
size: here, 750K and 460K for TWITTER-US and
TWITTER-WORLD.

Attention-based CNN For classification, we
use an attention-based convolutional neural
model. We first train our own word embeddings
for each corpus, and feed the texts into two con-
volutional channels (with window size 4 and 8)
and max-pooling, followed by an overall attention
mechanism, and finally a fully-connected layer
with softmax activation for prediction.

For evaluation, as discussed in Section 3, we
use the common metrics considered in literature:
acc@161, that is the accuracy within 161 km
(100 mi) from the target point, and mean and me-
dian distance between the predicted and the target
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points. We are also interested in the exact accu-
racy. This metric is often not shown in literature,
but is important for the geolocation in real case
scenarios. We evaluate significance via bootstrap
sampling, following Søgaard et al. (2014).

(a) W-NUT labels

(b) P2C labels

Figure 1: Example of cumulative point accuracy with
the two label sets for gold label Washington DC (flag).
Circles are predictions, diameter represents percentage
of predictions on that point.

4 Results
The model performance is shown in table 2. When
applied to the W-NUT labels, our model repli-
cates the results of Rahimi et al. (2017): in
TWITTER-US the values correspond perfectly, in
TWITTER-WORLD the Att-CNN performance is
slightly lower. Compared to the W-NUT labels,
the P2C labels are much more granular in every
condition and, in spite of their apparent greater
difficulty, they help to reach better performance in
all metrics, with very high levels of significance.
Such differences are surprisingly wide with re-
spect to the accuracy: in TWITTER-US, for P2C
with d = .5, the performance is more than doubled
compared to the same model with the W-NUT k-d

tree labels (54% vs. 26%).
Figure 1 shows the coordinates of the W-NUT

(1a) and of the P2C cluster centroids (1b). The di-
ameter of the circles represent the rate correct pre-
diction for those points. As can be seen, P2C iden-
tifies a unique linguistic region around Washing-
ton, while different W-NUT labels cover more or
less the same area. P2C labels also allow a much
better concentration of predictions in the same ad-
ministrative/linguistic area.

5 Conclusion
P2C is a method for geographic labeling that dy-
namically clusters points and links them to spe-
cific towns. The aims are 1) to gather the points
belonging to the same linguistic areas; 2) to asso-
ciate such areas with distinct, existing administra-
tive regions; 3) to improve the models’ effective-
ness, training them with texts showing consistent
linguistic patterns. Compared to the W-NUT k-d
tree labels, P2C leads to remarkably higher per-
formance in all metrics, and in particular in the
accuracy, even in spite of the higher number of la-
bels identified. This suggests that techniques like
P2C might be particularly useful when high per-
formance at high levels of granularity is required.
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Abstract

Robustness to capitalization errors is a highly
desirable characteristic of named entity recog-
nizers, yet we find standard models for the task
are surprisingly brittle to such noise. Exist-
ing methods to improve robustness to the noise
completely discard given orthographic infor-
mation, which significantly degrades their per-
formance on well-formed text. We propose a
simple alternative approach based on data aug-
mentation, which allows the model to learn
to utilize or ignore orthographic information
depending on its usefulness in the context.
It achieves competitive robustness to capital-
ization errors while making negligible com-
promise to its performance on well-formed
text and significantly improving generalization
power on noisy user-generated text. Our ex-
periments clearly and consistently validate our
claim across different types of machine learn-
ing models, languages, and dataset sizes.

1 Introduction

In the last two decades, substantial progress has
been made on the task of named entity recogni-
tion (NER), as it has enjoyed the development
of probabilistic modeling (Lafferty et al., 2001;
Finkel et al., 2005), methodology (Ratinov and
Roth, 2009), deep learning (Collobert et al., 2011;
Huang et al., 2015; Lample et al., 2016) as well
as semi-supervised learning (Peters et al., 2017,
2018). Evaluation of these developments, how-
ever, has been mostly focused on their impact on
global average metrics, most notably the micro-
averaged F1 score (Chinchor, 1992).

For practical applications of NER, however,
there can be other considerations for model eval-
uation. While standard training data for the
task consists mainly of well-formed text (Tjong
Kim Sang, 2002; Pradhan and Xue, 2009), models
trained on such data are often applied on a broad

range of domains and genres by users who are not
necessarily NLP experts, thanks to the prolifera-
tion of toolkits (Manning et al., 2014) and general-
purpose machine learning services. Therefore,
there is an increasing demand for the strong ro-
bustness of models to unexpected noise.

In this paper, we tackle one of the most com-
mon types of noise in applications of NER: unreli-
able capitalization. Noisiness in capitalization is a
typical characteristic of user-generated text (Ritter
et al., 2011; Baldwin et al., 2015), but it is not un-
common even in formal text. Headings, legal doc-
uments, or emphasized sentences are often capi-
talized. All-lowercased text, on the other hand,
can be produced in large scale from upstream ma-
chine learning models such as speech recogniz-
ers and machine translators (Kubala et al., 1998),
or processing steps in the data pipeline which are
not fully under the control of the practitioner. Al-
though a text without correct capitalization is per-
fectly legible for human readers (Cattell, 1886;
Rayner, 1975) with only a minor impact on the
reading speed (Tinker and Paterson, 1928; Arditi
and Cho, 2007), we show that typical NER mod-
els are surprisingly brittle to all-uppercasing or
all-lowercasing of text. The lack of robustness
these models show to such common types of noise
makes them unreliable, especially when character-
istics of target text are not known a priori.

There are two standard treatments on the prob-
lem in the literature. The first is to train a case-
agnostic model (Kubala et al., 1998; Robinson
et al., 1999), and the second is to explicitly cor-
rect the capitalization (Srihari et al., 2003; Lita
et al., 2003; Ritter et al., 2011). One of the main
contributions of this paper is to empirically eval-
uate the effectiveness of these techniques across
models, languages, and dataset sizes. However,
both approaches have clear conceptual limitations.
Case-agnostic models discard orthographic infor-
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Annotation O O O B-ORG I-ORG E-ORG
(a) Original Sentence I live in New York City
(b) Lower-cased Sentence i live in new york city
(c) Upper-cased Sentence I LIVE IN NEW YORK CITY

Table 1: Example of Data Augmentation

mation (how the given text was capitalized), which
is considered to be highly useful (Robinson et al.,
1999); our experimental results also support this.
The second approach of correcting the capitaliza-
tion of the text, on the other hand, requires an ac-
cess to a high-quality truecasing model, and errors
from the truecasing model would cascade to final
named entity predictions.

We argue that an ideal approach should take a
full advantage of orthographic information when
it is correctly present, but rather than assuming
the information to be always perfect, the model
should be able to learn to ignore the orthographic
information when it is unreliable. To this end, we
propose a novel approach based on data augmen-
tation (Simard et al., 2003). In computer vision,
data augmentation is a highly successful standard
technique (Krizhevsky et al., 2012), and it has
found adoptions in natural language processing
tasks such as text classification (Zhang and Le-
Cun, 2015), question-answering (Yu et al., 2018)
and low-resource learning (Sahin and Steedman,
2018). Consistently across a wide range of models
(linear models, deep learning models to deep con-
textualized models), languages (English, German,
Dutch, and Spanish), and dataset sizes (CoNLL
2003 and OntoNotes 5.0), the proposed method
shows strong robustness while making little com-
promise to the performance on well-formed text.

2 Formulation

Let x = (x1, x2, . . . , xn) be a sequence of words
in a sentence. We follow the standard approach
of formulating NER as a sequence tagging task
(Rabiner, 1989; Lafferty et al., 2001; Collins,
2002). That is, we predict a sequence of tags
y = (y1, y2, . . . , yn) where each yi identifies the
type of the entity the word xi belongs to, as well
as the position of it in the surface form according
to IOBES scheme (Uchimoto et al., 2000). See
Table 1 (a) for an example annotated sentence.
We train probabilistic models under the maximum
likelihood principle, which produce a probability
score P [y | x] for any possible output sequence y.

All-uppercasing and all-lowercasing are com-

mon types of capitalization errors. Let upper(xi)
and lower(xi) be functions that lower-cases and
upper-cases the word xi, respectively. Robust-
ness of a probabilistic model to these types of
noise can be understood as the quality of scor-
ing function P[y | upper(x1), . . . , upper(xn)] and
P[y | lower(x1), . . . , lower(xn)] in predicting the
correct annotation y, which can still be quanti-
fied with standard evaluation metrics such as the
micro-F1 score.

3 Prior Work

There are two common strategies to improve ro-
bustness to capitalization errors. The first is to
completely ignore orthograhpic information by us-
ing case-agnostic models (Kubala et al., 1998;
Robinson et al., 1999). For linear models, this can
be achieved by restricting the choice of features to
case-agnostic ones. On the other hand, deep learn-
ing models without hand-curated features (Lam-
ple et al., 2016; Chiu and Nichols, 2016) can be
easily made case-agnostic by lower-casing every
input to the model. The second strategy is to ex-
plictly correct the capitalization by using another
model trained for this purpose, which is called
“truecasing”(Srihari et al., 2003; Lita et al., 2003).
Both methods, however, have the common limita-
tion that they discard orthographic information in
the target text, which can be correct; this leads to
degradation of performance on well-formed text.

4 Data Augmentation

Data augmentation refers to a technique of in-
creasing the size of training data by adding label-
preserving transformations of them (Simard et al.,
2003). For example, in image classification, an
object inside of an image does not change if the
image is rotated, translated, or slightly skewed;
most people would still recognize the same object
they would find in the original image. By train-
ing a model on transformed versions of training
images, the model becomes invariant to the trans-
formations used (Krizhevsky et al., 2012).

In order to improve the robustness of NER
models to capitalization errors, we appeal to the
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Model Method CoNLL-2003 English OntoNotes 5.0 English Transfer to Twitter
Original Lower Upper Original Lower Upper Original Lower Upper

Linear

Baseline 89.2 57.8 75.2 81.7 37.4 15.1 24.4 6.9 20.2
Caseless 83.7 83.7 83.7 75.5 75.5 75.5 20.3 20.3 20.3

Truecasing 83.8 83.8 83.8 76.6 76.6 76.6 24.0 24.0 24.0
DA 88.2 85.6 86.1 - - - 28.2 26.4 27.0

BiLSTM

Baseline 90.8 0.4 52.3 87.6 38.9 15.5 18.1 0.1 7.9
Caseless 85.7 85.7 85.7 83.2 83.2 83.2 20.3 20.3 20.3

Truecasing 84.6 84.6 84.6 81.7 81.7 81.7 18.7 18.7 18.7
DA 90.4 85.3 83.8 87.5 83.2 82.6 21.2 17.7 18.4

ELMo

Baseline 92.0 34.8 71.6 88.7 66.6 48.9 31.6 1.5 19.6
Caseless 89.1 89.1 89.1 85.3 85.3 85.3 31.8 31.8 31.8

Truecasing 86.2 86.2 86.2 83.2 83.2 83.2 28.8 28.8 28.8
DA 91.3 88.7 87.9 88.3 85.8 83.6 34.6 31.7 30.2

Table 2: F1 scores on original, lower-cased, and upper-cased test sets of English Datasets. Stanford Core NLP
could not be trained on the augmented dataset even with 512GB of RAM.

same idea. When a sentence is all-lowercased
or all-uppercased as in Table 1 (b) and (c), each
word would still correspond to the same en-
tity. This implies such transformations are also
label-preserving ones: for a sentence x and its
ground-truth annotation y, y would still be a cor-
rect annotation for the all-uppercased sentence
(upper(x1), . . . , upper(xn)) as well as the all-
lowercased version (lower(x1), . . . , lower(xn)).
Indeed, all three sentences (a), (b) and (c) in Ta-
ble 1 would share the same annotation.

5 Experiments

We consider following three models, each of
which is state-of-the-art in their respective group:
Linear: Linear CRF model (Finkel et al., 2005)
from Stanford Core NLP (Manning et al., 2014),
which is representative of feature engineering
approaches. BiLSTM: Deep learning model
from Lample et al. (2016) which uses bidirec-
tional LSTM for both character-level encoder and
word-level encoder with CRF loss. This is the
state-of-the-art supervised deep learning approach
(Reimers and Gurevych, 2017). ELMo: Bidirec-
tional LSTM-CRF model which uses contextual-
ized features from deep bidirectional LSTM lan-
guage model (Peters et al., 2018). For all models,
we used hyperparameters from original papers.

We compare four strategies: Baseline: Models
are trained on unmodified training data. Caseless:
We lower-case input data both at the training time
and at the test time. Truecasing: Models are still
trained on unmodified training data, but every in-
put to test data is “truecased” (Lita et al., 2003)
using CRF truecasing model from Stanford Core
NLP (Manning et al., 2014), which ignores given

orthographic information in the text. Due to the
lack of access to truecasing models in other lan-
guages, this strategy was used only on English.
DA (Data Augmentation): We augment the orig-
inal training set with upper-cased and lower-cased
versions of it, as discussed in Section 4.

We evaluate these models and methods on three
versions of the test set for each dataset: Original:
Original test data. Upper: All words are upper-
cased. Lower: All words are lower-cased. Note
that both Caseless and Truecasing method perform
equally on all three versions because they ignore
any original orthographic information in the test
dataset. We focus on micro-averaged F1 scores.

We use CoNLL-2002 Spanish and Dutch (Tjong
Kim Sang, 2002) and CoNLL-2003 English and
German (Sang and De Meulder, 2003) to cover
four languages, all of which orthographic infor-
mation is useful in idenfitying named entities, and
upper or lower-casing of text is straightforward.
We additionally evaluate on OntoNotes 5.0 En-
glish (Pradhan and Xue, 2009), which is about
five times larger than CoNLL datasets and con-
tains more diverse genres. F1 scores are shown
in Table 2 and 3.

Question 1: How robust are NER models
to capitalization errors? Models trained with
the standard Baseline strategy suffer from signif-
icant loss of performance when the test sentence
is upper/lower-cased (compare ‘Original’ column
with ‘Lower’ and ‘Upper’). For example, F1 score
of BiLSTM on lower-cased CoNLL-2003 English
is abysmal 0.4%, completely losing any predic-
tive power. Linear and ELMo are more robust
than BiLSTM thanks to smaller capacity and semi-
supervision respectively, but the degradation is
still strong, ranging 20pp to 60pp loss in F1.
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Model Method CoNLL-2002 Spanish CoNLL-2002 Dutch CoNLL-2003 German
Original Lower Upper Original Lower Upper Original Lower Upper

Linear
Baseline 80.7 1.1 22.1 79.1 9.8 9.7 68.4 11.8 11.3
Caseless 69.9 69.9 69.9 63.9 63.9 63.9 53.3 53.3 53.3

DA 77.3 70.9 73.2 74.4 68.5 68.5 61.8 57.8 62.8

BiLSTM
Baseline 85.4 1.0 26.8 87.3 2.0 15.8 79.5 6.5 9.8
Caseless 77.8 77.8 77.8 77.7 77.7 77.7 69.8 69.8 69.8

DA 85.3 78.4 76.5 84.8 75.0 75.9 76.8 69.7 69.7

Table 3: F1 scores on original, lower-cased, and upper-cased test sets of Non-English Datasets

Question 2: How effective Caseless, True-
casing, and Data Augmentation approaches are
in improving robustness of models? All meth-
ods show similar levels of performance on lower-
cased or uppercased text. Since Caseless and Data
Augmentation strategy do not require additional
language-specifc resource as truecasing does, they
seem to be superior to the truecasing approach,
at least on CoNLL-2003 English and OntoNotes
5.0 datasets with the particular truecasing model
used. Across all datasets, the performance of Lin-
ear model on lower-cased or upper-cased test set
is consistently enhanced with data augmentation,
compared with caseless models.

Question 3: How much performance on well-
formed text is sacrificed due to robustness?
Caseless and Truecasing methods are perfectly ro-
bust to capitalization errors, but only at the cost of
significant degradation on well-formed text: case-
less and truecasing strategy lose 5.1pp and 6.2pp
respectively on the original test set of CoNLL-
2003 English compared to Baseline strategy, and
on non-English datasets the drop is even big-
ger. On the other hand, data augmentation pre-
serves most of the performance on the original
test set: with BiLSTM, its F1 score drops by only
0.4pp and 0.1pp respectively on CoNLL-2003 and
OntoNotes 5.0 English. On non-English datasets,
the drop is bigger (0.1pp on Spanish but 2.5pp on
Dutch and 2.7pp on German) but still data aug-
mentation performs about 7pp higher than Case-
less on original well-formed text across languages.

Question 4: How do models trained on well-
formed text generalize to noisy user-generated
text? The robustness of models is especially
important when the characteristics of target text
are not known at the training time and can devi-
ate significantly from those of training data. To
this end, we trained models on CoNLL 2003-
English, and evaluated them on annotations of
Twitter data from Fromreide et al. (2014), which
exhibits natural errors of capitalization common

in user-generated text. ‘Transfer to Twitter’ col-
umn of Table 2 reports results. In this experi-
ment, Data Augmentation approach consistently
and significantly improves upon Baseline strategy
by 3.8pp, 3.1pp, and 3.0pp with Linear, BiLSTM,
and ELMo models respectively on Original test set
of Twitter, demonstrating much strengthened gen-
eralization power when the test data is noisier than
the training data.

In order to understand the results, we exam-
ined some samples from the dataset. Indeed, on
a sentence like ‘OHIO IS STUPID I HATE IT’,
BiLSTM model trained with Baseline strategy was
unable to identify ‘OHIO’ as a location although
the state is mentioned fifteen times in the training
dataset of CoNLL 2003-English as ‘Ohio’. BiL-
STM models trained with all other strategies cor-
rectly identified the state. On the other hand, on
another sample sentence ‘Someone come with me
to Raging Waters on Monday’, BiLSTM models
from Baseline and Data Augmentation strategies
were able to correctly identify ‘Raging Waters’
as a location thanks to the proper capitalization,
while the model from Caseless strategy failed on
the entity due to its ignorance of orthographic in-
formation.

6 Conclusion

We proposed a data augmentation strategy for
improving robustness of NER models to capital-
ization errors. Compared to previous methods,
data augmentation provides competitive robust-
ness while not sacrificing its performance on well-
formed text, and improving generalization to noisy
text. This is consistently observed across mod-
els, languages, and dataset sizes. Also, data aug-
mentation does not require additional language-
specific resource, and is trivial to implement for
many natural languages. Therefore, we recom-
mend to use data augmentation by default for
training NER models, especially when character-
istics of test data are little known a priori.
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Abstract

Traditional event detection classifies a word or
a phrase in a given sentence for a set of prede-
fined event types. The limitation of such pre-
defined set is that it prevents the adaptation of
the event detection models to new event types.
We study a novel formulation of event detec-
tion that describes types via several keywords
to match the contexts in documents. This fa-
cilitates the operation of the models to new
types. We introduce a novel feature-based
attention mechanism for convolutional neural
networks for event detection in the new for-
mulation. Our extensive experiments demon-
strate the benefits of the new formulation for
new type extension for event detection as well
as the proposed attention mechanism for this
problem.

1 Introduction

Event detection (ED) is a task of information ex-
traction that aims to recognize event instances
(event mentions) in text and classify them into spe-
cific types of interest. Event mentions are usu-
ally associated with an event trigger/anchor in the
sentence of the event mentions, functioning as the
main word to evoke the event. For instance, in the
sentence ”She is going to leave to become chair-
man of Time Inc.”, an ED system should be able
to recognize that the word “leave” is triggering an
event of type “End-Position”.

There have been two major approaches for ED
in the literature. The first approach focuses on
the development of linguistic features to feed into
the statistical models (i.e., MaxEnt) (Ahn, 2006;
Ji and Grishman, 2008; Liao and Grishman, 2010;
McClosky et al., 2011). The second approach, on
the other hand, relies on deep learning (i.e., con-
volutional neural networks (CNN)) to automati-
cally induce features from data (Chen et al., 2015;
Nguyen et al., 2016a; Liu et al., 2017; Lu and

Nguyen, 2018), thus significantly improving the
performance for ED.

One limitation of the current approaches for
ED is the assumption of a predefined set of event
types for which data is manually annotated to train
the models. For example, the popular benchmark
dataset ACE 2005 for ED annotates 8 types and
33 subtypes of events. Once the models have been
trained in this way, they are unable to extract in-
stances of new, yet related types (i.e., having zero
performance on the new types). To extend the op-
eration of these models into the new types, the
common approach is to spend some effort anno-
tating data for the new types to retrain the mod-
els. Unfortunately, this is an expensive process
as we might need to obtain a large amount of
labeled data to adequately represent various new
event types in practice. Such expensive annota-
tion has hindered the application of ED systems
on new types and calls for a better way to formu-
late the ED problem to facilitate the extension of
the models to new event types.

In this paper, we investigate a novel formu-
lation of ED where the event types are defined
via several keywords instead of a large number
of examples for event types in the traditional ap-
proaches (called the learning-from-keyword for-
mulation (LFK)). These keywords involve the
words that can possibly trigger the event types in
the contexts. For instance, the event type End-
Position can be specified by the keywords (“left,
“fired”, “resigned”). Given the keywords to rep-
resent event types, the ED problem becomes a bi-
nary classification problem whose goal is to pre-
dict whether a word in a sentence expresses the
event type specified by the keywords or not. This
formulation enables the ED models to work with
new event types as long as the keywords to de-
scribe the new types are provided, thus allowing
the ED models to be applicable on a wide range of
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new event types and mitigating the needs for large
amounts of annotated data for the new types.

The goal of this paper is to evaluate the effec-
tiveness of LFK in the new type extension setting
for ED where the models are trained on labeled
data from some types but applied to extract in-
stances of unseen types. We would like to pro-
mote this problem as a new task for ED for fu-
ture research. To set the baselines for this prob-
lem, we employ the ACE 2005 dataset and recast
it into LFK. We examine the performance of the
baseline models for ED in the traditional formu-
lation when they are adapted to LFK. The exper-
iments show that with the new formulation, such
ED models can actually recognize new event types
although their performance should be still further
improved in future research. Finally, we demon-
strate one possibility to improve the performance
of the baseline ED models in LFK by present-
ing a novel attention mechanism for CNNs based
on the feature space to fuse the representations of
the keywords and contexts. We achieve the state-
of-the-art performance for the new type extension
with the proposed attention mechanism.

2 Related work

In the last decade, many machine learning sys-
tems have been introduced to solve ED. Before the
era of the deep neural networks, these systems are
mainly based on supervised learning using exten-
sive feature engineering with the machine learning
frameworks (Ahn, 2006; Ji and Grishman, 2008;
Hong et al., 2011; Riedel et al., 2009; Riedel and
McCallum, 2011a,b; Miwa et al., 2014; Li et al.,
2014, 2015). Recently, many advanced deep learn-
ing methods were introduced to enhance event de-
tectors such as distributed word embedding (Chen
et al., 2015; Nguyen et al., 2016b; Liu et al., 2017;
Nguyen and Nguyen, 2019), convolutional neural
networks (Chen et al., 2015, 2017; Nguyen and
Grishman, 2015; Nguyen et al., 2016b; Nguyen
and Grishman, 2018), recurrent neural networks
(Nguyen et al., 2016b; Sha et al., 2018), and the at-
tention mechanism (Liu et al., 2017; Nguyen and
Nguyen, 2018b; Liu et al., 2018). However, the
models proposed in these work cannot extend their
operation to new event types.

Regarding the new formulations for ED, pre-
vious studies(Bronstein et al., 2015; Peng et al.,
2016) also examine keywords to specify event
types. However, these studies do not investigate

the new type extension setting as we do in this.
Recently, zero-shot learning is employed for new
types in event extraction(Huang et al., 2018); how-
ever, the event types are specified via the possible
roles of the arguments participating into the events
in this work. It also uses complicated natural lan-
guage processing toolkits, making it difficult to
apply and replicate the settings. Our work em-
phasizes the simplicity in the setting for new type
extension to facilitate future research. Finally, ex-
tending ED to the new type is investigated using
real examples as new event types (Nguyen et al.,
2016c). However, it requires a large number of ex-
amples to perform well. Our work instead requires
only a few keywords to help the models achieve
reasonable performance on new types.

3 Learning-from-Keywords for ED

3.1 Task Definition

In the learning-from-keyword formulation for ED,
the inputs include a context (i.e., an n-word sen-
tence X = {x1, x2, . . . , xn} with an anchor word
located at position a (the word xa)) and a set of
keywordsK. The words inK are the possible trig-
ger words of some event type of interest. The goal
is to predict whether the word xa in S expresses
the event type specified by K or not (i.e., a bi-
nary classification problem to decide whether the
context matches the event keywords or not). An
example in LFK thus has the form (X,xa,K, Y )
where Y is either 1 or 0 to indicate the match of
X and K.

3.2 Data Generation

To facilitate the evaluation of the ED models in
LFK for the new type extension setting, we need
to obtain training and test/development datasets
so the keyword sets of the examples in the
test/development datasets define event types that
are different from those specified by the keyword
sets in the training datasets. To our best knowl-
edge, there is no existing data following LFK set-
ting, therefore, in this section, we present a pro-
cess to automatically generate an ED dataset for
LFK setting from an existing ED dataset.

We obtain these datasets by leveraging ACE
2005, the popular benchmark datasets for ED.
ACE 2005 dataset is annotated for 8 event types
T = {t1, t2, . . . , t8}, and 33 event subtypes
S = {s1, s2, . . . , s33}. There is also a special
type/subtype of “Other” indicating the non-event
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instances (Other /∈ S) . As each event subtype in
ACE 2005 is associated with one event type, let
Ci be the set of subtypes corresponding to the type
ti ∈ T . Also, let Kj be the set of trigger words
for the event mentions of the subtype sj ∈ S. K is
collected from training set of ACE 2005.

To generate the training and test/development
datasets, we first split the documents in ACE 2005
into three parts Dtrain, Dtest and Ddev following
the previous work on ED (Li et al., 2013). They
would contain event mentions for all the possible
event types and subtypes in T and S. Assume that
we want to extend the system to a new event type
ttarget ∈ T , we need a train set without ttarget.
So, we remove every event mention whose sub-
type belongs to Ctarget from Dtrain. Whereas,
samples with subtypes in Ctarget ∪ {Other} are
kept in Dtest and Ddev. The results of this re-
moval process are called as D′train, D′test and
D′dev (from Dtrain, Dtest and Ddev, respectively).
They will be used to generate the actual train-
ing/test/development datasets for LFK, respec-
tively.

Specifically, for each of these datasets (i.e.,
D′train, D′test and D′dev), the goal is to produce
the positive and negative examples in correspond-
ing LFK datasets. Algorithm 1 shows the pseudo-
code to generate the training dataset for LFK from
D′train. The same algorithm can be applied for the
test and development dastasets of LFK, but replace
D′train with D′test and D′dev respectively in line 2,
and replace S \ Ctarget with Ctarget in line 10.

Since the number of positive examples in Dtest

set is small, we choose two event types (i.e., Con-
flict and Life) that have the largest numbers of pos-
itive examples in Dtest as the target types. Ap-
plying the data generation procedure above, we
generate a dataset in LFK for each of these target
types.

4 Model

This section first presents the typical deep learning
models in the traditional ED formulation adapted
to LFK. We then introduce a novel attention mech-
anism to improve such models for LFK.

4.1 Baselines

As CNNs have been applied to the traditional for-
mulation of ED since the early day (Chen et al.,
2015; Nguyen and Grishman, 2015, 2016), we fo-
cus on the CNN-based model in this work and

Algorithm 1 Training dataset generation for LFK
1: D+

train, D
−
train← ∅, ∅ . Positive and negative

example sets
2: for (X,xa, sj) ∈ D′train do . where X : a

sentence, xa ∈ X : the anchor word, sj ∈ S :
the corresponding subtype

3: if sj 6= “Other” then
4: for u = 1..5 do
5: Ku

j ← A subset of Kj \ {xa}:
|Ku

j | = 4

6: D+
train ← D+

train ∪
{(X,xa,Ku

j , 1)}
7: end for
8: else . s = “Other”
9: sv ← Some subtype in S \ Ctarget

10: K ← A subset of Kv: |K| = 4
11: D−train← D−train ∪ {(X,xa,K, 0)}
12: end if
13: end for
14: return D+

train and D−train

leave the other models for future research.
Encoding Layer: To prepare the sentence S

and the anchor xa for the models, we first con-
vert each word xi ∈ S into a concatenated vec-
tor h0i = [pi, qi], in which pi ∈ Ru is the posi-
tion embedding vector and qi ∈ Rd is the word
embedding of xi. We follow the settings for pi
and qi described in (Nguyen and Grishman, 2015).
This step transforms S into a sequence of vector
H0 = (h01, h

0
2, . . . , h

0
n).

Convolution Layers: Following (Chen et al.,
2015; Nguyen and Grishman, 2015), we apply a
convolutional layers with multiple window sizes
for the filters W over H0, resulting in a sequence
of hidden vectors H1 = (h11, h

1
2, . . . , h

1
n). Note

that we pad H0 with zero vectors to ensure that
H1 still has n vectors. We can essentially run m
convolutional layers in this way that would lead to
m sequences of hidden vectors H1, H2, . . . ,Hm.

Keyword Representation: We generate the
representation vector VK for the keyword setK by
taking the average of the embeddings of its words.

Given the keyword vectors VK and the hid-
den vector sequences from CNNs for S (i.e.,
H1, H2, . . . ,Hm), the goal is to produce the fi-
nal representationR = G(VK , H

1, H2, . . . ,Hm),
serving as the features to predict the matching be-
tween (S, xa) and K (i.e., R would be fed into a
feed-forward neural network with a softmax layer
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in the end to perform classification). There are two
immediate baselines to obtain R adapted from the
models for traditional ED:

(i) Concat: In this method, we apply the usual
max-pooling operation over the hidden vectors for
the last CNN layer Hm whose result is concate-
nated with VK to produce R (Nguyen and Grish-
man, 2015; Chen et al., 2015).

(ii) Attention: This method applies the popular
attention method to aggregate the hidden vectors
in Hm using VK as the query (Bahdanau et al.,
2015). The formulas for R are shown below:

ui = σ(Wuh
m
i + bu)

c = σ(Wc[VK , h
m
a ] + bc)

αi =
exp(c>ui)∑
j exp(c>uj)

R =
∑

i

αih
m
i

4.2 Conditional Feature-wise Attention

The interaction between the keywords and hidden
vectors in the baselines is only done in the last
layer, letting the intermediate CNN layers to de-
cide the computation themselves without consid-
ering the information from the keywords.

To overcome this limitation, we propose to in-
ject supervision signals for each CNN layer in
the modeling process. In particular, given the se-
quence of hidden vectors H i = (hi1, h

i
2, . . . , h

i
n)

obtained by the i-th CNN layer, instead of directly
sending H i to the next layer, we use VK to gen-
erate the representation vectors γi and βi, aiming
to reveal the underlying information/constraints
from the keywords that the i-th CNN layer should
reason about. Such representation vectors condi-
tion and bias the hidden vectors in H i toward the
keywords based on the feature-wise affine trans-
formation (Perez et al., 2018). The conditioned
hidden vectors from this process (called H̄ i =
(h̄i1, h̄

i
2, . . . , h̄

i
n)) would be sent to the next CNN

layer where the conditional process guided by the
keywords continues:

γi = σ(W i
γVK + biγ)

βi = σ(W i
βVK + biβ)

h̄ij = γi ∗ hij + βi

where σ is a non-linear function whileW i
γ , b

i
γ ,W

i
β

and biβ are model parameters.

We call the operation described in this section
the Conditional Feature-wise Attention (CFA).
The application of CFA into the two baselines
Concat and Attention leads to two new methods
Concat-CFA and Attention-CFA respectively.

5 Experiments

We use the datasets generated in Section 3.2 to
evaluate the models in this section. Table 1 shows
the staticstics of our generated datasets. This
dataset will be publicly available to the commu-
nity.

Label Train Dev Test

Conflict
+1 14,749 929 509
-1 177,421 13,130 13,576

Life
+1 17,434 354 154
-1 177,421 13,130 13,576

Table 1: Numbers of the positive and negative samples
of the LFK datasets.

5.1 Parameters
We examine four deep learning models: baselines
(i.e., Concat and Attention) and the proposed mod-
els (i.e., Concat-CFA and Attention-CFA). Follow-
ing (Nguyen and Grishman, 2015), we employ
the word2vec word embeddings from (Mikolov
et al., 2013) with 300 dimensions for the models
in this work. The other parameters for the deep
learning models in this work are tuned on the de-
velopment datasets. In particular, we employ mul-
tiple window sizes (i.e., 2, 3, 4 and 5) in the CNN
layers, each has 100 filters. We use Adadelta as
the optimizer with the learning rate set to 1.0. We
apply a dropout with a rate of 0.5 to the final repre-
sentation vector R. Finally, we optimize the num-
ber of CNN layers for each deep learning model.

In addition, we investigate the typical feature-
based models with the MaxEnt classifier in the tra-
ditional ED formulation for LFK to constitute the
baselines for future research. In particular, we ex-
amine four feature-based models for ED in LFK:

• Feature combines the state-of-the-art feature
set for ED designed in (Li et al., 2013) for
the input context (S, xa) with the words in the
keyword set K to form its features

• Word2Vec utilizes the keyword representa-
tion VK and the average of the embedding of
the words in the window size of 5 for xa in S
as the features
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Model
Conflict Life

P R F1 P R F1
Feature 21.7 9.8 13.5 14.4 25.8 18.5
Word2Vec 20.6 72.4 32.1 4.4 61.9 8.2
Feature + Word2vec 27.8 20.2 23.4 15.7 31.6 21.0
Seed 11.9 36.1 17.9 9.5 71.0 16.7
Concat 20.5 57.8 30.0 (4) 10.9 48.3 17.7 (2)
Attention 21.5 59.1 31.4 (4) 12.8 45.0 19.1 (2)
Concat-CFA 25.1 57.1 33.8 (4) 10.6 43.6 16.9 (1)
Attention-CFA 22.5 74.2 34.1 (1) 18.5 38.7 25.0 (4)

Table 2: Model performance. The numbers in the brackets indicate the optimized numbers of CNN layers.

• Feature + word2vec uses the aggregated fea-
tures from above models

• Seed employs the model with semantic fea-
tures in (Bronstein et al., 2015).

5.2 Evaluation

Table 2 presents the performance of the models
on the test performance for different datasets (i.e.,
with Conflict and Life as the target type). Among
the features in the feature-based models, the em-
bedding features in Word2Vec are very helpful
for ED in LFK as the models with these features
achieve the best performance (i.e., Word2Vec for
Conflict and Feature+Word2Vec for Life). Among
the deep learning models, the CFA-based mod-
els (i.e., Concat-CFA and Attention-CFA) are sig-
nificantly better than their corresponding baseline
models (i.e., Concat and Attention) over both Con-
flict and Life with Attention. This confirms the
benefits of CFA for ED in LFK.

Comparing the deep learning and the feature-
based models, it is interesting that the feature-
based models with average word embedding fea-
tures can perform better than the deep learning
baseline models (i.e., Concat and Attention) for
Conflict. However, when the deep learning models
are integrated with both attention and CFA (i.e.,
Attention-CFA), it achieves the best performance
over both datasets. This helps to testify to the ad-
vantage of deep learning and CFA for ED in the
new type extension setting with LFK.

Finally, although the models can extract event
mentions of the new types, the performance is
still limited in general, illustrating the challenge
of ED in this setting and leaving many rooms for
future research (especially with deep learning) to
improve the performance. We hope that the set-
ting in this work presents a new way to evaluate

the effectiveness of the ED models.

6 Conclusion

We investigate a new formulation for event detec-
tion task that enables the operation of the models
to new event types, featuring the use of keywords
to specify the event types on the fly for the mod-
els. A novel feature-wise attention technique is
presented for the CNN models for ED in this for-
mulation. Several models are evaluated to serve as
the baselines for future research on this problem.
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Abstract

Distant supervised relation extraction is an ef-
ficient and effective strategy to find relations
between entities in texts. However, it in-
evitably suffers from mislabeling problem and
the noisy data will hinder the performance.
In this paper, we propose the Separate Head-
Tail Convolution Neural Network (SHTCNN),
a novel neural relation extraction framework to
alleviate this issue. In this method, we apply
separate convolution and pooling to the head
and tail entity respectively for extracting bet-
ter semantic features of sentences, and coarse-
to-fine strategy to filter out instances which do
not have actual relations in order to alleviate
noisy data issues. Experiments on a widely
used dataset show that our model achieves sig-
nificant and consistent improvements in re-
lation extraction compared to statistical and
vanilla CNN-based methods.

1 Introduction

Relation extraction is a fundamental task in infor-
mation extraction, which aims to extract relations
between entities. For example, “Bill Gates is the
CEO of Microsoft.” holds the relationship /busi-
ness/company/founders between the head entity
Bill Gates and tail entity Microsoft.

Traditional supervised relation extraction sys-
tems require a large amount of manually well-
labeled relation data (Walker et al., 2005; Dod-
dington et al., 2004; Gábor et al., 2018), which
is extremely labor intensive and time-consuming.
(Mintz et al., 2009) instead proposes distant su-
pervision which exploits relational facts in knowl-
edge bases. Distant supervision aligns entity men-
tions in plain texts with those in knowledge base
and assumes that if two entities have a relation
there, then all sentences containing these two en-
tities will express that relation. If there is no re-

∗Corresponding author.

Bag Sentence Correct

b1
Barack Obama was born in
the United States.

True

Barack Obama was the
44th president of the United
States.

False

b2
Bill Gates is the CEO of Mi-
crosoft.

True

Bill Gates announced that he
would be transitioning to a
part-time role at Microsoft
and full-time work in June
2006.

False

Table 1: Examples of relations annotated by distant
supervision. Sentences in b1 are annotated with the
place of birth relation and sentences in b2 the busi-
ness company founders relation.

lation link between a certain entity pair in knowl-
edge base, the sentence will be labeled as a Not A
relation (NA) instance. Although distant supervi-
sion is an efficient and effective strategy for auto-
matically labeling large-scale training data, it in-
evitably suffers from mislabeling problems due to
its strong assumption. As a result, the dataset cre-
ated by distant supervision is usually very noisy.
According to (Riedel et al., 2010), the precision
of using distant supervision aligning Freebase to
New York Times corpus is about 70%, an exam-
ple of labeled sentences in New York Times cor-
pus is shown in Table 1. Therefore, many efforts
have been devoted to alleviate noise in distant su-
pervised relation extraction.

With the development of deep learning tech-
niques (LeCun et al., 2015), large amount of work
using deep neural networks has been proposed for
distant supervised relation extraction (Zeng et al.,
2014, 2015; Lin et al., 2016; Liu et al., 2017;
Jat et al., 2018; Ji et al., 2017; Han et al., 2018;
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Du et al., 2018; Vashishth et al., 2018; Lei et al.,
2018; Qin et al., 2018a,b; Ye and Ling, 2019;
Xu and Barbosa, 2019). Various previous work
also used well-designed attention mechanism (Lin
et al., 2016; Jat et al., 2018; Ji et al., 2017; Su et al.,
2018; Du et al., 2018) which have achieved sig-
nificant results. Besides, knowledge-based meth-
ods (Lei et al., 2018; Han et al., 2018; Vashishth
et al., 2018; Ren et al., 2018) incorporated exter-
nal knowledge base information with deep neural
network, obtaining impressive performance.

Most of previous work used vanilla Convolution
Neural Network (CNN) or Piecewise Convolu-
tion Neural Network (PCNN) as sentence encoder.
CNN/PCNN adopted the same group of weight-
sharing filters to extract semantic feature of sen-
tences. Though effective and efficient, there is still
room to improve if we look deeper into proper-
ties of relations. We find that semantic properties
of relations such as symmetry and asymmetry are
often overlooked when using CNN/PCNN. For ex-
ample, “Bill Gates is the CEO of Microsoft.” holds
the relationship /business/company/founders be-
tween the head entity Bill Gates and tail entity Mi-
crosoft. While in the sentence “The most famous
man in Microsoft is Bill Gates.“ where the head
entity Microsoft and the tail Bill Gates do not
share that relationship. It indicates that the rela-
tion /business/company/founders is asymmetric.
Most previous work use position embedding spec-
ified by entity pairs and piecewise pooling (Zeng
et al., 2015; Lin et al., 2016; Liu et al., 2017; Han
et al., 2018) to predict relations. However, above
examples show that they share similar position
embeddings due to their similar position distances
to both entities. Vanilla CNN/PCNN is not suffi-
cient to capture such semantic features because it
treats the head and tail entities equally. Thus, it
tend to “memorize” certain entity pairs and may
learn similar context representation when dealing
with these noisy asymmetric instances.

In addition to relation properties, we also inves-
tigate some noise source in distant supervised rela-
tion extraction. NA instances usually account for
a large portion in distant supervised datasets, mak-
ing the data highly imbalanced. Similarly, in ob-
jection detection task (Lin et al., 2017), extreme
class imbalance greatly hinders the performance.

In this paper, in order to deal with above de-
ficiencies, we propose Separate Head-Tail CNN
(SHTCNN) framework, an effective strategy for

distant supervised relation extraction. The frame-
work is composed of two ideas. First, we em-
ploy separate head-tail convolution and pooling to
embed the semantics of sentences targeting head
and tail entities respectively. By this means, we
can capture better semantic properties of relations
in the distant supervised data and further alleviate
mislabeling problem. Second, relations are classi-
fied from coarse to fine. In order to do this, an ex-
tra auxiliary network is adopted for NA/Non-NA
binary classification, which is expected to filter as
many easy NA instances as possible while main-
taining high recall of all non-NA relationships.
Instances selected by binary network are treated
as non-NA examples for fine-grained multi-class
classification. Inspired by Retina (Lin et al.,
2017), we make use of focal loss in binary classifi-
cation. We evaluate our model on a real-world dis-
tant supervised dataset. Experimental results show
that our model achieves significant and consistent
improvements in relation extraction compared to
selected baselines.

2 Related Work

Relation extraction is a crucial task and heav-
ily studied area in Natural Language Processing
(NLP). Many efforts have been devoted, espe-
cially in supervised paradigm. Conventional su-
pervised methods require large amounts of human-
annotated data, which is highly expensive and
time-consuming. To deal with this issue, (Mintz
et al., 2009) proposed distant supervision, which
aligned Freebase relational facts with plain texts
to automatically generate relation labels for en-
tity pairs. Apparently, such assumption is too
strong that inevitably accompanies with mislabel-
ing problem.

Plenty of studies have been done to allevi-
ate such problem. (Riedel et al., 2010; Hoff-
mann et al., 2011; Surdeanu et al., 2012) introduce
multi-instance learning framework to the problem.
(Riedel et al., 2010) and (Surdeanu et al., 2012)
use a graphical model to select valid sentences in
the bag to predict relations. However, the main
disadvantage in conventional statistical and graph-
ical methods is that using features explicitly de-
rived from NLP tools will cause error propagation
and low precision.

As deep learning techniques (Bengio, 2009; Le-
Cun et al., 2015) have been widely used, plenty
of work adopt deep neural network for distant su-
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Figure 1: Separate Head-Tail CNN for distant supervised relation extraction

pervised relation extraction. (Zeng et al., 2015)
proposed piecewise convolution neural network
to model sentence representations under multi in-
stance learning framework while using piecewise
pooling based on entity position to capture struc-
tural information. (Lin et al., 2016) proposed sen-
tence level attention, which is expected to dy-
namically reduce the weights of those noisy in-
stances. (Ji et al., 2017) adopted similar attention
strategy and combined entity descriptions to cal-
culate weights over sentences. (Liu et al., 2017)
proposed a soft-label method to reduce the in-
fluence of noisy instances on entity-level. (Jat
et al., 2018) used word-level and entity-based at-
tention for efficiently relation extraction. Due
to the effectiveness of self-attention mechanism,
(Du et al., 2018) proposed a structured word-level
self-attention and sentence-level attention mecha-
nism which are both 2-D matrix to learn rich as-
pects of data. Also, plenty of knowledge based
strategies for distant supervised relation extraction
have also been proposed. (Ji et al., 2017) uses
hierarchical information of relations for relation
extraction and achieve significant performance.
(Lei et al., 2018) proposed Cooperative Denois-
ing framework, which consists two base networks
leveraging text corpus and knowledge graph re-
spectively. (Vashishth et al., 2018) proposed RE-
SIDE, a distantly supervised neural relation ex-
traction method which utilizes additional side in-
formation from knowledge bases for improving re-
lation extraction. (Han et al., 2018) aimed to incor-

porate the hierarchical information of relations for
distantly supervised relation extraction. Although
these methods achieved significant improvement
in relation extraction, they tend to treat entities in
sentences equally or rely more or less on knowl-
edge base information which may be unavailable
in other domains.

In order to alleviate mislabeling problem and
reduce the burden of integrating external knowl-
edge and resource, we propose SHTCNN to pro-
vide better sentence representation and reduce the
impact of NA instances.

3 Methodology

In this section, we introduce our SHTCNN model.
The overall framework is shown in Figure 1.
Our model is built under multi-instances learning
framework. It splits the training set into multi-
ple n bags {〈h1, t1〉, 〈h2, t2〉, · · · , 〈hn, tn〉}, each
of which contains m sentences {s1, s2, · · · , sm}
mentioning same head entity hi and tail entity
ti. Note that sentence number m may not be the
same in each bag. Each sentence consists of a se-
quence of k words {x1, x2, · · · , xk}. First, sen-
tence representation si is acquired using our sep-
arate head-tail convolution and pooling on words
{x1, x2, · · · , xk}. Next, selective attention mech-
anism is used to dynamically merge sentences to
its bag representation bi = 〈hi, ti〉. On bag level,
binary classifier filters out easy NA instances with
focal loss, leaving others to multi-class classifier
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for further fine-grained classification.

3.1 Sentence Encoder
Word Representation
First, the i-th word xi in sentence is mapped into
a dw-dimensional word embedding ei. Then, to
keep track of head and tail entity position infor-
mation, two dp-dimensional position embeddings
(Zeng et al., 2014, 2015) are also adopted for each
word as p1i and p2i recording the distance to two en-
tities respectively. Thus, the final word represen-
tation is the concatenation of these three vectors
wi = [ei, p

1
i , p

2
i ] of d = dw + 2pw dimensions.

Separate Head-Tail Convolution and Pooling
Convolution layer are often utilized in relation ex-
traction to capture local features in window form
and then perform relation prediction globally. In
detail, convolution is an operation between a con-
volution matrix W and a sequence of vector qi.
We define qi ∈ Rl×d of w words in the sentence
si = {w1, w2, w3, · · · , wn} with word representa-
tions defined above.

qi = wi−l+1:i, where 1 ≤ i ≤ m+ l − 1 (1)

Because the window may be out of the sentence
boundary when sliding along. We use wide convo-
lution technique by adding special padding tokens
on both sides of sentence boundaries. Thus the i-th
convolutional filter pi computes as follows:

pi = [Wq + b]i, (2)

where b is bias vector.
Conventional PCNN uses piecewise pooling for

relation extraction which divided convolutional
filter pi into three segments based on positions of
head and tail entities. Piecewise pooling is defined
as follows:

[x]ij = max(pij), where 1 ≤ j ≤ 3 (3)

where j indicates position of segments in sen-
tence.

As mentioned in section, traditional methods
get representation of each sentence using same
group of convolution filters, which focuses on both
head entity and tail entity equally and ignores se-
mantic difference between them. We use two
separate groups of convolution filters W1,W2 ∈
Rds×d, where ds is the sentence embedding size.
Also, simply piecewise pooling can not well deal

with examples of which relations are similar but
asymmetric. In detail, we utilize two groups of
separate head-tail entity convolution W 1, W 2 to
represent the sentence si as p1i , p

2
i .

p1i = [Wq + b]1i

p2i = [Wq + b]2i
(4)

To exploit such semantic properties of relations
expressed by entity pairs, we use separate head-
tail entity pooling. Targeting head and tail enti-
ties, head-entity pooling and tail-entity pooling are
adopted on two convolution results respectively.
p1i , p

2
i are further segmented by positions of en-

tity pair for head-tail entity pooling. Head entity
pooling is defined as:

hi = [max(p1i1);max([p1i2, p
1
i3])] (5)

Similarly, tail pooling is defined as:

ti = [max([p2i1, p
2
i2]);max(p2i3)] (6)

And i-th sentence vector si is the concatenation
of hi and ti:

si = [hi; ti] (7)

Finally, we apply non-linear function such as
ReLU as activation on the output.

3.2 Selective Attention
Bags contain sentences sharing the same entity
pair. In order to alleviate mislabeling problem
on sentence level, we adopted selective attention
which is widely used in many works (Lin et al.,
2016; Liu et al., 2017; Ji et al., 2017; LeCun et al.,
2015; Han et al., 2018; Du et al., 2018). The rep-
resentation of the bag bi = 〈hi, ti〉 is the weighted
sum of all sentence vectors in that bag.

bi =
∑

i

αisi

αi =
exp(siAr)∑
j exp(sjAr)

(8)

where αi is the weight of sentence representation
si, A and r are diagonal matrix and relation query.

3.3 Coarse-to-Fine Relation Classification
Traditional methods directly predict relation
classes for each bag after obtaining bag represen-
tations. However, large amount of NA instances
containing mixed semantic information will hin-
der the performance. To alleviate such impact of
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NA instances, we manually utilize a binary clas-
sifier to filter out as many NA instances as pos-
sible, while leaving hard NA instances for multi-
class classification.

Binary classification can also be viewed as an
auxiliary task about whether the input sentence
hold an NA relation. In this method, NA is treated
as negative class while all other non-NA labels
are treated as positive class. In this method, we
adopted focal loss (Lin et al., 2017) for NA/non-
NA classification. Focal loss is designed to ad-
dress class imbalance problem. When predict
class label y for binary task y ∈ {0, 1}, we first
define the prediction score pt for positive class:

pt =

{
p, if y = 1,
1− p, otherwise

(9)

Then traditional weighted cross-entropy loss
can be defined as follows:

CE(pt) = −αlog(pt) (10)

where α is a hyper-parameter usually set as class
ratio.

Focal loss modifies it by changing α to (1−pt)γ
in order to dynamically adjust weights between
well-classified easy instances and hard instances
as:

CE(pt) = −(1− pt)γlog(pt) (11)

For easy instances, prediction score pt will be
high while the loss low and vise versa for hard in-
stances. As a result, focal loss focuses on those
hard NA instances. Finally, instances which are
predicted as non-NA are selected for multi-class
classifier for fine-grained classification. Due to ex-
istence of NA instances which are hard to handle,
we also add a “NA class” in multi-class classifica-
tion for further filtering those instances which do
not hold an exact relationship.

3.4 Optimization
In this section, we introduce the learning and op-
timization details for our SHTCNN model. As
shown in Figure 1, binary and multi network share
only same word representations. We define bi-
nary and multi labels as br ∈ {0, 1} and mr ∈
{0, 1, 2, · · · , n} respectively. Both 0 represent NA
class. In binary classification, 1 represents all
non-NA classes while in multi-class classification,
each non-zero number represents a certain non-
NA relation. Besides, we use Θ1,Θ2 to denote pa-
rameters for binary and multi-class classification

network respectively. The objective function for
our model is:

J(Θ1,Θ2) = −
1∑

i=0

log(bri|bi,Θ1)

−
n∑

j=0

log(mrj |bi,Θ2)

(12)

where n is the number of relation classes. All
models are optimized using Stochastic Gradient
Descent (SGD).

4 Experiments

In this section, we first introduce the dataset and
evaluation metrics. Then we list our experimen-
tal parameter settings. Afterwards, we compare
the performance of our method with feature-based
and selected neural-based methods. Besides, case
study shows our SHTCNN is an effective method
to extract better semantic features.

4.1 Dataset and Evaluation Metrics

We evaluate our model on a widely used dataset
New York Times (NYT) released by (Riedel et al.,
2010). The dataset was generated by aligning
Freebase (Bollacker et al., 2008) relations with
New York Times Corpus. Sentences of year 2005
and 2006 are used for training while sentences of
2007 are used as testing. There are 52 actual rela-
tions and a special NA which indicates there was
no relation between two entities. The training set
contains 522,611 sentences, 281,270 entity pairs
and 18,152 relational facts. The testing set con-
tains 172,448 sentences, 96,678 entity pairs and
1950 relational facts.

4.2 Comparison with Baseline Methods

Following previous work (Mintz et al., 2009; Lin
et al., 2016; Ji et al., 2017; Liu et al., 2017; Han
et al., 2018; Du et al., 2018), we evaluate our
model in the held-out evaluation. It evaluates
models by comparing the relational facts discov-
ered from the test articles with those in Freebase,
which provides an approximate measure of pre-
cision without requiring expensive human evalua-
tion. We draw precision-recall curves for all mod-
els and also report the Precision@N results to fur-
ther verify the effort of our SHTCNN model.

For fair comparison with sentence encoders, we
selected the following baselines:
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• Mintz: Multi-class logistic regression model
used by (Mintz et al., 2009) for distant super-
vision.

• MultiR: Probabilistic graphical model under
multi-instance learning framework proposed
by (Hoffmann et al., 2011)

• MIMLRE: Graphical model jointly models
multiple instances and multiple labels pro-
posed by (Surdeanu et al., 2012)

• PCNN: CNN based model under multi-
instance learning framework for distant rela-
tion extracion proposed by (Zeng et al., 2015)

• PCNN-ATT: CNN based model which uses
additional attention mechanism on sentence
level for distant supervision proposed by (Lin
et al., 2016)

• SHTCNN: Framework proposed in this pa-
per, please refer to Section 3 for more details.

4.3 Experimental Settings
Word and Position Embeddings
Our model use pre-trained word embeddings for
NYT corpus. Word embeddings of blank words
are initialized with zero while unknown words are
initialized with the normal distribution of which
the standard deviation is 0.05. Position embed-
dings are initialized with Xavier initialization for
all models. Two parts of our model share the same
word and position embeddings as inputs.

Parameter Settings
We use cross-validation to determine the pa-
rameters in our model. We also use a grid
search to select learning rate λ for SGD among
{0.5, 0.1, 0.01, 0.001}, sliding windows size l
among {1, 3, 5, 7}, sentence embedding size ds
among {100, 150, 200, 300, 350, 400} and batch
size among {64, 128, 256, 512}. Other parameters
proved to have little effect on results. We show our
optimal parameter settings in Table 2.

4.4 Overall Performance
Figure 2 shows the overall performance of our
proposed SHTCNN against baselines mentioned
above. From results, we can observe that: (1)
When recall is smaller than 0.05, all models have
reasonable precision. When recall is higher, pre-
cision of feature-based models decrease sharply
compared to neural-based methods, and the latter

Word Embedding Size 50
Position Embedding Size 5
Sentence Embedding Size 230
Filter Window Size 3
γ in Focal Loss 2
Positive weight in Focal Loss 0.75
Threshold for Selecting non-NA 0.3
Batch Size 128
Learning rate 0.1
Dropout Probability 0.5

Table 2: Parameter Settings

outperform the former over the entire range of re-
call. It demonstrates that human-designed features
are limited and cannot concisely express seman-
tic meaning of sentences in noisy data environ-
ment. (2) SHTCNN outperforms PCNN/PCNN-
ATT over the entire range of recall, It indicates that
SHTCNN is a more powerful sentence encoder
which can better capture semantic features of
noisy sentences. Further experimental results and
case study show the effectiveness of our model.
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Figure 2: Precision/Recall curves of our model and pre-
vious baseline methods.

4.5 Top N Precision
We also conduct Precision@N tests on entity pairs
with few instances. In our tests, three settings are
used: ONE randomly select an instance in the bag;
TWO randomly select two instances for each en-
tity pair; ALL use all bag instances for evaluation.
Table 3 shows the results on NYT dataset regard-
ing P@100, P@200, P@300 and the mean of three
settings for each model. From the table we can see
that: (1) Performance of all methods improves as
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Test Settings ONE TWO ALL
P@N(%) 100 200 300 Mean 100 200 300 Mean 100 200 300 Mean

PCNN+AVE 71.3 63.7 57.8 64.3 73.3 65.2 62.1 66.9 73.3 66.7 62.8 67.6
PCNN+ATT 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2

SHTCNN+AVE 72.3 64.2 60.1 65.5 76.3 71.3 68.9 72.2 77.2 76.6 71.4 75.1
Coarse-to-Fine 74.3 69.6 63.2 69.0 77.7 74.4 68.2 73.4 78.6 74.3 71.2 74.7

HT+ATT 75.3 74.3 65.1 71.6 79.2 75.6 72.3 75.7 80.4 76.2 74.9 77.2
SHTCNN+ATT 78.2 77.1 70.1 75.1 80.0 76.2 73.2 76.5 86.1 79.1 75.4 80.2

Table 3: P@N for relation extraction in entity pairs with different number of sentences
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Figure 3: Precision/Recall curves of our model and
selected neural based methods. PCNN-AVE and
SHTCNN-AVE use Average method (AVE) while
PCNN-ATT and SHTCNN-ATT use selective ATTen-
tion method (ATT) described in section 3.2 to obtain
bag representation from its sentences.

the instance number increases which shows that
more sentences selected in the bag, more infor-
mation can be utilized. (2) SHTCNN improves
precision by over 8% for PCNN, PCNN-AVE and
PCNN-ATT model. It indicates that in noisy tex-
tual dataset, our SHTCNN is a more powerful
sentence encoder to capture better semantic fea-
tures. (3) Average method improves slowly when
instances number increases which indicates that it
can not effectively extract relations and be easily
distracted by noises in the bag.

4.6 Effectiveness of Separate Head-Tail CNN

To further verify the contribution and effectiveness
of two phase of our SHTCNN, we conduct two
extra experiments. First, we evaluate the ability
of our model to capture better sentence semantic
features under different bag representation calcu-
lation methods. PCNN-AVE (Average) assumes
that all sentences in the bag contribute equally
to the representation of the bag, which brings in
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Figure 4: Precision/Recall curves of separate parts of
our model. PCNN-ATT is the baseline method intro-
duced in Section 4.2. HT-ATT replaces sentence en-
coder of PCNN-ATT with separate Head-Tail convolu-
tion and pooling (HT) proposed in section 3.1 without
using Coarse-to-fine strategy in section 3.3. Coarse-
to-Fine solely classifies relation from coarse to fine
without using HT. SHTCNN-ATT is our full model
combines HT and Coarse-to-Fine relation extraction to-
gether.

more noise from mislabeling sentences. Com-
pared to PCNN-ATT, PCNN-AVE hinders the per-
formance of relation extraction as shown in Ta-
ble 3. We evaluate our model using Average and
Attention respectively. From results in Figure 3,
we observe that: (1) Both SHTCNN-AVE and
SHTCNN-ATT achieve significant performance
than their compared baselines, which proves that
SHTCNN offers better sentence semantic features
for bag representation with or without selective at-
tention mechanism. (2) SHTCNN-AVE achieves
similar performance as PCNN-ATT when recall is
between 0.15 and 0.35. (3) When recall is greater
than 0.35, SHTCNN-AVE performs even better
than PCNN-ATT. It demonstrates that SHTCNN is
relatively more robust and stable on dealing with
noisier sentences.

Second, we explore the effect of separate head-
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tail convolution and pooling and contribution of
coarse-to-fine relation extraction. From results
shown in Figure 4, we can observe that: (1) Both
HT-ATT and Coarse-to-Fine improve performance
of PCNN-ATT on a wide range of recall, which
indicates that separate head-tail convolution and
pooling, and coarse-to-fine strategy perform bet-
ter on predicting relations. (2) Figure 4 and Ta-
ble 3 both show that separate head-tail convolu-
tion and pooling achieve much better results than
only using coarse-to-fine strategy, indicating that a
better sentence encoder is more important in noisy
environment. (3) Our full model SHTCNN im-
proves performance on the entire recall compared
to using separate parts (solely separate head-tail
convolution and pooling or only coarse-to-fine) of
our model which suggests that combining two pro-
posed methods together can achieve better results.

/business/company/founders
That may include the chairman and chief
software architect of Microsoft, Bill Gates,
an otherwise infrequent television viewer.
/business/company/founders→ NA
Bill Gates and Steve Ballmer, for example,
were roommates in college, joined forces at
Microsoft in 1980 and still work together to-
day.
NA→ /business/shopping center/owner
Earlier this week, the company said it ex-
pected to sell Madrid Xanad and its half-
interest in two other malls, Vaughan Mills in
Ontario and St. Enoch Centre in Glasgow, to
Ivanhoe Cambridge, a Montreal company
that is Mills’s partner in the Canadian and
Scottish properties .

Table 4: Some examples of Separate Head-Tail CNN
corrections compared to PCNN

4.7 Case Study

In Table 4, we show some of our SHTCNN
model examples corrections compared to tradi-
tional PCNN. Left of the arrow is PCNN predicted
class label on the below sentence while the right is
our prediction. We can observe that the first sen-
tence is labeled as /business/company/founders
by both PCNN and SHTCNN since closer entities
bring similar position embeddings which benefit
both models. However, the second one is similar
but does not hold the relationship. PCNN failed to

recognize the relation but SHTCNN corrected the
label. Finally, the last sentence is longer and enti-
ties are not as close as those in first two sentences.
Our model outperformed PCNN by successfully
giving correct label to the sentence. It indicates
that SHTCNN perform better on modelling rela-
tionship in relative long sentences.

5 Conclusion

In this paper, we propose SHTCNN, a novel neural
framework using separate head-tail convolution
and pooling for sentence encoding and classifies
relations from coarse-to-fine. Various experiments
conducted show that, in our framework, separate
head-tail convolution and pooling can better cap-
ture sentence semantic features compared to base-
line methods, even in noisier environment. Be-
sides, coarse-to-fine relation extraction strategy
can further improve and stabilize the performance
of our model.

In the future, we will explore the following di-
rections: (1) We will explore effective separate
head-tail convolution and pooling on other sen-
tence encoders like RNN. (2) Coarse-to-fine clas-
sification is an experimental method, we plan to
further investigate noisy source in distant super-
vised datasets. (3) It will be promising to incor-
porate well-designed attention and self-attention
mechanisms with two parts of our framework
to further improve the performance. All codes
and data are available at: https://bit.ly/
ds-shtcnn.
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Abstract

In this work, we revisit the functions of lan-
guage proposed by linguist Roman Jakobson
and we highlight their potential in analyzing
online forum conversations. We investigate the
relation between functions and other proper-
ties of comments, such as controversiality. We
propose and evaluate a semi-supervised frame-
work for predicting the functions of Reddit
comments. To accommodate further research,
we release a corpus of 165K comments anno-
tated with their functions of language.

1 Introduction

Understanding human conversations has long been
an active area of research and has become even
more important with the pervasiveness of intelli-
gent assistants in our daily life. A vast amount
of work has been dedicated to speech act (also
referred to as dialogue act or discourse act) cat-
egorization for the purpose of characterizing the
discourse of conversations or discussions. Speech
acts focus on the addresser’s intent in using lan-
guage and were first introduced by Austin (1975).
One of the most influential subsequent work by
Searle (1976) focused on the addresser’s intent in
using language and proposed five categories for
speech acts: representatives, directives, commis-
sives, expressives, and declarations.

With the rise of the internet and online commu-
nication, recent works focus on utilizing dialogue
acts for analyzing emails, online forums and live
chats (Zhang et al., 2017; Joty and Hoque, 2016;
Jeong et al., 2009; Forsyth, 2007; Wu et al., 2002).

However, even though they employed sets of di-
alogue acts based on the Dialogue Act Markup
in Several Layers (DAMSL) scheme (Core and
Allen, 1997), each work proposed different sub-
sets to annotate the data with, tailored for each
specific purpose. Zhang et al. (2017) proposed 9

MESSAGE
POETIC

ADDRESSER
EMOTIVE

ADDRESSEE
CONATIVE

CONTEXT
REFERENTIAL

CONTACT
PHATIC

CODE
METALINGUAL

Figure 1: Functions of language (in bold), each focuses
on different elements of communication (in italic).

X: I am so happy, our paper got accepted! Emotive,
Referential

Y: Seriously?? Congratz. Emotive, Phatic
X: Well, the pen is mightier than the sword. Poetic
Y: What do you mean? Metalingual
X: It’s a proverb, meaning to persuade Metalingual

reviewers with words instead of force.
Y: I see. Phatic

Could you send me your paper? Conative
X: Sure, it’s here: <link> Referential
Y: Thanks! Phatic

Table 1: An example of a discussion where all func-
tions of language are present.

speech acts for characterizing comments in Red-
dit; Joty and Hoque (2016) utilized 5 coarser
classes from 12 acts used in Jeong et al. (2009);
while Forsyth (2007) and Wu et al. (2002) defined
15 dialogue acts based on Stolcke et al. (2000).
The lack of formalism and the diversity of tax-
onomies make it difficult to compare different an-
notated datasets. It is also not clear if the proposed
acts cover all kinds of utterances in various con-
versation types. For instance, Zhang et al. (2017)
labelled comments expressing disgust or anger as
negative reaction, however, the counterpart pos-
itive reaction is not available as a label. Mean-
while, Joty and Hoque (2016) acknowledge only
certain positive reactions labelled as politeness.

In this work, we address these issues by adopt-
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ing the theory of language functions proposed by
Jakobson (1960). One key difference between
speech acts and language functions is that the for-
mer describes the meaning of utterances, while the
latter also explains why utterances have different
meanings, through the dynamic relationship be-
tween the elements of communication and their
functions. Hence, we argue that the functions of
language are a more comprehensive framework for
capturing the discourse of human communication.
Jakobson’s model distinguishes six elements that
are necessary for communication to occur: a mes-
sage sent by an addresser to an addressee re-
quires (i) a certain context to be understood, (ii)
a common code, i.e., common definitions under-
stood by both addresser and addressee, as well as
(iii) a contact, i.e., a physical and psychological
connection enabling both addresser and addressee
to stay in the communication. Figure 1 illustrates
the communicative functions of language in re-
lation to those elements. In Table 1, we present
an anecdotal example where all functions are ex-
pressed in the conversation.

There is a limited body of work exploring this
scheme for content analysis. Bonini and Sellas
(2014) use the functions of language to study the
behavior of public radio channels on social me-
dia. Morrison and Martens (2018) incorporate the
phatic function in a dialog system that would fol-
low social norms. We believe we are the first to
investigate Jakobson’s functions of language for
characterizing online forum discussions.

2 Jakobson’s Functions of Language

We expand the original definitions of language
functions (Jakobson, 1960) with further clarifi-
cations from the literature, as well as examples
of how each function can be used to characterize
messages on online forums.

Referential. The referential function, which is
the most frequent one in communication, is
marked by a reference to the context of the dis-
cussion, which can be a situation, a person, or an
object. The message is used to transmit informa-
tion and the words most often carry literal defi-
nitions (denotative). Instances of referential mes-
sages include observations, opinions, and factual
information.

Examples: factual information (“Trump won
the election”), opinions (“He has a shot”).

Poetic. The poetic function appears when the fo-
cus is on the message, marked in conversations by
the use of figurative language. Figurative language
concerns the use of metaphor, alliteration, ono-
matopoeia, idioms, irony and oxymorons, among
others. Particularly in online forums, users often
use slang expressions, which can be considered as
poetic as well.

Examples: slang (“Thanks Obama1”), ono-
matopoeia (“ding ding ding”).

Emotive. The emotive function reflects the atti-
tude or mood of the addresser towards the infor-
mation being communicated. The message can
be perceived as conveying emotion, such as anger,
anticipation, joy and sadness. Emotive messages
focus more attention on the addresser and less on
the information being sent. Despite the absence
of emotional tone and nonverbal cues, people can
distinguish emotions in a text-based communica-
tion (Hancock et al., 2007).

Examples: emotions are often expressed using
emojis or slang such as “lol” or “omg”, as well as
words bearing strong sentiment (“what a horrible
human being”).

Conative. The conative function is marked by a
focus on the addressee. A conative message would
make the addressee react by performing a verbal
act (e.g., answering a question), a psychological
act (e.g., changing a conviction), or a physical act
(e.g., closing a door). More precisely, messages
have a conative function if they represent orders,
demands, advice, or wishes, among others.

Examples: demands (“link please”,“Vote for
Bernie Sanders”), warnings (“don’t count on it”).

Phatic. Sometimes referred to as back-channel
or small talk, the phatic function serves the pur-
pose of preserving the physical and psychological
contact between speakers. The physical contact is
related to the physical environment in which the
conversation takes place and in the case of online
forums, this will be a reference to the platform,
e.g., “happy cake day!2”. The psychological con-
tact refers to the personal relation between speak-
ers and the involvement in the conversation.

Examples: involvement in the conversation
(“I see”), agreement and disagreement between

1https://www.urbandictionary.com/
define.php?term=Thanks%20Obama

2Reddit “Cake Day” is the yearly anniversary of when a
user signed up on Reddit.
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speakers (“good point”, “I don’t think so”).

Metalingual. The metalingual function corre-
sponds to clarifications regarding the concepts
used in the conversation, which can be related
to the language used (as the common code) or
the system/environment where the communication
takes place. The metalingual function is often in-
dicated by linguistic cues such as “what is a” or
“what do you mean by”. The metalingual function
appears when we need definitions, as well as ambi-
guity resolution. Examples: clarifying the vocab-
ulary “what is a noob?”, or more general concepts
“what does the Supreme Court do?”.

Relations between Functions. Messages will
generally have more than one function of lan-
guage. Jakobson (1960) highlights the relation be-
tween referential and poetic functions. The au-
thor argues that a poetic message will make refer-
ential information ambiguous, however, it will not
completely discard it. Klinkenberg (2000), on the
other hand, justifies the relation between conative
and referential functions. The transfer of infor-
mation between the addresser and the addressee
might determine a change in the behavior of the
addressee.

3 Functions of Language on Reddit

3.1 Dataset
In order to have a diverse tone of comments in long
discussions, we consider the Politics3 subreddit,
a popular forum for political U.S. news. We re-
trieved 10.6M comments on the Politics subreddit
for the year 2016, the year of the presidential elec-
tion, using the Reddit API.

In this work, we focus on short comments, as
they are challenging for existing automatic con-
tent analysis tools such as topic models. How-
ever, they often carry clear language functions on
their own and can be easily distinguished by hu-
mans. We consider short comments to be the ones
that consist of at most two syntactic phrases or
chunks4, e.g. “I see your point” (NP-VP), obtain-
ing 165K comments. After removing punctuation
and converting the text to lowercase, we have a fi-
nal dataset of 4, 482 distinct utterances, which we
will refer to as messages. Each message might
represent several comments and be used in differ-
ent contexts. Our intuition for removing punctua-

3https://www.reddit.com/r/politics/
4We used OSU Twitter NLP by Ritter et al. (2011).

tion and uppercase is that the additional meaning
can be added using simple rules. For example, an
exclamation mark or text in all caps may suggest
surprise or anger.

Manual Annotation. We set aside 920 (420
most frequent and 500 randomly selected) mes-
sages from the 4, 482 messages to be manually
annotated. Each message was annotated by three
human annotators, who are trained with the de-
scriptions and examples of functions of language
as have been explained in Section 2. We ob-
served that almost all messages strongly express,
and hence, annotated with at most two language
functions, as we focus only on short comments.
When a message is very ambiguous, the annota-
tors were encouraged to give the label unclear. A
message receives as a final label a function of lan-
guage f if that function is assigned by at least two
annotators. The Krippendorff’s alpha agreement
score among annotators is 0.565. We remark that
the agreement score which is comparable with re-
sults reported for speech act labeling on Reddit (cf.
Table 1 in Zhang et al. (2017)). Out of the 920
labelled messages, the annotators disagree on 67
messages, i.e. no label is voted more than once,
which we exclude from our final dataset. We also
removed 10 messages that are consistently labeled
unclear by three annotators, leaving 843 labeled
messages in our final dataset used for analysis, and
later for experiments with automatic methods. The
final label distribution is as follows: 352 referen-
tial, 288 phatic, 147 emotive, 104 poetic, 71 cona-
tive and 16 metalingual.

3.2 Analysis

We now analyze the properties of the annotated
messages in relation to the functions of language.
For each distinct message, we first retrieve the ini-
tial comments containing it. For example, the text
“thank you” appears in 2, 292 comments, with dif-
ferent letter cases and punctuation. A comment
has several properties, including author, contro-
versiality and parent comment. A comment re-
ceives the tag controversial when it has a signif-
icant amount of votes, and these votes are roughly
equally split between upvotes and downvotes. The
parent comment is the comment to which the cur-
rent comment is replying. From the parent-child
relation of comments, we infer the number of
replies of a given comment.
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Controversiality. We first investigate which
language functions commonly follow controver-
sial comments. Our intuition is that emotive (e.g.,
expressing surprise or anger) and conative mes-
sages (e.g., asking users to behave or to provide
evidence) will be written frequently in response
to controversial topics or controversial users. The
percentage of controversial parent comments per
function shown in Table 2 confirms our intuition
that conative comments are used to reply to con-
troversial content more often than the other com-
ments. Emotive messages are also written more
frequently in reply to controversies, as well as ref-
erential messages. For the latter, the user may
bring more information about the topic, either to
approve or disprove the parent comment.

Function % controversial parents % receive reply

referential 15.87% 36.74%
poetic 12.86% 18.17%
emotive 16.59% 15.78%
conative 20.14% 51.03%
phatic 11.43% 14.61%
metalingual 13.41% 26.51%

Table 2: Analysis per language function.

Replies. We also examine which language func-
tions are often followed by at least one reply com-
ment, shown in Table 2. The findings corroborate
with the definitions of the language functions, as
conative comments, which put the focus on the ad-
dressee, often receive replies. Referential and met-
alingual are the other functions that often receive
replies, since they bring more information and nat-
urally prolong the discussion. Meanwhile, the op-
posite is observed for emotive and phatic com-
ments. Emotive comments such as “lol”, “haha”
representing joy usually require no follow-up in
verbal conversations. Poetic comments receive
also relatively few replies. Drew and Holt (1998)
found that figures of speech are used as transitions
between topics or as ending remarks on a topic.
This phenomenon may also be present on Red-
dit. On the subreddit Politics, users initiate discus-
sions via an article or video, hence, phatic mes-
sages mostly express involvement (e.g., “I see”)
or (dis)agreement (e.g., “good point”), which re-
quire no replies and serve the role of ending the
conversation.

Applications. Given the definitions of language
functions and the previous observations, we illus-

trate two use cases for the analysis of language
functions in online forums. First, they can be
used in combination with other features for the au-
tomatic classification of comments or threads as
controversial, in the absence of sufficient voting
activity. Controversial messages require the im-
mediate attention of moderators as they might con-
tain hate speech or false information. Secondly,
understanding conversational patterns related to
language functions (e.g., a conative message asks
for a referential reply, while an emotive message
calls for a thoughtful and empathetic response) are
beneficial for building smarter chatbots.

3.3 Semi-Supervised Inference of Labels

Annotating posts on social media with functions
of language, or any semantic or discourse label in
general, is a time-consuming and labor-intensive
task. To overcome this challenge, we investigate
the utility of a graph-based semi-supervised la-
bel propagation framework with the Modified Ad-
sorption (MAD) algorithm (Talukdar and Pereira,
2010), which makes predictions by taking into
consideration both labeled and unlabeled data.
MAD was shown to perform the best when com-
pared with other semi-supervised frameworks,
such as the Label Propagation (LP-ZGL) algo-
rithm and the Adsorption algorithm (Talukdar and
Pereira, 2010). MAD computes a soft assignment
of labels of the nodes in a graph, allowing multi-
label classification. Graph-based semi-supervised
learning is widely used by the NLP community,
particularly for tasks where acquiring annotated
data is expensive, such as semantic parsing (Das
and Smith, 2011).

We construct a graph in the following way:
the set of 4, 482 messages (e.g., “thank you”,
“thanks”) is considered as the set of nodes and an
edge is added between a message and its k-nearest
neighbor in the embedding space. Cosine simi-
larity between two messages embeddings5 is as-
signed as the weight of the edge. We experiment
with different values for k and we find that the al-
gorithm performs best for k = 4. For evaluation,
we used 5-folds cross-validation on the annotated
dataset (843 messages) and we report precision,
recall, and F1-score per function of language in
Table 4. Note that we exclude metalingual com-
ments, as they were not sufficient for propagating

5Pre-trained embeddings from Google’s Universal Sen-
tence Encoder (Cer et al., 2018).
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referential phatic emotive poetic conative

she has a credible claim absolutely agree shameful feeltheburn mind explaining why
what time was that I’m sorry barely even human inverted triple bern keep fooling yourself
it’s all marketing I upvoted you epic simply epic duality of man dude relax

Table 3: Example of predictions of our semi-supervised approach.

Function Precision Recall F1

referential 0.893 0.888 0.891
phatic 0.905 0.889 0.897
emotive 0.868 0.838 0.853
poetic 0.680 0.798 0.734
conative 0.822 0.890 0.855

Average 0.834 0.861 0.847

Table 4: Precision, recall and F1 score per function.

the labels. However, we hypothesize that one sure
way to identify metalingual function is by looking
at the presence of linguistic cues such as “what is
a” or “what do you mean by”. Apart from met-
alingual, our approach performs well on all func-
tions yielding around 0.734 − 0.897 F1-scores.
The lowest F1-score is coined by poetic functions
due to the high variation of figurative language.
Users can make comparisons, metaphors or puns,
among others, making the task at hand challenging
and deserving of a focused effort.

Qualitative Analysis. We show in Table 3 ex-
amples of the predictions for the unlabelled dataset
made by our approach. Even for the difficult task
of identifying figurative language, MAD can make
good predictions.

4 Conclusion

This paper revisits the functions of language intro-
duced by Jakobson (1960) and investigates their
potential in analyzing online forum conversations,
specifically political discussions on Reddit. We
highlight interesting relations between comments,
their properties, and the language functions they
express. In addition, we present a graph-based
semi-supervised approach for automatic annota-
tion of language functions.

Dataset. For further research in this area, we
release a corpus6 of 165K comment IDs labeled
with their functions of language.

6https://github.com/nyxpho/jakobson
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Abstract

The state-of-the-art neural network architec-
tures make it possible to create spoken lan-
guage understanding systems with high qual-
ity and fast processing time. One major chal-
lenge for real-world applications is the high
latency of these systems caused by triggered
actions with high executions times. If an ac-
tion can be separated into subactions, the re-
action time of the systems can be improved
through incremental processing of the user ut-
terance and starting subactions while the utter-
ance is still being uttered. In this work, we
present a model-agnostic method to achieve
high quality in processing incrementally pro-
duced partial utterances. Based on clean and
noisy versions of the ATIS dataset, we show
how to create datasets with our method to cre-
ate low-latency natural language understand-
ing components. We get improvements of up
to 47.91 absolute percentage points in the met-
ric F1-score.

1 Introduction

Dialog Systems are ubiquitous - they are used in
customer hotlines, at home (Amazon Alexa, Ap-
ple Siri, Google Home, etc.), in cars, in robots
(Asfour et al., 2018), and in smartphones (Apple
Siri, Google Assistant, etc.). From a user experi-
ence point of view, one of the main challenges of
state-of-the-art dialog systems is the slow reaction
of the assistants. Usually, these dialog systems
wait for the completion of a user utterance and af-
terwards process the utterance. The processed ut-
terance can trigger a suitable action, e. g. ask for
clarification, book a certain flight, or bring an ob-
ject. Actions can have a high execution time, due
to which the dialog systems react slowly. If an ac-
tion can be separated into subactions, the reaction
time of the dialog system can be improved through
incremental processing of the user utterance and

starting subactions while the utterance is still be-
ing uttered. The action still has the same execution
time but the action is completed earlier because it
was started earlier and therefore the dialog system
can react faster. In the domain of airplane travel
information, database queries can be finished ear-
lier if the system can execute subqueries before the
completion of the user utterance, e. g. the utter-
ance On next Wednesday flight from Kansas City
to Chicago should arrive in Chicago around 7 pm
can be separated in the databases queries flight
from Kansas City to Chicago on next Wednesday
and use result of the first query to find flights that
arrive in Chicago around 7 pm. In the domain of
household robots, e. g. the user goal of the user
utterance Bring me from the kitchen the cup that I
like because it reminds me of my unforgettable va-
cation in the United States can be fulfilled faster if
the robot goes to the kitchen before the user utters
what object the robot should bring.

Motivated by this approach to improve the re-
action of dialog systems, our main contribution
is a low-latency natural language understanding
(NLU) component. We use the Transformer ar-
chitecture (Vaswani et al., 2017) to build this low-
latency NLU component, but the ingredient to un-
derstand partial utterances and incrementally pro-
cess user utterances is the model-agnostic training
process presented in this work. Secondly, partial
utterances are particularly affected by noise. This
is due to the short context available in partial utter-
ances and because automatic speech recognition
(ASR) systems cannot utilize their complete lan-
guage model and therefore potentially make more
errors when transcribing short utterances. We
address the potential noisier inputs by including
noisy inputs in the training process. Finally, we
present two evaluation schemes for low-latency
NLU components.
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2 Related Work

Gambino et al. (2018) described time buying
strategies to avoid long pauses, e. g. by uttering an
acknowledgement or echoing the user input. How-
ever, the triggered actions are not finished earlier
with this approach, but in cases where long pauses
cannot be avoided, even with incremental process-
ing, such time buying strategies can be applied.

The automatically generated backchannel de-
scribed by Rüde et al. (2017) gives feedback dur-
ing the uttering of an utterance. However, only
acoustic features are used and it does not reduce
the latency of actions that can be triggered by the
utterances.

Studies have been conducted on incremental
NLU. DeVault et al. (2009) used a maximum en-
tropy classificator (Berger et al., 1996) to classify
the partial utterances. They optimized the max-
imum entropy classificator for partial utterances
by using an individual classificator for every ut-
terance length. The problem of this classifica-
tion approach is that it is not suitable for tasks
with a lot of different parameter combinations; for
such tasks, a slot filling (sequence labeling task)
or word by word approach (sequence to sequence
task) is more suitable. Such a more suitable ap-
proach is described by Niehues et al. (2018) for
incrementally updating machine translations. The
authors used an attention-based encoder decoder
(Bahdanau et al., 2015), which outputs a sequence.
We described and evaluated in this work such a
more suitable approach for incremental NLU.

Different approaches are available to handle
noisy input, such as general-purpose regulariza-
tion techniques like dropout (Srivastava et al.,
2014) and domain-specific regularization tech-
niques e. g. data augmentation by inserting, delet-
ing, and substituting words (Sperber et al., 2017).
Our trained models in this work uses the general-
purpose techniques and some of our trained mod-
els are trained with such augmented data to have a
better performance on noisy data.

3 Low-latency NLU component

In this work, we present a model-agnostic method
to build an incremental processing low-latency
NLU component. The advantages of this model-
agnostic method are that we can use state-of-
the-art neural network architectures and reuse the
method for future state-of-the-art neural network
architectures. Our used architecture is described

in Section 3.1 and the used data is described in
Section 3.2. Our method to include the informa-
tion necessary to incrementally process user utter-
ances with high quality in the training dataset is
described in Section 3.3 and our methods to in-
clude noise to process noisy texts with high quality
are described in Section 3.4. In Sections 3.5 and
3.6, we present our evaluation metrics and evalu-
ation schemes respectively. The configuration of
the used architecture is given in Section 3.7.

3.1 Architecture

We used the Transformer architecture in our exper-
iments to demonstrate the model-agnostic method.
The Transformer architecture, with its encoder and
decoder, was used as sequence to sequence ar-
chitecture. The user utterances are the input se-
quences and their corresponding triggered actions
are the output actions (this is described in more
details in Section 3.2). We used the Transformer
implementation used by Pham et al. (2019) and
added the functionality for online translation. The
original code1 and the added code are publicly
available2. The partial utterances and, in the end,
the full utterance were fed successively and com-
pletely into the Transformer architecture without
using information of the computation of the pre-
vious partial utterances. Our proposed method is
model-agnostic because of this separate treatment
and therefore an arbitrary model that can process
sequences can be used to process the partial and
full utterances. The method is depicted in Figure
1 for the utterance Flights to Pittsburgh.

3.2 Data

For our experiments, we used utterances from
the Airline Travel Information System (ATIS)
datasets. We used the utterances that are used by
Hakkani-Tur et al. (2016) and are publicly avail-
able3. These utterances were cleaned and every ut-
terance is labeled with its intents and for every to-
ken, the corresponding slot is labeled with a tag (in
the IOB2 format (Sang and Veenstra, 1999) that is
depicted in Figure 2).

We converted the data from the IOB2 format to
a sequence to sequence format (Constantin et al.,
2019). The source sequence is a user utterance

1https://github.com/quanpn90/
NMTGMinor/tree/DbMajor

2https://github.com/msc42/NMTGMinor/
tree/DbMajor

3https://github.com/yvchen/JointSLU
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atis flight atis flight atis flight toloc pittsburgh

model model model

Flights Flights to Flights to Pittsburgh

Figure 1: model-agnostic approach

utterance
(source sequence)

Which flights go from New York to Pittsburgh

slots O O O O B-fromloc I-fromloc O B-toloc
intents atis flight
target sequence atis flight fromloc new york toloc pittsburgh

Figure 2: joint intents classification and slot filling approach to end-to-end target sequence

and the target sequence consists of the intents fol-
lowed by the parameters. In this work, the slot tag
and the corresponding slot tokens compose an in-
tents parameter. An example of the conversion of
the IOB2 format to the sequence to sequence for-
mat is depicted in Figure 2. The sequence to se-
quence format has the advantages that no rules are
needed for mapping the slot tokens to an API call
or a database query and that this format is more ro-
bust against noisy text like What is restriction ap
slash fifty seven, where the noise word slash is in-
troduced (in the classical IOB2 format, the tokens
ap and fifty seven would not belong to the same
chunk).

The publicly available utterances are partitioned
in a training and test dataset. The training dataset
is partitioned in a training (train-2) and valida-
tion (dev-2) dataset. Hereinafter, original train-
ing dataset refers to the utterances of the training
dataset, training dataset refers to the utterances of
the train-2 dataset, and validation dataset refers to
the utterances of the dev-2 dataset. We created
a file that maps to every utterance in the training
dataset the line number of the corresponding utter-
ance in the original training dataset and a file that
maps to every utterance in the validation dataset
the line number of the corresponding utterance in
the original training dataset. We published these
two files4. The training dataset has 4478 utter-
ances, the validation dataset has 500 utterances,
and the test dataset has 893 utterances.

The utterances were taken from the ATIS2
dataset (Linguistic Data Consortium (LDC)
catalog number LDC93S5), the ATIS3 train-

4https://github.com/msc42/ATIS-data

ing dataset (LDC94S19) and the ATIS3 test
dataset (LDC94S26). The audio files of the
spoken utterances and the uncleaned human tran-
scribed transcripts are on the corresponding LDC
CDs. For the original training dataset and the test
dataset, we published5 in each case a file that maps
to every utterance the path of the corresponding
audio file and a file that maps to every utterance
the path of the corresponding transcript of the
corresponding LDC CD. One audio file is missing
on the corresponding LDC CD (LDC94S19):
atis3/17 2.1/atis3/sp trn/sri/tx0/2/tx0022ss.wav
(corresponding to the training dataset). We used
the tool sph2pipe6 to convert the SPH files (with
extension .wav) of the LDC CDs to WAVE files.

The utterances have an average token length
of 11.21 - 11.36 in the training dataset, 11.48
in the validation dataset, and 10.30 in the test
dataset. We tokenized the utterances with the de-
fault English word tokenizer of the Natural Lan-
guage Toolkit (NLTK)7 (Bird et al., 2009).

There are 19 unique intents in the ATIS data. In
the training dataset, 22 utterances are labeled with
2 intents and 1 utterance is labeled with 3 intents,
in the validation dataset, there are 3 utterances
with 2 intents and in the test dataset, there are 15
utterances with 2 intents, the rest of the utterances
are labeled with 1 intent. The intents are separated
by the number sign in the target sequence. The
intents are unbalanced (more than 70 % of the ut-
terances have the same intent, more than 90 % of

5see footnote 4
6https://www.ldc.upenn.edu/sites/www.

ldc.upenn.edu/files/ctools/sph2pipe_v2.
5.tar.gz

7https://www.nltk.org/
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the utterances belong to the 5 most used intents).
More information about the intents distribution is
given Table 7. There are 83 different parameters
that can parameterize the intents. On average, a
target has 3.35 (training dataset), 3.46 (validation
dataset), and 3.19 (test dataset) parameters.

3.3 Training process to improve incremental
processing

We call our dataset, which contains the dataset
described in Section 3.2, cleaned full transcripts.
Our model-agnostic method to achieve good qual-
ity for partial utterances works in this manner: We
use the dataset with the full utterances and cre-
ate partial utterances from it. An utterance of
the length n is split into n utterances, where the
i-th utterance of these utterances has the length
i. The target contains all information that can be
gotten from the source utterance of the length i.
When only a part of a chunk is in the user utter-
ance, only this part is integrated in the target utter-
ances, e. g. I want a flight from New York to San
has the target atis flight fromloc.city name new
york toloc.city name san. Such partial information
contains information and can accelerate database
queries, for example. We created with this method
the cleaned incremental transcripts dataset. An ar-
bitrary model without modifications, in this work
the Transformer architecture, can be trained with
this dataset to have an improved incremental pro-
cessing ability compared to a model trained only
with full utterances. Since every partial utterance
is regarded as independent utterance, like the full
utterances, our approach is model-agnostic. The
model-agnostic approach for the utterance Flights
to Pittsburgh is depicted in Figure 1.

3.4 Training process to improve robustness

In Section 3.3, the training process for improv-
ing the incremental processing is described. How-
ever, the described process does not consider the
fact that the incremental data are noisier. We in-
duced noise in the training by training with artifi-
cial noise, human transcribed utterances that con-
tain the noise of spoken utterances, and utterances
transcribed by an ASR system.

The dataset cleaned incremental transcripts
with artificial noise consists of the utterances
from the dataset cleaned incremental transcripts
to these artificial noise were added with the ap-
proach described by Sperber et al. (2017). We

published the implementation8 of this approach.
In this approach, random distributions are used to
substitute, insert, and delete words. We sampled
the words for substitution and insertion based on
acoustic similarity to the original input. As vocab-
ulary for the substitutions and insertions, we used
the tokens of the utterances of the training dataset
of the cleaned incremental transcripts dataset and
filled the vocabulary with the most frequent tokens
not included in the used training dataset occurring
in the source utterances of a subset of the Open-
Subtitle corpus9 (Tiedemann, 2009) that is pub-
licly available10 (Senellart, 2017). We chose the
position of the words to be substituted and deleted
based on the length. Shorter words are often more
exposed to errors in ASR systems and therefore
should be substituted and deleted in the artificial
noise approach more frequently. Since substitu-
tions are more probable in ASR systems, we re-
flected this in the artificial noise generating by as-
signing substitutions a 5-times higher probability
than insertions or deletions. For the value of the
hyperparameter τ (the induced amount of noise),
we used 0.08.

For the dataset human full transcripts, we used
the human transcribed transcripts given by the
LDC CDs. We mapped these utterances to the
corresponding targets of the datasets based on the
cleaned full transcripts dataset. The utterances are
not cleaned and have some annotations like noise
and repeated words. The dataset human incre-
mental transcripts, human incremental transcripts
with artificial noise, and human full transcripts
with artificial noise were generated analogous to
the described approaches before.

For the dataset automatic incremental tran-
scripts, we automatically transcribed the audio
files from the LDC CDs with the ASR system
Janus Recognition Toolkit (JRTk) (Nguyen et al.,
2017, 2018). This ASR system is used as an out-
of-domain ASR system - there is no adaption for
the ATIS utterances. We used the incremental
mode of the JRTk, which means that transcrip-
tions are updated multiple times while transcrib-
ing. It is not automatically possible to generate
the partial output targets to the partial utterances,
because the ASR system makes errors and it is

8https://github.com/msc42/NLP-tools/
blob/master/noise_adder.py

9based on http://www.opensubtitles.org/
10https://s3.amazonaws.com/

opennmt-trainingdata/opensub_qa_en.tgz
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impossible to map with 100 % accuracy automat-
ically the wrong transcript to come up to the cor-
rect transcript Tacoma, for example. We used a
workaround: We measured the length of a partial
transcript, searched the corresponding transcript
of the human incremental transcripts dataset that
has the same length, and used the target of the
found transcript. If there were only shorter tran-
scripts, the target of the full transcript was used.
This approach punishes insertions and deletions
of the ASR system. For the dataset automatic full
transcripts, we used the last transcript of the incre-
mental transcripts of the ASR system for the user
utterance and the full target of the corresponding
utterance of the human full transcripts dataset. For
the mentioned missing audio file, we used the hu-
man transcription of the corresponding LDC CD.

An arbitrary model without modifications, in
this work the Transformer architecture, is trained
with one of the described noisy datasets to have
improved robustness compared to a model trained
only with clean utterances.

3.5 Evaluation metrics

We evaluated the quality of the models, trained
with the different datasets, with the metric F1-
score for which we used an adapted definition for
the precision and the recall in this work and the
metric intents accuracy.

The adapted definitions for the precision and the
recall consider the order of the classes in the target
sequence. The intents and the intents parameters
are the classes. Intents parameters with the same
slot tag are considered as different classes. We call
the F1-score calculated with the adapted definition
of the precision and the recall considering order
multiple classes F1-score (CO-MC F1-score). Or-
der considering means that the predicted param-
eters have to be in the correct order in the target
sequence. In the target sequence

atis flight fromloc.city name milwaukee
toloc.city name orlando depart date.day name
wednesday depart time.period of day evening or
or depart date.day name thursday
depart time.period of day morning

the order is important. To calculate the true pos-
itives, we adapted the Levenshtein distance (Lev-
enshtein, 1966). The entities that are compared in
this adapted Levenshtein distance are the classes.
The adapted Levenshtein distance is only changed
by a match (incremented by one) and the maxi-

mum instead of the minimum function is used to
select the best operation. In Figure 3 the recur-
sive definition of the adapted Levenshtein distance
(ALD) is depicted. Let r be the reference and h the
hypothesis and |r| and |h| the number of classes
of the reference or hyptothesis respectively and ri
and hi the i-th class of the reference or hypothesis
respectively. L|h|,|r| is the resultant adapted Lev-
enshtein distance and the number of true positives.

ALD0,0 = 0

ALDi,0 = i, 1 ≤ i ≤ |h|
ALD0,j = j, 1 ≤ j ≤ |r|

ALDi,j = max





ALDi−1,j−1 + 1, ri = hj

ALDi−1,j−1, ri 6= hj

ALDi−1,j
ALDi,j−1

1 ≤ i ≤ |h|, 1 ≤ j ≤ |r|

Figure 3: adapted Levenshtein distance

With this approach, the given example target
has 7 instead of 9 true positives if the slot to-
kens of the intents parameters with the slot tag
depart date.day name parameter are changed (in
this case both parameters are considered as substi-
tutions in the Levenshtein distance). We counted
all true positives for the different classes over the
evaluated dataset and divided the counted true pos-
itives by the reference lengths of all targets for the
recall and by the hypothesis lengths for the pre-
cision (micro-averaging). The CO-MC F1-score is
more strict than the vanilla F1-score because of the
consideration of the order.

The metric intents accuracy considers all intents
as whole. That means the intents accuracy of one
target is 100 % if the intents of the reference and
the hypothesis are equivalent; otherwise, the in-
tents accuracy is 0 %.

3.6 Evaluation schemes

We used for the evaluation of the models the
model version of the epoch with the best CO-
MC F1-score on the following validation datasets
with only full utterances: For the models trained
with the datasets based on the cleaned full tran-
scripts dataset, we used the validation dataset of
the cleaned full transcripts dataset, for models
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trained with the datasets based on the human full
transcripts dataset, we used the validation dataset
of the human full transcripts dataset, and for mod-
els trained with the datasets based on the auto-
matic incremental transcripts dataset, we used the
validation dataset of the automatic full transcribed
dataset.

We evaluated our models with our evaluation
metrics in the following manner: First, we evalu-
ated the models with partial utterances that contain
the first 100 %, 75 %, 50 %, and 25 % of the to-
kens of the full utterances. The number of tokens
is rounded off to the next integer and this number
is called i in the following. For evaluating with
the cleaned and the human transcribed utterances,
we used the first i tokens of the full utterances.
For evaluating with automatically transcribed ut-
terances, we used the first utterance in the auto-
matic incremental transcripts dataset of the corre-
sponding utterance that was equal than or greater
than i, because the ASR system did not produce
partial utterances for all numbers less than the to-
ken length of the full utterance. In the following,
this evaluation scheme is called partial utterances
processing.

In addition, we evaluated our models with the
metric intents accuracy in the following manner:
We predicted the intents incrementally and aborted
the incremental processing once a certain confi-
dence for the intents prediction was reached. We
used 95 %, 90 %, 85 %, and 80 % as confidence
thresholds. When the target confidence was never
reached, the full utterance was used to predict the
intents, even if the confidence of the full utter-
ance was under the confidence threshold. We used
for those experiments the partial utterances suc-
cessively for the cleaned and human transcribed
utterances and the partial utterances successively
of the automatically transcribed utterances. In the
automatically transcribed utterances, the last tran-
script is the full utterance. In the following, this
evaluation scheme is called confidence based pro-
cessing.

The models trained on the cleaned transcripts
cannot be evaluated appropriately on the un-
cleaned transcripts, because the numbers are writ-
ten in Arabic numerals in the cleaned transcripts
and in words in the uncleaned transcripts. The
conversion is often ambiguous. The same applies
to the other direction.

3.7 System Setup

We optimized the Transformer architecture for the
validation dataset of the cleaned full transcripts
dataset. The result of this optimization is a Trans-
former architecture with a model and inner size of
256, 4 layers, 4 heads, Adam (Kingma and Ba,
2015) with the noam learning rate decay scheme
(used by Vaswani et al. (2017) as learning rate de-
cay scheme) as optimization algorithm, a dropout
of 40 %, an attention, embedding, and residual
dropout of each 20 % and a label smoothing of
15 %. We used 64 utterances as batch size. The
vocabulary of a trained model contains all words
of the training dataset with which it was trained.
We trained the models for 100 epochs.

4 Results

4.1 Partial utterances processing

In Tables 1, 3, and 5, the CO-MC F1-scores and
the intents accuracies are depicted for the eval-
uation scheme partial hypothesis processing for
the cleaned, human transcribed, and automatically
transcribed utterances respectively.

In the following, all percentage differences are
absolute percentage differences. The ranges refer
to the smallest and biggest improvements on the
CO-MC F1-score. If no artificial noise is explicitly
mentioned, the models without artificial noise are
meant.

The models that were trained only with full ut-
terances have better results evaluated on the full
utterances than models trained with the partial and
full utterances (in the range from 1.3 % to 3.24 %).
However, the models trained on the partial and full
utterances have better results when they are eval-
uated on the first 75 % and 50 % of the tokens (in
the range from 0.81 % to 4.39 %). Evaluated on
the utterances of the first 25 % of the tokens, there
are even bigger improvements (in the range from
14.44 % to 47.91 %). This means that our pro-
posed training method improves the processing of
partial utterances, especially if they are partial ut-
terances produced incrementally at the beginning
of the incremental processing of an utterance. For
an incremental processing capable NLU compo-
nent, the best approach is to combine the two mod-
els. The model trained on only full utterances is
used for the full utterances and the model trained
on the partial and full utterances is used for the
incrementally produced partial utterances.
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With the combination described above, the per-
formance of the models trained with the automat-
ically transcribed utterances decreased less com-
pared to the models trained on the human tran-
scribed utterances, evaluated on the human tran-
scribed utterances (in the range from 0.13 % to
2.01 %) than the models trained with the human
transcribed utterances decreased compared to the
models trained on the automatically transcribed
utterances, evaluated on the automatically tran-
scribed utterances (in the range from 1.22 % to
4 %). In our experiments, the result was conse-
quently that it is better to train on noisier data.
This is especially the case on evaluating the full
utterances.

We tried to simulate the noise of the automat-
ically transcribed utterances with artificial noise.
We used again the same combination described
above. The performance of the models trained
with the human transcribed utterances with arti-
ficial noise decreased less compared to the models
trained on the human transcripts, evaluated on the
human transcribed utterances (in the range from
-1.43 % to 2.5 %) than the models trained with the
human transcribed utterances decreased compared
to the human transcribed utterances with artificial
noise, on the automatically transcribed utterances
(in the range from -1.06 % to 5.21 %).

4.2 Confidence based processing

In Tables 2, 4, and 6, the intents accuracies and
the needed percentage of tokens on average are de-
picted for the evaluation scheme confidence based
processing for the cleaned, human transcribed, and
automatically transcribed utterances respectively.

In the following, all percentage differences are
absolute percentage differences. The ranges refer
to the smallest and biggest improvements on the
intents accuracy metric. If no artificial noise is
explicitly mentioned, the models without artificial
noise are meant.

The following statements apply to the incre-
mentally trained models (the models trained only
on the full utterances have only good results if they
can use nearly the full utterances and therefore it
makes no sense to use them for early predicting
of intents). It is better to train on the automat-
ically transcribed utterances. The decreasing is
from 1.57 % to 2.58 % if they are evaluated on the
human transcribed utterances, but they have an im-
provement from 2.58 % to 4.25 % if they are eval-

uated on the automatically transcribed utterances
compared to the models trained on the human tran-
scribed utterances. The human transcribed utter-
ances with artificial noise decrease by -1.46 % to
2.58 % if they are evaluated on the human tran-
scribed utterances, but they have an improvement
from 0.67 % to 3.69 % if they are evaluated on the
automatically transcribed utterances compared to
the models trained on the human transcribed utter-
ances.

4.3 Computation time

Since the partial utterances are fed successively
in the Transformer architecture, the computation
must be fast enough for the system to work off
all partial utterances without latency. On a note-
book with an Intel Core i5-8250U CPU - all com-
putations were done only on the CPU and we lim-
ited the usage to one thread (with the app taskset)
so other component like the ASR system can run
on the same system - it took 310 milliseconds to
compute the longest utterance (46 tokens) of the
cleaned utterances and 293 milliseconds to com-
pute the utterance (38 tokens) with the longest
target sequence (41 tokens - one intent with 17
parameters) of the cleaned utterances. We pro-
cessed continually both utterances for 15 minutes
and selected for both utterances the run with the
maximum computation time. The model was the
model trained with the cleaned full utterances.
This means that it is possible to process an utter-
ance after every word because a normal user needs
on average more than these measured times to ut-
ter a word or type a word with a keyboard.

5 Conclusions and Further Work

In this work, we report that the best approach for
an incremental processing capable NLU compo-
nent is to mix models. A model trained on partial
and full utterances should be used for processing
partial utterances and a model trained only on full
utterances for processing full utterances. In par-
ticular, the improvements are for the first incre-
mentally produced utterances, which contain only
a small number of tokens, high if the model is not
only trained on full utterances.

Evaluated on the noisy human and even noisier
automatically transcribed utterances, we got bet-
ter results with the models trained with the human
transcribed utterances with artificial noise and the
models trained with the automatically transcribed
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training dataset first 100 % first 75 % first 50 % first 25 %
cleaned, full 92.90 / 97.09 89.95 / 96.19 88.98 / 90.37 49.36 / 49.05
cleaned, incremental 91.60 / 96.75 94.20 / 94.85 93.37 / 92.05 83.15 / 79.73
cleaned, incremental, art. noise 91.97 / 96.19 94.65 / 94.85 93.22 / 91.83 81.75 / 78.61

Table 1: CO-MC F1-scores / intents accuracies of the first 100 %, 75 %, 50 %, and 25 % of the tokens of the
utterances of the test dataset of the cleaned human transcribed full utterances

training dataset 95 % conf. 90 % conf. 85 % conf. 80 % conf.
cleaned, full 96.98 / 96.36 80.29 / 74.14 72.56 / 30.62 70.66 / 29.93
cleaned, incremental 96.42 / 97.27 95.97 / 92.16 92.83 / 34.74 89.47 / 30.56
cleaned, incremental, art. noise 95.86 / 99.02 95.41 / 92.20 91.71 / 33.12 86.56 / 24.54

Table 2: Intents accuracies / percentages of the used tokens for predicting the intents using the smallest partial
utterance of the test dataset of the cleaned human transcribed incremental utterances for which the system has a
confidence of more or equal than 95 %, 90 %, 85 %, and 80 %, if the confidence is not reached, the full utterance is
used

training dataset first 100 % first 75 % first 50 % first 25 %
human, full 90.44 / 94.85 87.91 / 94.51 87.75 / 89.14 34.86 / 48.38
human, full, art. noise 87.94 / 95.30 85.77 / 94.74 89.51 / 91.27 67.71 / 68.65
human, incremental 88.57 / 94.40 90.58 / 93.62 91.51 / 90.59 82.77 / 79.06
human, incremental, art. noise 88.24 / 95.41 90.71 / 94.18 92.94 / 91.83 84.14 / 79.17
automatic, full 88.43 / 93.39 86.18 / 93.62 89.24 / 90.37 56.80 / 70.66
automatic, incremental 86.38 / 92.72 89.56 / 93.73 90.05 / 89.03 82.64 / 79.17

Table 3: CO-MC F1-scores / intents accuracies of the first 100 %, 75 %, 50 %, and 25 % of the tokens of the
utterances of the test dataset of the human transcribed full utterances

training dataset 95 % conf. 90 % conf. 85 % conf. 80 % conf.
human, full 94.51 / 96.51 90.82 / 85.59 77.60 / 32.52 76.37 / 30.22
human, full, art. noise 95.41 / 96.33 90.71 / 81.50 77.72 / 30.58 76.04 / 28.13
human, incremental 94.18 / 99.10 93.95 / 89.53 90.59 / 32.83 88.47 / 27.04
human, incremental, art. noise 95.18 / 97.85 95.41 / 92.65 91.60 / 32.78 85.89 / 24.90
automatic, full 88.58 / 91.51 88.35 / 83.19 76.82 / 30.85 75.36 / 28.79
automatic, incremental 92.61 / 99.63 92.16 / 93.38 88.35 / 35.41 85.89 / 30.33

Table 4: Intents accuracies / percentages of the used tokens for predicting the intents using the smallest partial
utterance of the test dataset of the human transcribed incremental utterances for which the system has a confidence
of more or equal than 95 %, 90 %, 85 %, and 80 %, if the confidence is not reached, the full utterance is used

training dataset first 100 % first 75 % first 50 % first 25 %
human, full 83.87 / 91.49 80.26 / 91.04 83.13 / 85.78 42.06 / 51.74
human, full, art. noise 81.93 / 91.15 78.94 / 90.71 83.76 / 88.35 74.98 / 68.31
human, incremental 80.63 / 87.91 82.16 / 88.24 85.85 / 85.44 80.49 / 75.93
human, incremental, art. noise 82.93 / 91.04 83.16 / 89.70 88.13 / 88.02 83.75 / 77.27
automatic, full 87.14 / 93.39 82.06 / 92.61 85.15 / 90.03 70.05 / 72.45
automatic, incremental 84.62 / 92.27 84.90 / 91.71 87.07 / 88.35 84.49 / 79.73

Table 5: CO-MC F1-scores / intents accuracies of the first partial automatically transcribed utterances that have
equal or more than the first 100 %, 75 %, 50 %, and 25 % of the tokens of the utterances of the test dataset of the
automatically transcribed full utterances
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training dataset 95 % conf. 90 % conf. 85 % conf. 80 % conf.
human, full 91.04 / 97.63 87.46 / 88.24 78.84 / 41.52 76.82 / 38.41
human, full, art. noise 90.93 / 96.87 86.79 / 85.60 77.94 / 37.99 76.48 / 34.93
human, incremental 87.68 / 99.18 87.35 / 91.23 86.56 / 42.35 83.99 / 36.96
human, incremental, art. noise 90.59 / 98.29 90.37 / 93.58 88.47 / 40.33 82.98 / 31.53
automatic, full 88.24 / 93.41 87.91 / 86.65 80.40 / 38.74 78.50 / 35.70
automatic, incremental 91.83 / 99.16 91.60 / 94.29 89.14 / 39.67 86.67 / 34.54

Table 6: Intents accuracies / percentages of the used tokens for predicting the intents using the first partial utterance
of the test dataset of the automatically transcribed incremental utterances for which the system has a confidence of
more or equal than 95 %, 90 %, 85 %, and 80 %, if the confidence is not reached, the full utterance is used

utterances. This is especially the case when eval-
uating the full utterances. A reason for this could
be that the partial utterances can be already con-
sidered as noisier utterances.

The short computation time of the processing of
an utterance makes it possible to use the incremen-
tal processing for spoken and written utterances.

In future work, it has to be evaluated whether
our results are also valid for other architectures
and other datasets. A balanced version of the ATIS
datasets can also be seen as another dataset.

We got better performance with artificial noise.
However, the results could be improved by opti-
mizing the hyperparameter of the artificial noise
generator.

In this work, we researched the performance us-
ing incremental utterances. There should be re-
search on how the results of the incremental pro-
cessing can be separated into subactions and how
much this can accelerate the processing of actions
in real-world scenarios.

In future work not only the acceleration, but
also other benefits of the incremental processing,
like using semantic information for improving the
backchannel, could be researched.
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A Supplemental Material

train valid test intent(s)
73.89 71.4 70.77 atis flight
8.6 7.6 5.38 atis airfare
5.14 5.0 4.03 atis ground service
3.1 3.6 4.26 atis airline
2.9 3.4 3.7 atis abbreviation
1.56 2.2 1.01 atis aircraft
1.0 1.8 0.11 atis flight time
0.92 2.0 0.34 atis quantity
0.42 0.4 1.34 atis flight#atis airfare
0.4 0.2 0.67 atis city
0.38 0.6 1.12 atis distance
0.38 0.6 2.02 atis airport
0.33 0.6 0.78 atis ground fare
0.33 0.2 2.35 atis capacity
0.27 0 8 atis flight no
0.13 0 0.67 atis meal
0.11 0.2 0 atis restriction
0.04 0 0 atis airline#

atis flight no
0.02 0 0 atis ground service#

atis ground fare
0.02 0 0 atis cheapest
0.02 0 0 atis aircraft#atis flight#

atis flight no
0 0.2 0 atis airfare#

atis flight time
0 0 0.22 atis day name
0 0 0.11 atis flight#atis airline
0 0 0.11 atis airfare#atis flight
0 0 0.11 atis flight no#

atis airline

Table 7: intents distribution (in percent) of the ATIS
utterances used in this work
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Groot-Brittanniëlaan 45, 9000, Ghent, Belgium
Firstname.Lastname@UGent.be

Abstract

One of the most persistent characteristics of
written user-generated content (UGC) is the
use of non-standard words. This character-
istic contributes to an increased difficulty to
automatically process and analyze UGC. Text
normalization is the task of transforming lexi-
cal variants to their canonical forms and is of-
ten used as a pre-processing step for conven-
tional NLP tasks in order to overcome the per-
formance drop that NLP systems experience
when applied to UGC. In this work, we fol-
low a Neural Machine Translation approach to
text normalization. To train such an encoder-
decoder model, large parallel training corpora
of sentence pairs are required. However, ob-
taining large data sets with UGC and their nor-
malized version is not trivial, especially for
languages other than English. In this paper,
we explore how to overcome this data bottle-
neck for Dutch, a low-resource language. We
start off with a small publicly available parallel
Dutch data set comprising three UGC genres
and compare two different approaches. The
first is to manually normalize and add train-
ing data, a money and time-consuming task.
The second approach is a set of data augmen-
tation techniques which increase data size by
converting existing resources into synthesized
non-standard forms. Our results reveal that,
while the different approaches yield similar re-
sults regarding the normalization issues in the
test set, they also introduce a large amount of
over-normalizations.

1 Introduction

Social media text are considered important lan-
guage resources for several NLP tasks (Van Hee
et al., 2017; Pinto et al., 2016; Zhu et al., 2014).
However, one of their most persistent character-
istics is the use non-standard words. Social me-
dia texts are considered a type of written user-
generated content (UGC) in which several lan-

guage variations can be found as people often tend
to write as they speak and/or write as fast as pos-
sible (Vandekerckhove and Nobels, 2010). For in-
stance, it is typical to express emotions by the use
of symbols or lexical variation. This can be done
in the form of the repetition of characters or flood-
ing (wooooow), capitalization (YEY!), and the pro-
ductive use of emoticons. In addition, the use
of homophonous graphemic variants of a word,
abbreviations, spelling mistakes or letter transpo-
sitions are also used regularly (Eisenstein et al.,
2014).

Since NLP tools have originally been developed
for and trained on standard language, these non-
standard forms adversely affect their performance.
One of the computational approaches which has
been suggested to overcome this problem is text
normalization (Sproat et al., 2001). This approach
envisages transforming the lexical variants to their
canonical forms. In this way, standard NLP tools
can be applied in a next step after normalization
(Aw et al., 2006). Please note that for some NLP
applications, e.g. sentiment analysis, it might be
beneficial to keep some ’noise’ in the data. For ex-
ample, the use of flooding or capital letters could
be a good indicator of the emotion present in the
text (Van Hee et al., 2017). However, for applica-
tions aiming at information extraction from text,
normalization is needed to help to improve the
performance of downstream NLP tasks (Schulz
et al., 2016). Kobus et al. (2008) introduced
three metaphors to refer to these normalization ap-
proaches: the spell checking, automatic speech
recognition and machine translation metaphors.

In this paper, the focus will be on the ma-
chine translation metaphor. One of the most
conventional approaches is to use Statistical Ma-
chine Translation (SMT) techniques (Kaufmann,
2010; De Clercq et al., 2014; Junczys-Dowmunt
and Grundkiewicz, 2016), in particular using
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the Moses toolkit (Koehn et al., 2007). How-
ever, neural networks have proven to outperform
many state-of-the-art systems in several NLP tasks
(Young et al., 2018). Especially the encoder-
decoder model with an attention mechanism (Bah-
danau et al., 2014) for recurrent neural networks
(RNN) has lead to a new paradigm in machine
translation, i.e., Neural MT (NMT) (Sutskever
et al., 2014; Cho et al., 2014; Bahdanau et al.,
2014; Luong et al., 2015; Sennrich et al., 2016a).

Many works have adopted and applied these
techniques to the normalization task (Ikeda et al.,
2016; Mandal and Nanmaran, 2018; Lusetti et al.,
2018) some of them outperforming the SMT ap-
proach. However, it is well-known that these neu-
ral systems require a huge amount of data in order
to perform properly (Ikeda et al., 2016; Saito et al.,
2017). When it comes to translation these data
even have to be parallel and should thus consist
of aligned source and target sentences. Unfortu-
nately, when it comes to UGC text normalization
there is a lack of parallel corpora in which UGC
is considered the source language and its stan-
dardized form the target language. Furthermore,
the problem even exacerbates when working with
low-resourced languages.

In this work, we follow an NMT approach to
tackle text normalization of Dutch UGC and ex-
plore how to overcome this parallel data bottle-
neck for Dutch, a low-resource language. We start
off with a publicly available tiny parallel Dutch
data set comprising three UGC genres and com-
pare two different approaches. The first one is
to manually normalize and add training data, a
money and time-consuming task. The second
approach consists in a set of data augmentation
techniques which increase data size by converting
existing resources into synthesized non-standard
forms. Our results reveal that the different setups
resolve most of the normalization issues and that
automatic data augmentation mainly helps to re-
duce the number of over-generalizations produced
by the NMT approach.

In the following section, we discuss related
work on MT-based text normalization as well as
data augmentation techniques. In section 3, we
discuss the two approaches to augment the avail-
able data: manual annotations of new sentence
pairs and augmentation techniques. The data used
for our experiments are also explained in detail.
Section 4 gives an overview of the experiments

and results, whereas section 5 concludes this work
and offers prospects for future work.

2 Related Work

Previous research on UGC text normalization has
been performed on diverse languages using dif-
ferent techniques ranging from hand-crafted rules
(Chua et al., 2018) to deep learning approaches
(Ikeda et al., 2016; Sproat and Jaitly, 2016; Lusetti
et al., 2018). Three different metaphors were in-
troduced by Kobus et al. (2008) to refer to these
normalization approaches. That is the automatic
speech recognition (ASR), spell checking, and
translation metaphors. The ASR approach exploits
the similarity between social media text and spo-
ken language. Several works have followed this
methodology, mostly combining it with the others
(Beaufort and Roekhaut, 2010; Xue et al., 2011;
Han and Baldwin, 2011). In the spell checking ap-
proach, corrections from noisy to standard words
occurs at the word level. Some approaches have
treated the problem by using dictionaries contain-
ing standard and non-standard words (Clark and
Araki, 2011). However, the success of this kind of
systems highly depends on the coverage of the dic-
tionary. Since social media language is highly pro-
ductive and new terms constantly appear, it is very
challenging and expensive to continuously keep
such a dictionary up to date.

In this work, we consider the normalization task
as a Machine Translation problem and treat noisy
UGC text as the source language and its normal-
ized form as the target language. In the past, sev-
eral works have also used this approach and there
are two leading paradigms: Statistical and Neural
Machine Translation.

Statistical Machine Translation (SMT) models,
especially those trained at the character-level, have
proven highly effective for the task because they
capture well intra-word transformations (Pennell
and Liu, 2011). Besides, they have the advantage
of being effective when small training data is pro-
vided, thanks to their small vocabulary size. Kauf-
mann (2010), for example, followed a two step
approach for the normalization of English tweets.
First, they pre-processed the tweets to remove as
much noise as possible, and then they used Moses1

to convert them into standard English. Moses is a
statistical machine translation package which can
produce high quality translations from one lan-

1http://statmt.org/moses/
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Source Sentence Target Sentence English Translation
iz da muzieksgool vnavnd ?
kwt da niemr .

is dat muziekschool vanavond ?
ik weet dat niet meer .

is that music school tonight? I
don’t know that anymore.

wa is je msn k en e nieuwe msn
omda k er nie meer op graal .
xxx

wat is je msn ik heb een nieuwe
msn omdat ik er niet meer op
geraak . xx

what is your msn i have a new
msn because i can’t get it any-
more. xx

@renskedemaessc dm me je
gsmnummer eens ;-)

<user> doormail me je gsm-
nummer eens <emoji>

<user> mail me your cell-
phone number once <emoji>

Table 1: Source and target pairs as parallel data for a machine translation approach.

guage into another (Koehn et al., 2007). De Clercq
et al. (2013) proposed a phrase-based method to
normalize Dutch UGC comprising various gen-
res. In a preprocessing step they handled emoti-
cons, hyperlinks, hashtags and so forth. Then they
worked in two steps: first at the word level and
then at the character level. This approach revealed
good results across various genres of UGC. How-
ever, a high number of phonetic alternations re-
mained unresolved.

Recently, neural networks have proven to out-
perform many state-of-the-art systems in sev-
eral NLP tasks (Young et al., 2018). The
encoder-decoder model for recurrent neural net-
works (RNN) was developed in order to ad-
dress the sequence-to-sequence nature of machine
translation and obtains good results for this task
(Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2014; Luong et al., 2015). The model consist
of two neural networks: an encoder and a decoder.
The encoder extracts a fixed-length representation
from a variable-length input sentence, and the de-
coder generates a correct translation from this rep-
resentation. Some works on text normalization
have followed the same approach (Lusetti et al.,
2018; Cho et al., 2014).

In 2016, Sproat and Jaitly (Sproat and Jaitly,
2016) presented a challenge to the research com-
munity: given a large corpus of written text
aligned to its normalized spoken form, train an
RNN to learn the correct normalization function.
Although their work focuses on the Text to Speech
(TTS) use case of text normalization, they com-
pared prior work of text normalization for TTS
(Rao et al., 2015; William Chan, 2016) and also
discuss the problems that arise when using neural
networks for text normalization. They made clear
that although RNNs were often capable to produce
surprisingly good results and learn some complex
mappings, they are prone to make errors like read-

ing the wrong number, or substituting hours for
gigabytes. This makes them risky to apply in a
TTS system. Lusetti et al. (2018) performed NMT
text normalization over Swiss German WhatsApp
messages and compared it to a state-of-the-art
SMT system. They revealed that integrating lan-
guage models into an encoder-decoder framework
can outperform the character-level SMT methods
for that language.

Although the encoder-decoder model has
shown its effectiveness in large datasets, it is much
less effective when only a small number of sen-
tence pairs is available (Sennrich et al., 2016b;
Zoph et al., 2016). Automatic data augmenta-
tion is commonly used in vision and speech and
can help train more robust models, particularly
when using smaller datasets (Chatfield et al., 2014;
Taylor and Nitschke, 2017). Fadaee et al. (2017)
present Translation Data Augmentation (TDA), a
method to improve the translation quality for low
resource pairs (English to German and German to
English). Their approach generates new sentence
pairs containing rare words in new, synthetically
created contexts.

Data augmentation techniques have therefore
also been applied to outperform text normaliza-
tion for low-resourced languages. For example,
Ikeda et al. (2016) performed text normalization
at the character level for Japanese text and pro-
posed a method for data augmentation using hand-
crafted rules. Their method transformed exist-
ing resources into synthesized non-standard forms
using the rules proposed in the work of Sasano
et al. (2015). They proved that the use of the
synthesized corpus improved the performance of
Japanese text normalization. Saito et al. (2017)
also proposed two methods for data augmentation
in order to improve text normalization. Unlike the
previous work, the proposed method did not use
prior knowledge to generate synthetic data at the
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character and morphological level. Instead, they
proposed a two-level data augmentation model
that converted standard sentences to dialect sen-
tences by using extracted morphological conver-
sion patterns. Their experiments using an encoder-
decoder model for Japanese, performed better than
SMT with Moses after the data augmentation.

3 Methodology

Our objective is to go from noisy to standard text
and we tackle this normalization problem using an
NMT approach. Sequence-to-Sequence (seq2seq)
models have been used for a variety of NLP tasks
including machine translation obtaining state-of-
the-art results (Luong et al., 2015; Young et al.,
2018). As in general MT, a translation model is
trained on parallel data consisting of pairs (x, y) of
source sentences/words (= social media text) and
their corresponding target equivalents (= standard
text). Table 1 lists some examples of the noisy data
we are dealing with.

3.1 NMT Approach

In this approach, both input and output sentences
are going in and out of the model. As described
in the literature overview, the model consist of
two neural networks: an encoder and decoder (See
Figure 1).

Figure 1: Encoder-decoder architecture. The light-
color nodes represent the encoder and the dark-color
ones the decoder. Image taken from Luong et al.
(2015).

The encoder extracts a fixed-length representa-
tion from a variable-length input sentence (A B C
D), and the decoder generates a correct transla-
tion from this representation (X Y Z). In the figure,
<eos> marks the end of a sentence. The encoder-
decoder model is trained on a parallel corpus con-
sisting of source sentences aligned with their nor-
malized form.

We relied on OpenNMT2 to train our encoder-
decoder model. OpenNMT is an open source
(MIT) initiative for neural machine translation and
neural sequence modeling (Klein et al., 2017).
The main system is implemented in the Lua/Torch
mathematical framework, and can easily be ex-
tended using Torch’s internal standard neural net-
work components. We used the version of the sys-
tem with the basic architecture which consists of
an encoder using a simple LSTM recurrent neu-
ral network. The decoder applies attention over
the source sequence and implements input feeding
(Luong et al., 2015).

3.2 Evaluation Metric
To evaluate the results of the normalization, we
calculated Word Error Rate (WER) and Charac-
ter Error Rate (CER) over the three genres. WER
is a metric derived from the Levenshtein distance
(Levenshtein, 1966), working at the word level.
Character Error Rate (CER), instead, works at the
character level. These metrics take into account
the number of insertions (INS), deletions (DEL)
and substitutions (SUBS) that are needed to trans-
form the suggested string into the manually nor-
malized string. The metrics are computed as fol-
lows:

WER =
INSw +DELw + SUBSw

Nw

CER =
INSc +DELc + SUBSc

Nc

where Nw is the number of words in the reference
and Nc represents the number of characters.

The higher the value, the higher the number of
normalization operations needed to obtain the tar-
get sentence.

3.3 Overcoming Data Sparsity
Since our focus is on Dutch, our starting point is
an existing Dutch corpus comprising three UGC
genres, which were manually normalized (Schulz
et al., 2016). The genres represented in this corpus
are the following:

Tweets (TWE), which were randomly selected
from the social network.

Message board posts (SNS), which were sam-
pled from the social network Netlog, which was

2http://opennmt.net
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a Belgian social networking website targeted at
youngsters.

Text messages (SMS), which were sampled
from the Flemish part of the SoNaR corpus
(Treurniet et al., 2012).

This corpus is, to our knowledge, the only freely
available parallel normalization dataset for Dutch.

Table 2 presents the number of parallel sen-
tences in each genre and the number of words be-
fore and after normalization3. The WER and CER
values computed between the original and target
parallel sentence pairs are also shown. These val-
ues were calculated per sentence and averaged
over the data set. As can be observed, the Dutch
tweets (TWE) required hardly any normalization
(a WER of 0.09 and a CER of 0.047). This can be
explained by the fact that this platform has mainly
been mainly adopted by professionals in Belgium
who write in a more formal style (Schulz et al.,
2016).

Genre # Sent. # Words WER CER
Src Tgt

TWE 841 12951 12867 0.09 0.047
SNS 770 11670 11913 0.25 0.116
SMS 801 13063 13610 0.27 0.117

Table 2: Dutch parallel corpora data statistics.

On the other hand, we observe that the text mes-
sages (SMS) required most normalization (with
a WER and CER score of 0.27 and 0.117, re-
spectively). Table 2 also reveals that the corpus
amounts to only a few hundred parallel sentences.
NMT models often fail when insufficient data is
provided (Ikeda et al., 2016; Saito et al., 2017).
Because of that, we believe that the mentioned
data would not be enough to successfully train a
RNN model.

Under these conditions, we decided to experi-
mentally verify which approach works best in or-
der to overcome this data sparsity problem. Our
objective is to find out whether annotating more
data or using a set of data augmentation techniques
is more beneficial and leads to better results.

Collecting More Data
First, we sampled and manually annotated ten
thousand additional sentences for each of the three
genres. We sampled SMS from the Flemish part
of the SoNaR corpus (Treurniet et al., 2012). For

3All data was normalized following the procedure de-
scribed in Schulz et al. (2016)

the TWE genre, new data were retrieved by crawl-
ing Twitter using the Twiqs software4, which was
specifically designed to crawl Dutch tweets from
Twitter. We used emoticons as keyword for the
crawling process in order to collect text in which
noisy words were present to some extent. For the
SNS genre we relied on text collected from the
social networking site ASKfm (Van Hee et al.,
2018), where users can create profiles and ask
or answer questions, with the option of doing so
anonymously. ASKfm data typically consists of
question-answer pairs published on a user’s pro-
file.

For all genres we made sure that there were
no duplicates in the texts. Each message was
also lowercased and tokenized using the NLTK to-
kenizer5 prior to annotation, and the annotators
also had to check the tokenization of the sen-
tences. Besides this, hashtags, usernames and
emoticons were replaced with a placeholder. All
data was then normalized following the procedure
described in Schulz et al. (2016). Table 3 shows
the size of the newly annotated data in terms of
the number of sentences and tokens for each genre.
The WER and CER values give an insight into the
normalization needed for each of the genres.

Genre # Sent. # Words WER CER
Src Tgt

TWE 5190 124578 122165 0.10 0.062
SNS 8136 108127 110326 0.23 0.094
SMS 7626 111393 113846 0.15 0.067

Table 3: Parallel corpora data statistics after new anno-
tations.

As can be derived from Table 3, TWE remains
the least noisy genre, whereas the SNS genre is
now the noisiest one with higher WER and CER
values.

Applying Data Augmentation Techniques
A less time-consuming way to overcome data
sparsity is to investigate the added value of data
augmentation. A rudimentary way to augment the
existing data, is to simply add monolingual stan-
dard data to both the source and target side of the
corpus. This implies providing a large number of
standard Dutch sentences from which the model
can learn the standard word use. This type of
data augmentation, however, is very primitive and,
although it could probably provide good training

4https://github.com/twinl/crawler
5https://www.nltk.org/api/nltk.tokenize.html
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data to learn the standard form of sentences, the
non-canonical form of the words would be heavily
(and even more so than in the beginning) under-
represented in the training data.

In order to address this problem, we took our
initial parallel data as starting point for the data
augmentation. Since we want to obtain more
instances of non-canonical words and their cor-
responding normalized forms, we first relied on
pretrained embeddings to replace the standard
words by similar ones. These embeddings where
trained on Flemish newspapers and magazines
data collected from 1999 to 2014 in the Mediargus
Archives, which can be accessed through GoPress
Academic6.

Sentences
Source jaaa sws toch <emoji> hij is echt leuk
Target ja sowieso toch <emoji> hij is echt leuk
Embed. jaaa sws toch <emoji> hijzelf is wel tof

jaaa sws toch <emoji> hij blijft echt leuk
jaaa sws maar <emoji> hij is gewoon leuk
jaaa sws dus <emoji> hij is inderdaad tof

English yes anyway but/so <emoji> he/himself is
really/just/indeed nice/cool

Table 4: Data augmentation using pretrained embed-
dings.

Using this technique, we produced synthesized
similar sentences containing the original user-
generated text in it. In Table 4, we illustrate this
augmentation technique, starting from the user-
generated text jaaa sws toch :) hij is echt leuk
(yes anyway <emoji> he is really nice). It is im-
portant to emphasize that we only replaced words
that were already in their standard form in both the
source and target side of the corpus. The replace-
ments were made using the most similar words
from the embeddings, using a similarity threshold
with a value equal or greater than 0.5.

In the upper part of Table 4 the standard words
in the source and target sentences are placed
in cursive. In the middle and lower part, the
bold words show the replacement for the stan-
dard words based on the embeddings. Please note
that this replacement sometimes caused a (slight)
change in the semantics of the sentence, as in jaaa
sws toch <emoji> hij blijft echt leuk. However,
since we are only dealing with lexical normaliza-
tion, we argue that this is not an issue for the task.

In a second step, we applied an additional data
augmentation technique which produces new ab-

6https://bib.kuleuven.be/english/ub/searching/collections/
belgian-press-database-gopress-academic

breviations on the source side of the parallel cor-
pus. We made use of a dictionary of about 350
frequent abbreviations appearing in social media
texts, such as lol (laughing out loud) and aub for
alstublieft (you are welcome) (Schulz et al., 2016).
We went through every sentence in the newly aug-
mented dataset and duplicated every sentence pair
in which a standard word or phrase appeared in the
dictionary. In the new source sentence, this stan-
dard word was then replaced by its corresponding
abbreviation. For those cases in which a standard
word had several abbreviation forms, a new orig-
inal sentence for each of the abbreviation forms
was generated.

Table 5 exemplifies this technique. It first lists
two examples of newly generated sentences us-
ing the embeddings after which the abbreviations
step is applied, leading to two additional new sen-
tences.

Sentences
Source jaaa sws toch <emoji> hij is echt leuk
Target ja sowieso toch <emoji> hij is echt leuk
Embed. jaaa sws maar <emoji> hij is gewoon leuk

jaaa sws dus <emoji> hij is inderdaad tof
Abbr. jaaa sws maar <emoji> hij is gwn leuk

jaaa sws dus <emoji> hij is idd tof
English yes anyway but/so <emoji> he is really/

just/indeed nice/cool

Table 5: Data augmentation using dictionary of abbre-
viations.

3.4 Experimental Setup

To conduct the experiments, both approaches were
applied in several steps and combinations.

The first round of experiments (Setup 0), which
we will consider as the baseline system, consisted
in applying the NMT architecture to the original
small Dutch parallel corpus, as presented in Ta-
ble 2. We performed 10-fold cross validation ex-
periments to ensure that each part of the dataset
would be used once as training and test set. For
the remaining experiments (see Setup 1 to 3 be-
low), this entire small dataset was used as held-out
test set in order to find out which approach works
best for overcoming data sparsity.

INS DEL SUBS SUM
TWE 1118 934 355 2407
SNS 2483 2238 1021 5742
SMS 4209 508 758 5475

Table 6: Operations needed at the character level to
normalize the test set for each genre.
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Table 6 shows the number of insertions (INS),
deletions (DEL) and substitutions (SUBS) that are
needed to transform the source sentences of the
test set into manually normalized ones. The last
column of the table shows the overall number of
operations that would need to be solved by the sys-
tems.

The new annotations as presented in Table 3
were used for training (Setup 1). In a next step,
we trained the NMT model on the data obtained
by first applying the embeddings technique to the
newly annotated data (Setup 2) and then together
with the abbreviation step (Setup 3).

#Sent. # Words
TWE Src Tgt

1 5190 124578 122165
2 697441 20692213 20416466
3 853465 26316110 26002836

SNS Src Tgt
1 8136 108127 110326
2 577281 21120858 21499465
3 835091 70337827 71257870

SMS Src Tgt
1 7626 111393 113846
2 615195 15356594 15669683
3 766946 22066532 22651464

Table 7: Parallel corpora data statistics for each exper-
imental setup.

Table 7 shows the number of parallel training
sentences and words in the original and target
sides of each setup for each genre.

4 Experiments

As we explained before, the goal of our work is to
experimentally verify which approach works best
to overcome the data sparsity problem for a low-
resourced language such as Dutch UGC: annotat-
ing more data or using data augmentation tech-
niques.

Figure 2 presents the WER results for each
genre with the different experimental setups and
Figure 3 the CER results. As expected, the 10-
fold cross validation experiments on the tiny orig-
inal datasets (Setup 0) leads to bad results. The
system’s output consisted of sentences of the type
<emoji> , de , , , . . . <emoji>. These are ran-
dom repetitions of the most represented tokens in
the training data like ik (I in English), punctuation
marks or <emoji> labels. The system was thus
unable to learn from such a small dataset.

Annotating more data (Setup 1) consistently re-
sults in better WER scores, with a more than

50% WER and CER reduction for the SMS genre.
The data augmentation techniques (Setup 2 and
3) seem to further affect the normalization results.
For the SNS and SMS genre, the WER and CER
significantly decreases with the data augmentation
technique relying on embeddings. However, when
more noise is introduced to the data set (Setup 3)
this adversely affects the WER and CER values for
all genres.

However, these data augmentation techniques
only seem to work when working with similar
data. Recall that for the annotation of the new
training data, similar data were collected for both
the SMS and SNS genre. However, given the lack
of noise in the Twitter data, we opted for another
strategy to collect the tweets, viz. we used emoti-
cons as keyword to query Twitter. This has re-
sulted in a different style of Twitter corpus which
comprises more noisy and longer tweets (see CER
in Table 2 vs. Table 3). This difference in training
data seems to be amplified during data augmenta-
tion. Whereas the use of more training data yields
a large WER reduction (from 1.16 to 0.72 WER
and 1.37 to 0.74 CER), this effect of adding more
data is undone when augmenting the training data
with similar data. However, the overall CER and
WER results are still better than when just relying
on the small original dataset (Setup 0).

When comparing the results of Setups 2 and 3
with the original WER values of our test set (see
Table 2) we observe that the normalization task
was not solved at all as the WER values are al-
most always higher. Only for the SMS genre, the
results are somewhat similar, with WERs of 0.25
and 0.27 for setups 2 and 3 respectively.

4.1 Error Analysis

Table 8 shows some examples of sentences which
were normalized using the proposed NMT ap-
proach.

However, the approach still produces a large
number of odd normalizations. For example, in
the second sentence in Table 8, the system was
unable to correctly normalize some of the words.
For instance, the word byyyy (there) was incor-
rectly normalized as the verb gedragen (behave).
Furthermore, the system also produced odd trans-
lations of words that already were in their stan-
dard form. For example, the word tammy, which
is a proper name, is changed into toevallig (acci-
dentally) and the word u (you) was duplicated in
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Figure 2: Experimental WER results for each genre using the different setups.

Figure 3: Experimental CER results for each genre using the different setups.

src sent. haha zekr mdaje n vriend vn matti zyt !
<emoji> x

norm sent. haha zeker omdat je een vriend van matti
zijt ! <emoji> x

tgt sent. haha zeker omdat je een vriend van matti
zijt ! <emoji> x

English haha certainly because you are a friend of
matti !<emoji> x

src sent. eeh ik sta dr nie byyyy <emoji> l y mis je
norm sent. he ik sta er niet gedragen <emoji> love

you mis je
tgt sent. he ik sta er niet bij <emoji> love you

mis je
English hey i am not there <emoji> love you miss

you
src sent. jonge tammy , k u

norm sent. jongen toevallig , ik u u
tgt sent. jongen tammy , ik u
English boy tammy, me you

Table 8: Examples of original (src), predicted (norm)
and target (tgt) sentences using the NMT approach. An
English translation is also provided.

the normalized sentence. So, while the k (I) was
correctly normalized, two errors were introduced
through normalization. This is a common issue

with encoder-decoder models (Sproat and Jaitly,
2017).

TWE INS DEL SUBS SUM
Test 1118 934 355 2407
Setup 0 1101 930 351 2382
Setup 1 1099 924 330 2353
Setup 2 1105 917 326 2348
Setup 3 1094 903 325 2322
SNS INS DEL SUBS SUM
Test 2483 2238 1021 5742
Setup 0 2454 2225 992 5671
Setup 1 2468 2220 995 5683
Setup 2 2366 2092 968 5426
Setup 3 2366 2141 971 5478
SMS INS DEL SUBS SUM
Test 4209 508 758 5475
Setup 0 4107 505 727 5339
Setup 1 4094 483 700 5277
Setup 2 4099 470 709 5278
Setup 3 4090 468 710 5268

Table 9: Number of solved operations at the character
level after normalization for each genre.

Ideally, the number of operations after normal-
ization should be reduced to zero. As can be de-
rived from the Table 9 many cases where correctly
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normalized by the systems. However, we can also
observe that at the same time a large number of
over-normalizations is introduced (Figures 2 and
3). Regarding data augmentation, we conclude
that these techniques mainly help to reduce the
number of over-normalizations.

5 Conclusions and Future Work

In this article, we have applied text normalization
to Dutch written user-generated content from dif-
ferent genres: text messages, message board posts
and tweets. We followed a Neural Machine Trans-
lation approach to solve the task and investigated
different data augmentation techniques to tackle
the problem of data sparsity. Results show that for
most of the genres, augmenting the data by using
pretrained embeddings helped to reduce the errors
introduced by the NMT approach. On the other
hand, for most of the genres Setup 0, i.e. training
the NMT system on the small in-domain data set,
solved most of the normalization problems in the
test set.

Regarding the quality of the normalization,
despite many of the non-standard words being
correctly normalized, the system also produced
odd translations, which is a common error using
encoder-decoder architectures (Sproat and Jaitly,
2016). This is reflected in the number of over-
normalizations that are produced by the system.
With respect to these errors, we believe that fol-
lowing a modular approach that helps to solve
the remaining errors, instead of only using NMT,
could lead to a better performance.
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Abstract
Recently, with the help of deep learning mod-
els, significant advances have been made in
different Natural Language Processing (NLP)
tasks. Unfortunately, state-of-the-art models
are vulnerable to noisy texts. We propose a
new contextual text denoising algorithm based
on the ready-to-use masked language model.
The proposed algorithm does not require re-
training of the model and can be integrated
into any NLP system without additional train-
ing on paired cleaning training data. We evalu-
ate our method under synthetic noise and natu-
ral noise and show that the proposed algorithm
can use context information to correct noise
text and improve the performance of noisy in-
puts in several downstream tasks.

1 Introduction
Based on our prior knowledge and contextual in-
formation in sentences, humans can understand
noisy texts like misspelled words without diffi-
culty. However, NLP systems break down for
noisy text. For example, Belinkov and Bisk
(2017) showed that modern neural machine trans-
lation (NMT) system could not even translate texts
with moderate noise. An illustrative example
of English-to-Chinese translation using Google
Translate 1 is presented in Table 1.

Text correction systems are widely used in
real-world scenarios to address noisy text inputs
problem. Simple rule-based and frequency-based
spell-checker are limited to complex language sys-
tems. More recently, modern neural Grammati-
cal Error Correction (GEC) systems are developed
with the help of deep learning (Zhao et al., 2019;
Chollampatt and Ng, 2018). These GEC systems
heavily rely on annotated GEC corpora, such as
CoNLL-2014 (Ng et al., 2014). The parallel GEC

∗ Work done at Georgia Tech.
1https://translate.google.com; Access Date:

08/09/2019

corpora, however, are expansive, limited, and even
unavailable for many languages. Another line of
researches focuses on training a robust model that
inherently deals with noise. For example, Be-
linkov and Bisk (2017) train robust character-level
NMT models using noisy training datasets, in-
cluding both synthetic and natural noise. On the
other hand, Malykh et al. (2018) consider robust
word vectors. These methods require retraining
the model based on new word vectors or noise
data. Retraining is expensive and will affect the
performance of clean text. For example, in Be-
linkov and Bisk (2017), the robustness scarifies the
performance of the clean text by about 7 BLEU
score on the EN-FR translation task.

In this paper, we propose a novel text denois-
ing algorithm based on the ready-to-use masked
language model (MLM, Devlin et al. (2018)). No-
tice that we are using English Bert. For other lan-
guages, We need to use MLM model pre-trained
on that specific language. The design follows the
human cognitive process that humans can utilize
the context, the spell of the wrong word (Mayall
et al., 1997), and even the location of the letters
on the keyboard to correct noisy text. The MLM
essentially mimics the process that the model pre-
dicts the masked words based on their context.
There are several benefits of the proposed method:
• Our method can make accurate corrections

based on the context and semantic meaning
of the whole sentence as Table 1 shows.
• The pre-trained masked language model is

ready-to-use (Devlin et al., 2018; Liu et al.,
2019). No extra training or data is required.
• Our method makes use of Word Piece embed-

dings (Wu et al., 2016) to alleviate the out-of-
vocabulary problem.

2 Method
Our denoising algorithm cleans the words in the
sentence in sequential order. Given a word, the
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Method Input Text Google Translate
Clean Input there is a fat duck swimming in the lake 湖里有一只胖鸭子在游泳
Noisy Input there is a fat dack swimming in the leake 在 leake里游泳时有一个胖子

Spell-Checker there is a fat sack swimming in the leak 在泄露处有一个肥胖袋在游泳
Grammaly2 there is a fat dack swimming in the lake 湖里游泳很胖

Ours there is a fat duck swimming in the lake 湖里有一只胖鸭子在游泳

Table 1: Illustrative example of spell-checker and contextual denoising.

algorithm first generates a candidate list using the
MLM and then further filter the list to select a can-
didate from the list. In this section, we first briefly
introduce the masked language model, and then
describe the proposed denoising algorithm.

2.1 Masked Language Model
Masked language model (MLM) masks some
words from a sentence and then predicts the
masked words based on the contextual informa-
tion. Specifically, given a sentence x = {xi}Li=1

with L words, a MLM models
p(xj |x1, ..., xj−1, [MASK], xj+1, ..., xL),

where [MASK] is a masking token over the j-th
word. Actually, MLM can recover multiple masks
together, here we only present the case with one
mask for notation simplicity. In this way, unlike
traditional language model that is in left-to-right
order (i.e., p(xj |x1, ..., xj−1)), MLM is able to
use both the left and right context. As a result,
a more accurate prediction can be made by MLM.
In the following, we use the pre-trained masked
language model, BERT (Devlin et al., 2018). So
no training process is involved in developing our
algorithm.

2.2 Denoising Algorithm
The algorithm cleans every word in the sentence
with left-to-right order except for the punctuation
and numbers by masking them in order. For each
word, MLM first provide a candidate list using a
transformed sentence. Then the cleaned word is
selected from the list. The whole process is sum-
marized in Algorithm 1.
Text Masking The first step is to convert the sen-
tence x into a masked form x′. With the use of
Word Piece tokens, each word can be represented
by several different tokens. Suppose the j-th word
(that needs to be cleaned) is represented by the js-
th token to the je-th token, we need to mask them
out together. For the same reason, the number of
tokens of the expected cleaned word is unknown.

2https://app.grammarly.com; Access Date:
08/09/2019

So we use different number of masks to create the
masked sentence {x′n}Nn=1, where x′n denotes the
masked sentence with n-gram mask. Specifically,
given x = x1, ..., xjs , ..., xje , ..., xL, the masked
form is x′n = x1, ..., [MASK] × n, ..., xL. We
mask each word in the noisy sentence by order.
The number of masks N can not be too small or
too large. The candidate list will fail to capture the
right answer with a small N . However, the opti-
mal answer would fit the noisy text perfectly with
a large enough N . Empirically, we find out N = 4
is sufficiently large to obtain decent performance
without too much overfitting.
Text Augmentation Since the wrong word is also
informative, so we augment each masked text x′n
by concatenating the original text x. Specifically,
the augmented text is x̃n = x′n[SEP ]x, where
[SEP ] is a separation token.3

Compared with directly leaving the noisy word
in the original sentence, the masking and augmen-
tation strategy are more flexible. It is benefited
from that the number of tokens of the expected
word does not necessarily equal to the noisy word.
Besides, the model pays less attention to the noisy
words, which may induce bias to the prediction of
the clean word.
Candidate Selection The algorithm then con-
structs a candidate list using the MLM, which is
semantically suitable for the masked position in
the sentence. We first construct candidate list V n

c

for each x̃n, and then combine them to obtained
the final candidate list Vc = V 1

c ∪ · · · ∪ V N
c .

Note that we need to handle multiple masks when
n > 1. So we first find k most possible word
pieces for each mask and then enumerate all pos-
sible combinations to construct the final candidate
list. Specifically,

V n
c = Top-k{p([MASK]1 = w|x̃n)}w∈V

× · · · × Top-k{p([MASK]n = w|x̃n)}w∈V ,
where V is the whole vocabulary and×means the
Cartesian product.

3In BERT convention, the input also needs to be embraced
with a [CLS] and a [SEP ] token.
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There may be multiple words that make sense
for the replacement. In this case, the spelling
of the wrong word is useful for finding the most
likely correct word. We use the edit distance to
select the most likely correct word further.

wc = arg min
w∈Vc

E(w, xj),

where E(w, xj) represent the edit distance be-
tween w and the noisy word xj .

Algorithm 1: Denoising with MLM

Input: Noisy sentence x = {xi}Li=1

Output: Denoised sentence x = {xi}Li=1

for i = 1, 2, ..., L do
{x′n}Nn=1 = Masking(x) ;
{x̃n}Nn=1 = {Augment(x′n,x)}Nn=1 ;
for n = 1, 2, ..., N do

V n
c = Candidate(x̃n) ;

end
Vc = V 1

c ∪ · · · ∪ V N
c ;

wc = argminw∈Vc E(w, xj) ;
xi = wc;

end

3 Experiment

We test the performance of the proposed text de-
noising method on three downstream tasks: neural
machine translation, natural language inference,
and paraphrase detection. All experiments are
conducted with NVIDIA Tesla V100 GPUs. We
use the pretrained pytorch Bert-large (with whole
word masking) as the masked language model 4.
For the denoising algorithm, we use at most N =
4 masks for each word, and the detailed configu-
ration of the size of the candidate list is shown in
Table 2. We use a large candidate list for one word
piece which covers the most cases. For multiple
masks, a smaller list would be good enough.

For all tasks, we train the task-specific model
on the original clean training set. Then we com-
pare the model performance on the different test
sets, including original test data, noise test data,
and cleaned noise test data. We use a commercial-
level spell-checker api 5 as our baseline method.

In this section, we first introduce how the noise
is generated, and then present experimental results
of three NLP tasks.

4https://github.com/huggingface/
pytorch-pretrained-BERT

5https://rapidapi.com/montanaflynn/
api/spellcheck; Access Date: 08/09/2019

No. of [MASK] (n) Top k Size
1 3000 3000
2 5 25
3 3 27
4 2 16

Total: 3068

Table 2: Size of the candidate list

3.1 Noise
To control the noise level, we randomly pick
words from the testing data to be perturbed with
a certain probability. For each selected word, we
consider two perturbation setting: artificial noise
and natural noise. Under artificial noise setting,
we separately apply four kinds of noise: Swap,
Delete, Replace, Insert with certain probability.
Specifically,
• Swap: We swap two letters per word.
• Delete: We randomly delete a letter in the

middle of the word.
• Replace: We randomly replace a letter in a

word with another.
• Insert: We randomly insert a letter in the mid-

dle of the word.

Following the setting in (Belinkov and Bisk,
2017), the first and the last character remains un-
changed.

For the artificial noise, we follow the experi-
ment of Belinkov and Bisk (2017) that harvest nat-
urally occurring errors (typos, misspellings, etc.)
from the edit histories of available corpora. It gen-
erates a lookup table of all possible errors for each
word. We replace the selected words with the cor-
responding noise in the lookup table according to
their settings.

3.2 Neural Machine Translation
We conduct the English-to-German translation ex-
periments on the TED talks corpus from IWSLT
2014 dataset 6. The data contains about 160, 000
sentence pairs for training, 6, 750 pairs for testing.

We first evaluate the performance using a 12-
layer transformer implemented by fairseq (Ott
et al., 2019). For all implementation details, we
follow the training recipe given by fairseq 7. We
also evaluate the performance of Google Trans-
late.

6https://wit3.fbk.eu/archive/2014-01/
texts/en/de/en-de.tgz

7https://github.com/pytorch/fairseq/
tree/master/examples/translation
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For the artificial noise setting, we perturb 20%
words and apply each noise with probability 25%.
For that natural noise setting, we also perturb 20%
words. All experiment results is summarized in
Table 3, where we use BLEU score (Papineni
et al., 2002) to evaluate the translation result.

Text Source Google Fairseq
Original 31.49 28.06

Artificial Noise 28.11 22.27
+ Spell-Checker 26.28 21.15

+ Ours 28.96 25.80

Natural Noise 25.22 17.29
+ Spell-Checker 20.90 15.04

+ Ours 25.49 21.40

Table 3: BLEU scores of EN-to-DE tranlsation

As can be seen, both fairseq model and Google
Translate suffer from a significant performance
drop on the noisy texts with both natural and syn-
thetic noise. When using the spell-checker, the
performance even drops more. Moreover, our pur-
posed method can alleviate the performance drop.

3.3 Natural Language Inference
We test the algorithm on Natural Language Infer-
ence (NLI) task, which is one of the most chal-
lenge tasks related to the semantics of sentences.
We establish our experiment based on the SNLI
(the Stanford Natural Language Inference, Bow-
man et al. (2015)) corpus. Here we use accuracy
as the evaluation metric for SNLI.

Here we use state-of-the-art 400 dimensional
Hierarchical BiLSTM with Max Pooling (HBMP)
(Talman et al., 2019). The implementation follows
the publicly released code 8. We use the same
noise setting as the NMT experiments. All results
are presented in Table 4. We observe performance
improvement with our method. To see if the de-
noising algorithm would induce noises to the clean
texts, we also apply the algorithm to the original
sentence and check if performance will degrade.
It can be seen that, unlike the traditional robust
model approach, applying a denoising algorithm
on a clean sample has little influence on perfor-
mance.

As shown in the Table4, the accuracy is very
close to the original one under the artificial noise.
Natural noises contain punctuations and are more
complicated than artificial ones. As a result, infer-
ence becomes much harder in this way.

8https://github.com/Helsinki-NLP/HBMP

Method Original
Artificial Natural

Noise Noise
HBMP 84.0 75.0 74.0

+Spell-Checker 84.0∗ 63.0 68.0
+Ours 83.0∗ 81.0 77.0

Table 4: SNLI classification accuracy with artificial
noise and natural noise. ∗: Applying denoising algo-
rithm on original texts.

3.4 Paraphrase Detection

We conducted Paraphrase detection experiments
on the Microsoft Research Paraphrase Corpus
(MRPC, Dolan and Brockett (2005)) consisting of
5800 sentence pairs extracted from news sources
on the web. It is manually labelled for pres-
ence/absence of semantic equivalence.

We evaluate the performance using the state-of-
the-art model: fine-tuned RoBERTa (Liu et al.,
2019). For all implemented details follows the
publicly released code 9. All experiment results
is summarized in Table 5. We increase the size of
the candidate list to 10000+25+27+16 = 10068
because there are a lot of proper nouns, which are
hard to predict.

Method Original
Artificial Natural

Noise Noise
RoBERTa 84.3 81.9 75.2

+Spell-Checker 82.6 81.3 75.4
+Ours 83.6 82.7 76.4

Table 5: Classification F1 score on MRPC

4 Conclusion and Future Work

In this paper, we present a novel text denois-
ing algorithm using ready-to-use masked language
model. We show that the proposed method can re-
cover the noisy text by the contextual information
without any training or data. We further demon-
strate the effectiveness of the proposed method on
three downstream tasks, where the performance
drop is alleviated by our method. A promising fu-
ture research topic is how to design a better can-
didate selection rule rather than merely using the
edit distance. We can also try to use GEC corpora,
such as CoNLL-2014, to further fine-tune the de-
noising model in a supervised way to improve the
performance.

9https://github.com/pytorch/fairseq/
tree/master/examples/roberta
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Abstract

We present a system for automating Semantic
Role Labelling of Hindi-English code-mixed
tweets. We explore the issues posed by noisy,
user generated code-mixed social media data.
We also compare the individual effect of var-
ious linguistic features used in our system.
Our proposed model is a 2-step system for au-
tomated labelling which gives an overall ac-
curacy of 84% for Argument Classification,
marking a 10% increase over the existing rule-
based baseline model. This is the first attempt
at building a statistical Semantic Role Labeller
for Hindi-English code-mixed data, to the best
of our knowledge.

1 Introduction

Semantic Role Labelling (SRL) deals with iden-
tifying arguments of a given predicate or verb, in
a sentence or utterance, and classifying them into
various semantic roles. These labels give us infor-
mation about the function played by the argument
with respect to its predicate in the particular sen-
tence.

With the growing popularity of social media,
there is a lot of user generated data available
online on forums such as Facebook, Twitter,
Reddit, amongst many others. Subsequently, there
is an increasing need to develop tools to process
this text for its understanding. In multi-lingual
communities, code-mixing is a largely observed
phenomenon in colloquial usage as well as on
social media. Code-mixing is described as “the
embedding of linguistic units such as phrases,
words and morphemes of one language into an
utterance of another language” (Myers-Scotton,
1997). Social media data, Code-mixed text in
particular, doesn’t strictly adhere to the syntax,
morphology or structure of any of the involved
languages, which results in standard NLP tools
not performing well with this data for a lot of

tasks (Solorio and Liu, 2008; Çetinoğlu et al.,
2016). T1 is an example from the corpus of
Hindi-English code-mixed tweets (The Hindi
words are denoted in italics).

T1 : “My life is revolving around ‘bhook lagri
hai’ and ‘zyada kha liya”’
Translation: My life is revolving around ‘I am
hungry’ and ‘I ate too much’

We present a 2-step system for automated Se-
mantic Role Labelling of Hindi-English code-
mixed tweets. The first step is to identify the argu-
ments of the predicates in the sentence. The sec-
ond step is to then classify these identified argu-
ments into various semantic roles. We discuss the
effect of 14 linguistic features on our system, of
which 6 are derived from literature and rest are
specific to Hindi or to the nature of code-mixed
text. Semantic Role Labelling will aid in various
NLP tasks such as building question-answering
systems (Shen and Lapata, 2007), co-reference
resolution (Ponzetto and Strube, 2006), document
summarization (Khan et al., 2015), information re-
trieval (Moschitti et al., 2003; Osman et al., 2012)
and so on.

The structure of this paper is as follows. We
describe our data and the normalisation done for
pre-processing of the text for our system in Section
2. The features used and compared are explained
in detail in Section 3 along with the architecture
of our system. We analyse the experiments and its
results in Section 4. In Section 5, we conclude the
paper.

2 Data and Pre-Processing

We used a dataset of 1460 Hindi-English code-
mixed tweets comprising of 20,949 tokens la-
belled with their semantic roles (Pal and Sharma,
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2019). This dataset is built on a dependency la-
belled corpus by Bhat et al. (2018). The tokens are
parsed and labelled with Proposition Bank (Prop-
Bank) labels shown in table 1, depicting semantic
roles of the arguments with respect to the predi-
cates in the sentence (Palmer et al., 2005; Bhatt
et al., 2009).

Label Description
ARGA Causer
ARG0 Agent or Experiencer or Doer
ARG1 Theme or Patient
ARG2 Benificiary

ARG2 ATTR Attribute or Quality
ARG2 LOC Physical Location
ARG2 GOL Destination or Goal
ARG2 SOU Source

ARG3 Instrument
ARGM DIR Direction
ARGM LOC Location
ARGM MNR Manner
ARGM EXT Extent or Comparison
ARGM TMP Temporal
ARGM REC Reciprocal
ARGM PRP Purpose
ARGM CAU Cause or Reason
ARGM DIS Discourse

ARGM ADV Adverb
ARGM NEG Negative
ARGM PRX Complex Predicate

Table 1: PropBank Tagset

Social media data doesn’t conform to the rules
of spelling, grammar or punctuation. These need
to be taken into account to maintain uniformity
for our system. We incorporated this in our pre-
processing steps.

2.1 Misspelling

One of the most widely seen errors in social me-
dia data is ‘typos’, which are errors in spelling,
usually slangs or typing errors. These errors can
be broadly classified as follows:

• Misspelling leading to another word. For
example, “thing”[NN]1 misspelled as
“think”[VM].

• Omission of vowels - For example, the to-
ken “hr” is a commonly used abbreviation for

1Part of Speech (POS) tag

the English word ‘hour’. In our corpus, it
referred to the Hindi word ‘har’ which is a
quantifier and means ‘every’.

• Elongation - tokens such as “Loooonng”,
“Heyyyyy”, “pyaaaar” and so on.

• Typing errors. For example, “saluet”, which
should have been ‘salute’.

• Non-Uniformity in transliteration of Hindi
tokens (usually written in Devanagari script)
using the Roman alphabet. For example, the
Hindi word for ‘no’ - “nahi” - had a lot of
variation in its spelling in the corpus - ‘nai’,
‘naee’, ‘nahi’, ‘nahee’, ‘nhi’ etc.

We were able to detect some of the other er-
rors through automated methods, such as elonga-
tion and some typing errors. Non-uniformity in
transliteration was the most commonly found er-
ror in our corpus. These were all normalised and
corrected manually to ensure a consistent spelling
throughout the corpus.

2.2 Word Sense Disambiguation

A word can have different meanings according to
the context in which it is used. T2 is an example
from the corpus. The token “dikhny” refers to
the Hindi verb ‘xeKa’2 which means to look.
This verb can have different senses according to
its context as shown in table 2. From context
we know the relevant roleset here would be
[xeKa.01]. Available Frame files are used
to identify rolesets for the verbs in the corpus
(Vaidya et al., 2013; Bonial et al., 2014).

T2: “We are journilist and hmy sechae dikhny
se kiu rok ni skta”
Translation: We are journalists and no one can
stop us from seeing the truth.

Different senses for xeKa
Roleset id Meaning
xeKa.01 to see something
xeKa.04 to see (without volition)
xeKa.06 to show someone something
xeKa.07 used as a light verb

Table 2: Rolesets and meanings for the Hindi verb
xeKa.

2WX notation
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T3: “Shane on you maine tuje pehle hi Warne
kiya tha”
Translation: Shane[NNP] on you, I had
Warne[NNP] you before.
Implicit meaning: Shame[VM] on you, I had
warned[VM] you before.

T3 is an interesting example from the corpus.
The proper nouns ‘Shane’ and ‘Warne’ are used
as the verbs ‘shame’ and ‘warn’ respectively in
the sentence, due to their phonetic similarity. The
speaker is possibly warning against the famous
cricketer Shane Warne, and thus uses his name to
convey the same. This sort of word play is not un-
common in social media data. These tokens are
detected as proper nouns. We added them as pred-
icates, according to their context, manually.

3 Semantic Role Labeller

Our Semantic Role Labeller has a 2-step architec-
ture. The first step is a binary classification task
wherein each token in the tweet is classified as
‘Argument’ or ‘Not an Argument’. This step is
called Argument Identification. In the second
step, the identified arguments from the previous
step are classified into the various semantic roles.
This is called Argument Classification.

We used Support Vector Models (SVM) for bi-
nary classification. The identified arguments from
this step are then classified into various seman-
tic roles mentioned in Table 1. We used the Lin-
ear SVC class of SVM (Pedregosa et al., 2011)
for one-vs-rest multi-class classification. The data
was split in the ratio of 80:20 for training and test-
ing respectively. All parameters of the LinearSVC
were set to default for training.

3.1 Features used

Hindi and English have very different grammatical
rules and vary greatly syntactically as well. We in-
corporated linguistic features in our system which
may take into account these differences and help
the labeller attain higher accuracy in identifying
and classifying arguments.

3.1.1 Baseline Features
We used 6 baseline features which have been used
extensively for the task of Semantic Role La-
belling for English (Gildea and Jurafsky, 2002;
Xue and Palmer, 2004). They are as follows:

• Predicate: Identified verb in the sentence

• Headword: Headword of the chunk

• HeadwordPOS: Part of Speech tag of the
headword

• Phrasetype: Syntactic category of the phrase
(NP, VP, CCP etc.)

• Predicate + Phrasetype

• Predicate + Headword

Semantic Arguments are identified at a phrase
or chunk level. Hence we used features such as
Headword of the chunk, phrasetype category, as
baseline features. We also saw the impact of the
part of speech (POS) tag of the Headword.

3.1.2 Features specific to Indian Languages
Previous work on Semantic Role Labelling have
used the following features for Hindi specifically
(Anwar and Sharma, 2016):

• Dependency(karaka relation): Paninian de-
pendency label

• Named Entities

• HeadwordPOS + Phrasetype

• Headword + Phrasetype

We used the same features in our system.
Named Entities have previously been seen to be
a critical feature for Argument Identification task
in English (Pradhan et al., 2004).

Vaidya et al. (2011) showed the strong co-
relation between Paninian dependency (karta) la-
bels and Propbank labels for Hindi. This feature
was also seen to give the best results for Hindi and
Urdu monolingual corpus (Anwar and Sharma,
2016). Universal Dependencies (UD) have gained
a lot of attention lately for cross-lingual parsing.
Tandon et al. (2016) discussed and evaluated
UD scheme for Hindi and also compared them
to Paninian dependency labels. We evaluated UD
part of speech(POS) tags and UD dependency la-
bels as features in our system, as mentioned below.

• HeadwordPOS(UD) - UD part of speech tag
of the headword

• UD dependency label
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3.1.3 Features for code-mixed data
Since we are dealing with code-mixed text, we
wanted to see the effect the identified language of
a token may have. We thus used the following fea-
tures:

• Predicate + language: Predicate and its iden-
tified language.

• Headword + language: The chunk headword
and its identified language.

4 Results and Analysis

We do a thorough analysis of the individual fea-
tures and their performance for the tasks of Ar-
gument identification and Argument Classification
separately. Table 3 shows the precision, recall and
F1 scores of the features for Argument Identifica-
tion. Paninian Dependency labels give the highest
F1-score of 78.

Named Entities also give good results for Argu-
ment Identification. This is because Named En-
tities are usually arguments of a predicate. How-
ever, they by themselves don’t capture much in-
formation about the role played by the argument
in the sentence. Hence, the score for Argument
Classification isn’t that high, as can be seen in ta-
ble 5.

Feature
Argument Identification
P R f-score

Predicate 33 50 40
Headword (HW) 52 47 49
HeadwordPOS 33 50 40
Phrasetype (PT) 41 34 37

Predicate-PT 42 65 51
Predicate-HW 55 49 51
Dependency 78 78 78

Named Entity 57 50 65
HeadwordPOS-PT 41 34 37

Headword-PT 57 49 53
HeadwordPOS(UD) 32 50 39

UD dependency 64 65 64
Predicate-language 43 65 52
Headword-language 55 47 51

Table 3: Individual feature performance for Argument
Identification.

We also see a significant increase in accu-
racy when we use the combinational feature of
predicate and its language, as compared to using

only predicate as a feature (Table 3). T4 is an
example from the corpus where the token “ban”
is the Hindi verb [bana], ‘to become’. This can
be confused with the English verb ‘ban’ (legal
prohibition). In such cases, the language of the
predicate token can play an important role.

T4: “Dear so called liberals, kabhi indian ban
ke dekho”
Translation: Dear so called liberals, try being an
Indian some time.

Feature
Argument Identification
P R f-score

Baseline 56 53 55
with predicate-lang 57 54 55

+dependency 81 76 78

Table 4: Accuracy scores for Argument Identification.

Table 4 gives the accuracy scores for the system
using baseline features. Here, the score doesn’t
change much when we use ‘predicate-language’
as a part of our baseline. We are able to obtain
the highest F1-score of 78 for this step by adding
dependency label to our baseline features. The
rule-based baseline model gives a much higher ac-
curacy of 96.74% (Pal and Sharma, 2019). The
baseline model uses the dependency tree structure
of the sentence and identifies direct dependents of
predicates as their arguments. Auxiliary verbs,
post-positions, symbols, amongst others, are not
considered as Arguments.

As the Classification step is based on the iden-
tified arguments from the first step, we chose to
adopt a hybrid approach. We used the rule-based
baseline system for Argument Identification, and
used statistical approach with SVM for Argument
Classification.

The precision, recall and F1 scores of the in-
dividual features for Argument Classification are
given in Table 5. The best F1-score of 83 is again
given by Paninian dependency labels. UD depen-
dency gives a score of 80 which is slightly lower.
Paninian dependency labels have performed bet-
ter for both tasks as seen in Tables 3 and 5.
There isn’t much variation in performance be-
tween ‘HeadwordPOS’ and ‘HeadwordPOS(UD)’
for both steps.

The UD tagset is a coarser tagset. The UD
POS tagset has only 17 tags, compared to the POS
tagset developed for Indian languages which has
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32 tags (Bharati et al., 2006). Similarly, in the
Paninian dependency scheme, there are in total 82
relations, whereas UD has only 40. From the ac-
curacy scores, we can infer that Paninian depep-
ndency labels capture more semantic information
than UD dependency labels.

Feature
Argument Classification
P R f-score

Predicate 06 09 06
Headword (HW) 18 10 13
HeadwordPOS 05 07 06
Phrasetype (PT) 08 10 08

Predicate-PT 05 08 06
Predicate-HW 05 06 06
Dependency 81 86 83

Named Entity 20 14 16
HeadwordPOS-PT 07 09 08

Headword-PT 12 09 10
HeadwordPOS(UD) 08 11 09

UD dependency 77 83 80
Predicate-language 06 10 07
Headword-language 18 11 14

Table 5: Individual feature performance for Argument
Classification.

Feature
Argument Classification
P R f-score

Baseline 27 15 19
+dependency 84 84 84

Table 6: Accuracy scores for Argument Classification.

Table 6 gives the accuracy scores for Argument
Classification while using baseline features, and
after incorporating dependency labels. We ob-
tained an F1 score of 84. This is a significant im-
provement over the rule-based baseline model (Pal
and Sharma, 2019) which gives an overall accu-
racy of 73.93% for Argument Classification.

5 Conclusion

In this work, we analyse the problems posed by
code-mixed social media data. We present a sys-
tem for automatic Semantic Role Labelling of
Hindi-English code-mixed tweets. We used a hy-
brid approach of rule-based and statistical tech-
niques for Argument Identification and Argument
Classification respectively.
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Inria

firstname.lastname@inria.fr

Abstract

Language model-based pre-trained representa-
tions have become ubiquitous in natural lan-
guage processing. They have been shown to
significantly improve the performance of neu-
ral models on a great variety of tasks. How-
ever, it remains unclear how useful those gen-
eral models can be in handling non-canonical
text. In this article, focusing on User Gener-
ated Content (UGC) in a resource-scarce sce-
nario, we study the ability of BERT (Devlin
et al., 2018) to perform lexical normalisation.
Our contribution is simple: by framing lexical
normalisation as a token prediction task, by en-
hancing its architecture and by carefully fine-
tuning it, we show that BERT can be a compet-
itive lexical normalisation model without the
need of any UGC resources aside from 3,000
training sentences. To the best of our knowl-
edge, it is the first work done in adapting and
analysing the ability of this model to handle
noisy UGC data.1

1 Introduction

Pre-trained contextual language models
(e.g. ELMo, Peters et al., 2018; BERT, De-
vlin et al., 2018) have improved the performance
of a large number of state-of-the-art models on
many Natural Language Processing (NLP) tasks.
In this article, we focus on BERT (Bidirectional
Encoder Representations from Transformers), the
contextual language modelling architecture that
recently had the greatest impact.

A major specificity of BERT is that it is trained
to jointly predict randomly masked tokens as well
as the consecutiveness of two sentences. Moreover,
it takes as input WordPieces tokens which consists
in frequent sub-word units (Schuster and Nakajima,
2012). Finally, available pre-trained models have

1The code is available in the following repository
https://gitlab.inria.fr/bemuller/bert nomalizer

been trained on the concatenation of the Wikipedia
corpus and the BookCorpus, which constitutes
a large corpus of canonical (i.e. proper, edited)
language.

Putting aside the efficiency of its transformer-
based architecture, these three aspects respectively
enable BERT to elegantly cope with out-of-
vocabulary words and to include contextual
information at the token and at the sentence levels,
while fully taking advantage of a training corpus
containing billions of words.

Without listing all of them, BERT successfully
improved the state-of-the-art for a number
of tasks such as Name-Entity Recognition,
Question Answering (Devlin et al., 2018) and
Machine Translation (Lample and Conneau, 2019).
Moreover, it has recently been shown to capture
a rich set of syntactic information (Hewitt and
Manning, 2019; Jawahar et al., 2019), without the
added complexity of more complex syntax-based
language models.

However, it remains unclear and, to the best of
our knowledge, unexplored, how well can BERT
be used in handling non-canonical text such as
User-Generated Content (UGC), especially in a
low resource scenario. This question is the focus
of this paper.

As described in (Foster, 2010; Seddah et al.,
2012; Eisenstein, 2013; Baldwin et al., 2013),
UGC is often characterized by the extensive use
of abbreviations, slang, internet jargon, emojis,
embedded metadata (such as hashtags, URLs
or at mentions), and non standard syntactic
constructions and spelling errors.

This type of non-canonical text, which we
characterize as noisy, negatively impacts NLP
models performances on many tasks as shown
in (van der Goot et al., 2017; van der Goot
and van Noord, 2018; Moon et al., 2018;
Michel and Neubig, 2018) on respectively Part-of-

297



Speech Tagging, Syntactic Parsing, Name-Entity
Recognition and Machine Translation.

In this context and as impactful as BERT was
shown to be, its ability to handle noisy inputs is still
an open question2. Indeed, as highlighted above, it
was trained on highly edited texts, as expected from
Wikipedia and BookCorpus sources, which differ
from UGC at many levels of linguistic descriptions,
and which, of course, exhibit an important domain
gap.

Based on those observations, we take lexical
normalisation of UGC as a case study of how
BERT can model noisy inputs. Briefly, lexical
normalisation is the task of translating non-
canonical words into canonical ones. It involves
a detection step in assessing if a word is already
canonical or not, followed by a normalisation step.
All the experiments presented in this paper are
carried out on the dataset released by Baldwin et al.
(2015), which is the only non-raw resource we use.
This is because our goal is to study how well BERT
handles noisy UGC by itself, which means that,
unlike most previous work (e.g. van der Goot and
van Noord, 2017), we cannot make use of external
UGC-specific resources such as word embeddings
and language models trained on UGC or dedicated
lexicons.

Yet, building a lexical normalization model in
such a setting is a challenging endeavor. As we
will present, blindly fine-tuning BERT on such as
task is not possible. It requires architectural and
optimization adaptations that constitute the core of
our contribution.

In summary, we show that BERT can be adapted
to perform lexical normalisation in a low resource
setting without external data covering the source
UGC domain, aside from 2950 aligned training
examples that include only 3928 noisy words. In
this purpose, we make three contributions:

• We design a WordPiece tokenizer that
enforces alignment between canonical and
noisy tokens.
• We enhance the BERT architecture so that the

model is able to add extra tokens or remove
them when normalisation requires it.
• We fine-tune the overall architecture with a

novel noise-specific strategy.

2The importance of this research question is further
confirmed by the very recent pre-publication of the work by
(Gopalakrishnan et al., 2018) who study how BERT is affected
by synthetic noise

In a few words, our paper is the first attempt to
successfully design a domain transfer model based
on BERT in a low resource setting.

2 Related Work

There is an extensive literature on normalizing text
from UGC.

The first systematic attempt was Han and
Baldwin (2011). They released 549 tweets with
their normalized word-aligned counterparts and the
first result for a normalization system on tweets.
Their model was a Support-Vector-Machine for
detecting noisy words. Then a lookup and n-
gram based system would pick the best candidate
among the closest ones in terms of edit and
phonetic distances. Following this work, the
literature explored different modelling framework
to tackle the task, whether it is Statistical Machine
Translation (Li and Liu, 2012), purely unsupervised
approach (Yang and Eisenstein, 2013), or syllables
level model (Xu et al., 2015).

In 2015, on the occasion of the Workshop on
Noisy User-Generated Text, a shared task on lexical
normalization of English tweets was organized
(Baldwin et al., 2015) for which a collection of
annotated tweets for training and evaluation was
released. We will refer it as the lexnorm15 dataset.
A wide range of approaches competed. The best
approach (Supranovich and Patsepnia, 2015) used
a UGC feature-based CRF model for detection and
normalization.

In 2016, the MoNoise model (van der Goot and
van Noord, 2017) significantly improved the State-
of-the-art with a feature-based Random Forest. The
model ranks candidates provided by modules such
as a spelling checker (aspell), a n-gram based
language model and word embeddings trained on
millions of tweets.

In summary, two aspects of the past literature
on UGC normalization are striking. First, all the
past work is based on UGC-specific resources such
as lexicons or large UGC corpora. Second, most
successful models are modular in the sense that
they combine several independent modules that
capture different aspects of the problem.

3 Lexical Normalisation

3.1 Task
Lexical normalisation is the task of translating non
canonical words into canonical ones.. We illustrate
it with the following example (Table 1). Given a
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noisy source sentence, our goal is to predict the
gold canonical sentence.

Noisy yea... @beautifulloser8 im abt to
type it uuup !!

Gold yeah... @beautifulloser8 i’m about
to type it up !

Table 1: Noisy UGC example and its canonical form
(Gold)

We make a few comments on this definition.
First, lexical normalisation assumes a certain
degree of word level alignment between the non-
canonical source text and the canonical one.

Second, language evolves. It varies across
domain, communities and time, specifically online
(Jurafsky, 2018). There is therefore no universal
definition of what is a canonical form and what is
not. In the context of NLP, this means that we have
to set conventions and define what we consider
as canonical. In our case, the task is made less
complicated as we are tied to the conventions set
by our training data set.

Finally, to grasp the complexity of such a task,
we list and illustrate non exhaustively the sort of
linguistic phenomenons that lexical normalisation
of UGC involves. Lexical normalisation involves
handling the following cases :

• spelling errors : makeing in making

• internet Slang : lmfao in laughing my f.cking
ass off 3

• contraction : lil for little

• abbreviation : 2nite for tonight

• phonetics : dat for that

It also involves detecting that the following should
be untouched : :), @KhalilBrown, #Beyonce, rt

3.2 Data
We base all our experiments on the WNUT data
released by Baldwin et al. (2015). This dataset
includes 2950 noisy tweets for training and 1967
for test. Out of the 44,385 training tokens, 3,928
require normalisation leading to an unbalanced data
set. Among those 3,928 noisy tokens, 1043 are 1-
to-N (i.e. single noisy words that are normalized as
several words) and 10 are N-to-1 cases (i.e. several
noisy words that are normalized as single canonical
words).

3Normalisation found in the lexnorm 2015 dataset

As highlighted before, our framework is
more challenging than the standard approach to
normalisation, illustrated by the 2015 shared task,
that usually authorizes external UGC resources.
As our goal is to test the ability of BERT, a
model trained on canonical data only, we restrain
ourselves to only using the training data as
examples of normalisation and nothing more.

Our work is therefore to build a domain transfer
model in a low resource setting.

4 Normalisation with BERT

4.1 BERT

We start by presenting the components of BERT
that are relevant for our normalisation model. All
our work is done on the released base version.

4.1.1 WordPiece Tokenization
BERT takes as input sub-word units in the form of
WordPiece tokens originally introduced in Schuster
and Nakajima (2012). The WordPiece vocabulary
is computed based on the observed frequency of
each sequence of characters of the corpus BERT is
pre-trained on: Wikipedia and the BookCorpus. It
results in a 30 thousand tokens vocabulary. We
will refer to the process of getting WordPiece
tokens from word tokens simply as tokenization
for brievety.

Reusing BERT, in any way, requires to use its
original WordPiece vocabulary. In the context of
handling non canonical data, this is of primary
importance. Indeed, frequent tokens in our
non canonical data set might not appear in the
vocabulary of BERT and therefore will have to
be split. For example, the word lol appear more
than 222 times in the original lexnorm15 dataset
(more than the word like that appears 187 times).
Still, it is not in BERT-base WordPiece vocabulary.
For tokenization of WordPieces, we follow the
implementation found in the huggingface pytorch-
pretrained-BERT project 4. It is implemented as a
greedy matching algorithm. We write it in pseudo-
code in Algorithm 1.

4.1.2 Masked Language Model
We now present one crucial aspect of BERT
architecture. It was trained jointly on two
objectives : On next sentence prediction on the
one hand. On the other hand, it was trained on

4https://github.com/huggingface/pytorch-pretrained-
BERT
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Algorithm 1: Greedy WordPiece tokenization
Vocabulary = Bert WordPiece Vocabulary;
init start=0, string=word,
wordPieceList = list();
while string not empty do

substring:=string[start:]
while substring not empty do

if substring in Vocabulary then
wordPieceList :=
wordPieceList U [substring]
break loop

else
substring := substring[:-1]

end
end
start := start + length(substring)

end
Result: wordPieceList
Note : Tokenizing words into wordpiece tokens, by

matching in an iterative way from left to right, the
longest sub-string belonging to the wordpiece
vocabulary

Masked Language Model (MLM). As we frame our
normalization task very closely to it, we describe
MLM briefly.

For each input sequence, 15% of the WordPiece
tokens are either replaced with the special token
[MASK] (80% of the time), replaced by a random
token (10% of the time) or untouched (10% of the
time). BERT is trained by predicting this portion
of token based on the surrounding context.

4.2 Fine-Tuning BERT for Normalisation

We now present the core of our contribution. How
to make BERT a competitive normalisation model?
In a nutshell, there are many ways to do lexical
normalisation. Neural models have established
the state-of-the-art in the related Grammatical
Error Correction task using the sequence to
sequence paradigm (Sutskever et al., 2014) at the
character level. Still, this framework requires a
large amount of parallel data. Our preliminary
experiments showed that this was unusable for
UGC normalisation. Even the use a powerful
pre-trained model such as BERT for initializing
an encoder-decoder requires the decoder to learn
an implicit mapping between noisy words and
canonical ones. This is not reachable with only
3000 sentences.

We therefore adapted BERT in a direct way for
normalisation. As described in section 4, BERT
Masked Language Model ability allows token
prediction. Simply feeding the model with noisy
tokens on the input and fine-tuning on canonical
token labels transforms BERT into a normalisation

model. There are two critical points in doing so
successfully. The first is that it requires WordPiece
alignment (cf. section 4.2.1). The second is that it
requires careful fine-tuning (cf. section 4.2.3).

4.2.1 Wordpiece Alignment
We have in a majority of cases, as described in
section 3.2, word level alignment between non
canonical and canonical text. Still, the dataset
also includes words that are not aligned. For 1-
to-N cases we simply remove the spaces. As we
work at the WordPiece level this does not bring any
issue. For N-to-1 cases (only 10 observations), by
considering the special token ”|” of the lexnorm15
dataset as any other token, we simply handle source
multi-words as a single one, and let the wordpiece
tokenization splitting them.

We frame normalization as a 1-to-1 WordPiece
token mapping. Based on the word level alignment,
we present two methods to get WordPiece
alignment : an Independent Alignment approach
and a Parallel Alignment one.

Independent Alignment
We tokenize noisy words and non noisy ones
independently (cf. algorithm 1). By doing so, for
each word we get non-aligned WordPiece tokens.
We handle it in three ways :

• If it is the same number of WordPiece tokens,
we keep the alignment as such
• If there are more tokens on the target side,

we append the special token [MASK] on the
source side. This means that at training time,
we force the model to predict a token.
• If there are more tokens on the source side,

we introduce a new special token [SPACE].

An alignment example extracted from
lexnorm15 can be found in table 2. Briefly, we
can point some intuitive pros and cons of such
an alignment method. On the one hand, applying
tokenization that was used in pre-training BERT
means that the sequence of tokens observed during
training should be modelled properly by BERT.
This should help normalisation. On the other-hand,
we understand that learning normalisation in this
way requires (as potentially many [MASK] will
be introduced) abstracting away from the raw
tokens in understanding the surrounding context.
This should make normalisation harder. We will
see in section 5 that despite its simplicity, such
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noisy canonical
ye yeah
##a [SPACE]
im i[
MASK

]
’[

MASK
]

m
already already
knowing knowing
wa what
##t [SPACE]

Table 2: Independent Alignment of yea im already
knowing wat u sayin normalized as yeah i’m already
knowing what you saying

an alignment allows our model to reach good
performances.
Parallel Alignment

We enhance this first approach with a parallel
alignment method, described in Algorithm 2.

Our goal is to minimize the number of [MASK]
and [SPACE] appended into the source and gold
sequences. Therefore, for each word, we start by
tokenizing in WordPieces the noisy source word.
For each WordPiece met, we start the tokenization
on the gold side, starting and ending from the
same character positions. As soon as we tokenized
the entire gold sub-string, we switch to the next
noisy sub-string and so on. By doing so, we
ensure a closer alignment at the WordPiece level.
We illustrate on the same example this enhanced
parallel alignment in Table 3.

We highlight two aspects of our alignment
techniques. First, introducing the special token
[SPACE] induces an architecture change in the
MLM head. We detail this in section 4.2.2-(A).
Second, appending the extra token [MASK] on the
source side based on the gold sequence induces a
discrepancy between training and testing. Indeed,
at test time, we do not have the information about
whether we need to add an extra token or not.
We describe in section 4.2.2-(B) how we extend
BERT’s architecture with the addition of an extra
classification module to handle this discrepancy.

4.2.2 Architecture Enhancements
(A) Enhancing BERT MLM with [SPACE]
In order to formalize lexical normalisation as a
token prediction we introduced in section 4.2.1 the
need for a new special token [SPACE]. We want
our normalisation model to predict it. We therefore
introduce a new label in our output WordPiece
vocabulary as well as a new vector in the last
softmax layer. We do so in a straightforward way

Algorithm 2: Parallel WordPiece tokenization

Vocabulary = Bert WordPiece Vocabulary;
Init start=0; string=canonical word;
string noisy = noisy word; end gold=0;

wordPListNoisy=list(); wordPieceListGold=list();
while string noisy not empty do

string noisy:=string noisy[start:]
substr noisy:=string noisy
while substr noisy not empty do

breaking:=False
if substr noisy in Vocabulary then

wordPListNoisy :=
wordPListNoisyU[substr noisy]
if start equals length string noisy then

end gold:=length(string)
else

end gold:=
start+length(substr noisy)

end
while substr gold not empty do

substr gold:=
string[start:end gold]
if substr gold in Vocabulary then

wordPieceListGold:=
wordPieceListGold U

[substr gold]
break loop

else
end gold := end gold -1

end
end

else
substr noisy:=substr noisy[:-1]

end
if breaking then

break loop
end

end
start := start + length(substr noisy)

end
Result: wordPListNoisy

Note : Tokenizing noisy tokens and canonical tokens

in wordpieces in parrallel to minimize the number of

appended [MASK] and [SPACE]

by appending to the output matrix a vector sampled
from a normal distribution5.
(B) #Next [MASK] predictor
As we have described, alignment requires in some
cases the introduction of [MASK] tokens within the
source sequence based on the gold sequence. We
handle the discrepancy introduced between training
and testing in the following way. We add an extra
token classification module to BERT architecture.
This module takes as input BERT last hidden state
of each WordPiece tokens and predict the number
of [MASK] to append next

In table 4, we illustrate the training signal of
5each dimension vd ∼ N (meani(xd), σ

2
i (xd)) (i

indexing the WordPiece vocabulary and d the dense dimension
of BERT output layer), meani (resp. σ2

i ) means mean (resp.
variance) along i dimension

301



Noisy Canonical
ye ye
##a ##ah
im i[
MASK

]
’[

MASK
]

m
already already
knowing knowing
wa wh
##t ##at

Table 3: Parallel Alignment of yea im already knowing
wat u sayin normalized as yeah i’m already knowing
what you saying

Noisy Gold #next mask

ye ye 0
##a ##ah 0
im i 2[
MASK

]
’ -[

MASK
]

m -
already already 0
knowing knowing 0
wa wh 0
##t ##at 0

Table 4: Parallel Alignment of yea im already knowing
wat u sayin normalized as yeah i’m already knowing
what you saying with gold number of next masks for
each source token

the overall architecture. It takes noisy WordPiece
tokens as input. As gold labels, it takes on the one
side the gold WordPiece tokens and on the other
side the number of [MASK] to append next to each
source WordPiece tokens.

At test time, we first predict the number of next
masks to introduce in the noisy sequence. We then
predict normalized tokens using the full sequence.

This #next mask prediction module exceeds
the context of normalisation. Indeed, it
provides a straightforward way of performing
data augmentation on any Masked Language
Model architecture. We leave to future work
the investigation of its impact beyond lexical
normalisation.

4.2.3 Fine-Tuning

We describe here how we fine-tune our architecture
for normalisation. Our goal is to learn lexical
normalisation in a general manner. To do so,
intuitively, our model needs to: on the one hand,
preserve its language model ability that will allow
generalization. On the other hand, the MLM needs
to adjust itself to learn alignment between noisy
tokens and canonical tokens.

Based on those intuitions, we performe fine-tuning
in the following way:

(i) Our first approach is to back-propagate on all
tokens at each iteration. We also dropout 10% of
input tokens by replacing them with the [MASK]
as done during BERT pre-training. In this setting,
all tokens are considered indifferently whether they
require normalisation or not .

(ii) The second approach that happens to perform
the best is our Noise-focus fine-tuning. The
intuition is that it should be much easier for the
model to learn to predict already normalized tokens
than the ones that require normalization. For this
reason, we design the following strategy: For a
specific portion of batches noted pnoise we only
back-propagate through noisy tokens. We found
that having an increasing number of noise-specific
batch while training provides the best results.

Formally we describe our strategy as follows.
For each mini-batch, we sample b following
the distribution b ∼ Bernoulli(pnoise), with
pnoise = min

(
epoch

n epoch , 0.5
)

, epoch being the
current number of epoch and n epoch the total
number of epochs.

If b equals 1 we back-propagate through
noisy tokens, otherwise we back-propagate in
the standard way on all the tokens. In other
words, while training, for an increasing portion
of batches, we train on tokens that require
normalization. We found that this dynamic strategy
was much more efficient than applying a static
pnoise. Moreover, we highlight that the portion
of noise specific update is capped at 50% (0.5 in
the equation). Above this value, we observed that
the performances degraded in predicting non-noisy
tokens.

4.2.4 Optimization Details

Note that, excluding the fine-tuning strategy and
the alignment algorithm, the optimization hyper-
parameters are shared to all the experiments we
present next. Generally speaking, we found that
optimizing BERT for lexical normalisation with
WordPiece alignment is extremely sensitive to
hyper-parameters. We managed to reach values
that work in all our following experiments. For the
optimization, we use the Adam algorithm (Kingma
and Ba, 2014). We found that 1e-5 provides the
most stable and consistent convergence across all
experiments as evaluated on validation set. We
found that a mini-batch of dimension 4 brings
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the best performance also across all experiments.
Finally, we kept a dropout value of 0.1 within the
entire BERT model. We train the model for up to
10 epochs and used performance as measured with
the F1-score (detailed in the next section) on the
validation set as our early-stopping metric.

5 Experiments

All our experiments are run on the lexnorm15
dataset. We do not use any other resources making
our problem falling under a low resource domain
transfer framework. As only pre-processing, we
lower-case all tokens whether they are on the noisy
source side or on the canonical side.

We first present our analysis on the validation
set that corresponds to the last 450 sentences of the
original training set of lexnorm15.

We define the three evaluation metrics on
which we make our analysis. We distinguish
between need norm words, words that require to be
normalized and need no norm words that have to
be ”copied” by the model. We refer the words
normalized by our model (i.e our model gave
a prediction different from the source word) as
pred need norm. We refer to the number of True
Prediction of need norm words as TP. We then
define recall and precision as:

recall =
TP

#need norm

precision =
TP

#pred need norm

Following previous works, we will focus on
the F1 score as our main evaluation metric. F1
is simply the harmonic mean of the recall and
precision. For more fine grained analysis we also
report the recall on sub-sample of the evaluated
dataset. Particularly, we distinguish between Out-
of-Vocabulary (OOV) and In-Vocabulary words
(InV) and report the recall on those subsets. We
define it formally as:

recall sample =
TP ∩ sample

#need norm ∩ sample

5.1 Alignment algorithm

Does enforcing alignment in a greedy way as
described in Algorithm 2 help normalisation ?

As we compare in figure 1, our parallel
alignment method provides a +0.5 F1 improvement

F1 recall-InV recall-OOV
metric

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0
independant alignement
parrallel alignement

Figure 1: Impact of noisy/canonical alignment
method with a focus on generalization by comparing
Out-of-Vocabulary (OOV) and In-Vocabulary (InV)
performance (development set)

Standard Noise-focused Gain

78.1 79.28 +1.18

Table 5: Impact of our noise-specific strategy on the F1
score (development set) reported with best alignment
setting

(78.1 vs 77.6 F1). We also compare the
performance of our two models on OOV and InV
words. Indeed, normalising a seen word is much
easier than a word unseen during training. As we
observe, the gain coming from our our alignment
technique come from a better generalization. We
gain +0.6 in recall on OOV thanks to this parallel
alignment.

5.2 Fine-Tuning Strategy

As observed in table 5, our fine-tuning strategy
focused on noisy tokens improves with a large
margin the performance of our system. We
interpret it in the following way: lexical
normalisation is imbalanced. As seen in 3.2
there are around 9 times more need no norm than
need norm tokens. By specifically training on
noisy tokens we successfully manage to alleviate
this aspect of the data.

In conclusion, our best model is BERT trained
on parallel tokenized data with the noise-focus fine-
tuning strategy. We reach 79.28 in F1 score. The
following table illustrates how our model performs
normalization on a typical example:

Noisy @aijaee i hear you u knw betta to cross mine
tho

Norm @aijaee i hear you you know better to cross
mine though
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Model Accuracy

BERT noise-focused 97.5
MoNoise 97.6

Table 6: Comparing our systems to the State-of-the-
art system MoNoise (we report on same development
dataset reported in MoNoise original paper (last 950
sentences))

Model F1

Supranovich and Patsepnia, 2015 82.72
Berend and Tasnádi, 2015 80.52

our best model 79.28
Beckley, 2015 75.71

GIGO 72.64
Ruiz et al., 2014 53.1

Table 7: Comparing our systems to WNUT 2015
shared task that allowed UGC resources

6 Discussion

We now compare our system to previous works.
As we see in Table 8, our non-UGC system is far

from the State-of-the-Art model MoNoise (van der
Goot and van Noord, 2017) in terms of F1 score. In
order to take into account detection in our metric,
we also report the overall accuracy of the system in
table 6. We are therefore 6.7 points below in terms
of F1 score and 0.2 point below in terms of overall
accuracy on lexnorm15 dataset.

However, we emphasize that MoNoise is a
feature-based Random Forest based on external
modules. Among others, it makes use of a skip-
gram model trained on 5 millions tweets, the Aspell
tool and a n-gram model trained on more than 700
millions tweets.

In order to have a more balanced comparison,
we compare our system to the MoNoise model
after removing the feature that has the most impact,
according to the original paper: the n-gram module
(referred as MoNoise no n-gram). In this setting,
we significantly outperform the MoNoise model
(+1.78 improvement) (Table 8).

Moreover, we based all our work on the
lexnorm15 dataset released for the W-NUT 2015
shared task (Baldwin et al., 2015). We compare
our model to the competing systems (cf. table
7). Briefly, the second best model (Berend and
Tasnádi, 2015) use a n-gram model trained on a
English tweet corpus. The best competing system
(Supranovich and Patsepnia, 2015) is based on a
lexicon extracted from tweets. Still, we see that
our model is able to outperform models ranked 3,

Model F1 UGC resources speed

MoNoise 86.39 lex15+700Mtweets 57s
our best model 79.28 lexnorm15 9.5s
MoNoise NNG 77.5 lex15+5Mtweets -

Table 8: Comparing our systems to the State-of-the-art
system MoNoise on lexnorm15 test. Speed is reported
as time to predict 1000 tokens (includes model loading).
MoNoise No-Ngrams or MoNoise NNG is the score
reported in the original paper without the use of UGC-
n-grams but with a UGC word2vec

4 and 5 that are all built using UGC resources.
Finally, the state-of-the-art models we presented

are modular. They require features from external
modules. This makes them extremely slow at test
time. We compare it in Table 8, demonstrating
another practical interest for our approach. Our
model is 6 times faster than MoNoise at prediction
time.

Following those observations, we claim that
BERT, enhanced to handle token introduction and
token removal, fine-tuned in a precise way toward
noisy words, is a competitive lexical normalisation
model.

This result exceeds the context of lexical
normalization of noisy User Generated Content.
Indeed, the success of BERT in improving NLP
models on a diversity of tasks was, until now,
restricted to canonical edited texts. In our work,
we showed that it was possible to adapt such a
general model to the extreme case of normalising
noisy UGC in a low resource setting. We let for
future work the adaptation of BERT to other tasks
in out-of-domain non canonical context.

7 Conclusion

General pre-trained language model have demon-
strated their ability to improve Natural Language
Processing systems for most tasks on canonical
data. In our work, we demonstrated that they can
also be useful in non-canonical noisy text in low re-
source setting. We hope that this work will pave the
way for future research in modelling non-canonical
textual data.
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Abstract

We present a probabilistic clustering algorithm
that can help Reddit users to find posts that
discuss experiences similar to their own. This
model is built upon the BERT Next Sentence
Prediction model and reduces the time com-
plexity for clustering all posts in a corpus from
O(n2) to O(n) with respect to the number of
posts. We demonstrate that such probabilis-
tic clustering can yield a performance better
than baseline clustering methods based on La-
tent Dirichlet Allocation (Blei et al., 2003)
and Word2Vec (Mikolov et al., 2013). Fur-
thermore, there is a high degree of coher-
ence between our probabilistic clustering and
the exhaustive comparison O(n2) algorithm
in which the similarity between every pair of
posts is found. This makes the use of the
BERT Next Sentence Prediction model more
practical for unsupervised clustering tasks due
to the high runtime overhead of each BERT
computation.

1 Introduction

On many subreddits within Reddit, such as r/Ad-
vice1, users choose to share highly personal expe-
riences that matter greatly in their lives in order to
ask for advice from other users. Relative to other
popular social networking sites such as Facebook,
Instagram and Twitter, Reddit offers a greater ex-
tent of anonymity because there is no requirement
for users to register accounts with their real names.
Users are therefore often more at ease to reveal
their experiences honestly and in full detail be-
cause the risk of facing repercussion from their
real-life social networks is minimal. An example
post is shown in Figure 1. This offers a unique
opportunity to use what users posted on these sub-
reddits as a proxy for their real-life experiences,

1 https://www.reddit.com/r/Advice/

Title: “How do I get Vaccinated as a Minor?”
Body: “I am a 16 year old female whose
mother became anti-vax a couple of years ago
when she got Facebook. I don’t think I’ve
gotten a vaccine in 4-6 years at this point.I
really want to get vaccinated ...”

Figure 1: An excerpt from a /r/Advice subreddit post.

and what they felt and thought about these experi-
ences. Here, we attempt to cluster similar posts on
these subreddits. In this aspect, we are not only in-
terested in the circumstances under which the indi-
viduals encountered the experiences, but also how
they responded to the various situations in terms
of their actions, thoughts and feelings.

To do so, we take advantage of recent im-
provements in transformer-based mechanisms for
transfer learning, most prominently BERT (Devlin
et al., 2019). This capacity allows a model to be
pre-trained on a large corpus unrelated to our spe-
cific task, in order to learn fundamental statisti-
cal properties of language relating to syntax and
semantics. Specifically, we employ the model of
BERT that is pre-trained for the task of Next Sen-
tence Prediction, which seeks to capture semantic
congruence between two paragraphs. While this is
not entirely similar with finding semantic similar-
ities within Reddit posts (which often contain in-
formal language), we hypothesize that some infor-
mation encapsulated in the pre-trained model will
be transferable to our task. In this way, we can
train a model using an extremely limited dataset
of around 9000 posts. Currently, we have only
trained our model using an English corpus, but
given that the BERT model (Devlin et al., 2019)
has multi-lingual capabilities, we believe that our
findings can apply to languages other than En-
glish.

Our key contribution lies in clustering all posts
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into groups without needing to calculate the pair-
wise Next Sentence Prediction likelihood for ev-
ery pair of posts. This reduces the computational
complexity of this process from O(n2) to O(nm),
where n is the number of posts, m is the number
of clusters and n � m. This is an important ad-
vancement because an operation on each pair of
posts is in itself computationally intensive due to
the transformer architecture. Our design can en-
able such clustering to be more scalable for larger
corpora.

2 Related work

2.1 Deductive coding of individual
experiences

The first field of related work lies in attempts to
create a standard for deductive coding of individ-
ual experiences, typically based in the field of psy-
chology. In this approach, trained individuals in-
spect people’s writing of their experience and clas-
sify each into a predefined category. The inspec-
tion of each individual is then compared to that
of others to ensure consistency. Demorest et al.
(1999) defined an individual experience in terms
of a person’s wish, a response from another person
and a response from the self in light of the other
person’s response. At each stage, experiences can
be classified into categories such as wanting to be
respected, being disliked by others and feeling dis-
appointed because of the rejection. On the other
hand, Thorne and McLean (2001) defined experi-
ences in terms of themes. These themes include
occasions of life threatening events, relationship-
related issues and a sense of mastery. Together,
these can provide a basis for identifying the ele-
ments within a post that can be used to compare to
other posts.

2.2 Computational personality differences

The second field of related work lies in research on
how individuals differ in terms of their responses
to common life situations and how such differ-
ences can be measured by analyzing their writing.
The most popular measure is the Myers-Briggs
Type Indicator (Myers et al., 1990; Gjurković
and Šnajder, 2018), which classifies individuals
into 16 types based on their disposition. An-
other common measure is the Big Five person-
ality traits (Yarkoni, 2010), which gauges people
in terms of five dimensions: Openness, Conscien-
tiousness, Extraversion, Agreeableness and Neu-

roticism. Pennebaker (2011) also investigated how
other personality attributes such as a focus on the
self (as opposed to others) and differences in sta-
tus can be predicted based on word choices. All of
the above measures seek to group people into dis-
tinct categories based on how they write. The rel-
ative success of this field in doing so convinced us
that it is possible to capture individual differences
through a person’s writing. However, to help Red-
dit users find other users with similar experiences,
we are interested in not only the general response
patterns of an individual but also their specific re-
sponse to a specific situation. This means that we
cannot directly adopt their methodology of per-
forming a supervised classification task. Instead,
we decided on unsupervised methodology because
it would permit a wider range of situations and re-
sponses.

2.3 Analysis of characters and plots in novels
and movies

The final field of related work comes from the
computational analysis of characters and plots in
novels and movies. Bamman et al. (2013, 2014)
sought to classify characters into various proto-
types in film and novels. Frermann and Szarvas
(2017) and Iyyer et al. (2016) went a step further
to classify the types of relationships that exist be-
tween main characters in a novel, in addition to
the prototype of each character in novels. These
works inspired this paper on Reddit posts, because
events in many novels and movies are relatable to
the experiences of real-life individuals. Further-
more, many posts also concern interactions be-
tween the author and other people in the author’s
real-life social networks. However, Reddit posts
are much shorter than movies and novels. This
means that the recurrent models designed to repre-
sent how a character/relationship develops through
a novel/movie in literature above is less applica-
ble in our research. Moreover, unlike novels/-
movies, which often use character names together
with personal pronouns, Reddit posts tend to use
personal pronouns almost exclusively (in order to
preserve anonymity). As a result, a popular coref-
erence resolution framework2 would not work on
Reddit posts. Therefore, most of the methods de-
scribed in literature above could not be adapted for
our research and we had to look elsewhere for a
suitable architecture.

2 https://github.com/huggingface/neuralcoref
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Algorithm 1
1: procedure ONE-PROB-CLUSTERING(posts, m)
2: unselected posts← posts; clusters← {}
3: while unselected posts 6= [ ] do
4: selected post← RANDOM-SELECTION(all unselected posts) . Without replacement
5: for query post in all unselected posts do
6: similarity←BERT-NEXT-SENTENCE-PREDICTION(selected post.title, query post.text)
7: most similar← most similar bn/mc query posts
8: clusters [selected post]← most similar
9: for post in most similar do

10: unselected posts.remove(post)
11: return clusters

3 Probabilistic Clustering

3.1 Data preprocessing
We downloaded 200 days of posts from the r/Ad-
vice subreddit1 using the Pushshift API3. After
that, we filtered out posts with (i) scores lower than
3 based on the number of upvotes, downvotes and
comments they received, which indicated that they
might not be pertinent to the users of the subred-
dit, and (ii) no textual information in the post. This
left us with 8865 posts.

3.2 Generating similarities between two posts
We then used the BERT Next Sentence Predic-
tion model4 to predict the likelihood that the title
from post A will be proceeded by the body text
of post B. The model had been pre-trained on the
BooksCorpus (800M words) (Zhu et al., 2015) and
English Wikipedia corpus (2,500M words). Dur-
ing the pre-training process, half of the inputs con-
sist of sentence B being the actual sentence fol-
lowing sentence A (labeled as ‘IsNext’) while the
other half consists of a random sentence from the
corpus that does not proceed sentence A (labeled
as ‘NotNext’) (Devlin et al., 2019). We found this
to be a feasible method of deciphering the seman-
tic similarity between the title of post A and the
body text of post B because in more than 97.7%
of our posts, the text is predicted to follow its own
title. This is likely because the pre-training task
of finding sentences that are likely to follow one
another is highly similar to our task of finding
text of a post that is likely to be after the title of
the same post. While the BERT Next-Sentence-
Prediction model was pre-trained on a sentence-

3https://github.com/dmarx/psaw
4The uncased small model on

https://github.com/huggingface/pytorch-transformers

level corpus, this result demonstrates that its ef-
fects can translate to a paragraph-level task, which
was also noted by Devlin et al. (2019).

Besides using the title of post A and the text of
post B, we also experimented with the title of post
A and the title of post B as well as the text of post
A and the text of post B.

3.3 Clustering based on similarities

Intuitively, clustering can be done by comparing
each post with all other posts in the corpus. This
would be a O(n2) operation where n is num-
ber of posts. However, due to the large number
of weights of the BERT model, each comparison
takes a long time to complete. Therefore, even for
a small corpus of 8865 posts, it would be infeasi-
ble to perform pairwise comparison of every pair.
This makes the intuitive algorithm highly unscal-
able with the number of posts.

To overcome this problem, we invented a proba-
bilistic clustering architecture, described in Algo-
rithm 1.

The computational complexity of this algo-
rithm, ONE-PROBABILISTIC-CLUSTERING can
be calculated as follows. Given that the
most runtime-intensive step is BERT-NEXT-
SENTENCE-PREDICTION, we can choose to
solely focus our analysis on this step.

In each while-loop, we have to perform
the BERT-NEXT-SENTENCE-PREDICTION pro-
cess nunselected posts times. nunselected posts starts
from n and decreases by bn/mc after each while-
loop, where n is the number of posts and m is the
number of clusters.

Therefore, S, the total number of times
the BERT-NEXT-SENTENCE-PREDICTION pro-
cess is carried out, follows an arithmetic progres-
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Algorithm 2
1: procedure MERGE-MULTIPLE-PROB-CLUSTERING(p, m, posts)
2: similarity table← {}
3: for i← 0, n− 1 do
4: similarity table[i] = [0, 0, ..., 0, 0] . Initialise with array of size n

5: for i← 0, p− 1 do
6: one probabilistic clustering = ONE-PROBABILISTIC-CLUSTERING(posts, m)
7: for j in one probabilistic clustering.keys() do
8: One cluster = [j] + [one probabilistic clustering[j]]
9: all similar pairs = PERMUTATIONS(one cluster, 2)

10: for k in all similar pairs do
11: similarity table[k[0]][k[1]] += 1
12: return similarity table

Algorithm 3
1: procedure GENERATE-CLUSTERS-FROM-SIMILARITY(similarity table, m, n)
2: unselected posts← posts; clusters← {}
3: while unselected posts 6= [ ] do
4: selected post = RANDOM-SELECTION(unselected posts) . Without replacement
5: sort similarity table[selected post]
6: most similar = most similar bn/mc posts in unselected posts
7: clusters [selected post] = most similar
8: for post in most similar do unselected posts.remove(post)
9: return clusters

sion:

S = n+ (n− bn/mc) + (n− 2bn/mc)+
...

(n− (m− 1) ∗ bn/mc) + (n−m ∗ bn/mc)
≤ n ∗m

2
(1)

Therefore the time complexity of ONE-
PROBABLISTIC-CLUSTERING is O(nm).
We chose m = 30 because initial experiments
using a Gaussian Mixture Model to cluster
BERT sentence embedding of Reddit post text
(by average-pooling all tokens in the second-
to-last layer)5 suggested that m = 30 is the
optimal choice because it scored lowest on the
Akaike Information Criteria (Akaike, 1973).
The absolute computational complexity for
ONE-PROBABLISTIC-CLUSTERING, taking into
consideration the cost of sorting most similar
is O(mnlogn). When n is small however, the
constant factor for BERT-NEXT-SENTENCE-
PREDICTION is so great that it dominates the
run-time, allowing the run-time to O(nm).

5 https://github.com/hanxiao/bert-as-service

The time complexity for Algorithm 2, MERGE-
MULTIPLE-PROB-CLUSTERING, is O(n2) where
n is the number of posts used to generate an
n-by-n matrix for the similarity table. How-
ever, because the constant factor is so large,
when n = 8865, it is the time complexity from
running ONE-PROBABILISTIC-CLUSTERING that
dominates. Therefore, the runtime complex-
ity of MERGE-MULTIPLE-PROB-CLUSTERING is
o(nmp), n = 8865 where n is the number
of posts, m is the number of clusters and p is
the number of times that ONE-PROBABILISTIC-
CLUSTERING is run. A value of p = 5 is chosen
because although a more informative similarity ta-
ble will be constructed when p is higher, it also
requires more computational resources.

GENERATE-CLUSTERS-FROM-SIMILARITY

has a time complexity O(mn log n) where n
is the number of posts and m is the number of
clusters because the while-loop will run for m
iterations with each iteration taking O(n log n)
for sorting. In practice however, the runtime is
dominated by the previous MERGE-MULTIPLE-
PROBALISTIC-CLUSTERING step due to its large
constant factor.
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3.4 Fine-tuning BERT Next Sentence
Prediction

Besides using the pre-trained Next Sentence Pre-
diction model, we also fine-tuned the model using
posts from Reddit to better fit the classification to
our corpus. We used not only 8865 posts from
r/Advice, but also over 300,000 posts from sim-
ilar subreddits6. During the pre-training process,
we focused on training the weights for the final
BERT pooling layer as well as the classification
layer and froze the parameters in all other BERT
layers. We made this decision because our cor-
pus was not sufficient for us to retrain the parame-
ters for the layers beneath and doing so might lead
to worse performance than using the default pre-
trained parameters. Because fine-tuning requires
labeled data, we performed fine-tuning based on
posts from the same author. In the subreddits that
we used, some authors posted multiple times to
share about a similar experience. This is likely be-
cause they did not receive adequate guidance from
the Reddit community after their earlier post(s).
Therefore, two posts from the same subreddit and
the same author are likely to discuss about similar
themes and topics. We used this tendency to gen-
erate text-text pairs from the same author with a
label ‘IsNext’ and paired one text with a randomly
selected text from another post not from the same
author with a label ‘NotNext’.

4 Evaluation

4.1 Qualitative Evaluation

Table 1, shows the titles of 3 randomly chosen
posts and the five most similar posts to them.
There is a high degree of coherence, and the posts
are not only similar thematically (in Post 1: preg-
nant - pregnancy test - dating - hookups), but also
emotionally (in Post 2: a sense of succorance) and
at a word-level (in Post 3: ‘dog’).

4.2 Quantitative Evaluation

Baselines
Baseline measurements were done using Latent
Dirichlet Allocation (LDA) (Blei et al., 2003)
and word2vec (Mikolov et al., 2013). LDA
document-topic mappings were performed using

6r/depression, r/relationship advice, r/offmychest,
r/IAmA, r/needadvice, r/tifu, r/confessions, r/confession,
r/TrueOffMyChest, r/confidence, r/socialanxiety, r/Anxiety,
r/socialskills.

Gensim7. Documents were first tokenized, re-
moved of stopwords and lemmatized. A Bag of
Words (BoW) corpus was obtained before a term
frequency-inverse document frequency (TF-IDF)
corpus was derived from it. Topic modeling was
then performed on both the BoW corpus (there-
after LDA-BoW) and TF-IDF corpus (thereafter
LDA-TFIDF) with the number of topics set to 30,
in line with the number of clusters used. The
document-topic mapping of each post is then used
for computing cosine similarities with all other
posts.

Word2Vec embeddings were also used as a
benchmark. Specifically, pre-trained word2vec
embeddings of dimension 300 (Mikolov et al.,
2013) were used to generate two forms of sentence
embeddings. The first (thereafter called W2V-
Weighted) is calculated by weighing the contribu-
tion of each word embedding by the inverse of its
relative frequency to the final sentence embedding.
In doing so, the contributions of the most com-
mon words are minimized. The second (thereafter
called W2V-SIF) is calculated by first taking the
weighed sentence embedding before removing the
first principal component from it. (Arora et al.,
2017).

Generating similarities from baselines
Cosine similarities were then calculated be-

tween all documents. The resulting cosine similar-
ity matrix was be then entered in the GENERATE-
CLUSTERS-FROM-SIMILARITY function (Algo-
rithm 3) with the number of clusters (m) and num-
ber of posts (n) kept the same as in the probabilis-
tic clustering model.

Evaluation metrics
To determine if our clustering algorithm is bet-

ter than baselines, it is imperative to have eval-
uation metrics. However, because our clustering
tasks do not have ground truth labels, we could
not find common metrics to evaluate the effective-
ness of our algorithm. Therefore, we designed two
novel extrinsic metrics for this purpose.

Evaluation Metric 1: Same author score
We designed this metric based on the observa-

tion that authors who post multiple times in the
r/Advice subreddit tend to post about similar top-
ics. Therefore, a good clustering algorithm might
be more effective at clustering posts from the same
author in the same cluster. To measure this, we
found all pairs of posts with the same author and

7 https://github.com/RaRe-Technologies/gensim
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Randomly chosen post titles
Titles of 5 most similar posts
Post 1: I’m afraid I could be pregnant
1. I bought pregnancy tests bc im paranoidddd
2. What should I think of this convo between my ex and I? I felt guilty...
3. Met an E-guy became really good friends, started ‘dating’. We joked sexually and I found it funny.
4. My entire life I skipped school and just didn’t really care too much for it.
5. I’m scared of hookups.
Post 2: How do I help support my girlfriend who has been raped?
1. Should this teacher get in trouble for making these comments about male students?
2. How do I help my (severely?) mentally ill daughter?
3. I’ve been avoiding my family for the past few months, I’m not sure what to do now.
4. How to turn you life around after doing almost nothing for 3-4 years.
5. An old tradition brought me into a rather messed up situation.
Post 3: Neighbor is going nuts and wants to shoot my dog (or my sister, or all of us...)
1. How long do I wait before calling the police for a welfare check?
2. How to help my roommate - crying in his sleep.
3. To dog or not to dog?
4. All day every day my neighbors dog is on a 6-10 ft rope.
5. Dog sitting disaster

Table 1: Each unshaded box shows the titles of a randomly chosen post and the 5 posts most similar to it

counted the proportion of them that are clustered
into the same cluster. Finally we account for the
likelihood that they were arranged into the same
cluster by chance, which is a constant equal to
1
m . This is described in Eq. 2, where I is the
total number of authors and j represents possible
combinations of pairs of posts by a single author
(hence there are a total of Ji possible combina-
tions for author i). j0 and j1 represent the first
and second post in the pair, respectively, and e.g.
Cluster(j0) returns the i.d. of the cluster that j0

has been assigned to.

Ssame author =

I∑
i=1

Ji∑
j=1

1Cluster(j0)=Cluster(j1)

I∑
i=1

J∑
j=1

1

− 1

m
(2)

Evaluation Metric 2: Jaccard score This met-
ric was inspired by the observation that authors
who share similar interests tend to post about sim-
ilar topics on r/Advice. In this case, we mea-
sure how similar the interests of the authors are by
counting the number of subreddits they have both
posted and commented on divided by the num-
ber of the union of subreddits they have posted

and commented on. In the case that they have
both commented and posted in exactly the same
set of subreddits, their Jaccard scores will be 1. If
they have not posted or commented on any sub-
reddits in common, their Jaccard score will be
0. In our use case, however, the lower bound is
strictly higher than 0 because two authors would
have both posted in r/Advice. Furthermore, to
prevent over-accounting for throwaway accounts,
which are only used to post once, we set the Jac-
card score of any pair of posts, which consists of
at least one that has only posted/commented in one
subreddit to 0.

Jaccard scores of all pairs of posts in the same
cluster were then added together. The result was
then multiplied by the number of clusters to ac-
count for the difference in probability that two
posts will be put into the same cluster by chance
alone, which varies inversely with the number of
clusters. Finally, the result is divided by the square
of the number of posts because the number of
posts in each cluster varies linearly with the total
number of posts and therefore the number of com-
bination of two posts in the same category varies
linearly to the square of the number of posts.

The metric is described in Eq. 3 where I is the
total number of clusters (referred to as m in the
rest of this paper) and Ji represents all possible
combinations of pairs of posts in the same cluster.
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Lposted
j0

represents the set of subreddits that the au-
thor of the first post in the pair has posted to. Like-
wise j1 refers to the second author and commented

refers to subreddits the author commented on.

SJaccard =

I∑

i=1

Ji∑

j=1

0.5

(
Lposted
j0

∩ Lposted
j1

Lposted
j0

∪ Lposted
j1

+

Lcommented
j0 ∩ Lcommented

j1

Lcommented
j0

∪ Lcommented
j1

)
∗ nclusters

n2
posts

(3)

4.3 Effectiveness of probabilistic clustering

(a)

(b)

Figure 2: Same author (a) and Jaccard scores (b) for
pre-trained probabilistic clustering compared to base-
lines. Scores generated by performing 100 iterations
and finding the average. Error bars in (a) represent the
standard deviation. Error bars are not shown on (b) be-
cause standard deviation is insignificant relative to the
scale of the figure. Higher is better on both figures.

Figure 2 shows that probabilistic clustering per-
forms better than all baseline embeddings. This
is due to the model’s capability to learn complex
relationships between the two input sentences in-
stead of using cosine distance as the measure of
similarity. In nearly all embeddings, using the
body text from two posts surpasses the perfor-
mance of using the title from one post and the
body text from the second post, measured in both
metrics. This is likely because the body text typ-
ically contains more words, which can provide
more information for sentence embeddings. A

review of the topic-word mapping for LDA sug-
gests that words were not clearly resolved into dis-
tinct topics. Words like “friends”, “dating” and
“fun” appeared in nearly half of all topics, sug-
gesting that LDA might be inadequate for captur-
ing topics in such Reddit posts. This might be be-
cause Reddit posts are mostly informal and uses
a limited range of vocabulary with many common
words used in different context with highly dis-
tinct meanings. Using a transformer-based BERT
architecture might be better able to capture such
contextual information (Vaswani et al., 2017).

4.4 Fine-tuning

(a)

(b)

Figure 3: Same author (a) and Jaccard scores (b)
for probabilistic clustering of BERT embeddings fine-
tuned on subreddit(s) based on the same author selec-
tion criteria. Scores generated by performing 100 itera-
tions and finding the average, with error bars in (a) rep-
resenting the standard deviation. Error bars not shown
on (b) because standard deviation is insignificant rela-
tive to the scale of the figure. Higher is better on both
figures.

Figure 3b suggests that while some forms of
fine-tuning can perform better than the pre-trained
model, improvements are usually modest and in-
consistent. In both Figures 3a and 3b, the model
fine-tuned using only the Advice subreddit per-
formed worst in terms of both metrics suggesting
that pre-training on a highly limited corpus should
be avoided. Furthermore, its poor performance
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also supports the hypothesis that the model does
not simply memorize the seen corpus because the
same set of the corpus was used to train and to
test the classifier. On the contrary, pre-training the
model with a large corpus, even one that does not
contain the testing sample, can lead to some im-
provement in the Jaccard score, as in Figure 3b.
This suggests a lack of over-fitting in our model
and correspondingly indicates a high possibility of
generalizing our model beyond our corpus.

4.5 Ablation experiments

(a)

(b)

Figure 4: (a) Jaccard Scores for the first 1000 posts,
obtained from Probabilistic Clustering and Exhaustive
Comparison. (b) Similarity scores between Probabilis-
tic clustering and Exhaustive Comparison for the first
1000 posts. Scores generated by performing 50 itera-
tions and finding the average. Error bars represent stan-
dard deviation. Higher is better on both figures.8

An ablation study was conducted to investi-
gate the contribution of the probabilistic cluster-
ing algorithm beyond the value of the BERT Next
Sentence Prediction task. In the exhaustive com-
parison control, the likelihood that the post text
of post A will follow the post text of post B
was found for all combinations of pairs of posts.
This allowed us to construct a complete similar-
ity table that can be used to generate clusters us-
ing the procedure GENERATE-CLUSTERS-FROM-
SIMILARITY. The same parameters of 1,000 posts
and 30 clusters were chosen for both probabilistic

clustering and the exhaustive comparison. Figure
4a suggests that while exhaustive comparison led
to higher performance, the difference is typically
less than a standard deviation. This means that
the reduction in performance is relatively minimal
compared to the significant reduction in time com-
plexity, which might make exhaustive comparison
increasingly unfeasible as the number of posts in-
creases.

In Figure 4b, Adjusted Rand score (Hubert and
Arabie, 1985) and Adjusted Mutual Information
(Vinh et al., 2010) were used to measure for co-
herence between exhaustive comparison and prob-
abilistic clustering. Both scores suggest that the
probabilistic clustering of embeddings pre-trained
on all corpuses agree with the exhaustive compar-
ison to a degree that is significantly higher than
chance would predict (when both scores would
be 0). Furthermore, the model pre-trained on the
larger corpora of (i) Multiple subreddits inc. Ad-
vice and (ii) exc. Advice agree more with the ex-
haustive comparison. This might be because the
models fine-tuned on those corpora are better able
to understand the use of language used on Red-
dit and hence better able to accurately choose the
top bn/mc similar posts. However, this does not
translate to higher Jaccard scores compared to the
pre-trained model. This could be due to (i) the
Jaccard score metric (measuring the proportion of
subreddits that two authors have posted or com-
mented on in common) not being able to fully
capture all information that explain the similar-
ity between posts, or (ii) the BERT Next Sentence
Prediction model (pre-trained and minimally fine-
tuned) being unable to fully capture the relative
similarities between posts, even though it is capa-
ble of capturing absolute similarities between the
title of a post and its post text.

5 Conclusion

In conclusion, we have presented a probabilistic
clustering algorithm for clustering similar posts on
many subreddits on Reddit such as r/Advice. This
algorithm is built on top of the BERT Next Sen-
tence Prediction model and reduces the time com-
plexity of clustering posts from O(n2) to O(n)
with respect to the number of posts. This algo-
rithm can be helpful for users on Reddits to find

8 Only Jaccard scores were used to compare the extrin-
sic performance of both methods because the low number of
pairs of post that share the same author makes the same au-
thor score uninformative.

314



posts similar to those they have written themselves
(about their own experiences) or others that they
are interested in. To further build on the contri-
bution of this work, we encourage researchers to
experiment with alternative fine-tuning methods
as well as performing post-processing of similar-
ity tables such as performing post-level normal-
ization to reduce the occurrence of some posts be-
ing highly similar to a great number of posts while
others being similar to too few. Researchers may
also consider incorporating other textual informa-
tion such as comments on Reddit posts into the
model to improve its performance.
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Abstract

Deep learning based general language mod-
els have achieved state-of-the-art results in
many popular tasks such as sentiment analy-
sis and QA tasks. Text in domains like so-
cial media has its own salient characteristics.
Domain knowledge should be helpful in do-
main relevant tasks. In this work, we de-
vise a simple method to obtain domain knowl-
edge and further propose a method to inte-
grate domain knowledge with general knowl-
edge based on deep language models to im-
prove performance of emotion classification.
Experiments on Twitter data show that even
though a deep language model fine-tuned by
a target domain data has attained compara-
ble results to that of previous state-of-the-art
models, this fine-tuned model can still benefit
from our extracted domain knowledge to ob-
tain more improvement. This highlights the
importance of making use of domain knowl-
edge in domain-specific applications.

1 Introduction

Deep language models (LM) have been very suc-
cessful in recent years. In pre-training, a deep LM
learns to predict unseen words in the context at
hand in an unsupervised way, which enables the
LM to make use of very large amount of unlabeled
data. By using deep structures and large amount of
training data, these deep LMs can learn useful lin-
guistic knowledge common to many natural lan-
guage processing tasks. For example, BERT (De-
vlin et al., 2019) has the ability to encode gram-
matical knowledge in context in its representations
(Hewitt and Manning, 2019). Deep LMs provide
general knowledge of text to benefit downstream
tasks. To be adaptive to a target domain, they do
need to be fine-tuned by data of the target domain.

Obviously, every domain has its own character-
istics which deserve special attention. A typical

example is Twitter data. In twitter, people can ex-
press their thoughts online in real time. Due to
its informal nature, people tend to pick whatever
comes to their mind to jot down their opinions
even if the writing does not conform to grammar
rules. For example, Combinations of characters,
such as ”:(” and ”:-)”, are often used to express
different emotions. Deliberate irregular spellings
also occur in Twitter to indicate authors’ attitude.
Table 1 shows an example of an irregular expres-
sion and how it can be preprocessed at word level,
wordpiece level and at domain level. Many of

Snippet haaapppyyyy birthday best friend!!
Love you lots #love

Word ‘haaapppyyyy’, ‘birthday’, ‘best’,
‘friend’, ‘!’, ‘!’, ‘Love’, ‘you’,
‘lots’, ‘#’, ‘love’

Wordpiece ‘ha’, ‘##aa’, ‘##pp’, ‘##py’, ‘##y’,
‘##y’, ‘##y’, ‘birthday’, ‘best’,
‘friend’, ‘!’, ‘!’, ‘Love’, ‘you’,
‘lots’, ‘#’, ‘love’

Domain-
specific

‘happy’, ‘<elongated>’, ‘birth-
day’, ‘best’, ‘friend’, ‘!’, ‘<re-
peated>’, ‘Love’, ‘you’, ‘lots’,
‘</hashtag>’, ‘love’, ‘<hashtag>’

Table 1: Example of an real-world irregular expression
preprocessed by methods at different levels. ‘##’ is a
sign of word pieces, and ‘<>’ is a special mark pro-
duced by a Twitter-specific preprocessor.

these domain-specific expressions are strong indi-
cators for affective analysis in Twitter, and these
characteristics are worthy of special consideration.
Simply neglecting them would lose a lot of useful
information. Such information can be formulated
as domain knowledge by using Twitter prepro-
cessor like (Baziotis et al., 2017). After Twitter-
specific preprocessing, these expressions are an-
notated automatically and we can find informa-
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tive token patterns from preprocessed tweets. In
the above example, a pattern ‘[+, <elongated>]’
expresses more positive sentiment than a regular
positive word. Another pattern ‘[</hashtag>, *,
</hashtag>]’ means it is a hashtag and usually
has an overall meaning for a tweet.

In this work, we select the popular BERT lan-
guage model to provide general linguistic knowl-
edge for modelling sentences. As a commonly
used deep LM, BERT is not intended to pay atten-
tion to domain-specific details in Twitter. BERT
actually use sub-word tokens as its inputs for gen-
eralization, and a word is first divided into a num-
ber of smaller units if necessary before being con-
verted to embeddings. We design a token pattern
detector that sifts through preprocessed tweets to
obtain domain knowledge, and supplement BERT
with extracted domain-specific features. To inte-
grate the domain knowledge with BERT, we first
fine-tune BERT to extract general features of Twit-
ter data. Features from the fine-tuned BERT are
then integrated with domain-specific features to
classify tweets into target emotions. Performance
evaluations show that even though BERT was pre-
trained on different source domains, the fine-tuned
BERT using Twitter data indeed attains compa-
rable results to that of the previous state-of-the-
art models. Most importantly, even after BERT
is tuned by Twitter data, integration of domain
knowledge in our system still makes over one
percent improvement on the accuracy of emotion
classification compared to the previous state-of-
the-art method using BERT only.

2 Related Work

Related works include both deep LMs especially
BERT, a representative deep learning based LM
and works on Twitter classification.

2.1 Deep Language Models

In contrast to n-gram LMs and early neural models
for learning word embeddings, recent LMs have
deeper structures. ELMo (Peters et al., 2018) use
a stack of bi-directional LSTM to encode word
context either from left-to-right or from right-to-
left. BERT (Devlin et al., 2019) has a bidirec-
tional structure to learn context from both direc-
tions. As a consequence of its bidirectionality,
BERT is not trained by predicting words in se-
quence either from left-to-right or from right-to-
left. After masking a part of words in a sentence,

training predicts the masked and unseen words
within the remaining context. However, by cor-
rupting inputs with masks, BERT neglects depen-
dency between masked positions. XLNet (Yang
et al., 2019) proposes to maximizes the likelihood
over all permutations of the factorization order of
conditional probability to learn bidirectional con-
text without masking. Recently, RoBERTa (Liu
et al., 2019) matches the previous state-of-the-art
language models by training BERT on even larger
data with optimized hyper-parameters.

In this work, we use BERT as our baseline, a
popular deep language model. BERT has a stack
of transformer layers (Vaswani et al., 2017). The
central part of a transformer is a multi-head atten-
tion mechanism to include queries, keys, and val-
ues as inputs, which makes scaled dot-product at-
tention among all inputs. Let Q denote a query
matrix, K denote a key matrix, V denote a value
matrix, and Q = K = V in the case of BERT. The
scaled dot-product attention formula is then given
as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where dk is the dimension of queries and keys. For
BERT, an input token has a positional embedding
and a segment embedding in addition to its reg-
ular word embedding. Positional embeddings tell
BERT relative positions of two words and segment
embeddings help BERT to differentiate two sen-
tences of a pair. In each sentence fed into BERT,
a special token [CLS] is inserted at the first place
and one uses its corresponding output as the over-
all representation of this sentence for sentence-
level tasks such as entailment or sentiment anal-
ysis.

2.2 Twitter Affective Analysis
As a platform to express everyday thoughts, Twit-
ter has huge amount of affect-related text. Thus
Twitter is a good source of research study on affec-
tive analysis of people towards a topic. N-grams
and negative indicators are widely used in affec-
tive analysis of Twitter (Mohammad et al., 2013;
Miura et al., 2014). Affect-based lexicons are also
included to provide general sentiment or emotion
information (Hagen et al., 2015). (Go et al.) use
:) and :( emoticons as natural labels and collect
a pseudo-labeled training data to increase their n-
gram classifier. Similarly, Wang et al (Wang et al.,
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2012) look for tweets with a target set of hashtags
such as #happy and #sad to collect an emotion-
linked training data. Due to the abundance of
these naturally labeled training data, deep neu-
ral networks has proven its dominance in recent
competitions by means of the framework of trans-
fer learning (Severyn and Moschitti, 2015; Deriu
et al., 2016; Cliche, 2017). They pre-train mod-
els on naturally labeled data to get a better starting
point and fine-tune their models on the target task.

3 Methodology

The basic idea of our work is to use a Twitter-
specific preprocessor to decode Twitter-related ex-
pressions. A token pattern detector is then trained
to identify affect-bearing token patterns. Finally,
a two-step training process is introduced to inte-
grate general knowledge and the detected domain
knowledge for emotion classification.

3.1 Domain Specific Information Extraction
Because tweets are informal text with a lot of ex-
pression variations, we first use the Twitter pre-
processing tool ekphrasis (Baziotis et al., 2017) to
obtain domain-related information. ekphrasis con-
ducts Twitter-specific tokenization, spell checking
correction, text normalization and word segmen-
tation. It recognizes many special expressions like
emoticons, dates and times with an extensive list
of regular expressions. Tokens can also be split
further to obtain useful information. A typical
example is to split hashtags. After tokenization,
expressions with a lot of variations such as user
handles and URLs are normalized with designated
marks. The result can properly align tokens to
their regular forms in the vocabulary without loss
of information nor the need to enlarge vocabulary
size. Table 2 give a few examples of preprocessed
words with annotation, where <*>is a designated
annotation mark.

Original Processed
’:)’, ’:-)’ <happy>
’REAL’ <allcaps>real </allcaps>
’gooooood’ good <elongated>
October 8th <date>
@jeremy <user>
#Christmas <hashtag>Christmas </hashtag>

Table 2: Examples of typical Twitter-specific expres-
sions and their preprocessed versions with annotation
marks

3.2 Token Pattern Detector

After Twitter-specific annotation using a prepro-
cessing tool, some input words are annotated and
stand out conspicuously. In this step, we iden-
tify informative token patterns for emotion clas-
sification. A simple convolution network is used
to examine tokens within a fixed-length window
to detect token patterns. The network structure
is a 1D convolution layer followed by temporal
max-pooling, similar to that of (Kim, 2014). But
we only use a token window of size 3 to simply
observe trigrams. The three-token range should
cover most of potential token patterns for our
work. Given a convolution kernel, it serves as a
detector to check whether a particular token pat-
tern appears in a sentence measured by a matching
score si according to the following formula 1,

si = wT [ei, ei+1, ei+2] + b (1)

where ei, ei+1 and ei+2 are word embeddings cor-
responding to successive tokens at positions i, i+
1, i + 2, w and b are learnable parameters of this
kernel. A detector moves through all possible sub-
sequences and produces a list {s1, s2, · · · , sn−2}.
The following temporal max-pooling obtains the
maximum value from the list as an indicator sug-
gesting whether a sentence includes a particular
token pattern. Hundreds of such detectors are used
together to find various types of token patterns.
All the outputs of max-pooling for each detector
make up the domain-specific representation for a
sentence.

3.3 Multi-label Emotion Classification

A two-step training process is designed to inte-
grate general and domain knowledge in multi-
label emotion classification. In the first step, we
fine-tune BERT on the training data of our tar-
get task initialized with pre-trained parameters1.
The model follows the same input format as pre-
training in which a word is divided into several
word pieces before they are fed into BERT. Then,
we use the output for [CLS] from the last layer
as the general feature representation of a sentence.
We also train a convolutional detector from scratch
on the training data with Twitter-specific annota-
tion and use the output from the last layer as a sen-
tence’s domain-specific features. The parameters

1Pre-trained BERT models are obtained from
https://github.com/huggingface/pytorch-transformers
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of both models are fixed after this step and there-
fore the representation produced by each model
will not be changed in the next step. In the sec-
ond step, the two types of representations are con-
catenated and fed into a linear scoring layer for
emotion class predication. For a target emotion i
and the representation of a sentence x, its score
is computed by ŷ[i] = wTx. The layer is tuned
on the training data so that general and Twitter-
specific features can work collaboratively.

For the gold labels y and prediction scores ŷ,
their loss is given by

loss(x, y) =− 1

C

C∑

i

(y[i] ∗ log(
1

1 + e−ŷ[i]
)

+ (1− y[i]) ∗ log(
e−ŷ[i]

1 + e−ŷ[i]
))

(2)
where ŷ[i] and y[i] are for the ith emotion class,
and C is the number of target emotion classes. If
the target emotion class is positive, that is y[i] = 1,
the loss function requires the corresponding pre-
diction to be as large as possible. When making
prediction of a target emotion for a sample, we as-
sign it a positive label if ŷ[i] ≥ 0.

4 Performance Evaluation

Performance evaluation is conducted on multi-
label emotion classification of SemEval-2018
Task 1 (Mohammad et al., 2018). Given a tweet,
the task requires participants to classify text to
zero or more of 11 target emotions.

4.1 Setup

SemEval-2018 dataset was already split into train-
ing, development and testing sets by its organizer.
We train and tune our models on the training and
development sets, and report classification results
on the testing set. Word embeddings of our CNN
detector are learned from a corpus of 550M unla-
beled tweets by word2vec (Mikolov et al., 2013)
2. Multi-label accuracy, known as Jaccard Index,
is used as the evaluation metric, defined as the size
of the intersection divided by the size of the union
of the true label set and predicted label set. Macro-
F1 and Micro-F1 are used as secondary evaluation
metrics following the same practice of SemEval-
2018 Task 1. In the two-step training, we first
train our CNN detector and fine-tune BERT on the

2We use the pre-trained embeddings from (Baziotis et al.,
2018)

training data 10 times and select the parameters
with the best performance on the development set
to hopefully provide good representation of both
general and domain-specific information. In the
second step, the representation for a tweet remains
unchanged and only the parameters of a scoring
layer is learned.

4.2 Evaluation

Table 3 lists the results of multi-label emotion
classification on SemEval-2018. The first blocks
are the state-of-the-art models on SemEval-2018
Task 1, where we directly cite the results from
their papers. Two BERT models are used as ad-
ditional baselines including BERTbase, which has
12 layers of transformers with 768 dimension, and
BERTlarge, which has 24 layers of transformers
with 1024 dimension. BERT using domain knowl-
edge (DK) proposed by our work are appended
with ‘+DK’. Another baselines include a biLSTM
and our CNN detector. To randomize parame-
ter initialization and learning algorithm, we train
CNN and BiLSTM from scratch, fine-tune BERT
from the given initialized parameters, and learn
the weights of scoring layer 10 times, respectively.
We report the average performance on the testing
set for each model.

micro macro
Model acc. F1 F1
PlusEmo2Vec (Park
et al., 2018)

57.6 69.2 49.7

TCS Research (Meish-
eri and Dey, 2018)

58.2 69.3 53.0

NTUA-SLA (Baziotis
et al., 2018)

58.8 70.1 52.8

CNN Detector 55.8 68.5 50.0
BiLSTM 56.3 68.7 51.0
BERTbase 58.4 70.4 54.2
BERTlarge 58.8 70.7 55.2
BERTbase+DK 59.1†‡ 71.3†‡ 54.9†
BERTlarge+DK 59.5†‡ 71.6†‡ 56.3†

Table 3: Result of multi-label emotion classification on
SemEval-2018. † means the result is statistically sig-
nificant with p < 0.01 in contrast to the state-of-the-
art NTUA-SLA. ‡ means the improvement by integrat-
ing domain knowledge is statistically significant with
p < 0.01 compared with its corresponding pure BERT,
as BERTbase vs BERTbase+DK. For Macro-F1, the
results are statistically significant with p < 0.05.

As expected, the CNN detector has the worst
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Emotion BERTlarge +DK
anger 78.82 79.34 (+0.52)
anticipation 23.60 23.60 (+0.00)
disgust 75.00 76.28 (+1.28)
fear 74.96 76.18 (+1.22)
joy 85.22 86.39 (+1.17)
love 61.52 63.94 (+2.42)
optimism 73.41 73.73 (+0.32)
pessimism 32.05 32.16 (+0.11)
sadness 70.21 71.90 (+1.69)
surprise 22.56 26.24 (+3.68)
trust 9.56 9.03 (-0.53)

Table 4: F1 on binary classification for each emotion
class.

performance as this tri-gram model is too sim-
ple to learn complex relationships such as long-
distance negative relations. The CNN detector is
to sift through domain-specific token patterns to
supplement the general knowledge of BERT. Both
of the fine-tuned pure BERTs are either compa-
rable or slightly better than the performance of
the previous state-of-the-art models. With the
abundant pre-training data and their deep struc-
ture, BERT models obtain a good starting point
for a domain-specific task. More importantly,
both BERT models benefit from domain knowl-
edge supplied by the CNN detector to obtain per-
formance improvement of 1.20% on major multi-
label accuary for both models. Both BERT mod-
els with domain knowledge outperform their cor-
responding pure BERT and the state-of-the-art
model statistically significantly with p < 0.01
except for Macro-F1 where the results are statis-
tically significant with p < 0.05. In the first-
step training, the selected CNN, BERTbase and
BERTlarge for providing tweet representation has
accuracy of 56.7%, 59.0% and 58.9%, respec-
tively. Table 3 shows that BERT integrating with
Twitter-specific features outperforms both general
and domain-specific component model.

For more detailed investigation of the effect of
domain knowledge, Table 4 shows the result of
binary classification for each emotion class mea-
sured by F1 score. Improvements are obtained in
nine out of eleven emotion classes. If excluding
‘surprise’ and ‘trust’ which have low percentage
of occurrence, salient improvements come mostly
from ‘disgust’, ‘fear’, ‘joy’, ‘love’ and ‘sadness’.
Abundant domain-specific expressions in Twitter,

such as emoticons ‘:-)’ and ‘:-(’ and hashtags like
‘#offended’, are useful affective indicators, which
are not used fully by BERT.

5 Conclusion

In this work, we leverage deep language models to
provide general sentence representations and inte-
grate them with domain knowledge. We show that
integration of both types of knowledge improves
multi-label emotion classification of tweets. Eval-
uation shows that a deep LM like BERT has the
capacity to perform well. Yet, its performance can
still be further improved by integrating elaborate
domain knowledge. Future works may investigate
other deep LMs as well as data of other domains.

Acknowledgments

This work was partially supported by a GRF grant
from HKUGC (PolyU 152006/16E).

References
Christos Baziotis, Athanasiou Nikolaos, Alexan-

dra Chronopoulou, Athanasia Kolovou, Geor-
gios Paraskevopoulos, Nikolaos Ellinas, Shrikanth
Narayanan, and Alexandros Potamianos. 2018.
Ntua-slp at semeval-2018 task 1: Predicting affec-
tive content in tweets with deep attentive rnns and
transfer learning. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
245–255.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task 4:
Twitter sentiment analysis with cnns and lstms. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 573–
580.

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. Swisscheese at semeval-2016 task 4: Senti-
ment classification using an ensemble of convolu-
tional neural networks with distant supervision. In
Proceedings of the 10th international workshop on
semantic evaluation, CONF, pages 1124–1128.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

320



the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sen-
timent classification using distant supervision.

Matthias Hagen, Martin Potthast, Michel Büchner, and
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Abstract

Mental health poses a significant challenge
for an individual’s well-being. Text analy-
sis of rich resources, like social media, can
contribute to deeper understanding of illnesses
and provide means for their early detection.
We tackle a challenge of detecting social me-
dia users’ mental status through deep learning-
based models, moving away from traditional
approaches to the task. In a binary classifica-
tion task on predicting if a user suffers from
one of nine different disorders, a hierarchical
attention network outperforms previously set
benchmarks for four of the disorders. Further-
more, we explore the limitations of our model
and analyze phrases relevant for classification
by inspecting the model’s word-level attention
weights.

1 Introduction

Mental health is a serious issue of the modern-day
world. According to the World Health Organiza-
tion’s 2017 report and Wykes et al. (2015) more
than a quarter of Europe’s adult population suf-
fers from an episode of a mental disorder in their
life. The problem grows bigger with the fact that
as much as 35–50% of those affected go undiag-
nosed and receive no treatment for their illness. In
line with WHO’s Mental Health Action Plan (Sax-
ena et al., 2013), the natural language processing
community helps the gathering of information and
evidence on mental conditions, focusing on text
analysis of authors affected by mental illnesses.

Researchers can utilize large amounts of text on
social media sites to get a deeper understanding of
mental health and develop models for early detec-
tion of various mental disorders (De Choudhury
et al., 2013a; Coppersmith et al., 2014; Gkotsis
et al., 2016; Benton et al., 2017; Sekulić et al.,
2018; Zomick et al., 2019). In this work, we
experiment with the Self-reported Mental Health

Diagnoses (SMHD) dataset (Cohan et al., 2018),
consisting of thousands of Reddit users diagnosed
with one or more mental illnesses. The contri-
bution of our work is threefold. First, we adapt
a deep neural model, proved to be successful in
large-scale document classification, for user clas-
sification on social media, outperforming previ-
ously set benchmarks for four out of nine disor-
ders. In contrast to the majority of preceding stud-
ies on mental health prediction in social media,
which relied mostly on traditional classifiers, we
employ Hierarchical Attention Network (HAN)
(Yang et al., 2016). Second, we explore the limita-
tions of the model in terms of data needed for suc-
cessful classification, specifically, the number of
users and number of posts per user. Third, through
the attention mechanism of the model, we analyze
the most relevant phrases for the classification and
compare them to previous work in the field. We
find similarities between lexical features and n-
grams identified by the attention mechanism, sup-
porting previous analyses.

2 Dataset and the Model

2.1 Self-reported Mental Health Diagnoses
Dataset

The SMHD dataset (Cohan et al., 2018) is a large-
scale dataset of Reddit posts from users with one
or multiple mental health conditions. The users
were identified by constructing patterns for dis-
covering self-reported diagnoses of nine different
mental disorders. For example, if a user writes
“I was officially diagnosed with depression last
year”, she/he/other would be considered to suffer
from depression.

Nine or more control users, which are meant to
represent general population, are selected for each
diagnosed user by their similarity, i.e., by their
number of posts and the subreddits (sub-forums on
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# users
# posts
per user

Depression 14,139 162.2 (84.2)
ADHD 10,098 164.7 (83.6)
Anxiety 8,783 159.7 (83.0)
Bipolar 6,434 157.6 (82.4)
PTSD 2,894 160.7 (84.7)
Autism 2,911 168.3 (84.5)
OCD 2,336 158.8 (81.4)
Schizophrenia 1,331 157.3 (80.5)
Eating 598 161.4 (81.0)

Table 1: Number of users in SMHD dataset per con-
dition and the average number of posts per user (with
std.).

Reddit) they post in. Diagnosed users’ language is
normalized by removing posts with specific men-
tal health signals and discussions, in order to an-
alyze the language of general discussions and to
be more comparable to the control groups. The
nine disorders and the number of users per disor-
der, as well as average number of posts per user,
are shown in Table 1.

For each disorder, Cohan et al. (2018) analyze
the differences in language use between diagnosed
users and their respective control groups. They
also provide benchmark results for the binary clas-
sification task of predicting whether the user be-
longs to the diagnosed or the control group. We
reproduce their baseline models for each disorder
and compare to our deep learning-based model,
explained in Section 2.3.

2.2 Selecting the Control Group

Cohan et al. (2018) select nine or more control
users for each diagnosed user and run their ex-
periments with these mappings. With this exact
mapping not being available, for each of the nine
conditions, we had to select the control group our-
selves. For each diagnosed user, we draw exactly
nine control users from the pool of 335,952 con-
trol users present in SMHD and proceed to train
and test our binary classifiers on the newly created
sub-datasets.

In order to create a statistically-fair comparison,
we run the selection process multiple times, as
well as reimplement the benchmark models used
in Cohan et al. (2018). Multiple sub-datasets with
different control groups not only provide us with
unbiased results, but also show how results of a

binary classification can differ depending on the
control group.

2.3 Hierarchical Attention Network

We adapt a Hierarchical Attention Network
(HAN) (Yang et al., 2016), originally used for
document classification, to user classification on
social media. A HAN consists of a word se-
quence encoder, a word-level attention layer, a
sentence encoder and a sentence-level attention
layer. It employs GRU-based sequence encoders
(Cho et al., 2014) on sentence and document level,
yielding a document representation in the end.
The word sequence encoder produces a represen-
tation of a given sentence, which then is forwarded
to a sentence sequence encoder that, given a se-
quence of encoded sentences, returns a document
representation. Both, word sequence and sentence
sequence encoders, apply attention mechanisms
on top to help the encoder more accurately ag-
gregate the representation of given sequence. For
details of the architecture we refer the interested
readers to Yang et al. (2016).

In this work, we model a user as a document,
enabling an intuitive adaptation of the HAN. Just
as a document is a sequence of sentences, we pro-
pose to model a social media user as a sequence
of posts. Similarly, we identify posts as sentences,
both being a sequence of tokens. This interpreta-
tion enables us to apply the HAN, which had great
success in document classification, to user classi-
fication on social media.

3 Results

3.1 Experimental Setup

The HAN uses two layers of bidirectional GRU
units with hidden size of 150, each of them fol-
lowed by a 100 dimensional attention mechanism.
The first layer encodes posts, while the second
one encodes a user as a sequence of encoded
posts. The output layer is 50-dimensional fully-
connected network, with binary cross entropy as a
loss function. We initialize the input layer with
300 dimensional GloVe word embeddings (Pen-
nington et al., 2014). We train the model with
Adam (Kingma and Ba, 2014), with an initial
learning rate of 10−4 and a batch size of 32 for
50 epochs. The model that proves best on the de-
velopment set is selected.

We implement the baselines as in Cohan et al.
(2018). Logistic regression and the linear SVM
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Depression ADHD Anxiety Bipolar PTSD Autism OCD Schizo Eating

Logistic Regression 59.00 51.02 62.34 61.87 69.34 55.57 59.49 56.31 70.71
Linear SVM 58.64 50.08 61.69 61.30 69.91 55.35 58.56 57.43 70.91
Supervised FastText 58.38 48.80 60.17 56.53 61.08 49.52 54.16 46.73 63.73
HAN 68.28 64.27 69.24 67.42 68.59 53.09 58.51 53.68 63.94

Table 2: F1 measure averaged over five runs with different control groups.

were trained on tf-idf weighted bag-of-words fea-
tures, where users’ posts are all concatenated and
all the tokens lower-cased. Optimal parameters
were found on the development set, and models
were evaluated on the test set. FastText (Joulin
et al., 2016) was trained for 100 epochs, using
character n-grams of size 3 to 6, with a 100 di-
mensional hidden layer. We take diagnosed users
from predefined train-dev-test split, and select the
control group as described in Subsection 2.2. To
ensure unbiased results and fair comparison to the
baselines, we repeat the process of selecting the
control group five times for each disorder and re-
port the average of the runs.

3.2 Binary Classification per Disorder

We report the F1 measures per disorder in Ta-
ble 2, in the task of binary classification of users,
with the diagnosed class as a positive one. Our
model outperforms the baseline models for De-
pression, ADHD, Anxiety, and Bipolar disorder,
while it proves insufficient for PTSD, Autism,
OCD, Schizophrenia, and Eating disorder. We hy-
pothesize that the reason for this are the sizes of
particular sub-datasets, which can be seen in Ta-
ble 1. We observe higher F1 score for the HAN
in disorders with sufficient data, suggesting once
again that deep neural models are data-hungry
(Sun et al., 2017). Logistic regression and lin-
ear SVM achieve higher scores where there is a
smaller number of diagnosed users. In contrast
to Cohan et al. (2018), supervised FastText yields
worse results than tuned linear models.

We further investigate the impact of the size of
the dataset on the final results of classification. We
limit the number of posts per user available to the
model to examine the amount needed for reason-
able performance. The results for 50, 100, 150,
200, and 250 posts per user available are presented
in Figure 1. Experiments were run three times for
each disorder and each number of available posts,
every time with a different control group selected.
We observe a positive correlation between the data

Figure 1: F1 scores for different number of posts per
users made available to HAN, averaged over three runs
for different control groups.

provided to the model and the performance, al-
though we find an upper bound to this tendency.
As the average number of posts per user is roughly
160 (Table 1), it is reasonable to expect of a model
to perform well with similar amounts of data avail-
able. However, further analysis is required to see
if the model reaches the plateau because a large
amount of data is not needed for the task, or due
to it not being expressive enough.

3.3 Attention Weights Analysis
The HAN, through attention mechanism, provides
a clear way to identify posts, and words or phrases
in those posts, relevant for classification. We
examine attention weights on a word level and
compare the most attended words to prior re-
search on depression. Depression is selected as
the most prevalent disorder in the SMHD dataset
with a number of studies in the field (Rude et al.,
2004; Chung and Pennebaker, 2007; De Choud-
hury et al., 2013b; Park et al., 2012). For each
post, we extracted two words with the highest at-
tention weight as being the most relevant for the
classification. If the two words are appearing next
to each other in a post we consider them as bigram.
Some of the top 100 most common unigrams and
bigrams are presented in Table 3, aggregated un-
der the most common LIWC categories.

We observe similar patterns in features shown
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unigrams bigrams

Pers. pronouns I, my, her, your, they I’ve never, your thoughts
Affective like, nice, love, bad I love
Social friend, boyfriend, girl, guy my dad, my girlfriend, my ex
Biological pain, sex, skin, sleep, porn your pain, a doctor, a therapist
Informal omg, lol, shit, fuck, cool tl dr, holy shit
Other advice, please, reddit thank you, your advice

Table 3: Unigrams and bigrams most often given the
highest weight by attention mechanism in depression
classification.

relevant by the HAN and previous research on sig-
nals of depression in language. The importance
of personal pronouns in distinguishing depressed
authors from the control group is supported by
multiple studies (Rude et al., 2004; Chung and
Pennebaker, 2007; De Choudhury et al., 2013b;
Cohan et al., 2018). In the categories Affective
processes, Social processes, and Biological pro-
cesses, Cohan et al. (2018) report significant dif-
ferences between depressed and control group,
similar to some other disorders. Except the above
mentioned words and their abbreviations, among
most commonly attended are swear words, as well
as other forms of informal language. The atten-
tion mechanism’s weighting suggests that words
and phrases proved important in previous studies,
using lexical features and linear models, are rele-
vant for the HAN as well.

4 Related Work

In recent years, social media has been a valu-
able source for psychological research. While
most studies use Twitter data (Coppersmith et al.,
2015a, 2014; Benton et al., 2017; Coppersmith
et al., 2015b), a recent stream turns to Reddit as
a richer source of high-volume data (De Choud-
hury and De, 2014; Shen and Rudzicz, 2017;
Gjurković and Šnajder, 2018; Cohan et al., 2018;
Sekulić et al., 2018; Zirikly et al., 2019). Previous
approaches to author’s mental health prediction
usually relied on linguistic and stylistic features,
e.g., Linguistic Inquiry and Word Count (LIWC)
(Pennebaker et al., 2001) – a widely used fea-
ture extractor for various studies regarding men-
tal health (Rude et al., 2004; Coppersmith et al.,
2014; Sekulić et al., 2018; Zomick et al., 2019).

Recently, Song et al. (2018) built a feature atten-
tion network for depression detection on Reddit,
showing high interpretability, but low improve-
ment in accuracy. Orabi et al. (2018) concate-
nate all the tweets of a Twitter user in a single
document and experiment with various deep neu-

ral models for depression detection. Some of the
previous studies use deep learning methods on a
post level to infer general information about a user
(Kshirsagar et al., 2017; Ive et al., 2018; Ruder
et al., 2016), or detect different mental health con-
cepts in posts themselves (Rojas-Barahona et al.,
2018), while we focus on utilizing all of the users’
text. Yates et al. (2017) use a CNN on a post-
level to extract features, which are then concate-
nated to get a user representation used for self-
harm and depression assessment. A CNN requires
a fixed length of posts, putting constraints on the
data available to the model, while a HAN utilizes
all of the data from posts of arbitrary lengths.

A social media user can be modeled as collec-
tion of their posts, so we look at neural models
for large-scale text classification. Liu et al. (2018)
split a document into chunks and use a combina-
tion of CNNs and RNNs for document classifica-
tion. While this approach proves to be successful
for scientific paper categorization, it is unintuitive
to use in social media text due to an unclear way
of splitting user’s data into equally sized chunks of
text. Yang et al. (2016) use a hierarchical attention
network for document classification, an approach
that we adapt for Reddit. A step further would
be adding another hierarchy, similar to Jiang et al.
(2019), who use a multi-depth attention-based hi-
erarchical RNN to tackle the problem of long-
length document semantic matching.

4.1 Ethical considerations

Acknowledging the social impact of NLP research
(Hovy and Spruit, 2016), mental health analysis
must be approached carefully as it is an extremely
sensitive matter (Šuster et al., 2017). In order to
acquire the SMHD dataset, we comply to the Data
Usage Agreement, made to protect the users’ pri-
vacy. We do not attempt to contact the users in the
dataset, nor identify or link them with other user
information.

5 Conclusion

In this study, we experimented with hierarchical
attention networks for the task of predicting men-
tal health status of Reddit users. For the disor-
ders with a fair amount of diagnosed users, a HAN
proves to be better than the baselines. However,
the results worsen as the data available decreases,
suggesting that traditional approaches remain bet-
ter for smaller datasets. The analysis of atten-
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tion weights on word level suggested similarities
to previous studies of depressed authors. Embed-
ding mental health-specific insights from previ-
ous work could benefit the model in general. Fu-
ture work includes analysis of post-level attention
weights, with a goal of finding patterns in the rele-
vance of particular posts, and, through them, time
periods when a user is in distress. As some of the
disorders share similar symptoms, e.g., depressive
episodes in bipolar disorder, exploiting correla-
tions between labels through multi-task or transfer
learning techniques might prove useful. In order to
improve the classification accuracy, a transformer-
based model for encoding users’ posts should be
tested.
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Abstract

Neural Machine Translation (NMT) models
have been proved strong when translating
clean texts, but they are very sensitive to noise
in the input. Improving NMT models robust-
ness can be seen as a form of “domain” adap-
tion to noise. The recently created Machine
Translation on Noisy Text task corpus pro-
vides noisy-clean parallel data for a few lan-
guage pairs, but this data is very limited in size
and diversity. The state-of-the-art approaches
are heavily dependent on large volumes of
back-translated data. This paper has two main
contributions: Firstly, we propose new data
augmentation methods to extend limited noisy
data and further improve NMT robustness to
noise while keeping the models small. Sec-
ondly, we explore the effect of utilizing noise
from external data in the form of speech tran-
scripts and show that it could help robustness.

1 Introduction

Neural Machine Translation (NMT) models
trained on large, clean parallel corpora have
reached impressive performance in translating
clean texts following various architectures (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017).

Despite this success, NMT models still lack ro-
bustness when applied to noisy sentences. Be-
linkov and Bisk (2017) show that perturbations
in characters could cause a significant decrease
in translation quality. They point out that train-
ing on noisy data, which can be seen as adversar-
ial training, might help to improve model robust-
ness. Michel and Neubig (2018) propose the Ma-
chine Translation on Noisy Text (MTNT) dataset,
which contains parallel sentence pairs with com-
ments crawled from Reddit1 and manual transla-
tions. This dataset contains user-generated text

1www.reddit.com

with different kinds of noise, e.g., typos, grammat-
ical errors, emojis, spoken languages, etc. for two
language pairs.

In the WMT19 Robustness Task2 (Li et al.,
2019), improving NMT robustness is treated as a
domain adaption problem. The MTNT dataset is
used as in-domain data, where models are trained
with clean data and adapted to noisy data. Do-
main adaption is conducted in two main methods:
fine tuning on in-domain data (Dabre and Sumita,
2019; Post and Duh, 2019) and mixed training
with domain tags (Berard et al., 2019; Zheng et al.,
2019). The size of the noisy data provided by the
shared task is small, with only thousands of noisy
sentence pairs on each direction. Hence most ap-
proaches participating in the task performed noisy
data augmentation using back translation (Berard
et al., 2019; Helcl et al., 2019; Zheng et al., 2019),
with some approaches also directly adding syn-
thetic noise (Berard et al., 2019). The robustness
of an NMT model can be seen as denoising source
sentences (e.g. dealing with typos, etc.) while
keeping a similar level of informal language in
the translations (e.g. keeping emojis/emoticons).
Based on this assumption, we believe that back
translation of clean texts, although providing a
large volume of extra data, is limited since it re-
moves most types of noise from the translations.
In addition to adapting models on noisy paral-
lel data, other techniques have been used to im-
prove performance, generally measured according
to BLEU (Papineni et al., 2002) against clean ref-
erences. For example, Berard et al. (2019) ap-
ply inline-casing by adding special tokens before
each word to represent word casing. In (Murakami
et al., 2019), placeholders are used to help to trans-
late sentences with emojis.

In this paper, we also explore data augmenta-
2http://www.statmt.org/wmt19/

robustness.html
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tion for robustness but focus on techniques other
than back translation. We follow the WMT19
Robustness Task and conduct experiments under
constrained and unconstrained data settings on
Fr↔En as language pairs. Under the constrained
setting, we only use datasets provided by the
shared task, and propose new data augmentation
methods to generate noise from this data. We com-
pare back translation (BT) (Sennrich et al., 2016a)
with forward translation (FT) on noisy texts and
find that pseudo-parallel data from forward trans-
lation can help improve more robustness. We also
adapt the idea of fuzzy matches from Bulte and
Tezcan (2019) to the MTNT case by finding sim-
ilar sentences in a parallel corpus to augment the
limited noisy data. Results show that the fuzzy
match method can extend noisy parallel data and
improve model performance on both noisy and
clean texts. The proposed techniques substan-
tially outperform the baseline. While they still
lag behind the winning submission in the WMT19
shared task, the resulting models are trained on
much smaller clean data but augmented noisy data,
leading to faster and more efficient training. Un-
der the unconstrained setting, we propose for the
first time the use of speech datasets, in two forms:
(a) the IWSLT (Cettolo et al., 2012) and MuST-
C (Di Gangi et al., 2019) human transcripts as a
source of spontaneous, clean speech data, and (b)
automatically generated transcripts for the MuST-
C dataset as another source of noise. We show that
using informal language from spoken language
datasets can also help to increase NMT robustness.

This paper is structured as follows: Section 2 in-
troduces the data augmentation methods for noisy
texts, including the previously proposed methods
and our approaches to data augmentation. Sec-
tion 3 describes our experimental settings, includ-
ing the datasets we used, the augmented data and
the baseline model. Section 4 shows the results of
models built from different training and evaluated
on both clean and noisy test sets.

2 Noisy Data Augmentation

2.1 Previous Work

Considering the limited size of noisy parallel data,
data augmentation methods are commonly used to
generate more noisy training materials.

Previous methods include back translation, in-
jecting synthetic noise, and adversarial attacks.
In the WMT19 Robustness Task, back translation

on monolingual data was used to generate noisy
parallel sentences (Murakami et al., 2019; Zhou
et al., 2019; Berard et al., 2019; Helcl et al., 2019).
Zheng et al. (2019) proposed an extension of back
translation that generates noisy translations from
clean monolingual data. Therefore, after revers-
ing the direction, the noisy translations become
the source, which would simulate the noisy source
sentences from the MTNT parallel data. Synthetic
noise is injected into clean data to form noisy par-
allel data in Belinkov and Bisk (2017); Karpukhin
et al. (2019). However, rule-based synthetic noise
injection is limited to certain types of noise. Ad-
versarial methods are proposed to inject random
noise into clean training data in Cheng et al. (2018,
2019).

We explore the following new methods as alter-
native ways to augment noisy parallel data.

2.2 Fuzzy Matches
We adapted the method to augment data from par-
allel corpus from Bulte and Tezcan (2019). The
original method aims to find similar source sen-
tences to those in a parallel corpus (S, T ) using a
monolingual corpus, and then reuse the translation
of the original source sentences as translations for
the similar source sentences found. We adapted
it to use only on the provided noisy training cor-
pus. For each source sentence si ∈ S in the train-
ing set, all other source sentences sj ∈ S(si 6=
sj) are compared with this sentence by measur-
ing string similarity Sim(si, sj). If the similarity
of the two sentences is above a threshold λ, the
two sentences are mapped to each other’s corre-
sponding target sentence and the two new sentence
pairs (si, tj), (sj , ti) are added into our augmented
training data. The similarity is measured with Lev-
enshtein distance (Levenshtein, 1966) on the to-
ken level. The similarity score is calculated as the
edit distance divided by the minimum length of the
two sentences (Equation 1). In addition to fuzzy
matches in the parallel corpus, we experimented
with the monolingual corpus by mapping sentence
mi in monolingual corpus to its fuzzy match’s tar-
get sentence tj (If Sim(mi, sj) > λ, we add new
sentence pair (mi, tj) to the training augmented
data).

Sim(Si, Sj) =
editdistance(si, sj)

min(len(si), len(sj))
(1)

To boost the speed of finding matches,
we followed the approach in Bulte and

329



Tezcan (2019) and used a Python library
SetSimilaritySearch3 to select similar
candidates before calculating edit distance. For
each source sentence, only the top 10 similar
candidates are selected to calculate the edit
distance score.

2.3 Forward Translation

Back translation (Sennrich et al., 2016a) is a very
popular technique for in-domain data augmenta-
tion. In the experiment, we back-translated MTNT
monolingual data using a model fine-tuned on
MTNT parallel corpus. However, considering that
the task of improving robustness is to produce less
noisy output, data generated with back translation
might have noisy target translations (from mono-
lingual data) and less noisy source texts (from
back translation). Since this might increase the
noise level of the output texts, we also exper-
imented with forward translation using models
fine-tuned on the noisy parallel corpus. Pseudo
parallel data generated by forward translation is
used for fine tuning models on the same language
direction. To avoid overfitting, we merged the
noisy parallel data of both language directions to
produce noisy forward translations. The pseudo
parallel data generated by back translation and for-
ward translation is combined with noisy parallel
data and fine-tuned on the baseline model.

2.4 Automatic Speech Recognition

We used ASR systems and transcribed audio files
into texts. In this case, we would expect noise
to be generated during the process of automatic
speech recognition. We selected a dataset with
both audio and human transcripts, namely the
MuST-C dataset. In this dataset, audio files A, hu-
man transcripts S and transcript translated into an-
other language T are provided. We used Google
Speech-to-Text API4 and transcribed the audio
files into automatic transcripts S′. The human and
ASR transcripts of the audio (S and S′) are treated
as the source texts while the translations T are tar-
get texts. We formed a new set of parallel data
(S′, T ) with ASR generated texts and the corre-
sponding gold translations by humans.

Looking into the ASR transcripts, we found that
the ASR system tends to skip some sentences due

3https://github.com/ekzhu/
SetSimilaritySearch

4https://cloud.google.com/speech-to-
text/

to the fast speaking speed, therefore we did some
filtering based on the length ratio of the human
transcripts and the ASR transcripts. We set a ratio
threshold λ. For each pair si, ti in the ASR par-
allel data (S′, T ), we removed this sentence pair
if the length of ti dividing by si is larger than the
threshold λ.

3 Experiments

3.1 Corpora

We used all parallel corpora from the WMT19
Robustness Task on Fr↔En. For out-of-domain
training, we used the WMT15 Fr↔En News
Translation Task data, including Europarl v7,
Common Crawl, UN, News Commentary v10, and
Gigaword Corpora. In the following sections,
we represent the combination of these corpora as
“clean data". The MTNT dataset is used as our in-
domain data for fine tuning. We also experimented
with external corpora, namely the IWSLT20175

and MuST-C6 corpora7, to explore the effect of
informal spoken languages in human transcripts
from speech. We also utilized monolingual data in
the MTNT dataset. The size of parallel and mono-
lingual data is shown in Table 1.

We used the development set in MTNT and the
newsdiscussdev2015 for validation. Models with
best performance on the validation set are evalu-
ated on both noisy (MTNT and MTNT2019) and
clean (newstest2014 and newsdiscusstest2015) test
sets.

For prepossessing, we first tokenized the
data with Moses tokenizer (Koehn et al., 2007)
and applied Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016b) to segment words into sub-
words. We experimented with a large vocab-
ulary to include noisy as well as clean to-
kens and applied 50k merge operations for BPE.
Upon evaluation, we detokenized our hypoth-
esis files with the Moses detokenizer. We
used multi-bleu-detok.perl to evaluate
the BLEU score on the test sets.

5https://wit3.fbk.eu/mt.php?
release=2017-01-trnted

6https://ict.fbk.eu/must-c/
7The data from IWSLT has the same sentences in both

translation directions, so we reversed the En→Fr data on the
Fr→En direction. The MuST-C data is only used on En→Fr
direction.
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Corpus Sentences Words
source target

Gigaword 22.52M 575.67M 672.07M
UN Corpus 12.89M 316.22M 353.92M
Common Crawl 3.24M 70.73M 76.69M
Europarl 2.01M 50.26M 52.35M
News Commentary 200k 4.46M 5.19M
IWSLT 236k 4.16M 4.34M
MuST-C(en-fr) 275k 5.09M 5.30M
MTNT(en-fr) 36k 841k 965k
MTNT(fr-en) 19k 661k 634k
MTNT(en) 81k 3.41M
MTNT(fr) 26k 1.27M

Table 1: Size of parallel and monolingual data. Source
language represents English unless specified in brack-
ets. The last two rows are noisy monolingual datasets
in the MTNT dataset.

3.2 Augmented Data

Fuzzy Match Considering the large size of our
clean data, we only looked for noisy matches
within the MTNT parallel and monolingual data.
The parallel data on both directions was merged
to get more combinations. With the similarity
threshold setting to 50%, we have 7,290 new
sentence pairs in the En→Fr and 7,154 in the
Fr→En language directions.

Forward Translation We used noisy mono-
lingual data to produce forward translations.
Therefore, the number of parallel samples is the
same as the monolingual data in Table 1. Apart
from tokenization and BPE, we did not do any
other preprocessing to the forward translation.

ASR We filtered the ASR parallel data by different
length ratio thresholds (1.5 and 1.2). We measured
the noise level of ASR transcripts S′ by evaluating
Word Error Rate (WER) and Word Recognition
Rate (WRR) with asr_evaluation8 library,
comparing it to the gold human transcripts S.

Data WER WRR
ASR(λ = 1.5) 36.41% 65.38%
ASR(λ = 1.2) 31.70% 70.54%

Table 2: Noise level of ASR generated data filtered
with different length ratio thresholds.

8https://github.com/belambert/asr-
evaluation

3.3 Model

Our baseline model, which only uses clean
data for training, is the standard Transformer
model (Vaswani et al., 2017) with default hyper-
parameters. The batch size is 4096 tokens (sub-
words). Our models are trained with OpenNMT-
py (Klein et al., 2017) on a single GTX 1080 Ti
for 5 epochs. We experimented with fine tuning
on noisy data and mixed training with “domain”
tags (Caswell et al., 2019; Kobus et al., 2016) in-
dicating where the sentences are sourced from. We
used different tags for clean data, MTNT parallel
data, forward translation, back translation, ASR
data, and fuzzy match data. Tags are added at the
beginning of each source sentences.

During the fine tuning on in-domain data, we
continued the learning rate and model parame-
ters. We stop the fine tuning when the perplexity
on noisy validation set does not improve after 3
epochs. Best fine-tuned checkpoints are evaluated
on the test sets.

The MTNT dataset provides noisy parallel data
in specific language pairs. We used models with
two fine tuning strategies: Tune-S and Tune-B.
The Tune-S model is fine-tuned only with the
noisy parallel data in the same direction while the
Tune-B model is fine-tuned with the combination
of both language directions (Fr→En and En→Fr).

4 Results

We evaluated the models fine-tuned on different
datasets in terms of BLEU on both noisy and clean
test sets. We note that although both MTNT and
MTNT2019 test sets are noisy, the MTNT2019 is
less noisy and contains fewer occurrences of noise
such as emojis. Similarly, since the newsdiscuss
test set contains informal language, it is slightly
noisier than newstest test set. The evaluation re-
sults for both directions are shown in Tables 3 and
4.

4.1 Fine Tuning on Noisy Text

It can be seen that for both directions fine tun-
ing on noisy data gives better performance for the
noisy test set. Although the size of training data
in MTNT is only 19k and 36k sentences, by sim-
ply fine tuning on it, the BLEU scores of Tune-
S model increase by +5.65 and +6.03 on MTNT
test set, +5.44 and +2.68 on MTNT2019 test set
(See the second row in the tables). It is also worth
noticing that although fine-tuned on noisy data, the
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Models Fine-tune MTNT MTNT2019 newstest2014 newsdiscusstest2015
Baseline None 34.41 36.14 36.51 34.43

Constrained

Tune-S 40.16 41.58 35.94 36.75
+BT 37.93 39.19 34.03 34.00

Tune-B 38.25 40.12 35.36 35.15
+FM 38.91 40.85 35.62 34.58
+FT 39.38 41.82 35.56 35.00
+FT+FM 40.13 42.80 35.82 35.88

+double tune 40.57 42.55 36.06 36.53

Unconstrained
IWSLT 34.22 38.28 35.96 32.95
MTNT+IWSLT 37.52 41.22 36.33 34.07

Table 3: BLEU scores of models fine-tuned on different data in the Fr→En direction. The Tune-B model is fine-
tuned with MTNT data merging both Fr→En and En→Fr directions while the Tune-S is fine-tuned only with
Fr→En data. BT and FT stand for back and forward translation, respectively. FM means fuzzy matching data. By
double tuning we mean we fine-tune the model a second time on the MTNT training data.

Models Fine-tune MTNT MTNT2019 newstest2014 newsdiscusstest2015
Baseline None 30.12 29.57 35.51 35.93

Constrained

MTNT(Tune-S) 36.15 32.25 36.77 37.16
+fix punctuation — 35.49 — —

MTNT∗(Tune-B) 35.64 31.27 36.67 37.21
+FM 36.03 31.37 36.58 37.13
+FT 35.98 31.37 36.30 37.91
+FT+FM 36.21 31.25 36.37 37.76

+double tune 36.78 32.10 36.72 37.84
+fix punctuation — 36.46 — —

Unconstrained

IWSLT 33.66 30.58 36.89 37.34
MTNT+IWSLT 35.44 31.24 36.73 37.90
ASR(λ = 1.5) 30.53 28.66 36.46 35.61
ASR(λ = 1.2) 31.09 29.48 36.59 35.54
MuST-C 34.15 31.09 36.27 37.61

Mixed training None 35.32 31.14 35.5 36.05

Table 4: BLEU scores of models fine-tuned on different data in the En→Fr direction. λ in ASR data represents the
filtering threshold, as mentioned in Section 2.4. The mixed-training model combines all data available and adds
domain tags in front of each sentence. Other notations are same as in Table 3.

performance on clean test sets increases as well.
This shows that noisy parallel data could improve
model robustness on both noisy and clean texts.

4.2 Data Augmentation

As it is common in the field, we experimented
with back translation (third row in Table 3). We
used the target-to-source Tune-S model to back-
translate monolingual data in MTNT corpus. The
back-translated data is combined with the noisy
parallel data and used to fine-tune the base-
line model. For Fr→En, by introducing back-
translated data, the model performance drops by
over 2 BLEU scores compared the simply tuning
on parallel data. This would suggest that the back

translation data might break the noise level gap be-
tween source and target texts, and hence the model
fine-tuned on back-translated data tends to output
noisier translations and performs worse.

Since the size of the MTNT dataset is too small,
we tried merging the data in both language direc-
tions, resulting in 55k sentence pairs for fine tun-
ing. For both directions, the models tuned on the
merged MTNT data (Tune-B) show worse perfor-
mance than the models tuned on single direction
data (Tune-S). This is due to the introduction of
opposite direction data would increase the noise in
target texts. We added the forward translation and
fuzzy matches data separately and fine-tuned with
the merged MTNT data. Results show that the in-
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troduction of either forward translation or fuzzy
match data would improve model performance on
noisy test sets, compared to the Tune-B model.
However, with only forward translation or fuzzy
match data added, the model still lags behind the
Tune-S performance. Therefore, we mix the FT,
FM, and merged MTNT data. After we use the
mixed data for fine tuning, models in both direc-
tions scored better with the augmented data. The
Fr→En model with forward translation and fuzzy
matches data achieved a performance of 42.80
BLEU score on the MTNT2019 test set, an im-
provement of +1.32 BLEU points over the Tune-S
model. The forward translation data is generated
using the Tune-B model, which includes informa-
tion on the opposite direction, and this might bene-
fit forward translation and prevent the model from
overfitting. Compared to back translation, forward
translation could keep the noise level difference
between the source and target sentences9.

4.3 Double Fine Tuning

Considering that the opposite direction data from
that of the MTNT dataset would harm the model
performance, we applied double fine tuning to
compensate. We used the model which had al-
ready been tuned on the combination of forward
translation data, fuzzy match data and merged
MTNT data, and fine-tuned it with the MTNT data
on the corresponding direction (e.g. Fr→En data
for Fr→En model). In this case, the MTNT data
in the same language direction would fine-tune the
model twice, thus adapting the model to the spe-
cific language direction domain. The second fine
tuning was able to further improve model robust-
ness to noisy data and keep a similar performance
on clean data. In the En→Fr direction, the sec-
ond fine tuning improves +0.57 and +0.85 BLEU
points on MTNT and MTNT2019.

4.4 Punctuation Fixing

The MTNT2019 test set uses a different set of
punctuation in French text as the MTNT dataset
and clean training data. In the MTNT2019 test
set, the French references use apostrophes (’) and
angle quotes (« and »), instead of the single quotes
(') and double quotes (") used in the MTNT train-
ing data (Berard et al., 2019). Therefore, mod-

9We experimented with fuzzy matches plus MTNT data
(not merged), but it does not improve performance, because
without the opposite direction information the model overfits
to the tuning data.

els fine-tuned with MTNT training data would
show an inconsistent performance for punctuation
when evaluating on the MTNT2019 test set. We
fixed the punctuation in the En→Fr direction as a
postprocessing step. This single replacement im-
proves +4.36 BLEU score over the double fine-
tuned model. For comparison, we also postpro-
cessed the output from the Tune-S model. The
punctuation fix results in an increase of +3.24
BLEU score.

4.5 External Data

To explore the effect of other types of noise, we
fine-tuned our baseline model on different external
datasets (see the “Unconstrained" rows in Table 3
and 4). We experimented with human transcript
and translation in IWSLT dataset. The BLEU
score (Fr→En) on MTNT2019 increases by +2.14
over the baseline, while the results on the other
three test sets decrease. In the En→Fr direction,
fine tuning on IWSLT improves the model per-
formance on all four test sets, and with MTNT
data added, the BLEU score on noisy data per-
forms even better than the Tune-B model. The
benefit of speech transcripts might come from in-
formal languages such as slang, spoken language,
and domain-related words. Apart from this, we
also kept the indicating words (e.g. “[laughter]"
and “[applause]") in the transcripts, which could
also play a role of noise.

When using ASR data generated from the au-
dio files in the MuST-C dataset, we first filtered
ASR data by removing sentences where the origi-
nal transcript length is over 1.5 times that of the
ASR transcript. The model fine-tuned on ASR
data shows a slight decrease in BLEU scores. We
found that the ASR transcript often skips some
phrases in a sentence. Therefore, we reduced the
length ratio threshold to 1.2, and with that the
model achieves similar performance as the base-
line model. Evaluated on newstest, the ASR-tuned
model improves +1.08 BLEU score over the base-
line. Finally, we tried with the parallel texts from
human transcript and translation in MuST-C cor-
pus, similar to IWSLT, the performance increases
on all test data. This suggests that the introduction
of external data with different types of noise could
improve model robustness, even without the use of
in-domain noisy data.

Finally, we conducted a domain-sensitive train-
ing experiment by adding tags for different data.

333



We mixed all available data, including the MTNT
data (two directions), IWSLT, MuST-C, ASR, for-
ward translation, and fuzzy match data. Tags are
added at the beginning of the source sentences. As
shown in the last row in Table 4, mixed training
could improve the performance over baseline on
noisy texts. However, the model does not outper-
form the models with fine tuning. This might re-
sult from the introduction of ASR generated data,
which can contain more low quality training sam-
ples.

4.6 WMT19 Robustness Leaderboard

We submitted our best constrained systems to
WMT19 Robustness Leaderboard10, as shown in
Table 5 and Table 6. In the Fr→En direction, we
submitted the model fine-tuned on merged MTNT
data, forward translation and fuzzy match data
(row 5 in Table 3). In the En→Fr direction, the
double-tuned model with punctuation fixed was
submitted (row 6 in Table 4).

System BLEU-uncased
(Berard et al., 2019) 48.8
(Helcl et al., 2019) 45.8
(Zheng et al., 2019) 44.5
Ours 43.8
(Post and Duh, 2019) 41.8
(Zhou et al., 2019) 36.0
(Grozea, 2019) 30.8
MTNT paper baseline 26.2

Table 5: WMT19 Robustness Leaderboard on Fr→En.

System BLEU-uncased
(Berard et al., 2019) 42.0
(Helcl et al., 2019) 39.1
Ours 37.1
(Zheng et al., 2019) 37.0
(Grozea, 2019) 24.8
MTNT paper baseline 22.5

Table 6: WMT19 Robustness Leaderboard on En→Fr.

Our systems would have achieved the 4th and
3rd place on Fr→En and En→Fr directions. The
leading systems use back translation on a large
volume of clean monolingual data, therefore could
benefit from the size of clean data. Although our
system does not utilize clean monolingual data,

10http://matrix.statmt.org

we find an alternative way to extend noisy parallel
data, which might be more efficient for training.
The results show that our systems could achieve a
competitive position.

5 Conclusions

In this paper we use data augmentation strate-
gies to improve neural machine translation mod-
els robustness. We experiment under the setting
of the WMT19 Robustness Task for the Fr↔En
language directions. We propose the use of for-
ward translation and fuzzy matches as alternatives
to back translation to augment noisy data. Our
best models with augmented noisy data could im-
prove +1.32 and +0.97 BLEU scores for Fr→En
and En→Fr over models fine-tuned with noisy par-
allel data. We also explore the effect of exter-
nal noisy data in the form of speech transcripts
and show that models could benefit from data in-
jected with noise through manual transcriptions of
spoken language. The ASR generated data does
not help improving robustness as it contains low
quality training samples that break the sentences,
while the human transcripts from speech proved
helpful to translate noisy texts, even without in-
domain data. Future work might include training a
domain-related speech recognition model and gen-
erate better ASR parallel data instead of using the
off-the-shelf system.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Xian Li, Paul Michel, Antonios Anastasopoulos,
Yonatan Belinkov, Nadir Durrani, Orhan Firat,
Philipp Koehn, Graham Neubig, Juan Pino, and
Hassan Sajjad. 2019. Findings of the first shared
task on machine translation robustness. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion, pages 218–229, Florence, Italy. Association for
Computational Linguistics.

Paul Michel and Graham Neubig. 2018. MTNT: A
testbed for machine translation of noisy text. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 543–
553, Brussels, Belgium. Association for Computa-
tional Linguistics.

Soichiro Murakami, Makoto Morishita, Tsutomu Hi-
rao, and Masaaki Nagata. 2019. NttâC™s machine
translation systems for wmt19 robustness task. In
Proceedings of the Fourth Conference on Machine
Translation, pages 743–750, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post and Kevin Duh. 2019. Jhu 2019 robust-
ness task system description. In Proceedings of the
Fourth Conference on Machine Translation, pages
751–757, Florence, Italy. Association for Computa-
tional Linguistics.

335



Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Renjie Zheng, Hairong Liu, Mingbo Ma, Baigong
Zheng, and Liang Huang. 2019. Robust machine
translation with domain sensitive pseudo-sources:
Baidu-osu wmt19 mt robustness shared task system
report. In Proceedings of the Fourth Conference
on Machine Translation, pages 758–763, Florence,
Italy. Association for Computational Linguistics.

Shuyan Zhou, Xiangkai Zeng, Yingqi Zhou, Antonios
Anastasopoulos, and Graham Neubig. 2019. Im-
proving robustness of neural machine translation
with multi-task learning. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 565–571, Flo-
rence, Italy. Association for Computational Linguis-
tics.

336



Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 337–345
Hong Kong, Nov 4, 2019. c©2019 Association for Computational Linguistics

Disambiguating Sentiment: An Ensemble of Humour, Sarcasm,
and Hate Speech Features for Sentiment Classification

Rohan Badlani ∗

Dept. of Computer Science
Stanford University

rbadlani@stanford.edu

Nishit Asnani ∗

Dept. of Computer Science
Stanford University

nasnani@stanford.edu

Manan Rai ∗

Dept. of Computer Science
Stanford University

mananrai@stanford.edu

Abstract

Due to the nature of online user reviews,
sentiment analysis on such data requires a
deep semantic understanding of the text.
Many online reviews are sarcastic, humorous,
or hateful. Signals from such language
nuances may reinforce or completely alter
the sentiment of a review as predicted by
a machine learning model that attempts to
detect sentiment alone. Thus, having a model
that is explicitly aware of these features
should help it perform better on reviews
that are characterized by them. We propose
a composite two-step model that extracts
features pertaining to sarcasm, humour, hate
speech, as well as sentiment, in the first
step, feeding them in conjunction to inform
sentiment classification in the second step.
We show that this multi-step approach leads to
a better empirical performance for sentiment
classification than a model that predicts
sentiment alone. A qualitative analysis reveals
that the conjunctive approach can better
capture the nuances of sentiment as expressed
in online reviews.

1 Introduction

Sentiment classification is one of the most widely
studied problems in natural language processing,
partly since it is a complex problem from a linguis-
tic point of view, and partly since it has huge com-
mercial value for enterprises attempting to under-
stand user behaviour. Online user review datasets
have contributed significantly to research in this
direction, since they provide large sets of human
generated commentary about real products and
services, which capture the nuances and complex-
ity of the user-generated text (Zhang et al., 2015)
(He and McAuley, 2016).

∗equal contribution

Traditionally, models developed for sentiment
classification have been used to solve other binary
or multi-class classification problems in natural
language, like intent detection, document tagging,
etc. Sentiment classification has also been used
as a building block towards more complicated lan-
guage understanding/generation tasks (Poria et al.,
2016) (Hu et al., 2017). Given that sentiment is a
complex language attribute influenced by several
other features, this paper poses a question more
fundamental to the nature of sentiment in human
language: can models developed for other tasks,
like sarcasm, humor, or hate speech detection, help
improve sentiment classification models? Going
further, we also attempt to answer if the same
model architecture can be used for these tasks, and
then be combined to yield higher performance on
sentiment classification.

This line of thought is inspired by how hu-
mans perceive sentiment in any piece of spoken
or written language. Detection of elements of
sarcasm help us resolve seemingly contradictory
statements (“The restaurant was so clean that I
could barely avoid stepping into the puddle!”)
into their intended sentiment. Similarly, humor
(because it can get similarly confusing) and hate
speech (since specific offensive words may be the
only indicators of sentiment in a review) act as cru-
cial indicators of the intended meaning of phrases
in a given utterance.

Since the sentiment model is not optimizing for
detecting these language attributes, it is likely to
get confused by utterances having them unless it
is sufficiently exposed to similar sentences during
training. We therefore believe that making sen-
timent models explicitly aware of these language
attributes would help them become more robust to
sarcastic, humorous or hateful utterances, and thus
get better at classifying sentiment.

Thus, our research hypotheses are as follows:
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Figure 1: CNN Based Binary Classification Model for embedding generation. We use a stride of 1 in our final CNN
model. Different colors in the word embeddings represent different inputs to the convolutional neural network

• H1: Models individually learned on sarcasm,
humor and hate speech detection, and then
used as subroutines to extract features, should
boost the performance of a sentiment classi-
fication model.

• H2: Given that the individual tasks are all
binary classification tasks, we believe that
a single model architecture should provide
reasonable performance on these individual
tasks and would make it easier to re-use
the same learned models for multiple down-
stream classification tasks.

2 Related Work

Sentiment classification, sarcasm detection, hu-
mor detection and hate speech detection have all
seen varying levels of interest from the natural lan-
guage research community, and have evolved over
time as better datasets and modeling techniques
have come into the picture.

There has been quite a bit of work on sarcasm
detection, especially in the context of Twitter-
based self-annotated data and Self-Annotated
Reddit Corpus. The seminal work in this area
started with (González-Ibáñez et al., 2011) - they
used lexical and pragmatic features and found that
pragmatic features were more useful in detect-
ing sarcasm. Addition of context-based features
along with text-based features in certain subse-
quent models helped as well in improving perfor-

mance on sarcasm detection. There was a dra-
matic shift with the introduction of deep learning
as feature engineering took a back seat and deep
models began to be used for learning task-specific
representations. (Hazarika et al., 2018) show that
using context, user and text embedding provides
state of the art performance, which is challenged
by Kolchinski (Kolchinski and Potts, 2018) (West
et al., 2014) through a more simplistic user embed-
ding based approach that achieves similar perfor-
mance without other context (like forum embed-
dings as used by (Hazarika et al., 2018)).

Hate Speech in natural language research has
traditionally been a loosely-defined term, with
one cause being the similarity with other catego-
rizations of hateful utterances, such as offensive
language. In the context of online reviews, we
broadly use hate speech to include any form of
offensive language. (Davidson et al., 2017) in-
troduce the seminal dataset in the field, and test
a variety of models – Logistic Regression, Naive
Bayes, decision trees, random forests, and Support
Vector Machines (SVMs), each tested with 5-fold
cross validation to find that the Logistic Regres-
sion and Linear SVM tend to perform significantly
better than other models. Models such as LSTMs
and CNNs have also been tried in works such as
(Badjatiya et al., 2017) and (de Gibert et al., 2018).

Humour Detection has seen a lot of work, with
models being developed on several large-scale
public datasets, such as the Pun of the Day, 16000
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Figure 2: Full Sentiment Classification model with ensemble of features from sarcasm, humour, and hate speech
detection models

OneLiners, Short Jokes dataset, and the PTT jokes
dataset. (Chen and Soo, 2018) use a Highway Net-
work on top of a CNN on a combination of these
datasets. (Kim, 2014) uses CNN for sentence clas-
sification, and these models have also been tested
on funny-labelled reviews from the Yelp dataset1.

Recent works have attempted to combine fea-
ture extraction models trained on some tasks for a
different task. (Poria et al., 2016), for instance,
uses knowledge about sentiment, emotion, and
personality to better detect sarcasm. This finds
a parallel in our attempt here, with the difference
that these features include non-linguistic features
such as user personality, and we focus only on nat-
ural language features to test the transferability of
knowledge about certain features to detecting oth-
ers.

Sentiment classification is a text classification
task with the objective to classify text according to
the sentimental polarities. This has been a widely
researched area (Mäntylä et al., 2016) and recently
there has been a lot of success in this area. The
current state of the art performance on this task
is using transformer (Vaswani et al., 2017) based
models like BERT (Devlin et al., 2018) and XL-

1https://github.com/srishti-1795/Humour-Detection

Net (Yang et al., 2019). These models achieve
very high accuracy on the binary classification
task of sentiment polarity detection but analyz-
ing the failure modes of these models indicate that
these models might fail in cases where there are
higher order language concepts like sarcasm, hu-
mour and hate speech co-occur in the same utter-
ance. Hence, through this paper, we investigate
the performance of sentiment classification when
provided with representative features pertaining to
these language oriented concepts and at the same
time propose a generic approach to compute these
feature so as to reuse for multiple downstream
tasks.

3 Methods

3.1 Datasets

We experiment with the following datasets corre-
sponding to sentiment, sarcasm, hate speech, and
humour to test our hypotheses:

1. D1 - Sentiment: The Yelp Review Dataset
(Zhang et al., 2015) consists of about 560,000
reviews, with binary sentiment labels. For the
purposes of our analysis, we use 100,000 re-
views for training and validation and 36,614
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Review NLU Aspect Captured
I am a nurse and to characterize this office as nothing but a frustration is
a compliment.

Sarcasm

It would have been faster if I would have grown, harvested, and brewed
the tea myself.

Sarcasm

If you want to get pastries while being yelled at by the staff and treated
like dirt, this is the place for you.

Sarcasm

They are THE RUDEST people I’ve ever met! The lady with short hair
has a crappy attitude, so does the younger guy.

Hate Speech

Table 1: Examples where our combined model is able to predict correct label whereas the baseline sentiment
model fails.

reviews for testing.

2. D2 - Sarcasm: The SARC (Self-Annotated
Reddit Comments) dataset (Khodak et al.,
2017) consists of about 1.3 million Reddit
comments. These comments have been self
annotated using the \s character. The dataset
has a balanced set and an unbalanced set. For
the purposes of our analysis, we focus on
balanced set and take 100,000 comments for
training and validation and 20,000 comments
for testing.

3. D3 - Humour: The Yelp Review Dataset has
a field called ‘funny.’ We consider a comment
to be humorous (i.e positive label) when the
comment has a ‘funny’ score greater than 2.

4. D4 - Hate Speech: The hatebase.org Twitter
Dataset (Davidson et al., 2017) is a popular
hate speech tweet dataset, which consists of
28,000 tweets, each labelled as either having
offensive content or not.

3.2 Validating Hypothesis H1

We conduct a quick initial evaluation of hypoth-
esis H1 using well-performing models for senti-
ment, sarcasm, humour, and hate speech. These
models are discussed below:

1. M1 - Sentiment: For sentiment detection,
the current state of the art model is BERT
Large (Devlin et al., 2018) which provides an
accuracy of about 98.11% (Xie et al., 2019).
We use the BERT Base model which has a
smaller architecture and therefore helps run
a quick evaluation (12-layer, 768-hidden, 12-
heads, 110M parameters).

2. M2 - Sarcasm: The CASCADE model (Haz-
arika et al., 2018) is the current state of the art
on the SARC dataset. This achieves a 77%
balanced set accuracy and 79% unbalanced
set accuracy. This model computes user-
specific embeddings from their comments on
other threads, thread embeddings from other
user comments on the same thread, and the
embeddings of the input text, and uses all of
these for sarcasm detection. We use the CAS-
CADE model but without the user and thread
embeddings since they were not readily avail-
able for this dataset. The CASCADE model
modified as above provides reasonable per-
formance for the task of sarcasm detection.

3. M3 - Humour: We use an SVM model with
bag of words features for humour detection as
used in pre-existing implementations2. This
provides an accuracy of 83% on the yelp re-
views dataset.

4. M4 - Hate Speech: We use the implemen-
tation provided by (Davidson et al., 2017)
which is simple Logistic regression model
that provides a F1 score of 0.90 on D4.

M2, M3, M4 models as described above predict
the probability of occurrence of sarcasm, humour
and hate speech respectively on a given input text.
These probabilities are then fed as features to our
BERT-base sentiment classification model as de-
scribed in M1 above for the Yelp reviews dataset.
We compare our modified model with BERT-base
and observe a small improvement in the sentiment
detection performance which positively supports
our hypothesis H1. This motivates us to consider

2https://github.com/srishti-1795/Humour-Detection
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developing embeddings for each of these language
specific features instead of using just the probabil-
ity of their occurrence.

3.3 Validating hypothesis H2

In order to test hypothesis H2, we construct a
general-purpose feature embedding model E for
all the four tasks, along with a classifier C for clas-
sification on the combined representation, as dis-
cussed below.

3.3.1 Feature Embedding Model

Given a d-word sentence s, we initialize trainable
128-dimensional word embeddings for each word,
and create a d×128 embedding matrix for the sen-
tence. In order to capture n-gram features, we use
a word-level Convolutional Neural Network (Kim,
2014) with f filters (n× 128) for n = 3, 4, 5. For
each n, we compute the (d−n+1)×f output, and
use max pooling to get a f -dimensional vector. We
concatenate these vectors for all three values of n
and flatten them to get a 3f -dimensional embed-
ding. With f = 100, we get a 300-dimensional
embedding for every sentence.

We use one such model for each of Sentiment
(E1), Sarcasm (E2), Hate Speech (E3), and Hu-
mour (E4).

3.3.2 Combination Classifier

Given a d-word sentence s and a set of m
feature embedding models (1 ≤ m ≤ 4)
E ⊆ [E1,E2,E3,E4], we calculate a set of 300-
dimensional embeddings per model, and concate-
nate them into a single 300 ∗m-dimensional fea-
ture vector v. This is used as input to a sentiment
classifier that predicts C(v) ∈ [0, 1] that represents
the probability of positive sentiment. This clas-
sifier consists of two fully-connected layers with
hidden size 50 and ReLU activation. This model
is trained and tested separately for several combi-
nations E, and the results from these experiments
are discussed in section 4.

4 Experiments and Results

4.1 Results for Hypothesis H1

To test if our hypothesis H1 holds true, we con-
catenated predictions from the sarcasm (M2) de-
tection model to the BERT-base model embed-
dings (M1) used for sentiment classification as de-
scribed in section 3.2. We used the PyTorch im-

Model Accuracy (%)
M1 95.13

M1 + M2 (P/L) 95.22

Table 2: Testing our hypothesis: Mi refers to the re-
spective model, P and L indicate using predicted prob-
abilities and labels respectively. Both of our augmented
models perform better than the sentiment model alone
(M1), thus validating our hypothesis.

plementation of BERT Base3, and our results are
tabulated in Table 2. We trained the models for 3
epochs with a learning rate of 2e-5 and a batch size
of 32.

This experiment validated our hypothesis that
there is tangible sentiment information to be
gleaned from a sentence’s sarcasm features (and
potentially other features as well).

Attribute Combination Accuracy (%)
Se 95.95

Se + Sc 96.02
Se + Hu 95.93
Se + Ha 95.69

Se + Sc + Hu 96.06
Se + Sc + Hu + Ha 96.18

Table 3: Model Performances for various combina-
tions of Sentiment Se (E1), Sarcasm Sc (E2), Humor
Hu (E3) and Hate Speech Ha (E4). We find that our
combined model performs the best.

4.2 Results for Hypothesis H2

As described in 3.3.1, we used a single model ar-
chitecture for training separate models on senti-
ment, sarcasm, humor and hate speech. Due to
class imbalance and large dataset sizes, we modi-
fied our datasets in the following ways:

• D1: We took a subset of the training set for
Yelp reviews which amounted to 100k re-
views for training and validation combined,
and included the entire test set of 36.6k re-
views for reporting the performance of our
models.

• D2: To maintain consistency, we took a sam-
ple of 100k comments for training our model
on sarcasm detection.

3https://github.com/huggingface/pytorch-pretrained-
BERT
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Attribute Combination Accuracy (%)
Run 1 Run 2 Run 3

Se 95.95 95.76 95.85
Se + Sc + Hu + Ha 96.18 96.08 96.40

Table 4: Model performances during several runs of the baseline and the combined (Se + Sc + Hu + Ha) models.

Review NLU Aspect Missed
...The manager went around and asked the 2 waitresses
working all 4/5 tables surrounding us and none of them
took responsibility or seemed to want our table. Little did
we know this was a blessing in disguise...

Extended story line: the first half of
the review is negative, and the model
likely misses the turning point towards
positive halfway through the review

Table 5: Examples where the combined model goes wrong and the baseline sentiment model predicts the correct
sentiment.

Review NLU Aspect Missed
Say it with me now: Blaaaaaaaaaand Indicative word missed
This place is closed, and for good reason. Flip in sentiment

Table 6: Examples where the combined and the baseline sentiment models both fail to predict the correct senti-
ment.

Figure 3: Scatter plot for the various task-specific em-
beddings (unit normalized) of the first 100 test reviews
from the Yelp dataset. It can be seen that sentiment,
sarcasm, humor and hate predominantly occupy differ-
ent regions of the embedding space when reduced to
2D using tSNE.

• D3: Since this dataset had a ratio of 19:1
for non-humorous to humorous reviews, we
took the entire set of humorous reviews from
the original Yelp dataset, and added about
twice the amount of randomly sampled non-
humorous reviews to maintain a healthy ra-
tio of 2:1. Final number of train/val reviews
were 40k and test reviews were 8,661.

• D4: The number of hateful tweets in this

dataset were 16 times the number of non-
hateful tweets. We oversample the non-
hateful tweets by 4x, and undersample the
hateful tweets by 2x to obtain a ratio of 2:1 in
favor of the positive class, for both the train-
ing/val and the test datasets. The total num-
ber of tweets in train/val are 16,854 and num-
ber of test tweets are 3,521.

After training a model each on these datasets
following the architecture described in 3.3.1, we
obtain the sentiment, sarcasm, humor and hate em-
beddings for each of the training and testing re-
views from D1. For this model, we use CNN win-
dow sizes of 3, 4 and 5 with 100 kernels each,
batch size of 64, learning rate 0.001, and dropout
probability 0.5.

Further, we train combined sentiment classifiers
(3.3.2) on top of various combinations of subsets
of these embeddings for the training set, and then
evaluate performance on the test set. The perfor-
mances of these combinations is reported in Ta-
ble 3, and results from more runs comparing the
baseline against our combined model are shown in
4. In order to test if the improvement of our pro-
posed hybrid model is consistently better than the
baseline, we train our the combined and baseline
models over fixed training set size multiple times
and evaluate the performance on the same held-
out test set consisting of 36,614 reviews. Table
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4 shows the results of the models on the test set.
We observe a consistent improvement using sen-
timent, sarcasm, humour and hate speech features
as compared to just sentiment features.

5 Discussion and Analysis

Our hypothesis H1 is supported by the experi-
ments in both 4.1 and 4.2, i.e. sarcasm, humor
and hate speech are signals that boost the senti-
ment classification performance on Yelp reviews.

5.1 Different natural language features add
mutually exclusive information

As Figure 3 shows, the normalized task-specific
embeddings occupy distinct regions of the 2D
space (after dimensionality reduction using tSNE).
Thus, the three additional models probably assist
the sentiment embeddings by combining informa-
tion from the source review that the sentiment
model may not have learned to catch, and that
might, in certain cases, help the combined model
make better decisions. Since these embeddings
have been obtained via a single model architecture
trained on different datasets, the increase in per-
formance on sentiment classification validates our
hypothesis H2. This implies not only that a single
architecture might suit multiple natural language
problem domains, which models like BERT have
already shown, but also that one or more of them
can help boost the performance of others, if the
reasoning behind such a predicted improvement is
linguistically sound.

5.2 Interpretibility of model’s success modes

We analyze the contribution of each of the indi-
vidual models trained for sarcasm, humour and
hate speech detection to the performance of senti-
ment detection by comparing the predicted labels
against the ground truth. In each of the matrices
in Figure 4, the value in cell (i, j) of category c
(which can be TP, TN, FP or FN) denotes the re-
spective fraction of predictions in model i that be-
long to category c if the predictions of model j are
assumed to be the ground truth.

As evident from Figure 4, we find that adding
features pertaining to sarcasm, hate speech, and
humour to a baseline sentiment classifier increases
the number of true positives against the Ground
Truth labels (the baseline model predicts 97% of
the combined model’s positive labels). Since the
false positive rate of the combined model (0.02) is

also less than that of the sentiment model (0.03)
against the ground truth, this shows that the com-
bined model has a higher precision. This obser-
vation is also consistent with the reasoning that
sarcasm and hate speech are both likely to catch
negative reviews which may otherwise sound pos-
itive to a naive model, and thus reduce the false
positive rate.

Similarly, looking at the true negatives’ matrix
shows that the combined (Sentiment + Sarcasm +
Humour + Hate Speech) model predicts negative
labels better than the (Sentiment + Sarcasm + Hu-
mour) model (0.97 against 0.95), which is consis-
tent with the reasoning that Hate Speech is likely
to indicate a negative sentiment, and that knowl-
edge of Hate Speech helps the model better under-
stand what to look for in a review that is negative
because of hateful language.

On looking at some reviews in the test dataset
that our combined model (Se + Sc + Hu + Ha)
got right and that the baseline sentiment model
got wrong, we observe that our model definitively
helps with identifying the right sentiment for sar-
castic reviews (Table 1) and some hate reviews, al-
though we couldn’t find many humorous reviews
in this context. Similarly, it seems that the reviews
whose sentiment has been classified wrongly by
the sentiment-only baseline and that don’t have
any sarcastic / hate intent don’t get classified cor-
rectly by our combined model either (Table 6).

5.3 Error Analysis

Tables 5 and 6 present some analysis of the er-
rors made by our model, and how they compare
with the baseline Sentiment model. As can be
seen, our model doesn’t catch the elements of nat-
ural language that it was not trained to detect,
and while it is quite sensitive to catching negative
sentiment, it doesn’t do as well when sentiment
changes halfway through the review.

6 Conclusions

In this paper we show that features from sarcasm,
humor and hate speech help in improving senti-
ment classification performance on the Yelp re-
views dataset. We have also shown that a general-
purpose model architecture for binary classifica-
tion can be trained on each of these natural lan-
guage tasks individually and that it provides an
easy way for end-to-end sentiment classification
that combines the strengths of each of these mod-
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Figure 4: Overlap of model predictions with one another. Adding features from Sarcasm, Hate Speech, and
Humour to baseline Sentiment classifier improves its ability to predict True Positives against the Ground Truth
labels.

els.
This work shows that natural language under-

standing problems need not be thought of in iso-
lation of each other. When motivated by human
insights on how language is perceived, solutions
to nuanced sub-problems might help solve more
general problems like sentiment classification.

Future Directions

An interesting future direction is to test the com-
bination of features from sarcasm, humor and hate
speech for more fine-grained sentiment classifica-
tion, as in Yelp (5-way classification) or Stanford
Sentiment Treebank (5-way classification). We
believe that our formulation would help in this
case, by distinguishing between 1-star and 2-star
reviews based on offensive language for instance.

It would also be interesting to see if the same
generic template achieves state of the art perfor-
mance on other classification tasks like entailment
detection, entity detection, etc.
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Abstract

Grammatical error correction in English is
a long studied problem with many existing
systems and datasets. However, there has been
only a limited research on error correction of
other languages. In this paper, we present
a new dataset AKCES-GEC on grammatical
error correction for Czech. We then make ex-
periments on Czech, German and Russian and
show that when utilizing synthetic parallel cor-
pus, Transformer neural machine translation
model can reach new state-of-the-art results on
these datasets. AKCES-GEC is published un-
der CC BY-NC-SA 4.0 license at http://
hdl.handle.net/11234/1-3057, and
the source code of the GEC model is avail-
able at https://github.com/ufal/
low-resource-gec-wnut2019.

1 Introduction

A great progress has been recently achieved in
grammatical error correction (GEC) in English.
The performance of systems has since CoNLL
2014 shared task (Ng et al., 2014) increased by
more than 60% on its test set (Bryant et al.,
2019) and also a variety of new datasets appeared.
Both rule-based models, single error-type classi-
fiers and their combinations were due to larger
amount of data surpassed by statistical and later by
neural machine translation systems. These address
GEC as a translation problem from a language of
ungrammatical sentences to a grammatically cor-
rect ones.

Machine translation systems require large
amount of data for training. To cope with this is-
sue, different approaches were explored, from ac-
quiring additional corpora (e.g. from Wikipedia
edits) to building a synthetic corpus from clean
monolingual data. This was apparent on recent
Building Educational Applications (BEA) 2019
Shared Task on GEC (Bryant et al., 2019) when

top scoring teams extensively utilized synthetic
corpora.

The majority of research has been done in En-
glish. Unfortunately, there is a limited progress on
other languages. Namely, Boyd (2018) created a
dataset and presented a GEC system for German,
Rozovskaya and Roth (2019) for Russian, Náplava
(2017) for Czech and efforts to create annotated
learner corpora were also done for Chinese (Yu
et al., 2014), Japanese (Mizumoto et al., 2011) and
Arabic (Zaghouani et al., 2015).

Our contributions are as follows:
• We introduce a new Czech dataset for

GEC. In comparison to dataset of Šebesta
et al. (2017) it contains separated edits to-
gether with their type annotations in M2 for-
mat (Dahlmeier and Ng, 2012) and also has
two times more sentences.
• We extend the GEC model of Náplava and

Straka (2019) by utilizing synthetic training
data, and evaluate it on Czech, German and
Russian, achieving state-of-the-art results.

2 Related Work

There are several main approaches to GEC in low-
resource scenarios. The first one is based on a
noisy channel model and consists of three com-
ponents: a candidate model to propose (word) al-
ternatives, an error model to score their likelihood
and a language model to score both candidate
(word) probability and probability of a whole new
sentence. Richter et al. (2012) consider for a given
word all its small modifications (up to character
edit distance 2) present in a morphological dictio-
nary. The error model weights every character edit
by a trained weight, and three language models
(for word forms, lemmas and POS tags) are used
to choose the most probable sequence of correc-
tions. A candidate model of Bryant and Briscoe
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(2018) contains for each word spell-checker pro-
posals, its morphological variants (if found in Au-
tomatically Generated Inflection Database) and, if
the word is either preposition or article, also a set
of predefined alternatives. They assign uniform
probability to all changes, but use strong language
model to re-rank all candidate sentences. Lacroix
et al. (2019) also consider single word edits ex-
tracted from Wikipedia revisions.

Other popular approach is to extract parallel
sentences from Wikipedia revision histories. A
great advantage of such an approach is that the re-
sulting corpus is, especially for English, of great
size. However, as Wikipedia edits are not hu-
man curated specifically for GEC edits, the corpus
is extremely noisy. Grundkiewicz and Junczys-
Dowmunt (2014) filter this corpus by a set of regu-
lar expressions derived from NUCLE training data
and report a performance boost in statistical ma-
chine translation approach. Grundkiewicz et al.
(2019) filter Wikipedia edits by a simple language
model trained on BEA 2019 development corpus.
Lichtarge et al. (2019), on the other hand, re-
ports that even without any sophisticated filtering,
Transformer (Vaswani et al., 2017) can reach sur-
prisingly good results when used iteratively.

The third approach is to create synthetic corpus
from a clean monolingual corpus and use it as ad-
ditional data for training. Noise is typically intro-
duced either by rule-based substitutions or by us-
ing a subset of the following operations: token re-
placement, token deletion, token insertion, multi-
token swap and spelling noise introduction. Yuan
and Felice (2013) extract edits from NUCLE and
apply them on a clean text. Choe et al. (2019)
apply edits from W&I+Locness training set and
also define manual noising scenarios for prepo-
sition, nouns and verbs. Zhao et al. (2019) use
an unsupervised approach to synthesize noisy sen-
tences and allow deleting a word, inserting a ran-
dom word, replacing a word with random word
and also shuffling (rather locally). Grundkiewicz
et al. (2019) improve this approach and replace
a token with one of its spell-checker suggestions.
They also introduce additional spelling noise.

3 Data

In this Section, we present existing corpora for
GEC, together with newly released corpus for
Czech.

3.1 AKCES-GEC

The AKCES (Czech Language Acquisition Cor-
pora; Šebesta, 2010) is an umbrella project com-
prising of several acquisition resources – CzeSL
(learner corpus of Czech as a second language),
ROMi (Romani ethnolect of Czech Romani chil-
dren and teenagers) and SKRIPT and SCHOLA
(written and spoken language collected from na-
tive Czech pupils, respectively).

We present the AKCES-GEC dataset, which
is a grammar error correction corpus for Czech
generated from a subset of AKCES resources.
Concretely, the AKCES-GEC dataset is based on
CzeSL-man corpus (Rosen, 2016) consisting of
manually annotated transcripts of essays of non-
native speakers of Czech. Apart from the released
CzeSL-man, AKCES-GEC further utilizes addi-
tional unreleased parts of CzeSL-man and also es-
says of Romani pupils with Romani ethnolect of
Czech as their first language.

The CzeSL-man annotation consists of three
Tiers – Tier 0 are transcribed inputs, followed by
the level of orthographic and morphemic correc-
tions, where only word forms incorrect in any con-
text are considered (Tier 1). Finally, the rest of er-
rors is annotated at Tier 2. Forms at different Tiers
are manually aligned and can be assigned one or
more error types (Jelínek et al., 2012). An exam-
ple of the annotation is presented in Figure 1, and
the list of error types used in CzeSL-man annota-
tion is listed in Table 1.

We generated AKCES-GEC dataset using the
three Tier annotation of the underlying corpus. We
employed Tier 0 as source texts, Tier 2 as cor-
rected texts, and created error edits according to
the manual alignments, keeping error annotations
where available.1 Considering that the M2 format
(Dahlmeier and Ng, 2012) we wanted to use does
not support non-local error edits and therefore can-
not efficiently encode word transposition on long
distances, we decided to consider word swaps over
at most 2 correct words a single edit (with the con-
stant 2 chosen according to the coverage of long-
range transpositions in the data). For illustration,
see Figure 2.

The AKCES-GEC dataset consists of an ex-
plicit train/development/test split, with each set di-
vided into foreigner and Romani students; for de-

1The error annotations are unfortunately not available in
the whole underlying corpus, and not all errors are annotated
with at least one label.
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Figure 1: Example of two-level annotation of a sentence in CzeSL corpus, reproduced from (Rosen, 2016).

original sentence

corrected sentence

A B C

C A B

A B C

CA B

D

D

Figure 2: Word swap over one or two correct words (on the left) is considered a single edit (A B C→ C A B). Word
swap over more than two correct words (on the right) is represented as two edits of deleting D and inserting D.

Error type Description Example Occ
incorInfl incorrect inflection [pracovají → pracují] v továrně 8 986
incorBase incorrect word base musíš to [posvětlit → posvětit] 20 334
fwFab non-emendable, „fabricated“ word pokud nechceš slyšet [smášky] 78
fwNC foreign word váza je na [Tisch → stole] 166
flex supplementary flag used with fwFab and jdu do [shopa → obchodu] 34

fwNC marking the presence of inflection
wbdPre prefix separated by a space or preposition w/o space musím to [při pravit → připravit] 817
wbdComp wrongly separated compound [český anglický → česko-anglický] slovník 92
wbdOther other word boundary error [mocdobře → moc dobře]; [atak → a tak] 1326
stylColl colloquial form [dobrej → dobrý] film 3 533
stylOther bookish, dialectal, slang, hyper-correct form holka s [hnědými očimi → hnědýma očima] 156
agr violated agreement rules to jsou [hezké → hezcí] chlapci; Jana [čtu → čte] 5 162
dep error in valency bojí se [pes → psa]; otázka [čas → času] 6 733
ref error in pronominal reference dal jsem to jemu i [jejího → jeho] bratrovi 344
vbx error in analytical verb form or compound predicate musíš [přijdeš → přijít]; kluci [jsou] běhali 864
rflx error in reflexive expression dívá [∅ → se] na televizi; Pavel [si → se] raduje 915
neg error in negation [půjdu ne → nepůjdu] do školy 111
lex error in lexicon or phraseology dopadlo to [přírodně → přirozeně] 3 967
use error in the use of a grammar category pošta je [nejvíc blízko → nejblíže] 1 458
sec secondary error (supplementary flag) stará se o [našich holčičkách → naše holčičky] 866
stylColl colloquial expression viděli jsme [hezký → hezké] holky 3 533
stylOther bookish, dialectal, slang, hyper-correct expression rozbil se mi [hadr] 156
stylMark redundant discourse marker [no]; [teda]; [jo] 15
disr disrupted construction známe [hodné spoustu → spoustu hodných] lidí 64
problem supplementary label for problematic cases 175
unspec unspecified error type 69 123

Table 1: Error types used in CzeSL corpus taken from (Jelínek et al., 2012), including number of occurrences in
the dataset being released. Tier 1 errors are in the upper part of the table, Tier 2 errors are in the lower part. The
stylColl and stylOther are annotated on both Tiers, but we do not distinguish on which one in the AKCES-GEC.

velopment and test sets, the foreigners are further
split into Slavic and non-Slavic speakers. Further-
more, the development and test sets were anno-
tated by two annotators, so we provide two refer-
ences if the annotators utilized the same sentence
segmentation and produced different annotations.

The detailed statistics of the dataset are pre-
sented in Table 2. The AKCES-GEC dataset is
released under the CC BY-NC-SA 4.0 license at

http://hdl.handle.net/11234/1-3057.
We note that there already exists a CzeSL-GEC

dataset (Šebesta et al., 2017). However, it consists
only of a subset of data and does not contain error
types nor M2 files with individual edits.

3.2 English

Probably the largest corpus for English GEC is
the Lang-8 Corpus of Learner English (Mizumoto
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Train Dev Test
Doc Sent Word Error r. Doc Sent Word Error r. Doc Sent Word Error r.

Foreign.
Slavic

1 816 27 242 289 439 22.2 %
70 1 161 14 243 21.8 % 69 1 255 14 984 18.8 %

Other 45 804 8 331 23.8 % 45 879 9 624 20.5 %
Romani 1 937 14 968 157 342 20.4 % 80 520 5 481 21.0 % 74 542 5 831 17.8 %

Total 3 753 42 210 446 781 21.5 % 195 2 485 28 055 22.2 % 188 2 676 30 439 19.1 %

Table 2: Statistics of the AKCES-GEC dataset – number of documents, sentences, words and error rates.

et al., 2011; Tajiri et al., 2012). It comes from
an online language learning website, where users
are able to post texts in language they are learn-
ing. These texts then appear to native speakers
for correction. The corpus has over 100 000 raw
English entries comprising of more than 1M sen-
tences. Due to the fact that texts are corrected by
online users, this corpus is also quite noisy.

Other corpora are corrected by trained annota-
tors making them much cleaner but also signifi-
cantly smaller. NUCLE (Dahlmeier et al., 2013)
has 57 151 sentences originating from 1 400 es-
says written by mainly Asian undergraduate stu-
dents at the National University of Singapore.
FCE (Yannakoudakis et al., 2011) is a subset of
the Cambridge Learner Corpus (CLC) and has
33 236 sentences from 1 244 written answers to
FCE exam questions. Recent Write & Improve
(W&I) and LOCNESS v2.1 (Bryant et al., 2019;
Granger, 1998) datasets were annotated for differ-
ent English proficiency levels and a part of them
also comes from texts written by native English
speakers. Altogether, it has 43 169 sentences.

To evaluate system performance, CoNLL-2014
test set is most commonly used. It comprises of
1 312 sentences written by 25 South-East Asian
undergraduates. The gold annotations are matched
against system hypothesis using MaxMatch scorer
outputting F0.5 score. The other frequently used
dataset is JFLEG (Napoles et al., 2017; Heilman
et al., 2014), which also tests systems for how
fluent they sound by utilizing the GLEU met-
ric (Napoles et al., 2015). Finally, recent W&I and
LOCNESS v2.1 test set allows to evaluate systems
on different levels of proficiency and also against
different error types (utilizing ERRANT scorer).

3.3 German
Boyd (2018) created GEC corpus for German
from two German learner corpora: Falko and
MERLIN (Boyd et al., 2014). The resulting
dataset comprises of 24 077 sentences divided into

training, development and test set in the ratio
of 80:10:10. To evaluate system performance,
MaxMatch scorer is used.

Apart from creating the dataset, Boyd (2018)
also extended ERRANT for German. She defined
21 error types (15 based on POS tags) and ex-
tended spaCy2 pipeline to classify them.

3.4 Russian

Rozovskaya and Roth (2019) introduced RULEC-
GEC dataset for Russian GEC. To create this
dataset, a subset of RULEC corpus with foreign
and heritage speakers was corrected. The final
dataset has 12 480 sentences annotated with 23 er-
ror tags. The training, development and test sets
contain 4 980, 2 500 and 5 000 sentence pairs, re-
spectively.

3.5 Corpora Statistics

Table 3 indicates that there is a variety of English
datasets for GEC. As Náplava and Straka (2019)
show, training Transformer solely using these an-
notated data gives solid results. On the other hand,
there is only limited number of data for Czech,
German and Russian and also the existing systems
perform substantially worse. This motivates our
research in these low-resource languages.

Table 3 also presents an average error rate of
each corpus. It is computed using maximum align-
ment of original and annotated sentences as a ratio
of non-matching alignment edges (insertion, dele-
tion, and replacement). The highest error rate of
21.4 % is on Czech dataset. This implies that circa
every fifth word contains an error. German is also
quite noisy with an error rate of 16.8 %. The av-
erage error rate on English ranges from 6.6 % to
14.1 % and, finally, the Russian corpus contains
the least errors with an average error rate of 6.4%.

2
https://spacy.io/
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Language Corpus Sentences Err. r.

English
Lang-8 1 147 451 14.1%
NUCLE 57 151 6.6%
FCE 33 236 11.5%
W&I+LOCNESS 43 169 11.8%

Czech AKCES-GEC 42 210 21.4%
German Falko-MERLIN 24 077 16.8%
Russian RULEC-GEC 12 480 6.4%

Table 3: Statistics of available corpora for Grammatical
Error Correction.

3.6 Tokenization
The most popular metric for benchmarking sys-
tems are MaxMatch scorer (Dahlmeier and Ng,
2012) and ERRANT scorer (Bryant et al., 2017).
They both require data to be tokenized; therefore,
most of the GEC datasets are tokenized.

To tokenize monolingual English and German
data, we use spaCy v1.9.0 tokenizer utilizing
en_core_web_sm-1.2.0 and de model. We use cus-
tom tokenizers for Czech3 and Russian4.

4 System Overview

We use neural machine translation approach
to GEC. Specifically, we utilize Transformer
model (Vaswani et al., 2017) to translate ungram-
matical sentences to grammatically correct ones.
We further follow Náplava and Straka (2019) and
employ source and target word dropouts, edit-
weighted MLE and checkpoint averaging. We do
not use iterative decoding in this work, because
it substantially slows down decoding. Our mod-
els are implemented in Tensor2Tensor framework
version 1.12.0.5

4.1 Pretraining on Synthetic Dataset
Due to the limited number of annotated data in
Czech, German and Russian we decided to create
a corpus of synthetic parallel sentences. We were
also motivated by the fact that such approach was
shown to improve performance even in English
with substantially more annotated training data.

We follow Grundkiewicz et al. (2019), who use
an unsupervised approach to create noisy input
sentences. Given a clean sentence, they sample
a probability perr_word from a normal distribu-
tion with a predefined mean and a standard de-

3A slight modification of MorphoDiTa tokenizer.
4
https://github.com/aatimofeev/spacy_russian_

tokenizer
5
https://github.com/tensorflow/tensor2tensor

viation. After multiplying perr_word by a num-
ber of words in the sentence, as many sentence
words are selected for modification. For each
chosen word, one of the following operations is
performed with a predefined probability: substi-
tuting the word with one of its ASpell6 propos-
als, deleting it, swapping it with its right-adjacent
neighbour or inserting a random word from dic-
tionary after the current word. To make the system
more robust to spelling errors, same operations are
also used on individual characters with perr_char
sampled from a normal distribution with a differ-
ent mean and standard deviation than perr_word

and (potentially) different probabilities of charac-
ter operations.

When we inspected the results of a model
trained on such dataset in Czech, we observed that
the model often fails to correct casing errors and
sometimes also errors in diacritics. Therefore, we
extend word-level operations to also contain op-
eration to change casing of a word. If a word is
chosen for modification, it is with 50% probabil-
ity whole converted to lower-case, or several in-
dividual characters are chosen and their casing is
inverted. To increase the number of errors in dia-
critics, we add a new character-level noising oper-
ation, which for a selected character either gener-
ates one of its possible diacritized variants or re-
moves diacritics. Note that this operation is per-
formed only in Czech.

We generate synthetic corpus for each language
from WMT News Crawl monolingual training
data (Bojar et al., 2017). We set perr_word to 0.15,
perr_char to 0.02 and estimate error distributions
of individual operations from development sets of
each language. The constants used are presented
in Table 4. We limited amount of synthetic sen-
tences to 10M in each language.

4.2 Finetuning

A model is (pre-)trained on a synthetic dataset
until convergence. Afterwards, we finetune the
model on a mix of original language training data
and synthetic data. When finetuning the model, we
preserve all hyperparameters (e.g., learning rate
and optimizer moments). In other words, the train-
ing continues and only the data are replaced.

When finetuning, we found that it is crucial
to preserve some portion of synthetic data in the
training corpus. Finetuning with original training

6
http://aspell.net/
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Language Token-level operations Character-level operations

sub ins del swap recase sub ins del recase toggle
diacritics

English 0.6 0.2 0.1 0.05 0.05 0.25 0.25 0.25 0.25 0
Czech 0.7 0.1 0.05 0.1 0.05 0.2 0.2 0.2 0.2 0.2
German 0.64 0.2 0.1 0.01 0.05 0.25 0.25 0.25 0.25 0
Russian 0.65 0.1 0.1 0.1 0.05 0.25 0.25 0.25 0.25 0

Table 4: Language specific constants for token- and character-level noising operations.

data leads to fast overfitting with worse results on
all of Czech, German and Russian. We also found
out that it also slightly helps on English.

We ran a small grid-search to estimate the ra-
tio of synthetic versus original sentences in the
finetuning phase. Although the ratio of 1:2 (5M
original oversampled training pairs and 10M syn-
thetic pairs) still overfits, we found it to work best
for English, Czech and German, and stop train-
ing when the performance on the development set
starts deteriorating. For Russian, the ratio of 1:20
(0.5M oversampled training pairs and 10M syn-
thetic pairs) works the best.

The original sentences for English finetuning
are concatenated sentences from Lang-8 Corpus
of Learner English, FCE, NUCLE and W&I and
LOCNESS. To better match domain of test data,
we oversampled training set by adding W&I train-
ing data 10 times, FCE data 5 times and NUCLE
corpus 5 times to the training set. The original
sentences in Czech, German and Russian are the
training data of the corresponding languages.

4.3 Implementation Details

When running grid search for hyperparameter tun-
ing, we use transformer_base_single_gpu config-
uration, which uses only 1 GPU to train Trans-
former Base model. After we select all hyperpa-
rameter, we train Transformer Big architecture on
4 GPUs. Hyperparameters described in following
paragraphs belong to both architectures.

We use Adafactor optimizer (Shazeer and Stern,
2018), linearly increasing the learning rate from 0
to 0.011 over the first 8000 steps, then decrease
it proportionally to the number of steps after that
(using the rsqrt_decay schedule). Note that
this only applies to the pre-training phase.

All systems are trained on Nvidia P5000 GPUs.
The vocabulary consists of approximately 32k
most common word-pieces, the batch size is 2000
word-pieces per each GPU and all sentences with

more than 150 word-pieces are discarded during
training. Model checkpoints are saved every hour.

At evaluation time, we decode using a beam size
of 4. Beam-search length-balance decoding hyper-
parameter alpha is set to 0.6.

5 Results

We present results of our model when trained on
English, Czech, German and Russian in this Sec-
tion. As we are aware of only one system in Ger-
man, Czech and Russian to compare with, we start
with English model discussion. We show that our
model is on par or even slightly better than current
state-of-the-art systems in English when no en-
sembles are allowed. We then discuss our results
on other languages, where our system exceeds all
existing systems by a large margin.

In all experiments, we report results of three
systems: synthetic pretrain, which is based on
Transformer Big and is trained using synthetic
data only, and finetuned and finetuned base sin-
gle GPU, which are based on Transformer Big
and Base, respectively, and are both pretrained and
finetuned. Note that even if the finetuned base sys-
tem has 3 times less parameters than finetuned, its
results on some languages are nearly identical.

We also tried training the system using anno-
tated data only. With our model architecture, all
but English experiments (which contain substan-
tially more data) starts overfitting quickly, yield-
ing poor performance. The overfitting problem
could be possibly addressed as proposed by Sen-
nrich and Zhang (2019). Nevertheless, given that
our best system on English is by circa 10 points in
F0.5 score better than the system trained solely on
annotated data, we focused primarily on the syn-
thetic data experiments.

Apart from the W&I+L development and test
sets, which are evaluated using ERRANT scorer,
we use MaxMatch scorer in all experiments.
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System W&I+L test W&I+L dev
CoNLL 14 test

No W&I+L With W&I+L
including ensembles

Lichtarge et al. (2019) – – 60.40 –
Zhao et al. (2019) – – 61.15 –
Xu et al. (2019) 67.21 55.37 – 63.20
Choe et al. (2019) 69.06 52.79 57.50 –
Grundkiewicz et al. (2019) 69.47 53.00 61.30 64.16

no ensembles
Lichtarge et al. (2019) – – 56.80 –
Xu et al. (2019) 63.94 52.29 – 60.90
Choe et al. (2019) 63.05 47.75 – –
Grundkiewicz et al. (2019) – 50.01 – –

no ensembles
Our work – synthetic pretrain 51.16 32.76 41.85 44.12
Our work – finetuned base single GPU 67.18 52.80 59.87 –
Our work – finetuned 69.00 53.30 60.76 63.40

Table 5: Comparison of systems on two English GEC datasets. CoNLL 2014 Test Set is divided into two system
groups (columns): those who do not train on W&I+L training data and those who do.

System P R F0.5

Boyd (2018) 51.99 29.73 45.22
Our work – synthetic pretrain 67.45 26.35 51.41
Our work – finetuned base single GPU 78.11 59.13 73.40
Our work – finetuned 78.21 59.94 73.71

Table 6: Results on on Falko-Merlin Test Set (German).

5.1 English

We provide comparison between our model and
existing systems on W&I+L test and development
sets and on CoNLL 14 test set in Table 5. Even
if the results on the W&I+L development set are
only partially indicative of system performance,
we report them due to the W&I+L test set being
blind. All mentioned papers do not train their sys-
tems on the development set, but use it only for
model selection. Also note that we split the results
on CoNLL 14 test set into two groups: those who
do not use the W&I+L data for training, and those
who do. This is to allow a fair comparison, given
that the W&I+L data were not available before the
BEA 2019 Shared Task on GEC.

The best performing systems are utilizing en-
sembles. Table 5 shows an evident performance
boost (3.27-6.01 points) when combining multi-
ple models into an ensemble. The best perform-
ing system on English is an ensemble system of
Grundkiewicz et al. (2019).

The aim of this paper is to concentrate on low-
resource languages rather than on English. There-
fore, we report results of our single model. De-
spite that our best system reaches 69.0 F0.5 score,
which is comparable to the performance of best
systems that employ ensembles. Although Grund-
kiewicz et al. (2019) do not report their single sys-
tem score, we can hypothesise that given develop-
ment set scores, our system is on par with theirs or
even performs slightly better.

Note that there is a significant difference be-
tween results reported on W&I+L dev and W&I+L
test sets. This is caused by the fact that each sen-
tence in the W&I+L test set was annotated by 10
annotators, while there is only a single annotator
for each sentence in the development set.

5.2 German

Boyd (2018) developed a GEC system for Ger-
man based on multilayer convolutional encoder-
decoder neural network (Chollampatt and Ng,
2018). To account for the lack of annotated
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System Test Subset P R F0.5

Richter et al. (2012) All 68.72 36.75 58.54
Our work – synthetic pretrain All 80.32 39.55 66.59
Our work – finetuned base single GPU All 84.21 66.67 80.00

Our work – finetuned

Foreigners – Slavic 84.34 71.55 81.43
Foreigners – Other 81.03 62.36 76.45
Romani 86.61 71.13 83.00
All 83.75 68.48 80.17

Table 7: Results on on AKCES-GEC Test Set (Czech).

Figure 3: Recall for each error type in the test set of AKCES-GEC, computed using the first annotator (ID 0).

data, she generated additional training data from
Wikipedia edits, which she filtered to match the
distribution of the original error types. As Table 6
shows, her best system reaches 45.22 F0.5 score on
Falko-Merlin test set. All our three systems out-
perform it.

Compared to Boyd (2018), our system trained
solely on synthetic data has lower recall, but sub-
stantially higher precision. The main reason be-
hind the lower recall is the unsupervised approach
to synthetic data generation. Both our finetuned
models outperform Boyd (2018) system by a large
margin.

5.3 Czech

We compare our system with Richter et al. (2012),
who developed a statistical spelling corrector for
Czech. Although their system can only make local
changes (e.g., cannot insert a new word or swap
two nearby words), it achieves surprisingly solid
results. Nevertheless, all our three system perform

better in both precision, recall and F0.5 score. Pos-
sibly due to already quite high precision of the
pretrained model, the finetuning stage improves
mainly model recall.

We also evaluate performance of our best sys-
tem on three subsets of the AKCES-GEC test set:
Foreigners–Slavic, Foreigners–Other and Romani.
As the name suggests, the first of them is a part
of AKCES-GEC collected from essays of non-
Czech Slavic people, the second from essays of
non-Czech non-Slavic people and finally Romani
comes from essays of Romani pupils with Romani
ethnolect of Czech as their first language. The
best result is reached on Romani subset, while on
Foreigners–Other the F0.5 score is by more than 6
points lower. We hypothesize this effect is caused
by the fact, that Czech is the primary language
of Romani pupils. Furthermore, we presume that
foreigners with Slavic background should learn
Czech faster than non-Slavic foreigners, because
of the similarity between their mother tongue and
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System P R F0.5

Rozovskaya and Roth (2019) 38.0 7.5 21.0
Our work – synthetic pretrain 47.76 26.08 40.96
Our work – finetuned base single GPU 59.13 26.05 47.15
Our work – finetuned 63.26 27.50 50.20

Table 8: Results on on RULEC-GEC Test Set (Russian).

Czech. This fact is supported by Table 2, which
shows that the average error rate of Romani de-
velopment set is 21.0%, Foreigners–Slavic 21.8%
and the Foreigners–Other 23.8%.

Finally, we report recall of the best system on
each error type annotated by the first annotator (ID
0) in Figure 3. Generally, our system performs
better on errors annotated on Tier 1 than on errors
annotated on Tier 2. Furthermore, a natural hy-
pothesis is that the more occurrences there are for
an error type, the better the recall of the system
on the particular error type. Figure 3 suggests that
this hypothesis seems plausible on Tier 1 errors,
but its validity is unclear on Tier 2.

5.4 Russian
As Table 8 indicates, GEC in Russian currently
seems to be the most challenging task. Although
our system outperforms the system of Rozovskaya
and Roth (2019) by more than 100% in F0.5 score,
its performance is still quite poor when compared
to all previously described languages. Because
the result of our system trained solely on synthetic
data is comparable with the similar system for En-
glish, we hypothesise that the main reason behind
these poor results is the small amount of anno-
tated training data – while Czech has 42 210 and
German 19 237 training sentence pairs, there are
only 4 980 sentences in the Russian training set.
To validate this hypothesis, we extended the origi-
nal training set by 2 000 sentences from the devel-
opment set, resulting in an increase of 3 percent
points in F0.5 score.

6 Conclusion

We presented a new dataset for grammatical er-
ror correction in Czech. It contains almost twice
as much sentences as existing German dataset and
more than three times as RULEC-GEC for Rus-
sian. The dataset is published in M2 format con-
taining both separated edits and their error types.

Furthermore, we performed experiments on
three low-resource languages: German, Russian

and Czech. For each language, we pretrained
Transformer model on synthetic data and fine-
tuned it with a mixture of synthetic and authentic
data. On all three languages, the performance of
our system is substantially higher than results of
the existing reported systems. Moreover, all our
models supersede reported systems even if only
pretrained on unsupervised synthetic data.

The performance of our system could be even
higher if we trained multiple models and com-
bined them into an ensemble. We plan to do that
in future work. We also plan to extend our syn-
thetic corpora with data modified by supervisedly
extracted rules. We hope that this could help es-
pecially in case of Russian, which has the lowest
amount of training data.
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Abstract

There has been an increased interest in low-
resource approaches to automatic grammati-
cal error correction. We introduce Minimally-
Augmented Grammatical Error Correction
(MAGEC) that does not require any error-
labelled data. Our unsupervised approach is
based on a simple but effective synthetic er-
ror generation method based on confusion sets
from inverted spell-checkers. In low-resource
settings, we outperform the current state-of-
the-art results for German and Russian GEC
tasks by a large margin without using any real
error-annotated training data. When combined
with labelled data, our method can serve as an
efficient pre-training technique.

1 Introduction

Most neural approaches to automatic grammati-
cal error correction (GEC) require error-labelled
training data to achieve their best performance.
Unfortunately, such resources are not easily avail-
able, particularly for languages other than English.
This has lead to an increased interest in unsuper-
vised and low-resource GEC (Rozovskaya et al.,
2017; Bryant and Briscoe, 2018; Boyd, 2018; Ro-
zovskaya and Roth, 2019), which recently culmi-
nated in the low-resource track of the Building Ed-
ucational Application (BEA) shared task (Bryant
et al., 2019).1

We present Minimally-Augmented Grammatical
Error Correction (MAGEC), a simple but effective
approach to unsupervised and low-resource GEC
which does not require any authentic error-labelled
training data. A neural sequence-to-sequence
model is trained on clean and synthetically noised
sentences alone. The noise is automatically created
from confusion sets. Additionally, if labelled data

1https://www.cl.cam.ac.uk/research/nl/
bea2019st

is available for fine-tuning (Hinton and Salakhutdi-
nov, 2006), MAGEC can also serve as an efficient
pre-training technique.

The proposed unsupervised synthetic error gen-
eration method does not require a seed corpus with
example errors as most other methods based on sta-
tistical error injection (Felice and Yuan, 2014) or
back-translation models (Rei et al., 2017; Kasewa
et al., 2018; Htut and Tetreault, 2019). It also out-
performs noising techniques that rely on random
word replacements (Xie et al., 2018; Zhao et al.,
2019). Contrary to Ge et al. (2018) or Lichtarge
et al. (2018), our approach can be easily used for
effective pre-training of full encoder-decoder mod-
els as it is model-independent and only requires
clean monolingual data and potentially an available
spell-checker dictionary.2 In comparison to pre-
training with BERT (Devlin et al., 2019), synthetic
errors provide more task-specific training exam-
ples than masking. As an unsupervised approach,
MAGEC is an alternative to recently proposed lan-
guage model (LM) based approaches (Bryant and
Briscoe, 2018; Stahlberg et al., 2019), but it does
not require any amount of annotated sentences for
tuning.

2 Minimally-augmented grammatical
error correction

Our minimally-augmented GEC approach uses syn-
thetic noise as its primary source of training data.
We generate erroneous sentences from monolingual
texts via random word perturbations selected from
automatically created confusion sets. These are
traditionally defined as sets of frequently confused
words (Rozovskaya and Roth, 2010).

We experiment with three unsupervised methods
for generating confusion sets:

2GNU Aspell supports more than 160 languages: http:
//aspell.net/man-html/Supported.html
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Word Confusion set

had hard head hand gad has ha ad hat
night knight naught nought nights bight might nightie
then them the hen ten than thin thee thew

haben habend halben gaben habe habet haken
Nacht Nachts Nascht Macht Naht Acht Nach Jacht Pacht
dann sann dank denn dünn kann wann bannen kannst

имел им ел им-ел имела имели имело мел умел
ночь ночью ночи дочь мочь ноль новь точь
затем за тем за-тем затеем затеям зятем затеями

Table 1: Examples of spell-broken confusion sets for
English, German and Russian.

Edit distance Confusion sets consist of words
with the shortest Levenshtein distance (Leven-
shtein, 1966) to the selected confused word.

Word embeddings Confusion sets contain the
most similar words to the confused word
based on the cosine similarity of their word
embedding vectors (Mikolov et al., 2013).

Spell-breaking Confusion sets are composed of
suggestions from a spell-checker; a sugges-
tion list is extracted for the confused word
regardless of its actual correctness.

These methods can be used to build confusion
sets for any alphabetic language.3 We find that con-
fusion sets constructed via spell-breaking perform
best (Section 4). Most context-free spell-checkers
combine a weighted edit distance and phonetic al-
gorithms to order suggestions, which produces reli-
able confusion sets (Table 1).

We synthesize erroneous sentences as follows:
given a confusion set Ci = {ci1, ci2, ci3, ...}, and the
vocabulary V , we sample word wj ∈ V from the in-
put sentence with a probability approximated with
a normal distribution N (pWER, 0.2), and perform
one of the following operations: (1) substitution
of wj with a random word cjk from its confusion
set with probability psub, (2) deletion of wj with
pdel, (3) insertion of a random word wk ∈ V at
j + 1 with pins, and (4) swapping wj and wj+1

with pswp. When making a substitution, words
within confusion sets are sampled uniformly.

To improve the model’s capability of correcting
spelling errors, inspired by Lichtarge et al. (2018);
Xie et al. (2018), we randomly perturb 10% of
characters using the same edit operations as above.

3For languages with logosylabic writing system like Chi-
nese, the edit distance can be calculated on transcribed
text, while word embeddings can be generated after word-
segmentation.

Lang. Corpus Dev Test Train

EN W&I+LOCNESS 4,384 4,477 34,308
DE Falco+MERLIN 2,503 2,337 18,7544

RU RULEC-GEC 2,500 5,000 4,980

Table 2: Sizes of labelled corpora in no. of sentences.

Character-level noise is introduced on top of the
synthetic errors generated via confusion sets.

A MAGEC model is trained solely on the syn-
thetically noised data and then ensembled with a
language model. Being limited only by the amount
of clean monolingual data, this large-scale unsu-
pervised approach can perform better than training
on small authentic error corpora. A large amount
of training examples increases the chance that syn-
thetic errors resemble real error patterns and results
in better language modelling properties.

If any small amount of error-annotated learner
data is available, it can be used to fine-tune the
pre-trained model and further boost its perfor-
mance. Pre-training of decoders of GEC mod-
els from language models has been introduced by
Junczys-Dowmunt et al. (2018b), we pretrain the
full encoder-decoder models instead, as proposed
by Grundkiewicz et al. (2019).

3 Experiments

Data and evaluation Our approach requires a
large amount of monolingual data that is used for
generating synthetic training pairs. We use the
publicly available News crawl data5 released for
the WMT shared tasks (Bojar et al., 2018). For
English and German, we limit the size of the data
to 100 million sentences; for Russian, we use all
the available 80.5 million sentences.

As primary development and test data, we use
the following learner corpora (Table 2):

• English: the new W&I+LOCNESS corpus
(Bryant et al., 2019; Granger, 1998) released
for the BEA 2019 shared task and representing
a diverse cross-section of English language;

• German: the Falko-MERLIN GEC corpus
(Boyd, 2018) that combines two German
learner corpora of all proficiency levels;

4The original training part of Falco+MERLIN consists of
19,237 sentences, but is contaminated with some test sentences.
We have removed training examples if their target sentences
occur in the development or test set.

5http://data.statmt.org/news-crawl
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System P R F0.5

Random 32.8 6.7 18.49
Edit distance 39.9 9.5 24.27
Word embeddings 39.7 9.0 23.56
Spell-breaking 43.1 10.6 26.66
+ OOV + Case 44.9 10.9 27.70

→ WER = 0.25 43.3 11.8 27.50
→ Edit-weighted Λ = 2 43.0 12.6 28.99

Table 3: Performance for different confusion sets and
edit weighting techniques on W&I+LOCNESS Dev.

• Russian: the recently introduced RULEC-
GEC dataset (Alsufieva et al., 2012; Ro-
zovskaya and Roth, 2019) containing Russian
texts from foreign and heritage speakers.

Unless explicitly stated, we do not use the train-
ing parts of those datasets. For each language
we follow the originally proposed preprocessing
and evaluation settings. English and German data
are tokenized with Spacy6, while Russian is pre-
processed with Mystem (Segalovich, 2003). We
additionally normalise punctuation in monolingual
data using Moses scripts (Koehn et al., 2007). Dur-
ing training, we limit the vocabulary size to 32,000
subwords computed with SentencePiece using the
unigram method (Kudo and Richardson, 2018).

English models are evaluated with ERRANT
(Bryant et al., 2017) using F0.5; for German and
Russian, the M2Scorer with the MaxMatch metric
(Dahlmeier and Ng, 2012) is used.

Synthetic data Confusion sets are created for
each language for V = 96, 000 most frequent lex-
ical word forms from monolingual data. We use
the Levenshtein distance to generate edit-distance
based confusion sets. The maximum considered
distance is 2. Word embeddings are computed with
word2vec7 from monolingual data. To generate
spell-broken confusion sets we use Enchant8 with
Aspell dictionaries.9 The size of confusion sets is
limited to top 20 words.

Synthetic errors are introduced into monolingual
texts to mimic word error rate (WER) of about
15%, i.e. pWER = 0.15, which resembles error
frequency in common ESL error corpora. When
confusing a word, the probability psub is set to 0.7,
other probabilities are set to 0.1.

6https://spacy.io
7https://github.com/tmikolov/word2vec
8https://abiword.github.io/enchant
9ftp://ftp.gnu.org/gnu/aspell/dict

System Dev P R F0.5

Top BEA19 (Low-res.) 44.95 70.2 48.0 64.24
Top BEA19 (Restricted) 53.00 72.3 60.1 69.47

Spell-checker 10.04 23.7 7.4 16.45
Spell-checker w/ LM 12.00 41.5 6.8 20.52

MAGEC w/o LM 28.99 53.4 26.2 44.22
MAGEC 31.87 49.1 37.5 46.22
MAGEC Ens. 33.32 53.0 34.5 47.89

Fine-tuned (Real) 44.29 61.2 54.1 59.62
Fine-tuned (Real+Synth.) 49.49 66.0 58.8 64.45

(a) English (W&I+LOCNESS)

System Dev P R M2
0.5

Boyd (2018) (Unsup.) — 30.0 14.0 24.37
Boyd (2018) — 52.0 29.8 45.22

Spell-checker 20.97 33.0 9.5 22.06
Spell-checker w/ LM 24.14 43.6 8.6 24.27

MAGEC w/o LM 49.25 58.1 27.2 47.30
MAGEC 52.06 57.9 34.7 51.10
MAGEC Ens. 53.61 58.3 36.9 52.22

Fine-tuned (Real) 68.13 72.2 54.0 67.67
Fine-tuned (Real+Synth.) 70.51 73.0 61.0 70.24

(b) German (Falko-MERLIN)

System Dev P R M2
0.5

Rozovskaya and Roth (2019) — 38.0 7.5 21.0

Spell-checker 18.32 19.2 7.2 14.39
Spell-checker w/ LM 22.01 30.7 7.5 18.99

MAGEC w/o LM 24.82 30.1 20.4 27.47
MAGEC 27.13 32.3 29.5 31.71
MAGEC Ens. 27.87 33.3 29.4 32.41

Fine-tuned (Real) 30.28 35.4 31.1 34.45
Fine-tuned (Real+Synth.) 30.64 36.3 28.7 34.46

(c) Russian (RULEC-GEC)

Table 4: Unsupervised and fine-tuned MAGEC sys-
tems for English, German and Russian, contrasted with
systems from related work and spell-checking base-
lines.

Training settings We adapt the recent state-of-
the-art GEC system by Junczys-Dowmunt et al.
(2018b), an ensemble of sequence-to-sequence
Transformer models (Vaswani et al., 2017) and a
neural language model.10

We use the training setting proposed by the au-
thors11, but introduce stronger regularization: we
increase dropout probabilities of source words to
0.3, add dropout on transformer self-attention and
filter layers of 0.1, and use larger mini-batches with

10Models and outputs are available from https://
github.com/grammatical/magec-wnut2019

11https://github.com/grammatical/
neural-naacl2018
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~2,500 sentences. We do not pre-train the decoder
parameters with a language model and train di-
rectly on the synthetic data. We increase the size
of language model used for ensembling to match
the Transformer-big configuration (Vaswani et al.,
2017) with 16-head self-attention, embeddings size
of 1024 and feed-forward filter size size of 4096.
In experiments with fine-tuning, the training hyper-
parameters remain unchanged.

All models are trained with Marian (Junczys-
Dowmunt et al., 2018a). The training is continued
for at most 5 epochs or until early-stopping is trig-
gered after 5 stalled validation steps. We found that
using 10,000 synthetic sentences as validation sets,
i.e. a fully unsupervised approach, is as effective
as using the development parts of error corpora and
does not decrease the final performance.

4 Results and analysis

Confusion sets On English data, all proposed
confusion set generation methods perform better
than random word substitution (Table 3).Confu-
sion sets based on word embeddings are the least
effective, while spell-broken sets perform best at
26.66 F0.5. We observe further gains of +1.04 from
keeping out-of-vocabulary spell-checker sugges-
tions (OOV) and preserving consistent letter casing
within confusion sets (Case).

The word error rate of error corpora is an use-
ful statistic that can be used to balance preci-
sion/recall ratios (Rozovskaya and Roth, 2010;
Junczys-Dowmunt et al., 2018b; Hotate et al.,
2019). Increasing WER in the synthetic data from
15% to 25% increases recall at the expense of preci-
sion, but no overall improvement is observed. A no-
ticeable recall gain that transfers to a higher F-score
of 28.99 is achieved by increasing the importance
of edited fragments with the edit-weighted MLE
objective from Junczys-Dowmunt et al. (2018b)
with Λ = 2. We use this setting for the rest of our
experiments.

Main results We first compare the GEC systems
with simple baselines using a greedy and context
spell-checking (Table 4); the latter selects the best
correction suggestion based on the sentence per-
plexity from a Transformer language model. All
systems outperform the spell-checker baselines.

On German and Russian test sets, single
MAGEC models without ensembling with a lan-
guage model already achieve better performance
than reported by Boyd (2018) and Rozovskaya and

System CoNLL JFLEG

Bryant and Briscoe (2018) ? 34.09 48.75
Stahlberg et al. (2019) ? 44.43 52.61
Stahlberg et al. (2019) (659K real data) 58.40 58.63

MAGEC Ens. ? 44.23 56.18
MAGEC Fine-tuned (34K real data) 56.54 60.01

Table 5: Comparison with LM-based GEC on the
CoNLL (M2) and JFLEG (GLEU) test sets for unsuper-
vised (?) and supervised systems trained or fine-tuned
on different amounts of labelled data.
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Average of 4 w/o LM

Figure 1: Improvements from fine-tuning on subsets of
W&I+LOCNESS Train. The smallest 1

16 part of the
dataset contains 2,145 sentences. Averaged F-scores
over 4 runs trained on different subsets of the data.

Roth (2019) for their systems that use authentic
error-annotated data for training (Table 4b and 4c).
Our best unsupervised ensemble systems that com-
bine three Transformer models and a LM12 outper-
form the state-of-the-art results for these languages
by +7.0 and +11.4 F0.5.

Our English models do not compete with the
top systems (Grundkiewicz et al., 2019) from the
BEA shared task trained on publicly available error-
annotated corpora (Table 4a). It is difficult to
compare with the top low-resource system from
the shared task, because it uses additional parallel
data from Wikipedia (Grundkiewicz and Junczys-
Dowmunt, 2014), larger ensemble, and n-best list
re-ranking with right-to-left models, which can be
also implemented in this work.

MAGEC systems are generally on par with the
results achieved by a recent unsupervised contribu-
tion based on finite state transducers by Stahlberg
et al. (2019) on the CoNLL-2014 (Dahlmeier et al.,
2013) and JFLEG test sets (Napoles et al., 2017)
(Table 5).

12The weight of the language model is grid-searched on the
development set.
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Spell.+punc. Other errors
Lang. P R F0.5 P R F0.5

EN 28.8 24.1 27.68 33.5 16.8 27.93
DE 54.8 71.4 57.43 63.6 55.8 61.83
RU 26.7 75.0 30.70 14.6 19.7 15.37

Table 6: Performance of single MAGEC w/ LM models
on two groups of errors on respective development sets.

All unsupervised systems benefit from domain-
adaptation via fine-tuning on authentic labelled
data (Miceli Barone et al., 2017). The more au-
thentic high-quality and in-domain training data
is used, the greater the improvement, but even as
few as ~2,000 sentences are helpful (Fig. 1). We
found that fine-tuning on a 2:1 mixture of synthetic
and oversampled authentic data prevents the model
from over-fitting. This is particularly visible for En-
glish which has the largest fine-tuning set (34K sen-
tences), and the difference of 5.2 F0.5 between fine-
tuning with and without synthetic data is largest.

Spelling and punctuation errors The GEC task
involves detection and correction of all types of er-
ror in written texts, including grammatical, lexical
and orthographical errors. Spelling and punctua-
tion errors are among the most frequent error types
and also the easiest to synthesize.

To counter the argument that – mostly due to
the introduced character-level noise and strong lan-
guage modelling – MAGEC can only correct these
“simple” errors, we evaluate it against test sets that
contain either spelling and punctuation errors or
all other error types; with the complement errors
corrected (Table 6). Our systems indeed perform
best on misspellings and punctuation errors, but
are capable of correcting various error types. The
disparity for Russian can be explained by the fact
that it is a morphologically-rich language and we
suffer from generally lower performance.

5 Conclusions and future work

We have presented Minimally-Augmented Gram-
matical Error Correction (MAGEC), which can
be effectively used in both unsupervised and low-
resource scenarios. The method is model indepen-
dent, requires easily available resources, and can be
used for creating reliable baselines for supervised
techniques or as an efficient pre-training method
for neural GEC models with labelled data. We have
demonstrated the effectiveness of our method and
outperformed state-of-the-art results for German

and Russian benchmarks, trained with labelled data,
by a large margin.

For future work, we plan to evaluate MAGEC
on more languages and experiment with more di-
versified confusion sets created with additional un-
supervised generation methods.
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Abstract

We present a gold standard of annotated so-
cial opinion for the Malta Government Bud-
get 2018. It consists of over 500 online posts
in English and/or the Maltese less-resourced
language, gathered from social media plat-
forms, specifically, social networking services
and newswires, which have been annotated
with information about opinions expressed by
the general public and other entities, in terms
of sentiment polarity, emotion, sarcasm/irony,
and negation. This dataset is a resource for
opinion mining based on social data, within
the context of politics. It is the first opinion
annotated social dataset from Malta, which has
very limited language resources available.

1 Introduction

European usage trends show that Malta is the sec-
ond highest user of social media, with around 90%
of the adult population being online and active
on social media (Eurostat, 2017), whereas around
80% of users read news online (Caruana, 2018).
In terms of social media, this is not only used by
individuals, but is also increasingly being used by
enterprises (Eurostat, 2018). In fact, governments
and businesses are spreading their news via social
media and moving away from newswires (Grech,
2019). This has increased the importance of social
opinions and the need to refine data mining tech-
niques that are able to identify and classify opin-
ions related to a particular aspect, e.g., entity or
topic, which can be beneficial.

This paper presents a dataset of opinion-
annotated social online posts targeting the Malta
Government Budget for 20181 presented on 9th
October 2017 by the Honourable Minister for Fi-
nance, Edward Scicluna. It contains the opinions
and reactions (in terms of sentiment, emotions,

1https://mfin.gov.mt/en/The-Budget/Pages/The-Budget-
2018.aspx

etc.) of the public and professionals towards the
mentioned budget as expressed over various social
channels, specifically, social networking services
and newswires, during and after the event. In addi-
tion, it has the potential of identifying commenda-
tions, regrets and other reactions concerning any
presented measure, such as tax matters, industry
specific initiatives, strategic initiatives and social
measures. This dataset can support government
initiatives for the development of opinion mining
tools to better capture the public perception to-
wards an upcoming/current/past budget presented
to the House of Representatives. Such valuable
insights can be taken in consideration within the
upcoming budgets and/or any bills presented and
discussed in Parliament.

2 Related Work

The Politics domain is one of the most popular ap-
plication areas in the social media-based opinion
mining domain, with such techniques being ap-
plied on election, debate, referendum and other
political events’ (such as uprisings and protests)
datasets. However, applying such techniques on
government budgets is not common.

Kalampokis et al. (2011) proposed a method
that integrates government and social data (from
social media platforms, such as Twitter and Face-
book) to enable decision makers to understand
public opinion and be able to predict public reac-
tions on certain decisions. The methodology dis-
cussed by Hubert et al. (2018), uses emotion anal-
ysis to study government-citizen interactions on
Twitter for five Latin American countries that have
a mature e-Participation, namely Mexico, Colom-
bia, Chile, Uruguay and Argentina. Similarly, the
city of Washington D.C. in the United States, uses
sentiment analysis to interpret and examine the
comments posted by citizens and businesses over
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social media platforms and other public websites
(Eggers et al., 2019).

The economic content of government budgets is
made publicly available for various countries. The
Global Open Data Index2 provides public open
datasets about national government budgets of var-
ious countries, but lacks open budget social and
transactional data. The OpenBudgets3 Horizon
2020 project provided an overview of public bud-
get and spending data and tools, in order to support
various entities (Musyaffa et al., 2018). However,
this project targeted public budget and spending
data and not the yearly budgets presented by gov-
ernments. Moreover, it did not use any data from
social media platforms and apply any text mining
tasks, such as opinion mining.

To the best of our knowledge, the gold standard
presented is the first annotated dataset from a so-
cial aspect at a European and national level and in
the context of Maltese politics.

3 Method

A variety of Web social media data covering the
local Maltese political domain was taken in con-
sideration for this study, namely traditional media
published by newswires, and social media pub-
lished through social networking services.

3.1 Data Collection

The following data sources were selected to col-
lect the dataset: i) Newswires (News): Times of
Malta4, MaltaToday5, The Malta Independent6;
and ii) Social networking services (SNS): Face-
book7, Twitter8. The selection of the data sources
were based on their popularity and usage with
the Maltese citizens. In fact, Facebook and Twit-
ter are two social media platforms that are highly
accessed (TMI, 2018), with the Times of Malta,
MaltaToday and The Malta Independent being
amongst the top news portals accessed in Malta9

for both reading and social interaction purposes.
Table 1 presents details about the social dataset
collected on the Malta Budget 2018.

Three different kinds of online news articles –in
2https://index.okfn.org/dataset/budget/
3http://openbudgets.eu/
4https://www.timesofmalta.com/
5https://www.maltatoday.com.mt/
6http://www.independent.com.mt/
7https://www.facebook.com/
8https://twitter.com/
9https://www.alexa.com/topsites/countries/MT

Source Type & Name Query strings/
Articles

Online
Posts

SNS - Twitter 1 38
SNS - Facebook 1 28
SNS - Twitter-The
Malta Independent

1 12

News - Times of Malta 4 249
News - MaltaToday 4 175
News - The Malta Inde-
pendent

4 45

Table 1: Data sources used for the consolidated dataset

terms of content published– were selected for each
newswire mentioned:

• Overview of the upcoming budget, published
on the budget day;

• Near to real-time live updates in commentary
format, on the budget measures being pre-
sented for the upcoming year;

• Overview of the presented budget, published
after the budget finishes, on the same day
and/or the following day.

The aforementioned news articles above allow
users to post social comments, which in nature
are similar to online posts published on social net-
working services. These comments were extracted
for our dataset, given that the annotation of opin-
ions from user-generated social data is the main
objective of this work. In addition, for diversity
purposes, four online articles for each newswire
were chosen to gather as much online posts as pos-
sible from the general public. This ensures that the
different opinions expressed throughout on both
the budget at large and specific budget topics, are
captured.

With regards to the online posts from social net-
working services, a small sample was extracted,
specifically the ones that contained the “malta
budget 2018” search terms (as keywords and/or
hashtags) that were posted on 9th and 10th Oc-
tober 2017. The criteria for the chosen keywords
were based on the manual identification of com-
mon keywords associated with content relevant
to the Malta Budget. The necessary filters were
applied to exclude any spam and irrelevant con-
tent, whereas any references to non-political peo-
ple were anonymised.

3.2 Annotation
A total of 555 online posts were presented to two
raters. Both were proficient in Malta’s two official

365



languages - Maltese (Malti) –a Semitic language
written in the Latin script that is the national lan-
guage of Malta– and English, which are equally
important10. Moreover, the raters worked in the
technology domain, were given a lecture about
opinion mining and provided with relevant reading
material and terminology for reference purposes.
The following metatdata and annotation types (#6-
13) were created for each online post:

1. Online Post Identifier: unique numerical
identifier for the online post;

2. Related Online Post Identifier: numerical
identifier for the parent online post (if any);

3. Source Identifier: numerical identifier refer-
ring to the actual data source (e.g., website)
of the online post;

4. Source Name: origin of the online post (e.g.,
Twitter, MaltaToday);

5. Online Post: textual string of the online post;

6. Sentiment Polarity: a categorical value (3-
levels) for the sentiment polarity of the online
post (negative, neutral, positive);

7. Sentiment Polarity Intensity: a categorical
value (5-levels) for the sentiment polarity in-
tensity of the online post (very negative, neg-
ative, neutral, positive, very positive);

8. Emotion (6-levels): a categorical value for
the emotion of the online post based on
Ekman’s (Ekman, 1992) six basic emotions
(anger, disgust, fear, happiness, sadness, sur-
prise);

9. Emotion (8-levels): a categorical value for
the emotion of the online post based on
Plutchik’s (Plutchik, 1980) eight primary
emotions (joy, sadness, fear, anger, anticipa-
tion, surprise, disgust, trust);

10. Sarcasm/Irony: binary value, with 1 refer-
ring to sarcasm and irony in online posts11;

11. Negation: binary value, with 1 referring to
negated online posts12;

10In Malta both languages are used by the general public,
especially English or a mix for transcription purposes, hence
why it is important to collect online posts in both

11These are treated as one class for this study
12A negated post refers to the opposite of what is conveyed

due to certain grammatical operations such as ‘not’

12. Off-topic: binary value, with 1 referring to
off-topic online posts that are political but not
related to the budget;

13. Maltese: binary value, with 1 referring to
online posts (full text or majority of text) in
Maltese, and 0 referring to posts in English.

The raters were advised to follow any web
links present in their online posts, for example
“Budget 2018: #Highlights and #Opportunities
can be accessed here - https://lnkd.in/eQxeM7G
#MaltaBudget18 #KPMG”, when required to
reach a decision, especially for determining the
sentiment polarity, sentiment polarity intensity
and/or emotion.

The online post with textual content “Tallinja
Card b’xejn gh̄al dawk bejn 16 u 20 sena.
#maltabudget2018” (English translation: “free
transport card for people aged between 16-20
years”) provides an example of the annotation
types created for each collected post:

• Sentiment Polarity: Positive;

• Sentiment Polarity Intensity: Positive;

• Emotion (6-levels): Happiness;

• Emotion (8-levels): Joy;

• Sarcasm/Irony: 0;

• Negation: 0;

• Off-topic: 0;

• Maltese: 1.

3.3 Reliability and Consolidation
Inter-rater reliability, that is, the level of agreement
between the raters’ annotations was determined.
The percent agreement (basic measure) was pri-
marily calculated on the annotations performed by
the two raters. This was followed by the Cohen’s
Kappa (Cohen, 1960), a statistical measure that
takes chance agreement into consideration, which
is commonly used for categorical variables. More-
over, this statistic is calculated when two raters
perform annotations on the same categorical val-
ues and dataset. Table 2, shows the inter-rater reli-
ability agreement scores for each annotation type.

A fair Kappa agreement was achieved for the
sentiment polarity, sentiment polarity intensity
and emotion (6-levels) annotations, with a slight

366



agreement obtained for the emotion (8-levels) an-
notation13. The percent agreement highlights the
challenges behind these annotation tasks, espe-
cially when an annotation type such as emotion,
has several categorical values to choose from and
can convey multiple ones, e.g., anger and surprise.
These annotation tasks are not trivial, where de-
tecting emotion in text can be difficult for hu-
mans due to the personal context of individuals
which can influence emotion interpretation, thus
resulting in a low level of inter-rater agreement
(Canales Zaragoza, 2018). Moreover, words used
in different senses can lead to different emotions,
hence making emotion annotation more challeng-
ing (Mohammad and Turney, 2013). This claim
is also supported by Devillers et al. in (Dev-
illers et al., 2005), who mention that categorisation
and annotation of real-life emotions is a big chal-
lenge given that they are context-dependent and
also highly person-dependent, whereas unambigu-
ous emotions are only possible in a small portion
of any real corpus. Therefore, the nature of rele-
vant emotion data is too infrequent to provide ad-
equate support for consistent annotation and mod-
elling through fine-grained emotion labels.

Furthermore, a moderate agreement was
achieved for sarcasm/irony detection, whereas
negation obtained a chance agreement, which
underlines how challenging such a task can be.
Off-topic annotations achieved a fair level of
agreement, whereas detection of Maltese online
posts resulted in a near perfect agreement.

Annotation Type % Agreement Cohen’s
Kappa

Sentiment Polarity 0.6015 0.3703
Sentiment Polarity
Intensity

0.4132 0.2182

Emotion (6-levels) 0.3985 0.2394
Emotion (8-levels) 0.2669 0.119
Sarcasm/Irony 0.7843 0.5027
Negation 0.8940 0.0581
Off-topic 0.7148 0.3494
Maltese 0.9854 0.9669

Table 2: Inter-rater reliability measures for each anno-
tation type

A third expert in the domain consolidated the
annotations to create a final dataset. In cases
where both raters agreed on the annotation this
was selected, whereas in cases of non-agreement,

13Ekman’s 6-levels (Ekman, 1992) and Plutchik’s 8-levels
(Plutchik, 1980) emotion categories were chosen due to them
being the most popular for Emotion Analysis

the third expert selected the most appropriate one
to the best of their knowledge.

4 Dataset

The gold standard obtained through the method
described in Section 3 consists of 547 online posts.
This number was achieved after discarding irrele-
vant posts and ones that consisted of images only.
Moreover, some online posts that were originally
collected after the budget, were deleted from the
original data source at the time of rating, in which
case they were also removed. The distribution of
the dataset annotations are represented as follows:
sentiment polarity in Table 3, sentiment polarity
intensity in Table 4 and emotion in Tables 5 and 6,
respectively.

Polarity Online Posts Percentage
Positive 122 22.3%
Neutral 145 26.5%
Negative 280 51.2%

Table 3: Distribution of sentiment polarity annotations

Polarity Intensity Online Posts Percentage
Very Positive 37 6.8%
Positive 85 15.5%
Neutral 145 26.5%
Negative 193 35.3%
Very Negative 87 15.9%

Table 4: Distribution of sentiment polarity intensity
annotations

Emotion Online Posts Percentage
Anger 131 23.9%
Disgust 159 29.1%
Fear 10 1.8%
Happiness 132 24.1%
Sadness 26 4.8%
Surprise 89 16.3%

Table 5: Distribution of emotion (6-levels) annotations

Emotion Online Posts Percentage
Anger 121 22.1%
Anticipation 95 17.4%
Disgust 154 28.2%
Fear 5 0.9%
Joy 50 9.1%
Sadness 23 4.2%
Surprise 39 7.1%
Trust 60 11%

Table 6: Distribution of emotion (8-levels) annotations

The dataset annotation results displayed do not
fully reflect the opinions portrayed by the writers,
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since a large amount of online posts were off-topic
to the budget (34.2%). These are still very relevant
for filtering out noisy user-generated posts, which
are very common in Malta for such kind of public
feedback, especially in newswire comments. Ex-
amples of such posts are the ones discussing the
topic of smoking and how easy/difficult it is to
stop smoking and on the contraband of cigarettes.
These emerged as a result of no budget measure
being taken towards increasing cigarette prices.

Moreover, certain sentiment polarities, polarity
intensities and/or emotions were not targeted at
budget measures, but to some previously submit-
ted online post/set of posts. In such cases, the
context of the online posts should be considered
when determining the opinion, including any re-
lated posts14. This is a task for aspect-based opin-
ion mining (Hu and Liu, 2004), which classifies a
particular opinion type, such as sentiment polarity
and/or emotion, for a given entity/aspect, such as
a political party or budget measure.

Table 7 presents the distribution of sar-
casm/irony, negation, off-topic and Maltese an-
notations. With regards to the latter, several on-
line posts contained text with Maltese and English
terminology. The ones that contained only one
term/phrase in a particular language were not con-
sidered when annotating the language. The sar-
casm and irony annotation was merged given that
they convey similar characteristics in the content
meaning the opposite of what is being said, where
the former has a malicious intention towards the
target i.e. person, whereas the latter does not.

Annotation Online Posts Percentage
Sarcasm/Irony 126 23.0%
Negation 39 7.1%
Off-topic 187 34.2%
Maltese 177 32.4%

Table 7: Distribution of the sarcasm/irony, negation,
off-topic and Maltese language annotations

The dataset has been published15 for general
use under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International
(CC BY-NC-SA 4.0) license16.

14346 online posts were related to at least one another post
15https://github.com/kcortis/

malta-budget-social-opinion/
16https://creativecommons.org/licenses/by-nc-sa/4.0/

5 Benefits

The following are the benefits of this dataset for
the Natural Language Processing community:

• Contains online posts in Malta’s two official
languages, Maltese and English;

• Hand-crafted rules using linguistic intuition
can be built based on the given data, i.e.,
a knowledge-based approach, which can be
a good start if a rule-based social opinion
mining approach is primarily used before
evolving towards a hybrid approach (rule and
machine learning/deep learning-based) once
more data is collected and annotated. The
VADER lexicon and rule-based sentiment
analysis tool is one such example of a high
performing knowledge-based system that im-
plements grammatical and syntactical rules
(Hutto and Gilbert, 2014);

• Can be used to bootstrap a semi-automatic
annotation process for large-scale machine
learning i.e., deep learning models;

• Can encourage more researchers/people
working in this domain to add to this dataset
which is available for public use;

• Is a representative corpus for computational
corpus linguistic analysis for social scientists.

6 Conclusions

We have described a novel dataset of social opin-
ions for the Malta Government Budget 2018
which is a valuable resource for developing opin-
ion mining tools that gather political and socio-
economic insights from user-generated social data
in Malta’s two official languages, Maltese and En-
glish. Therefore, it has potential of being used
for initiatives by the Maltese Government, such
as building intelligence on the Maltese Economy.
The novelty of including Maltese and English on-
line posts in this dataset, makes it a valuable re-
source for Maltese Human Language Technology
and for testing Opinion Mining applications in
general.

Moreover, it has been annotated with several
forms of opinions in sentiment, emotion, sarcasm
and irony, making it highly beneficial and a first
contribution of its kind for Malta. Finally, this
dataset is a work in progress and its volume will
be increased per annual budget.
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Abstract

This study analyzes the political slants of
user comments on Korean partisan media. We
built a BERT-based classifier to detect political
leaning of short comments via the use of semi-
unsupervised deep learning methods that pro-
duced an F1 score of 0.83. As a result of clas-
sifying 21.6K comments, we found the high
presence of conservative bias on both conser-
vative and liberal news outlets. Moreover, this
study discloses an asymmetry across the par-
tisan spectrum in that more liberals (48.0%)
than conservatives (23.6%) comment not only
on news stories resonating with their politi-
cal perspectives but also on those challenging
their viewpoints. These findings advance the
current understanding of online echo cham-
bers.

1 Introduction

User-generated news comments manifest the in-
teractive and participatory nature of online jour-
nalism. Unlike letters to the editor, the comments
section allows readers to express their thoughts
and feelings in response to news stories they
read more publicly and instantaneously. Moreover,
comments themselves generate subsequent user
reactions from others. For example, in South Ko-
rea, news portals wherein the vast majority con-
sume news online displays the list of “most com-
mented” articles along with the “most viewed”
news stories. This aggregation of user responses is
a major contributing factor toward news selection
(KPF, 2018). As such, real-time user reactions,
rather than the cover stories of newspapers, now
tell people what to read and think about, signify-
ing the shift of the traditional direction of agenda-
setting (Lee and Tandoc, 2017).

On a related note, about 63% of South Kore-
ans getting news online reported they regularly
read the comments section (DMCReport, 2013)
and consider them as a valid, direct cue to public

opinion (Lee and Tandoc, 2017). Much research
has corroborated the role of comments on the for-
mation of public opinion (Springer, Engelmann,
and Pfaffinger, 2015; Waddell, 2018). Nonethe-
less, diverging from the massive scholarly atten-
tion paid to the role of hyper-partisan news me-
dia, little research has analyzed political biases of
news comments. This study aims to fill this void
in current literature by examining political slants
of news comments as well as the overlap of com-
menters across the partisan spectrum. These exam-
inations will contribute to advancing the current
understanding of the presence of echo chambers
in the realm of online news comment sections.

To analyze comments on a million scale, we
took two different approaches. First, we trained
a BERT model based on news stories published
by both liberal and conservative news outlets. Sec-
ond, we expanded the seed data of human-labeled
news comments with the use of user informa-
tion and built a comment-specific classifier. Next,
based on the best performing model, the political
slants of 21.6K news comments were analyzed.
This allows us to examine the composition of the
political diversity of commenters within each lib-
eral and conservative news outlet. For the identi-
fied liberal- or conservative-leaning commenters,
we also tracked whether they leave comments on
news stories resonating with their own political
preferences or do so to news stories challenging
their political viewpoints.

2 Related Work

2.1 Partisan Media and Echo Chambers

The proliferation of partisan media has invited
much scholarly concern about the rise of echo
chambers (Sunstein, 2009). As more people tune
into news outlets congenial to their political
viewpoints, their existing preferences reinforce
and, in turn, opinion polarization and social ex-
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tremism become prevalent (Iyengar and Hahn,
2009; Stroud, 2010). The recent employment of
web tracking technologies, however, rebuts the
echo chamber hypothesis with the observational
data showing accidental or purposeful crosscut-
ting news exposure (Gentzkow and Shapiro, 2011;
Flaxman, Goel, and Rao, 2016).

However, in the realms of online discussion fo-
rums including online news commenting sections,
to date there is no evidence opposing the extant
findings such that people are more likely to leave
comments in alignment with the other posts, thus
leaving user commenting sections homogeneous
(Lee and Jang, 2010; Hsueh, Yogeeswaran, and
Malinen, 2015). Interestingly, whereas user com-
ments posted on news websites exerted consider-
able power in the perceptions of individuals’ in-
ference about public opinion (Lee and Jang, 2010,
2010), no such effect emerged when it comes to
user comments posted on news outlets’ Facebook
pages (Winter, Brückner, and Krämer, 2015).

2.2 Neural Network for Text Classification

User-contributed news comments are, by nature,
informal, irregular, and erratic. To reduce the noise
of the dataset as such, many studies have adopted
various data cleaning methods. However, user gen-
erated text is difficult to sanitize and the results
could be misleading if we apply a naive statistic
method. Recent NLP (natural language process-
ing) research has shown that neural network ap-
proaches outperform conventional statistical mod-
els. For instance, TextCNN (Kim, 2014) gained
performance in text classification tasks via intro-
ducing convolutional layers and BERT (Devlin,
Chang, Lee, and Toutanova, 2018) shows state-
of-the-art results via its bidirectional transformer
network, and it shows Modern text classification
methods utilize pretrained models like BERT by
fine-tuning them on the target NLP domain.

3 Data Collection

Using “minimum wage” as a keyword, we crawled
news stories and their associated user comments
on NAVER, the top news portal site in South Ko-
rea. The platform offers its own user comment-
ing section and ten times more Internet users
are known to read news on NAVER compared
to individual news websites. From January to
July of 2019, 1534 articles from three conser-
vative news outlets–Chosun Ilbo, Joongang Ilbo,

and Donga Ilbo–and 765 from thee progres-
sive ones–Hankyoreh, Kyunghyang Shinmun, and
OhMyNews–were collected, with a total of 2299
news stories.

We collected press releases of the two major po-
litical parties in South Korea–the liberal Demo-
cratic Party of Korea and the conservative Lib-
erty Korea Party–containing the phrase “minimum
wage.” This data serves as the basis for learn-
ing partisan framing and for filtering out irrele-
vant topics that might create noise in determin-
ing the political stance of news comments. We
performed part-of-speech tagging on the press re-
leases and analyzed the frequency of nouns and
bigrams. From the list of nouns and bigrams ap-
pearing more than a hundred times, the authors
carefully examined and selected phrases that were
relevant. In this way, the list of related keywords
(i.e., nouns and bigrams) on the minimum wage
was compiled for the liberal and conservative par-
ties, respectively. This list includes a wide range
of phrases relevant to politics in general, such
as inter-Korean summit, denuclearization, corrup-
tion, flexible working hours, labor union, and un-
employment rates.

Online news comments were also collected
from NAVER’s top “most commented” stories
on each of seven major news sections including
national, politics, economy, culture, world, and
lifestyle, resulting in a total of 210 most com-
mented news stories per day. These news stories
received around 38 million news comments by 1.8
million unique users. This data contains text con-
tent as well as user identifiers.

4 Language Models

4.1 Classification from News Articles

We first built a classifier trained on news articles
in order to observe how well news articles could
proxy comments in the task of political bias clas-
sification. To compensate for the relatively small
news article dataset, we spliced the news articles
into individual sentences and then filtered in sen-
tences that included at least one of the identified
partisan-specific keywords. Two hundred conser-
vative and liberal articles (100 each) were set aside
for validation tests. The remaining 2,099 articles
were spliced sentences, resulting in 49.8K sen-
tences. Each sentence was labeled as either con-
servative or liberal based on the political leaning
of the news outlets. The completed dataset con-
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sists of 20.3K liberal and 29.5K conservative sen-
tences.

Using the BERT-based pre-trained model for
the Korean language, KorBERT1, we trained a
classifier for binary classification task of news sen-
tences. Test data composed of the 200 news ar-
ticles mentioned above (i.e., 100 each from lib-
eral and conservative news outlets). Test sets were
further prepared in two different manners: (1)
the HEADLINE representation includes headlines
only of the labeled data and (2) the BODY-TEXT
representation includes only sentences containing
partisan-specific keywords in the news body text.
The former representation was considered since
political slant are known to be more apparent in
news headlines.

4.2 Classification from News Comments

We also built another language model that is
trained on the slants of news comments directly.
To obtain labels, we randomly sampled 4,827 user
comments that had been posted to stories on the
minimum wage and employed three coders. These
coders labeled each comment as liberal, conser-
vative, or other (including nuetral). After a series
of training sessions, coders could achieve an ac-
ceptable inter-coder reliability (Krippendorff’s al-
pha = .7015). Coders next independently labeled
the rest. This human-labeled dataset consisted of
1,345 liberal (27.6%), 1,597 conservative (32.8%),
and 1,930 other (39.6%) comments.

To ensure sufficient training data, we expanded
the comment labels by a semi-unsupervised
method. All online users who had authored at least
two comments in the human-labeled dataset were
identified. The bias of each user was computed as
the mean of their comment labels, where scores
are -1 for a liberal comment and +1 for a conser-
vative. We selected those users whose mean bias
score was below -0.8 or above 0.8 and identified
250 such users, whose political leaning could be
recognized. We then collected all comments au-
thored by the 250 users from the entire news cor-
pus of 6 months. Under the assumption that the po-
litical stance of these users would be constant dur-
ing this time period, we labeled these comments
with the author’s computed political bias. The fi-
nal dataset contained a total of 93,565 comments,
out of which 17,535 were liberal and 76,030 were
conservative.

1http://aiopen.etri.re.kr/

The expanded comment labels were used to
train two NLP models: TextCNN and BERT. We
undersampled 17,535 conservative comments to
balance the labels, resulting in a total of 35,070
labels. We set aside 10% of labels as the test set,
then split the remainder into 10% of the validation
set and 90% of the train set to train the models.

The TextCNN-based model employed padding
up to 300 characters, which is the maximum length
of comments on NAVER. Comments were tok-
enized on character level and fed into an embed-
ding layer of 300 dimensions. The model used
a single-dimensional CNN with the channels of
sizes 5, 10, 15, and 20, respectively. Then the data
were fed into the max-pooling layer with a dropout
ratio of 0.5 and classified through a linear layer.
We used Adam optimizer with the default learning
rate (1e-3) and trained six epochs, as validation
loss did not converge. For the second model, we
again utilized the pretrained BERT model for the
Korean language, KorBERT. Comments were tok-
enized by words and padded to a size of 70. The
model converged after two epochs with a higher
learning rate (1e-3), with the lowest loss.

5 Results

5.1 Bias Classification
After training the BERT classifier on news sen-
tence labels, we evaluated the model by classify-
ing political slants of the HEADLINE and BODY-
TEXT representations into liberal and conserva-
tive labels. The performance of the classifiers was
measured in terms of Matthew’s correlation coef-
ficient, accuracy, and F1-scores. Table 1 summa-
rizes the results, which shows the BODY-TEXT
representation of the validation set showed the best
result. The slant detection model trained on news
article data, however, was not effective in detect-
ing slant of user-contributed comments, indicated
by the low F1 score of 0.3571.

Test set Matthew’s Accuracy F1

HEADLINE 0.7825 0.8900 0.8942
BODY-TEXT 0.8202 0.9100 0.9109

Comments -0.0844 0.4600 0.3571

Table 1: Performance of Article Bias Classifier

When comment labels were utilized for train-
ing, existing language models could success-
fully detect the slant of news comments, as dis-
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Figure 1: The proportion of liberal and conservative news comments within the progressive and conser-
vative media’s comment sections

played in Table 2. BERT-based model outper-
formed TextCNN model in this domain-specific
learning task.

Models Matthew’s Accuracy F1

TextCNN 0.5087 0.7516 0.7684
BERT 0.6644 0.8322 0.8322

Table 2: Performance of Comment Bias Classifier

5.2 Bias Distribution in User Comments

We analyzed the distribution of political slants
in the comment sections. From the set of news
articles on minimum wage, we inferred politi-
cal bias labels for the comments of all articles
published by the aforementioned major outlets
with the best-performing model (i.e., BERT-based
model trained on comment labels) and used it to
derive a statistic on bias distribution.

Fig 1 shows the percentage of liberal and con-
servative comments for each news outlet based on
the labels inferred. The figure demonstrates a clear
presence of conservative bias in user comments
across all partisan news media; Even for the bot-
tom three liberal outlets, more news comments are
conservative-leaning, as opposed to the widely ac-
cepted echo chamber conjecture in digital media.

6 Discussion & Conclusion

The slant classifier trained on news articles related
to the minimum wage issue performed well on
similar news articles. However, the same model
performed poorly in the comments section. This
may be due to the unstructured nature of the user-
generated data that is very different from editori-
alized news content. The slant classifiers trained
on the labeled comment data, however, showed
promising performance on classifying the political
bias of crowd-generated comments.

The analysis in this paper revealed that the ma-
jority of user comments are pro-conservatives in
Korean news outlets, although conservative par-
tisan media attracted more congenial comments
(71.1% conservative versus 28.9% liberal) than
liberal ones (46.4% liberal versus 53.6% conser-
vative). This finding may suggest the fallacy of on-
line echo chambers in Korean news media.

We do not, however, argue that the prominent
crossover, of news commenters in both liberal and
conservative news stories, represents that online
users in South Korea have established a more bal-
anced news reading habits nor have disrupted the
“filter bubble.” Notably, because a recent study in-
dicated that being exposed to opposing views can
sometimes backfire and further increase polariza-
tion (Bail et al., 2018).

Moreover, the auxiliary analyses tracking user
IDs further showed that less than half of liberals
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(48.0%) and conservatives (23.6%) commented on
both congenial and uncongenial partisan news out-
lets. This finding provides imperative insights to
the current understanding of online political dis-
cussions in the era of partisan media.

This work bares several limitations that can be
improved. First, the expanded comments dataset
that was built from human-labeled news com-
ments could be validated further. While we as-
sumed people’s slant remains consistent over a
half a year, there is a chance that the political slant
of commenters could differ by news topics. Sec-
ond, while this paper utilized data from contrib-
utors who post news comments frequently, future
methods could also consider data from one-time
commenters. Such methods could reveal the politi-
cal slant map of comments more comprehensively.
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Abstract

Distinguishing between singular and plural
“you” in English is a challenging task which
has potential for downstream applications,
such as machine translation or coreference res-
olution. While formal written English does
not distinguish between these cases, other lan-
guages (such as Spanish), as well as other di-
alects of English (via phrases such as “y’all”),
do make this distinction. We make use of
this to obtain distantly-supervised labels for
the task on a large-scale in two domains. Fol-
lowing, we train a model to distinguish be-
tween the single/plural ‘you’, finding that al-
though in-domain training achieves reason-
able accuracy (≥ 77%), there is still a lot
of room for improvement, especially in the
domain-transfer scenario, which proves ex-
tremely challenging. Our code and data are
publicly available.1

1 Introduction

The second-person personal pronoun (e.g., “you”
in English) is used by a speaker when referring to
active participants in a dialog or an event. Various
languages, such as Spanish, Hebrew, or French,
have different words to distinguish between sin-
gular “you” (referring to a single participant) and
plural “you” (for multiple participants). Tradi-
tionally, English has made this distinction as well.
The now archaic “thou” indicated singular second-
person, while “you” was reserved for plural uses.
The last several hundred years, however, have seen
modern formal written English largely abandoning
this distinction, conflating both meanings into an
ambiguous “all-purpose you” (Maynor, 2000).

In this work, we are interested in the following
∗ Work done during an internship at the Allen Institute

for Artificial Intelligence.
1https://github.com/gabrielStanovsky/

yall

Figure 1: We use two sources for distant-supervision
for singular (marked in purple) versus plural (marked
in blue) second person pronouns: (a) we find colloquial
uses on Twitter, and (b) through alignment with Span-
ish, which formally distinguishes between the cases.

research question: How can we automatically dis-
ambiguate between singular and plural “you”?

While this topic has received much attention in
linguistic literature (Jochnowitz, 1983; Tillery and
Bailey, 1998; Maynor, 2000; Haspelmath, 2013;
Molina, 2016), it has been largely unexplored in
the context of computational linguistics, despite its
potential benefits for downstream natural language
processing (NLP) tasks. For example, distinguish-
ing between singular and plural “you” can serve
as additional signal when translating between En-
glish and a language which formally makes this
distinction. See Figure 2 where an error in inter-
preting a plural “you” in the source English text
results in a non-grammatical Hebrew translation.
This example can be amended by replacing “you”
with the informal “you guys”.

To tackle this task, we create two large-scale
corpora annotated with distantly-supervised bi-
nary labels distinguishing between singular and
plural “you” in two different domains (see Fig-
ure 1). First, we regard Twitter as a noisy cor-
pus for informal English and automatically iden-
tify speakers who make use of an informal form of
the English plural “you”, such as “y’all” or “you
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Figure 2: An example translation from English to Hebrew (Google Translate, Aug. 21, 2019). The first sentence
depicts wrong interpretation of “you” resulting in a non-grammatical Hebrew translation, due to wrong inflections
of pronoun and verb (marked in red). Both issues are fixed when changing “you” to “you guys” in English in the
second example (marked in green).

Domain Example Plurality

Twitter # goodnight #twittersphere <3 I love y’all! Including @anonimized. Even if
she hates me. <3

Plural

(masked) # goodnight #twittersphere <3 I love you! Including @anonimized. Even if
she hates me. <3

Twitter ! @anonimized, Happy anniversary of entering the world! Look how much you
have done!

Singular

Europarl I am terribly sorry, Mr Hansch and Mr Cox. I did not see you asking to speak. Plural

Europarl I should be very grateful, Mrs Schroedter, if you would actually include this
proposed amendment in the part relating to subsidiarity in your positive delib-
erations.

Singular

Table 1: Examples from our two domains. Twitter is informal, includes hashtags, mentions (anonymized here),
and plural “you” (e.g., “y’all” in the first example), which we mask as a generic “you” as shown in the second row.
In contrast, Europarl is formal and “you” is used for plural (third example), as well as singular uses (last example).

guys”, which are common in American English
speaking communities (Katz, 2016). We record a
plurality binary label, and mask the tweet by re-
placing these with the generic “you”. Second, we
use the Europarl English-Spanish parallel corpus
(Koehn, 2005), and identify cases where the for-
mal plural Spanish second-person pronoun aligns
with “you” in the English text.

Finally, we fine-tune BERT (Devlin et al., 2018)
on each of these corpora. We find that contextual
cues indeed allow our model to recover the correct
intended use in more than 77% of the instances,
when tested in-domain. Out-of-domain perfor-
mance drops significantly, doing only slightly bet-
ter than a random coin toss. This could indicate
that models are learning surface cues which are
highly domain-dependent and do not generalize
well.

Future work can make use of our corpus and
techniques to collect more data for this task, as
well as incorporating similar predictors in down-

stream tasks.

2 Task Definition

Given the word “you” marked in an input text, the
task of plurality identification is to make a binary
decision whether this utterance refers to:

• A single entity, such as the examples in rows
2 or 4 in Table 1.

• Multiple participants, such as those referred
to in the third line in Table 1.

In the following sections we collect data for this
task and develop models for its automatic predic-
tion.

3 Distant Supervision: The y’all Corpus

Manually collecting data for this task on a large-
scale is an expensive and involved process. In-
stead, we employ different techniques to obtain
distantly supervised labels in two domains, as
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Twitter Europarl

Train 58963 11249
Dev 7370 1405
Test 7370 1405
Total 73703 14059

Table 2: Number of instances in our two corpora. Each
of the partitions (train, dev, test) is equally split be-
tween plural and singular second-person personal pro-
nouns.

elaborated below. These are then randomly split
between train (80% of the data), development, and
test (10% each). See Table 2 for details about each
of these datasets, which we make publicly avail-
able.

3.1 The Twitter Domain
As mentioned in the Introduction, English speak-
ing communities tend to maintain the singular ver-
sus plural “you” distinction by introducing id-
iosyncratic phrases which specifically indicate a
plural pronoun, while reserving “you” for the sin-
gular use-case. We operationalize this observation
on a large Twitter corpus (Cheng et al., 2010) in
the following manner:

• First, we identify speakers who use an infor-
mal plural “you” at least once in any of their
tweets.2

• Following, we assume that these users speak
an English dialect which distinguishes be-
tween singular and plural second-person pro-
nouns, interpreting their “you” as a singular
pronoun. See the first two tweets in Table 1,
for an example of these two uses by the same
user.

• Finally, we mask out the plural pronoun in
each of their tweets by replacing it with a
generic “you” (see the second row in Table
1). This allows us to test whether models
can subsequently rely on contextual cues to
recover the original intention.

This process yields about 36K plural instances,
which we augment with 36K singular instances
from the same users, to obtain a corpus which is
balanced between the two classes.

2We use a fixed list of informal plural “you”, in-
cluding you guys, y’all and youse. See https:
//en.wikipedia.org/wiki/You#Informal_
plural_forms for the complete list.

Figure 3: Histogram distribution of informal plural
“you” forms in the development partition of our Twitter
corpus.

Figure 4: Variation in the most common phrase used
for plural “you” in our Twitter corpus across states in
the continental United States.

Data analysis Our Twitter corpus was com-
posed of U.S. based users, and included geo-
locations for 36.8K of the plural tweets. This al-
lows for several interesting observations. First,
Figure 3 shows the distribution of informal plu-
ral “you” phrases in our corpus (before masking).
Second, using the tweets geo-location, we can
plot the geographical variation in usage. Figure 4
shows the most common term for plural “you” in
each state in the continental United States. While
most of the U.S. prefers “you guys”, southern
states (such as Texas or Louisiana) prefer “y’all”.
Katz (2016) reached similar conclusions through
a large-scale online survey. Interestingly, our sur-
vey of Twitter usage differs from theirs for several
Midwestern states, such as Wyoming or Nebraska.

Quality estimation. We evaluate the assump-
tion we made above (i.e., that users reserve “you”
for the singular case) by asking an English native-
speaker to annotate a sample of 100 singular “you”
instances from our Twitter corpus. In 70% of the
instances, the annotator agreed that these indeed
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represent a singular “you”, leaving the other 30%
to either ambiguous or inconsistent usage (i.e.,
sometimes “you” is used for a plural use-case).
Overall, while there is a non-negligible amount of
noise in the Twitter domain, in Section 5 we show
that the signal is strong enough for models to pick
up on and achieve good accuracy.

3.2 The Europarl Domain

Another method to obtain distant supervision for
this task is through an alignment with a language
which distinguishes between the two usages of
the pronoun. To that end, we use the Spanish
and English parallel texts available as part of Eu-
roparl (Koehn, 2005), a large corpus containing
aligned sentences from meeting transcripts of the
European parliament.

As these texts originate from a formal setting,
we expect to find much less colloquial phrases. In-
deed, the term “y’all” does not appear at all, while
“you guys” appears only twice in about 2 million
sentences. Instead, we rely on the gold alignment
with Spanish sentences, which have a formal plu-
ral “you” - ustedes or vosotros. We find Spanish
sentences which have exactly one plural “you” and
which aligns with an English sentence containing
exactly one “you”. This process yields about 7K
sentences which we mark with a “plural” label.
Similarly to the Twitter domain, we augment these
with the same amount of singular “you”, found
in the same manner; by tracing a Spanish singu-
lar “you” to a single English “you”. This process
yields a balanced binary corpus.

Quality estimation We sampled 100 instances
from the Europarl domain to estimate the quality
of our binary labels. Unlike the Twitter domain, in
Europarl we rely on gold alignments and cleaner
text. As a result, we found that about 90% of the
labels agree with a human annotator, while the re-
maining 10% were ambiguous.

3.3 Discussion

The distinction between plural and singular “you”
in English is an instance of a more general phe-
nomenon. Namely, semantic features are ex-
pressed in varying degrees of lexical or grammati-
cal explicitness across different languages.

For instance, languages vary in grammati-
cal tense-marking (Wolfram, 1985), from lan-
guages with no morphological tense, such as
Mandarin (Wang and Sun, 2015), to languages

test→ Europarl Twittertrain ↓
Europarl 77.1 56.8
Twitter 56.3 83.1
Joint 77.5 82.8

Table 3: Accuracy (percent of correct predictions) of
our fine-tuned BERT model, tested both in- and out-of-
domain. Rows indicate train corpus, columns indicate
test corpus. Bold numbers indicate best performance
on test corpus.

with 9 different tense-marking morphological in-
flections (Comrie, 1985). Similarly, languages
vary in gender-marking in pronouns, from gender-
less Turkish, to languages with six genders or
more (Awde and Galaev, 1997).

The two data collection methods we presented
here, finding colloquial explicit utterances on so-
cial media, and alignment with another language,
may also be applicable to some of these phenom-
ena and present an interesting avenue for future
work.

4 Model

We fine-tune the BERT-large pretrained embed-
dings (Devlin et al., 2018)3 on the training par-
tition of each of our domains (Twitter and Eu-
roparl), as well as on a concatenation of both do-
mains (Joint). We then classify based on the [CLS]
token in each of these instances. We use a fixed
learning rate of 2e − 5 and a batch size of 24.
Training for 10 Epochs on a Titan X GPU took
about 3 hours for the Twitter domain, 2 hours for
the Europarl domain and roughly 5 hours for the
Joint model.

5 Evaluation

We test models trained both in and out of domain
for both parts of our dataset (Twitter and Europarl)
as well as a joint model, trained on both parts
of the dataset. We use accuracy (percent of cor-
rect predictions), as our dataset is binary and both
classes are symmetric and evenly distributed. Our
main findings are shown in Table 3. Following,
several observations can be made.

3Using Hugging Face’s implementation:
https://github.com/huggingface/
pytorch-transformers
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In-domain performance does significantly bet-
ter than chance. For both domains, BERT
achieves more than 77% accuracy. Indicating that
the contextual cues in both domains are meaning-
ful enough to capture correlations with plural and
singular uses.

Out-of-domain performance is significantly de-
graded. We see significant drop in performance
when testing either model on the other part of the
dataset. Both models do only slightly better than
chance. This may indicate that the cues for plural-
ity are vastly different between the two domains,
probably due to differences in vocabulary, tone, or
formality.

Training jointly on the two domains maintains
good performance, but does not improve upon
it. A model trained on both the Twitter and Eu-
roparl domains achieves the in-domain perfor-
mance of each of the individual in-domain mod-
els, but does not improve over them. This may
indicate that while BERT is expressive enough to
model both domains, it only picks up on surface
cues in each and does not generalize across do-
mains. As a result, robustness is questionable for
out-of-domain instances.

6 Related Work

Several previous works have touched on related
topics. A few works developed models for under-
standing the second-person pronoun within coref-
erence resolution frameworks (Purver et al., 2009;
Zhou and Choi, 2018). Perhaps most related to
our work is Gupta et al. (2007), who have tack-
led the orthogonal problem of disambiguation be-
tween generic (or editorial) “you” and referential
“you”.

To the best of our knowledge, we are the first to
deal with plurality identification in second-person
personal pronouns in English.

7 Conclusion and Future Work

We presented the first corpus for the identification
of plurality in second-person personal pronouns in
English texts. Labels were collected on a large
scale from two domains (Twitter and Europarl) us-
ing different distant-supervision techniques.

Following, a BERT model was fine-tuned on the
labeled data, showing that while models achieve
reasonable in-domain performance, they signifi-
cantly suffer from domain transfer, degrading per-

formance close to random chance. Interesting av-
enues for future work may be to extend this data to
new domains, develop more complex models for
the task (which may achieve better cross-domain
performance), and integrating plurality models in
downstream tasks, such as machine translation or
coreference resolution.
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Abstract

We propose an edit-centric approach to as-
sess Wikipedia article quality as a complemen-
tary alternative to current full document-based
techniques. Our model consists of a main clas-
sifier equipped with an auxiliary generative
module which, for a given edit, jointly pro-
vides an estimation of its quality and gener-
ates a description in natural language. We per-
formed an empirical study to assess the fea-
sibility of the proposed model and its cost-
effectiveness in terms of data and quality re-
quirements.

1 Introduction

Wikipedia is arguably the world’s most famous
example of crowd-sourcing involving natural lan-
guage. Given its open-edit nature, article often
end up containing passages that can be regarded
as noisy. These may be the indirect result of be-
nign edits that do not meet certain standards, or
a more direct consequence of vandalism attacks.
In this context, assessing the quality of the large
and heterogeneous stream of contributions is crit-
ical for maintaining Wikipedia’s reputation and
credibility. To that end, the WikiMedia Foun-
dation has deployed a tool named ORES (Hal-
faker and Taraborelli, 2015) to help monitor article
quality, which treats quality assessment as a su-
pervised multi-class classification problem. This
tool is static, works at the document-level, and is
based on a set of predefined hand-crafted features
(Warncke-Wang et al., 2015).

While the ORES approach seems to work ef-
fectively, considering the whole document could
have negative repercussions. As seen on Figure
1, article length naturally increases over time (see
Appendix A.1 for additional examples), which
could lead to scalability issues and harm predic-
tive performance, as compressing a large amount
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Figure 1: Monthly average of the article/edits length
(in number of characters) for the United States article.

of content into hand crafted features could dimin-
ish their discriminative power. We conducted an
exploratory analysis using a state-of-the-art (Dang
and Ignat, 2016) document-level approach, finding
that there is a clear negative relationship between
document length and model accuracy (see details
on Appendix A.2).

In light of this, we are interested in exploring
a complementary alternative for assessing article
quality in Wikipedia. We propose a model that re-
ceives as input only the edit, computed as the dif-
ference between two consecutive article versions
associated to a contribution, and returns a measure
of article quality. As seen on Figure 1, edit lengths
exhibit a more stable distribution over time.

Moreover, as edits are usually accompanied by
a short description which clarifies their purpose
and helps with the reviewing process (Guzman
et al., 2014), we explore whether this informa-
tion could help improve quality assessment by also
proposing a model that jointly predicts the quality
of a given edit and generates a description of it
in natural language. Our hypothesis is that while
both tasks may not be completely aligned, the
quality aspect could be benefited by accounting for
the dual nature of the edit representation.

We performed an empirical study on a set of
Wikipedia pages and their edit history, evaluating
the feasibility of the approach. Our results show
that our edit-level model offers competitive re-
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sults, benefiting from the proposed auxiliary task.
In addition to requiring less content as input, we
believe our model offers a more natural approach
by focusing on the actual parts of the documents
that were modified, ultimately allowing us to tran-
sition from a static, document-based approach,
to an edit-based approach for quality assessment.
Our code and data are available on GitHub1.

2 Related Work

In terms of quality assessment, the pioneer work
of Hu et al. (2007) used the interaction between
articles and their editors to estimate quality, pro-
posed as a classification task. Later, Kittur and
Kraut (2008) studied how the number of editors
and their coordination affects article quality, while
Blumenstock (2008) proposed to use word count
for measuring article quality.

Warncke-Wang et al. (2013, 2015) took the clas-
sification approach and characterized an article
version with several hand-crafted features, train-
ing a SVM-based model whose updated version
was deployed into the ORES system. More re-
cent work has experimented with models based
on representation learning, such as Dang and Ig-
nat (2016) who used a doc2vec-based approach,
and Shen et al. (2017) who trained an RNN to en-
code the article content. While all these models
are inherently static, as they model the content of
a version, the work of Zhang et al. (2018) is, to the
best of our knowledge, the only one to propose a
history-based approach.

On the other hand, Su and Liu (2015) tackled
the quality problem by using a psycho-lexical re-
source, while Kiesel et al. (2017) aimed at auto-
matically detecting vandalism utilizing change in-
formation as a primary input. Gandon et al. (2016)
also validated the importance of the editing history
of Wikipedia pages as a source of information.

In addition to quality assessment, our work is
also related to generative modeling on Wikipedia.
Recent work includes approaches based on au-
toencoders, such as Chisholm et al. (2017), who
generate short biographies, and Yin et al. (2019)
who directly learn diff representations. Other
works include the approach by Zhang et al. (2017)
which summarizes the discussion surrounding a
change in the content, and by Boyd (2018) who
utilizes Wikipedia edits to augment a small dataset
for grammatical error correction in German.

1github.com/epochx/wikigen

3 Proposed Approach

Our goal is to model the quality assessment task
on Wikipedia articles from a dynamic perspective.
Let v1, . . . , vT be the sequence of the time-sorted
T revisions of a given article in Wikipedia. Given
a pair of consecutive revisions (vt−1, vt), an edit
et = ∆t

t−1(v) is the result of applying the Unix
diff tool over the wikitext2 contents of the revision
pair, allowing us to recover the added and deleted
lines on each edition.

Due to the line-based approach of the Unix diff
tool, small changes in wikitext may lead to big
chunks (or hunks) of differences in the resulting
diff file. Moreover, as changes usually occur at the
sentence level, these chunks can contain a consid-
erable amount of duplicated information. To more
accurately isolate the introduced change, we seg-
ment the added and removed lines on each hunk
into sentences, and eliminate the ones appearing
both in the added and removed lines. Whenever
multiple sentences have been modified, we use
string matching techniques to identify the before-
after pairs. After this process, et can be charac-
terized with a set of before-after sentence pairs
(s−ti , s

+
ti), where s+ti is an empty string in case of

full deletion, and vice-versa.
Similarly to Yin et al. (2019), to obtain a fine-

grained characterization of the edit, we tokenize
each sentence and then use a standard diff algo-
rithm to compare each sequence pair. We thus ob-
tain an alignment for each sentence pair, which in
turn allows us to identify the tokens that have been
added, removed, or remained unchanged. For each
case, we build an edit-sentence based on the align-
ment, containing added, deleted and unchanged
tokens, where the nature of each is characterized
with the token-level labels +, − and =, respec-
tively.

For a given edit et we generate an edit represen-
tation based on the contents of the associated diff,
and then use it to predict the quality of the article
in that time. We follow previous work and treat
quality assessment as a multi-class classification
task, with labels Stub ≤ Start ≤ C ≤ B ≤ GA ≤
FA. We consider a training corpus with T edits et,
1 ≤ t ≤ T .

Our quality assessment model encodes the in-
put edit-sentence using a BiLSTM. Concretely, we
use a token embedding matrix ET to represent the
input tokens, and another embedding matrix EL

2mediawiki.org/wiki/Wikitext
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to represent the token-level labels. For a given
embedded token sequence Xt and embedded label
sequence Lt, we concatenate the vectors for each
position and feed them into the BiLSTM to cap-
ture context. We later use a max pooling layer to
obtain a fixed-length edit representation, which is
fed to the classifier module.

3.1 Incorporating Edit Message Information

When a user submits an edit, she can add a short
message describing or summarizing it. We are in-
terested in studying how these messages can be
used as an additional source to support quality as-
sessment task. A natural, straightforward way to
incorporate the message into our proposal is to en-
code it into a feature vector using another BiLSTM
with pooling, and combine this with the features
learned from the edit.

Furthermore, we note that the availability of
an edit message actually converts an edit into a
dual-nature entity. In that sense, we would like
to study whether the messages are representative
constructs of the actual edits, and how this rela-
tion, if it exists, could impact the quality assess-
ment task. One way to achieve this is by learning
a mapping between edits and their messages.

Therefore, we propose to incorporate the edit
messages by adding an auxiliary task that consists
of generating a natural language description of a
given edit. The idea is to jointly train the clas-
sification and the auxiliary task to see if the per-
formance on quality assessment improves. Our
hypothesis is that while both tasks are not natu-
rally aligned, the quality aspect could benefit by
accounting for the dual nature of the edit repre-
sentation.

Our proposed generative auxiliary task is mod-
eled using a sequence-to-sequence (Sutskever
et al., 2014; Cho et al., 2014) with global atten-
tion (Bahdanau et al., 2015; Luong et al., 2015)
approach, sharing the encoder with the classifier.
During inference, we use beam search and let the
decoder run for a fixed maximum number of steps,
or until the special end-of-sentence token is gener-
ated. This task is combined with our main clas-
sification task using a linear combination of their
losses, where parameter λ weights the importance
of the classification loss. Figure 2 shows how the
model with the auxiliary task looks like.

E(1) E(2) E(3)

A

Changed  his

NN

D(2) D(3)D(1)

NN NN

birthday

E(4)

== - +

inBorn 1978 1980

FA (Featured Article)

NN

Auxiliary Generative Task

max

Figure 2: Proposed model with the addition of the mod-
ule for the auxiliary generative task.

4 Empirical Study

We collected historical dumps from Wikipedia,
choosing some of the most edited articles for both
the English and German languages. Wikipedia
dumps contain every version of a given page in
wikitext, along with metadata for every edit. To
obtain the content associated to each ∆t

t−1(v),
we sorted the extracted edits chronologically and
computed the diff of each pair of consecutive ver-
sions using the Unix diff tool. We ignore ed-
its with no accompanying message. For English
sentence splitting we used the automatic approach
by Kiss and Strunk (2006), and Somajo (Proisl
and Uhrig, 2016) for German. The quality la-
bels are obtained using the ORES API, the official
platform of the WikiMedia Foundation to perform
quality assessment. This platform is built upon a
random forest classifier with 100 trees (Warncke-
Wang et al., 2015), which when trained on a small
corpus of 2,272 random articles obtained an F1-
Score of 0.425. The API gives us a probability
distribution over the quality labels for each revi-
sion, which in this work we use as a silver stan-
dard. We randomize and then split each dataset
using a 70/10/20 ratio.

For comparison, we also consider the Wi-
kiclass dataset built by Warncke-Wang et al.
(2015), which consists of 30K revisions of random
Wikipedia articles paired with their manually-
annotated quality classes. To use this dataset with
our models, we identified and downloaded the
page revision immediately preceding each exam-
ple using the Wikipedia API, to later apply the
Unix diff tool and obtain the edits. We use the
train/test splits provided and 20% of the training
set as a validation. Other similar datasets are not
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suitable for us as they do not include the revision
ids which we require in order to obtain the edits.

4.1 Experimental Setting
On our collected datasets, the classification mod-
els are trained using the Kullback-Leibler diver-
gence as the loss function —which in our prelimi-
nary experiments worked better than using the de-
rived hard labels with cross entropy— while for
the Wikiclass dataset we used the cross entropy
with the gold standard. In both cases we used ac-
curacy on the validation set for hyper-parameter
tuning and evaluation, and also measured macro-
averaged F1-Score. For the models with the auxil-
iary task, we also evaluate our generated descrip-
tions with sentence-level BLEU-4 (Papineni et al.,
2002). All our models are trained with a maximum
input/output length of 300 tokens, a batch size of
64 and a learning rate of 0.001 with Adam.

4.2 Results
We firstly conducted an ablation study to iden-
tify the model components that have greater im-
pact on the performance. We compare our edit-
sentence encoder with a regular encoding mecha-
nism, where the tokens from s−ti and s+ti are con-
catenated (separated with a special marker token),
and with a version that ignores the token-level la-
bel embeddings.

Model F1 Acc BLEU

Regular 0.47 0.74 -
+ edit-sentence 0.56 0.80 -

+ diff tags 0.62 0.78 -

+ Generation λ = 0.2 0.28 0.61 0.25
+ Generation λ = 0.5 0.33 0.68 0.24
+ Generation λ = 0.8 0.41 0.77 0.25
+ Generation λ = 0.9 0.65 0.77 0.22

Only Generation (λ = 0) - - 0.23

Table 1: Impact of the parameters on validation perfor-
mance for the WWII article history.

As seen on Table 1, when compared against
the regular encoder, utilizing our edit-sentence ap-
proach with token-level labels leads to a higher
F1-Score and accuracy, showing the effectiveness
of our proposed edit encoder. These results also
shed some light on the trade-off between tasks
for different values of λ. We see that although
a higher value tends to give better classification
performance both in terms of F1-Score and ac-
curacy, it is also possible to see that there is a
sweet-spot that allows the classification to bene-
fit from learning an edit-message mapping, sup-

porting our hypothesis. Moreover, this comes at a
negligible variation in terms of BLEU scores, as
seen when we compare against a pure message-
generation task (Only Generation on the table).

On the other hand, when we tested the alter-
native mechanism to combine the edit and mes-
sage information simply combining their represen-
tations and feeding them to the classifier, we ob-
tained no performance improvements. This again
supports our choice to model the edit-message
mapping for the benefit of quality assessment.

Since we discarded edits that were not accom-
panied by messages during pre-processing, it is
difficult to assess the impact that the absence of
these messages may have on quality assessment.
In those cases, we believe our model with the aux-
iliary generative task could be used as a drop-in
replacement and thus help content reviewers.

Dataset
Model

Validation Test

F1 Acc BL F1 Acc BL

Barack
Obama

C 0.50 0.92 - 0.62 0.91 -
C+G 0.57 0.89 0.21 0.66 0.88 0.20

Donald
Trump

C 0.69 0.79 - 0.47 0.78 -
C+G 0.69 0.76 0.22 0.47 0.77 0.20

Guns n’
Roses

C 0.28 0.86 - 0.18 0.84 -
C+G 0.31 0.79 0.23 0.30 0.81

Xbox 360 C 0.22 0.60 - 0.30 0.61 -
C+G 0.37 0.62 0.34 0.32 0.63 0.31

Chicago C 0.36 0.71 - 0.38 0.72 -
C+G 0.44 0.70 0.30 0.39 0.71 0.29

Pink
Floyd

C 0.43 0.79 - 0.35 0.80 -
C+G 0.46 0.80 0.34 0.37 0.80 0.35

Manchester
United F.

C 0.15 0.24 - 0.17 0.72 -
C+G 0.29 0.79 0.43 0.39 0.77 0.43

Deutschland C 0.19 0.31 - 0.12 0.31 -
C+G 0.22 0.38 0.31 0.17 0.33 0.36

Zweiter
Weltkrieg

C 0.26 0.29 - 0.15 0.30 -
C+G 0.29 0.32 0.35 0.18 0.30 0.28

Table 2: Summary of our results. C indicates models
that only perform classification, and C+G models with
the auxiliary generative task. BL is short for BLEU-4.

Table 2 summarizes our best results on each se-
lected article. We see how the addition of the gen-
erative task can improve the classification perfor-
mance for both considered languages. In terms of
the task trade-off, controlled with parameter λ, we
empirically found that higher values tend to work
better for datasets with more examples.

Regarding the Wikiclass dataset, we compared
our model against a state-of-the-art document-
level approach (Dang and Ignat, 2016; Shen et al.,
2017) based on on doc2vec (Le and Mikolov,
2014). In this scenario, our model obtains an ac-
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curacy of 0.40 on the test set, while the docu-
ment level approach reaches 0.42. While the docu-
ment level approach performed slightly better, our
model is able to obtain a reasonable performance
in a more efficient manner as it requires an input
that averages only 2K characters (the edits), which
contrasts to the average 12K characters in the doc-
uments. It is worth mentioning that the perfor-
mance of the document-level approach reported by
Dang and Ignat (2016) significantly differs from
the value reported here. By looking at their im-
plementation3 we note that this value is obtained
when also using the test documents to train.

5 Conclusion and Future work

In this work we proposed a new perspective to the
problem of quality assessment in Wikipedia arti-
cles, taking as central element the dynamic nature
of the edits. Our results support our hypothesis
and show the feasibly of the approach. We be-
lieve the temporal view on the problem that the
proposed approach provides could open the door
to incorporating behavioral aspects into the quality
estimation, such as user traces and reverting activ-
ity, which are also critical to limit the amount of
noise and ensure the reliability of Wikipedia.

We think our results could represent a concrete
contribution in improving our understanding of the
evolution knowledge bases, in terms of of both
software and scientific documentation, from a lin-
guistic perspective. We envision this as a tool
that could be useful for supporting documentation
and quality-related tasks in collaborative environ-
ments, where human supervision is insufficient or
not always available.
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Abstract

Additive compositionality of word embedding
models has been studied from empirical and
theoretical perspectives. Existing research on
justifying additive compositionality of exist-
ing word embedding models requires a rather
strong assumption of uniform word distribu-
tion. In this paper, we relax that assumption
and propose more realistic conditions for prov-
ing additive compositionality, and we develop
a novel word and sub-word embedding model
that satisfies additive compositionality under
those conditions. We then empirically show
our model’s improved semantic representation
performance on word similarity and noisy sen-
tence similarity.

1 Introduction

Previous word embedding studies have empiri-
cally shown linguistic regularities represented as
linear translation in the word vector space, but they
do not explain these empirical results mathemat-
ically (Mikolov et al., 2013b; Pennington et al.,
2014; Bojanowski et al., 2017).

Recent studies present theoretical advances to
interpret these word embedding models. Levy and
Goldberg (2014b) show that the global optimum
of SGNS (Skip-Gram with Negative Sampling) is
the shifted PMI (PMI(i, j)−k). Arora et al. (2016)
propose a generative model to explain PMI-based
distributional models and presents a mathemati-
cal explanation of the linguistic regularity in Skip-
Gram (Mikolov et al., 2013a). Gittens et al. (2017)
provide a theoretical justification of the additive
compositionality of Skip-Gram and shows that the
linguistic regularity of Skip-Gram is explained by
additive compositionality of Skip-Gram (Mikolov
et al., 2013a). One property of the word vectors
that equates to satisfying additive compositional-
ity is the following:

~uc =

n∑

i=1

~uci

where word c is the paraphrase word of the set of
words {c1, ..., cn}, and ~u is the vector representa-
tion of a word. We explain additive composition-
ality in more detail in section 3.3.

In this paper, we provide a more sound math-
ematical explanation of linguistic regularity to
overcome the limitations of previous theoretical
explanations. For instance, Levy and Goldberg
(2014b) do not provide a connection between
shifted-PMI and linguistic regularity, and Arora
et al. (2016) and Gittens et al. (2017) require
strong assumptions in their mathematical explana-
tion about linguistic regularity. Arora et al. (2016)
assume isotropy, a uniformly distributed word vec-
tor space, and Gittens et al. (2017) assume a uni-
form word frequency distribution within a corpus,
p(w) = 1/|V |.

We propose a novel word/sub-word embedding
model which we call OLIVE that satisfies exact
additive compositionality. The objective function
of OLIVE consists of two parts. One is a global
co-occurrence term to capture the semantic simi-
larity of words. The other is a regularization term
to constrain the size of the inner product of co-
occurring word pairs. We show that the global
optimum point of OLIVE is the exact PMI ma-
trix under certain condition unlike SGNS whose
optimum approximates PMI due to the sampling
process in training (Levy and Goldberg, 2014b).
The source code and pre-trained word vectors
of OLIVE are publicly available 1. By being a
more theoretically sound word embedding model
OLIVE shows improved empirical performance
for semantic representation of word vectors, and
by eliminating sampling process in SGNS, OLIVE
shows robustness on the size of the vocabulary

1https://github.com/yeonsw/OLIVE
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and sentence representation performance on var-
ious noisy settings. We evaluate the semantic rep-
resentation performance with the word similarity
task, and we show the robustness of our model by
conducting word similarity task on various vocab-
ulary size and sentence similarity task on various
noisy settings.

The contributions of our research are as follows:

• We present a novel mathematical explanation
of additive compositionality of SGNS.

• We propose a word/sub-word embedding
model that theoretically satisfies additive
compositionality. We provide the code for
this model for reproducibility.

• In addition to theoretical justification, we
show the empirical performance of our model
and its robustness.

2 Related Work

Learning word co-occurrence distribution is
known as an effective method to capture the se-
mantics of words (Baroni and Lenci, 2010; Har-
ris, 1954; Miller and Charles, 1991; Bullinaria and
Levy, 2007).

Based on this word co-occurrence distribution,
two major types of word embedding research have
been conducted. One is to use the local context
of words in a corpus to train a neural network
(Mikolov et al., 2013a,b; Bojanowski et al., 2017;
Xu et al., 2018; Khodak et al., 2018). The other
is to use the global statistics (Huang et al., 2012;
Pennington et al., 2014). Aside from the general
purpose embedding, some approaches are specific
to a domain (Shi et al., 2018) or use extra human
labeled information (Wang et al., 2018). In this
paper, we focus on the general purpose word em-
bedding.

Among those, SGNS (Skip-Gram with Negative
Sampling) (Mikolov et al., 2013b) and FastText
(Bojanowski et al., 2017) are widely-used neu-
ral network based word and sub-word embedding
models that use negative sampling (Gutmann and
Hyvärinen, 2012; Mnih and Kavukcuoglu, 2013).
With the argument that global co-occurrence
statistics, overlooked in SGNS and FastText, are
important in capturing the word semantics, Pen-
nington et al. (2014) propose GloVe.

There were empirical studies of linguistic regu-
larity in word embedding vector space (Levy and

Goldberg, 2014a; Socher et al., 2012; Botha and
Blunsom, 2014; Mikolov et al., 2013c; Socher
et al., 2013).

Although Skip-Gram and GloVe seem to cap-
ture the linguistic regularity sufficiently, from the
theoretical perspective of additive compositional-
ity of word vectors, both models are lacking be-
cause they require extra and strong assumptions
(Gittens et al., 2017; Arora et al., 2016).

Recently, (Allen and Hospedales, 2019) claim
strong assumptions in the previous word embed-
ding studies (Gittens et al., 2017; Arora et al.,
2016) and propose theoretical explanation about
linguistic regularity in SGNS based on paraphrase
definition in (Gittens et al., 2017). Although their
theory explains linguistic regularity in SGNS,
there are remaining mathematical properties in
SGNS: uniqueness of the paraphrase vector, and
the meaning of the negative sampling parameter.

In this paper, we recognize the importance of
additive compositionality of word vectors which
connects word vectors, and their linguistic regu-
larity and we provide a novel mathematical expla-
nation of SGNS’s additive compositionality and
uniqueness property in additive compositionality.
Further, we propose a novel word/sub-word em-
bedding model that satisfies additive composition-
ality based on our theory and show its capabilities
in capturing the semantics of words.

3 Preliminaries

In this section, we describe three important con-
cepts about word vectors and how they are used
in existing word embedding models. First, we de-
scribe the PMI matrix which is an approximated
global optimum point of SGNS (Skip-Gram with
Negative Sampling) (Levy and Goldberg, 2014b)
and known to capture the semantic meaning of
words in vector space (Arora et al., 2016). Second,
we describe sub-sampling, a word frequency bal-
ancing method to increase word embedding per-
formance. Third, we describe additive composi-
tionality, the notion that a paraphrase word vec-
tor is a vector sum of its context word set (Gittens
et al., 2017).

3.1 Objective Function

There are two major types of objective functions
used in word embedding models. One is used in
SGNS and is based on the PMI; and the other is
used in GloVe, based on the joint probability dis-
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tribution of word pairs, p(w1, w2).

3.1.1 Skip-Gram with Negative Sampling
SGNS iteratively trains word vectors for each co-
occurring word pair in the same local context win-
dow (Mikolov et al., 2013b). The objective func-
tion for each word pair is as follows,

LSG(i, j) = log σ(~uTi ~vj)

+
k∑

i=1

En∼p(w)[log σ(−~uTi ~vn)].
(1)

By minimizing (1), we get the global optimum
point of SGNS as follows, Levy and Goldberg
(2014b)

~uTi ~vj = PMI(i, j)− log k,

where k is the number of negative samples.
One problem of SGNS which trains word vec-

tors for each independent context window is that
it cannot utilize the global statistics of a corpus
(Pennington et al., 2014).

3.1.2 GloVe
To capture the global co-occurrence statistics of
word pairs, Pennington et al. (2014) propose
GloVe with the following objective function,

LGloVe =
∑

i,j∈D
f(i, j)(~uTi ~vj + b̃i + b̃j−logXij)

2,

which learns the word vectors that capture the
global co-occurrences of word pairs (Xij). Note
that this model does not result in the optimum be-
ing the PMI statistic, which is the condition for
additive compositionality described in section 4.

3.2 Sub-sampling

Word embedding models such as SGNS, Fast-
Text, and GloVe use various balancing methods
that reduce the frequencies of very frequent words.
These balancing methods are known to improve
the semantic structure learned by a word embed-
ding model. GloVe uses a clipping method to
their weighting function that has an upper bound
on the number of co-occurrences of word pairs.
SGNS and FastText use a sub-sampling method
that probabilistically discards frequent words dur-
ing the learning procedure with the discard proba-
bility of word i as follows (Mikolov et al., 2013b),

ps(i) = 1−
(√ s

p(i)
+

s

p(i)

)
. (2)

Here, p(i) is word frequency of word i in a cor-
pus. s is a sub-sampling parameter. In this paper,
we propose a statistical sub-sampling method that
is based on sub-sampling method in SGNS. Our
proposed method can be applied to a model that
uses global statistics.

3.3 Additive Compositionality of Gittens
et al. (2017)

Gittens et al. (2017) provide a mathematical defi-
nition of additive compositionality and a theoreti-
cal framework to justify the additive composition-
ality of Skip-Gram. They define additive compo-
sitionality by formulating a link between a para-
phrase word and its context words, where the def-
inition of paraphrase words is,

c = argmin
w∈V

DKL(p(·|C)|p(·|w)). (3)

Here, c is a word and C = {c1, ..., cn} is a set of
words. So, if a word c minimizes (3) for given set
of wordsC, then we say the word c is a paraphrase
of the word set, C. If paraphrase vector ~uc is cap-
tured by vector addition of words {c1, ..., cn}, we
call the word vectors, ~u satisfy additive composi-
tionality. Gittens et al. (2017) introduce two con-
ditions of a paraphrase word vector c to be vector
sum of a set C, ~uc =

∑n
i=1 ~uci .

• Given context word c, the probability that
word w occurs within the same window can
be calculated as follows,

p(w|c) = 1

Zc
exp (~uTw~vc). (4)

• Given the set of words C, the probability dis-
tribution of word w can be calculated as fol-
lows,

p(w|C) = p(w)1−m

ZC

m∏

i=1

p(w|ci) (5)

where Zc and ZC are normalization vari-
ables (Zc =

∑
w∈V exp (~uTw~vc), ZC =∑

w∈V p(w)
1−m∏m

i=1 p(w|ci)).

We are inspired by this mathematical definition of
additive compositionality, and our work is based
on their problem definition.

4 Additive Compositionality

To prove additive compositionality of word vec-
tors, i.e., (4) and (5) are satisfied, Gittens et al.
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(2017) assume uniform word frequency distribu-
tion, p(w) = 1/|V |. We know from Zipf’s law
that this assumption is not realistic, so we propose
to replace (4) with the following such that the word
embedding model satisfies additive composition-
ality without the uniform distribution assumption:

p(w|c) = p(w)

Zc
exp (~uTw~vc) (6)

where Zc =
∑

w∈V p(w) exp (~u
T
w~vc).

Theorem 1. If a word embedding model satisfies
(5) and (6), then the embedding vector of a para-
phrase word, ~uc can be represented by the vec-
tor sum of its context word set, c1, ..., cm, ~uc =∑m

i=1 ~uci .

Proof. The KL divergence (3) between (5) and (6)
is computed as follows,

DKL = −
∑

w∈V
p(w) exp(~uTC~vw)

{
(~uc − ~uC)T~vw

− log
(∑

w′∈V
p(w′) exp(~uTc ~vw′)

)
+ logZ

} 1
Z
.

(7)

Here, Z = ZC
∏m

i=1 zci . ~uC =
∑m

i=1 ~uci . Differ-
entiating (7) by ~uc, we get

∂DKL

∂~uc
=− 1

Z

∑

w∈V
p(w) exp(~vTw~uC)~vw

+
1

Z

∑

w∈V
p(w) exp(~vTw~uc)~vw

×
∑

w∈V p(w) exp(~v
T
w~uC)∑

w∈V p(w) exp(~v
T
w~uc)

(8)

Since (7) is convex and (8) becomes 0 when ~uc =
~uC , a paraphrase word vector can be represented
by the vector sum of its context words set, C. We
explain the details of the proof about convexity of
(7) in the Appendix.

From (4) and (6), we can show that SGNS
approximately satisfies additive compositionality
without the uniform word frequency distribution
assumption.

Theorem 2. SGNS (Skip-Gram with Negative
Sampling) approximately satisfies additive compo-
sitionality.

Proof. The approximated global optimum point
of SGNS is shifted-PMI (Levy and Goldberg,

Symbol Description

V Vocabulary
Gi Set of sub-words in word i
i, j Index of a word in vocabulary
D Set of co-occurring word pairs
σ Sigmoid function
~ui, ~vj Embedding vector of word i, j
~gi,~hj Embedding vector of sub-word i, j
k Regularization parameter
s Statistic sub-sampling parameter

Sij
Regularization coefficient
of word pair (i, j)

Table 1: Summary of the symbols

2014b). We can rewrite the approximated global
optimum point as follows,

p(i|j) = p(i)

k−1
exp(~uTi ~vj). (9)

Since (9) is the same as (6) and we can prove (5)
with Bayes’ theorem, we prove that SGNS approx-
imately satisfies additive compositionality.

5 Model

In this section, we describe our word embedding
model OLIVE which satisfies additive composi-
tionality described in section 4. We first describe
our word level embedding model and its proper-
ties, then we expand the model to the sub-word
level.

5.1 Word Level Embedding
5.1.1 Loss Function
The loss function in OLIVE consists of two parts:
1) a global co-occurrence term to capture the se-
mantic similarity of co-occurring word pairs, and
2) a regularization term with sigmoid function and
a different coefficient value for each word pair.
Here, we use the regularization term to control the
global optimal point of our model. Our proposed
loss function is

LOLIVE =

−
∑

ij∈D
p(i, j) log σ(~uTi ~vj) +

∑

ij∈D
Sijσ(~u

T
i ~vj).

(10)

Here, D is the set of co-occurring word pairs,
p(i, j) is the probability that the words (i, j) oc-
cur in the same context window, ~u,~v are the word
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embedding vectors, and Sij is the regularization
coefficient for word pair (i, j). The notations used
in our model are summarized in Table 1. By mini-
mizing this loss function, we get the word embed-
ding vectors ~u and ~v.

5.1.2 Properties
The global optimum of (10) depends on the value
Sij . When Sij is p(i, j)+p(i)p(j)k, our model has
a single local optimum – the global optimum point
which is the shifted PMI. Also, OLIVE satisfies
additive compositionality when Sij = p(i, j) +
p(i)p(j)k. We describe the theorem and the proof
below.

Theorem 3. If Sij = p(i, j) + p(i)p(j)k and
the dimension of word embedding vector ~u,~v is
sufficiently large to get global optimum point of
LOLIV E , then LOLIVE has a unique local opti-
mum with respect to ~uTi ~vj , and ~uTi ~vj becomes
PMI(i, j)− log k at the local optimum.

Proof. Let r = ~uTi ~vj . First derivative of (10) is as
follows,

∂LOLIVE

∂r

= p(i)p(j)kσ(−r)σ(r)e−r × (er − p(i, j)

p(i)p(j)k
)

(11)

Since p(i)p(j)kσ(−r)σ(r)e−r is always positive,
∂LOLIVE

∂r is positive when r satisfies the following
condition:

r ∈ (log
p(i, j)

p(i)p(j)k
,∞). (12)

Second derivative of LOLIVE is as follows,

∂LOLIVE

∂r2
=− p(i)p(j)kσ(−r)σ(r)2e−r

× (er − (2
p(i, j)

p(i)p(j)k
+ 1))

(13)

Since p(i)p(j)kσ(−r)σ(r)2e−r is always posi-
tive, ∂LOLIVE

∂r2
is positive when r satisfies following

condition:

r ∈ (−∞, log( 2p(i, j)

p(i)p(j)k
+ 1)) (14)

which leads to the following properties:

(a) ∂LOLIVE
∂r2

> 0 if r ∈ (−∞, log( 2p(i,j)
p(i)p(j)k + 1))

(b) ∂LOLIVE
∂r > 0 if r ∈ (log( p(i,j)

p(i)p(j)k ),∞)

Since log( 2p(i,j)
p(i)p(j)k + 1) > log( p(i,j)

p(i)p(j)k ), LOLIVE

has a unique local optimum with respect to ~uTi ~vj .
By simply finding r that makes (11) 0, we can
show that the global optimum is PMI(i, j) −
log k.

Theorem 4. If Sij = p(i, j) + p(i)p(j)k, then
LOLIVE satisfies additive compositionality.

Proof. From Theorem 1, we can prove Theorem 4
by showing that LOLIVE satisfies (5) and (6).

(a) We can simply prove (5) with Bayes’ theo-
rem.

(b) From Theorem 3, we can rewrite the global
optimum of our model as

p(i|j) = p(i)

k−1
exp(~uTi ~vj). (15)

Since (15) is the same as (6), we prove that
our model satisfies (6).

5.2 Sub-word Level Embedding

We can expand (10) to a sub-word level embed-
ding model without losing the properties in sec-
tion 5.1.2. Let ~ui =

∑
x∈Gi ~gx/|Gi| and ~vj =∑

y∈Gj
~hy/|Gj |. Then, the expanded sub-word

level model can be defined by the loss funtion

Lsub =

−
∑

ij∈D
p(i, j) log σ((

1

|Gi|
∑

x∈Gi
~gx)

T (
1

|Gj |
∑

y∈Gj

~hy))

+
∑

ij∈D
Sijσ((

1

|Gi|
∑

x∈Gi
~gx)

T (
1

|Gj |
∑

y∈Gj

~hy)),

(16)

where x, y are sub-word indicators in words i, j.
~g,~h are sub-word embedding vectors, and Gi is the
set of sub-words in word i.

5.3 Statistical Sub-sampling

Similar to SGNS and FastText, we apply sub-
sampling to improve word embedding perfor-
mance, but because SGNS sub-samples words in
each iteration of the learning process, we cannot
directly apply it to OLIVE which uses the global
statistics. Instead we propose a statistical sub-
sampling based on the same discard probability
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form as (2) but considering for each word whether
it needs to be sub-sampled, as follows:

ps(i) =





√
s

p(i) +
s

p(i) if p(i) > s · (
√
5+1
2 )2

1 otherwise
(17)

Here, s is the sub-sampling parameter. By mul-
tiplying the above probability to the frequency of
the word, we can get the sub-sampled global statis-
tic of a word. The statistics can be calculated by

N s
i = Ni ·ps(i), N s

i,j = Ni,j ·ps(i) ·ps(j) (18)

whereNi is the frequency of word i andNi,j is the
co-occurrence frequency of word pair (i, j).

5.4 Updating Rule
In the learning process of (10) and (16), the word
vectors are updated by gradient descent, where the
gradient of a word vector ~ui in (10) is

∂L

∂~ui
=
∑

j∈Di

p(i)p(j)k~vjσ(−~uTi ~vj)σ(~uTi ~vj)

−
∑

j∈Di

p(i, j)σ(−~uTi ~vj)2~vj .

(19)

In (16), the gradient of the sub-word vector ~gx and
~hy can be simply calculated by (19) as

∂L

∂~gx
=

∑

{i|x∈Gi}

∂L

∂~ui
,

∂L

∂~hy
=

∑

{j|y∈Gj}

∂L

∂~vj
. (20)

We update the word vectors with the normalized
gradient of the word vector. The updating rule is

~ui := ~ui − η ·
∂L

∂~ui
·
∣∣∣∣
∂L

∂~ui

∣∣∣∣
−1

(21)

where η is the learning rate.

6 Experiment

In this section, we conduct three experiments to
show the empirical effects of theoretical improve-
ment on OLIVE. First, we conduct an experiment
on the word similarity task to verify the seman-
tic representation performance of OLIVE. Sec-
ond, we report the word similarity performance
of OLIVE on various vocabulary sizes and noisy
sentence representation performance to show the
robustness of OLIVE.

6.1 Training Settings
We train our model and baseline models with the
Wikipedia English corpus with 4 billion tokens.
We preprocess the corpus with Matt Mahoney’s
perl script 2. We use Skip-Gram, FastText, GloVe,
and Probabilistic-FastText (Athiwaratkun et al.,
2018) as baseline models. For all word and sub-
word experiments, we set dimension = 300 and
windowsize = 5. To train our word/sub-word
model, we set s = 10−5, k = 50, the number of
iterations to 500, and the initial learning rate, η0 to
0.5. For every iteration, we decrease the learning
rate by the following formula:

ηt = η0 ×
1

(t+ 1)0.25
(22)

In Skip-Gram and FastText, we set the number of
negative samples to 5, the sub-sampling parameter
to 10−5 and the initial learning rate to 0.025. In
GloVe, we set the parameter x max to 100 follow-
ing their paper (Pennington et al., 2014). In Prob-
FastText (Athiwaratkun et al., 2018), we set the
parameters to the default settings in their code3.
In the sub-word experiment, we extract sub-words
whose length is in the range [2, 7].

6.2 Word Similarity
We evaluate our word embedding performance
with the word similarity task using three word
similarity datasets: MTurk-(287, 771) (Radinsky
et al., 2011), and SL-999 (Hill et al., 2015). We
compare our model with four models: Skip-Gram,
FastText, GloVe, and Probabilistic-FastText, a
multisense sub-word embedding model (Athi-
waratkun et al., 2018).

Table 3 shows the results of the word similar-
ity experiment with words that occur two or more
times in the corpus for a vocabulary size of 6.2
million words. Table 2 shows the results for the
same experiment but with words that occur five or
more times in the corpus for a vocabulary size of
2.8 million words. With both of these tables, we
can see that OLIVE outperforms all four compari-
son models.

6.2.1 Effect of Vocabulary Size
When we compare tables 2 and 3 we see sig-
nificant performance decreases in FastText, Skip-
Gram, and Prob-FastText for the larger vocab-

2http://mattmahoney.net/dc/textdata
3https://github.com/benathi/

multisense-prob-fasttext
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FastText Skip-Gram GloVe Prob-FastText OLIVE-sub OLIVE-word

MTurk-287 64.73 66.30 60.62 66.49 65.69 66.54
MTurk-771 63.92 65.32 62.30 65.81 65.43 66.31
SL-999 35.09 36.01 32.53 36.54 34.86 36.18

Table 2: Spearman’s rank correlation coefficient of word similarity task on 2.8× 106 vocabulary size.

FastText Skip-Gram GloVe Prob-FastText OLIVE-sub OLIVE-word

MTurk-287 62.46 63.38 60.77 63.17 64.33 67.22
MTurk-771 59.60 61.67 61.91 64.56 65.32 66.66
SL-999 33.04 34.20 31.98 33.83 34.99 35.81

Table 3: Spearman’s rank correlation coefficient of word similarity task on 6.2× 106 vocabulary size.
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GloVe
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Figure 1: Spearman correlation of our model, Skip-
Gram, and FastText on various vocabulary size in
MTurk-771 testset.

ulary size. On the other hand, our model and
GloVe show consistent performance, and we in-
terpret that as a result of using the global word
co-occurrence statistics. To visualize that more
clearly, we plot in Figure 1 the word similarity
scores for the MTurk-771 dataset on various vo-
cabulary sizes for the different models. This figure
clearly shows the robustness of our model with re-
spect to the vocabulary size.

6.3 Noisy Sentence Representation

In sections 4 and 5.1.2, we have shown that
our model satisfies additive compositionality and
SGNS’s approximated additive compositionality.
Theorem 1 implies equality between finding para-
phrase vector of context words and finding sen-
tence vector, which makes the sentence vector that
minimizes the KL divergence (7) to ~usentence =∑

w∈sentence ~uw. To see robustness on additive
compositionality of OLIVE that comes from re-
moving the approximation in SGNS, we measure
sentence similarity on various noise settings with
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Figure 2: Pearson correlation of OLIVE, SGNS,
GloVe, and FastText on SICK-dataset. We misspell
words with probability between [0.1, 0.4].

the sentence vectors calculated by the sum of word
vectors in the sentence.

We use SICK dataset (Marelli et al., 2014) and
all the STS-English dataset (Cer et al., 2017):
STS-train, STS-dev, and STS-test. These datasets
contain sentence pairs and human-annotated simi-
larity scores for each sentence pair. To make noise
in a sentence, we use two types of noise settings:
typo and omitted-word. We use misspelling gen-
eration method proposed in Piktus et al. (2019) to
make typos in a sentence with probability p. Pik-
tus et al. (2019) use query logs of a search engine
to build probabilistic distribution of misspelled
words of a word, p(misspelled word|word). In
omitted-word setting, we randomly discard words
in each sentence with probability p. In both
typo/omitted-word settings, we measure sentence
similarity on various noise probability settings,
p ∈ [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4].

To compute the similarity of a pair of sentences,
we first calculate the sentence vector and take the
cosine similarity of the sentence vector pair. Then
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Word Vector Model Sub-word Vector Model

SGNS GloVe OLIVE-word FastText OLIVE-sub

Typo

STS-Train 55.80/58.45 44.68/44.18 54.95/58.00 52.77/55.58 52.03/57.45
STS-Dev 56.79/54.27 44.59/38.53 58.80/57.82 57.85/54.87 65.05/65.16
STS-Test 46.21/48.07 34.88/34.65 42.22/45.21 52.30/52.89 54.35/57.10
SICK 42.15/47.70 39.75/42.19 44.56/48.99 43.58/50.21 45.05/52.70

Omit

STS-Train 52.63/53.53 43.06/41.93 52.40/54.49 45.73/45.34 46.44/50.72
STS-Dev 55.92/49.09 45.00/34.72 57.19/54.98 49.82/44.13 59.37/59.42
STS-Test 42.57/42.20 31.65/31.23 39.14/40.89 44.83/42.05 47.28/49.35
SICK 48.22/53.98 44.44/46.51 49.92/55.14 38.63/41.38 42.15/48.48

Table 4: Spearman/Pearson correlation of sentence similarity on typo/omitted-word setting. We misspell/discard
words with probability 0.15. The left is Spearman correlation and the right is Pearson correlation.
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Figure 3: Pearson correlation of OLIVE, SGNS,
GloVe, and FastText on SICK-dataset. We discard
words with probability between [0.1, 0.4].

we calculate the Spearman and Pearson correla-
tions between the human-annotated similarity and
the cosine similarity of the sentence vector pair.
We report results on various typo/omitted-word
setting in figure 2, 3 and results of typo/omit-word
setting on 0.15 noise probability in table 4.

Table 4 show that OLIVE outperforms in each
sub-word and word embedding group on both
typo/omitted-word settings. When we com-
pare the performance of GloVe, Skip-Gram, and
OLIVE in table 4, we get an empirical evidence of
approximate and exact additive compositionality
in (2) and (4). Since GloVe does not theoretically
satisfy additive compositionality, the correlation
of GloVe is lower than Skip-Gram. Overall, we
establish that our model captures noisy sentence
representation better than Skip-Gram, GloVe, and
FastText.

Since OLIVE-sub and FastText are character
n-gram embedding models, ~ui = 1

|Gi|
∑

x∈Gi ~gx,
misspelling in a word tends to affect vector rep-

resentation of a word insignificantly. In figure 2,
we empirically show significant performance dif-
ference between sub-word embedding models and
word embedding models on typo setting. Also,
figure 2 and 3 show that OLIVE outperforms in
each sub-word and word embedding group on both
typo/omit-word settings with various noise set-
tings.

7 Conclusion

In this paper, we proposed 1) novel theoretical
conditions of additive compositional word embed-
ding model and 2) novel word/sub-word embed-
ding model which we call OLIVE that satisfies
additive compositionality. The loss function of
OLIVE consists of a term for learning semantic
similarity and a regularization term. From the loss
function, we derived three properties of OLIVE:
additive compositionality, uniqueness of local op-
timum, and shifted-PMI as the global optimum.
Through several experiments, we showed OLIVE
outperforms other existing embedding models on
various word similarity task and showed robust-
ness with respect to the size of the vocabulary.
With sentence similarity task on various noisy set-
tings, we showed robustness on additive composi-
tionality of OLIVE.
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A Convexity of (7)

The second derivative of DKL is as follows,

∂2DKL

∂~uc∂~uTc

=K
∂

∂~uc

∑
w∈V p(w) exp(~v

T
w~uc)~vw∑

w∈V p(w) exp(~v
T
w~uc)

=K

∑
w∈V p(w) exp(~v

T
w~uc)~vw~v

T
w∑

w∈V p(w) exp(~v
T
w~uc)

−K
∑

w∈V p(w) exp(~v
T
w~uc)~vw∑

w∈V p(w) exp(~v
T
w~uc)

×
∑

w∈V p(w) exp(~v
T
w~uc)~v

T
w∑

w∈V p(w) exp(~v
T
w~uc)

,

where K is 1
Z

∑
w∈V p(w) exp(~v

T
w(
∑m

i=1 ~uci)).
To prove the second derivative of DKL is posi-

tive definite matrix, we multiply non-zero vector ~x
to the Hessian matrix ( ∂

2DKL

∂~uc∂~uT
c

).

~xT
∂2DKL

∂~uc∂~uTc
~x

= K

∑
w∈V p(w) exp(~v

T
w~uc)~x

T~vw~v
T
w~x∑

w∈V p(w) exp(~v
T
w~uc)

−K
∑

w∈V p(w) exp(~v
T
w~uc)~x

T~vw∑
w∈V p(w) exp(~v

T
w~uc)

×
∑

w∈V p(w) exp(~v
T
w~uc)~v

T
w~x∑

w∈V p(w) exp(~v
T
w~uc)

= K
∑

w∈V
rwq

2
w −K(

∑

w∈V
rwqw)

2

(23)

Where,

rw =
p(w) exp(~vTw~uc)∑

w∈V p(w) exp(~v
T
w~uc)

, qw = ~xT~vw.

By Jensen’s inequality,

K
∑

w∈V
rwq

2
w > K(

∑

w∈V
rwqw)

2.

Now, we get

~xT
∂2DKL

∂~uc∂~uTc
~x > 0

for all non-zero vector ~x. So, the Hessian of DKL
is positive definite matrix which leads to convexity
of the DKL.
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Abstract

Lexical substitution ranks substitution candi-
dates from the viewpoint of paraphrasability
for a target word in a given sentence. There
are two major approaches for lexical substitu-
tion: (1) generating contextualized word em-
beddings by assigning multiple embeddings to
one word and (2) generating context embed-
dings using the sentence. Herein we propose
a method that combines these two approaches
to contextualize word embeddings for lexi-
cal substitution. Experiments demonstrate that
our method outperforms the current state-of-
the-art method. We also create CEFR-LP, a
new evaluation dataset for the lexical substi-
tution task. It has a wider coverage of sub-
stitution candidates than previous datasets and
assigns English proficiency levels to all target
words and substitution candidates.

1 Introduction

Lexical substitution (McCarthy and Navigli,
2007) is the finest-level paraphrase problem.
It determines if a word in a sentence can be
replaced by other words while preserving the
same meaning. It is important not only as a funda-
mental paraphrase problem but also as a practical
application for language learning support such
as lexical simplification (Paetzold and Specia,
2017) and acquisition (McCarthy, 2002). Table 1
shows an example of the lexical substitution task
with a sentence,1 the target word to replace, and
words of substitution candidates. The numbers
in parentheses represent the paraphrasability
of each candidate, where a larger value means
the corresponding word is more appropriate to
substitute the target word. The lexical substitution
task ranks these candidates according to assigning

1In this paper, the terms context and sentence are used
interchangeably wherever the context for the target refers to
the sentence.

context ... explain the basic concept and
purpose and get it going with min-
imal briefing .

target go
candidate start (4), proceed (1), move (1) ...

Table 1: Example of the lexical substitution tasks

weights. The key technology to solve lexical
substitution tasks is to precisely capture word
senses in a context.

There are mainly two approaches for lexical
substitution: (1) generating contextualized word
embeddings by assigning multiple embeddings
to one word and (2) generating context embed-
dings using the sentence. The former realizes
static embeddings as it pre-computes word em-
beddings. One example of the first approach
is DMSE (Dependency-based Multi-Sense Em-
bedding), which was proposed by Ashihara et al.
(2018) to contextualize word embeddings using
words with dependency relations as a clue to
distinguish senses. As an example of the sec-
ond approach, context2vec (Melamud et al., 2016)
generates a context embedding by inputting the
sentence into bidirectional recurrent neural net-
works. It combines context embedding and a sim-
ple word embedding to generate a dynamic em-
bedding. These two methods are current state-of-
the-arts among methods of each approach.

We focus on the fact that these two methods
have a complementary nature. DMSE considers
only a single word as context, while context2vec
uses a simple word embedding. Herein we com-
bine DMSE and context2vec to take advantages of
both contextualized word embeddings and context
embeddings. Specifically, we apply a contextual-
ized word embedding generated by DMSE to re-
place the word embedding used in context2vec.
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In addition, we create a new evaluation dataset
for lexical substitution, named CEFR-LP. It is an
extension of CEFR-LS (Uchida et al., 2018) and
is created for lexical simplification to support sub-
stitution tasks. The benefits of CEFR-LP are that
it expands the coverage of substitution candidates
and provides English proficiency levels. These
features are unavailable in previous evaluation
datasets such as LS-SE (McCarthy and Navigli,
2007) and LS-CIC (Kremer et al., 2014).

The evaluation results on CEFR-LP, LS-SE,
and LS-CIC confirm that our method effectively
strengthens DMSE and context2vec. Addition-
ally, our proposed method outperforms the current
state-of-the-art methods. The contributions of this
paper are twofold:

• A method that takes advantages of contextu-
alized word embedding and dynamic embed-
ding generation from contexts is proposed.
This method achieves a state-of-the-art per-
formance on lexical substitution tasks.

• Creation and release2 of CEFR-LP, which is
a new evaluation dataset for lexical substitu-
tion with an expanded coverage of substitu-
tion candidates and English proficiency lev-
els.

2 Related Work

There are two major approaches to lexical sub-
stitution. One approach generates contextualized
word embeddings by assigning multiple embed-
dings to one word. Paetzold and Specia (2016)
generated word embeddings per part-of-speech of
the same word assuming that words with the same
surface have different senses for different part-of-
speech. Fadaee et al. (2017) also generated mul-
tiple word embeddings per topic represented in
a sentence. For example, the word soft may
have embeddings for topics of food when used like
soft cheese and that for music when used like
soft voice. To adequately distinguish these
word senses, both methods assign embeddings that
are too coarse. For example, the phrases soft
cheese and soft drink both use soft as an
adjective and are related to the food topic. The for-
mer has the sense of tender while the latter rep-
resents the sense of non-alcoholic. To solve
this problem, DMSE generates finer-grained word

2http://www-bigdata.ist.osaka-u.ac.jp/
arase/pj/CEFR-LP.zip

embeddings because it generates embeddings for
words with dependency relations based on the
CBOW algorithm of word2vec (Mikolov et al.,
2013). It concatenates words with dependent rela-
tions within a specific window, which is a hyper-
parameter in CBOW. Hence considered context in
DMSE is bounded by the window size. DMSE
achieves the highest performance for lexical sub-
stitution tasks among the methods categorized into
the first approach.

The other approach dynamically generates con-
textualized embeddings considering a sentence.
Context2vec generates a context embedding using
bidirectional long short-term memory (biLSTM)
networks (Schuster and Paliwal, 1997). Then it
combines the context embedding with a simple
word embedding. Context2vec is the current state-
of-the-art method for representative lexical substi-
tution tasks. Its advantage is that it can consider
the entire sentence as the context, while DMSE
is bounded by a window size. However, DMSE
can use contextualized word embeddings, whereas
context2vec just uses a simple word embedding for
each word. The complementary nature of these
two methods inspired us to combine them. More
recently, ELMo (Peters et al., 2018) showed a lan-
guage modeling using biLSTM networks produces
contextualized word embeddings, which are effec-
tive for various NLP tasks such as named entity
recognition. Context2vec differs from ELMo when
explicitly considering word embeddings of substi-
tution targets. Our experiments empirically con-
firm that context2vec outperforms ELMo in Sec-
tion 6.

3 Proposed Method

We combine DMSE and context2vec to take ad-
vantage of both fine-grained contextualized word
embeddings and context embeddings.

3.1 Overview

DMSE is designed to train its word embeddings
using CBOW, which we replaced with biLSTM
networks in context2vec. DMSE contextualizes a
word using words with dependency relations (both
head and dependents) in a given sentence. Here-
after, words with dependency relations are referred
to as dependency-words.3

There are numerous number of combinations
3These are called as context-words in Ashihara et al.

(2018).
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I drunk soft drink

LSTM LSTM

LSTM LSTM

MLP

soft

objective
function

LSTM

LSTM

context 
embedding

target word
embedding

(a) Pre-Training

(b) Post-Training

LSTM

LSTM

I drunk soft drink

MLP

soft_drink

objective
functioncontext 

embedding
contextualized

word embedding

biLSTM

Dependency relation

Figure 1: Design of the proposed method where soft
is the target to generate embedding.

of words and dependency-words. Similar to
Ashihara et al. (2018), we implement a two-stage
training: pre-training and post-training for com-
putational efficiency. In the pre-training, simple
word embeddings (one embedding per word) and
parameters of biLSTM networks are trained by
context2vec. In the post-training, only contextu-
alized word embeddings are trained starting from
the pre-trained word embeddings.

3.2 Pre-Training

Figure 1 (a) overviews pre-training, which corre-
sponds to the training of context2vec. Word em-
beddings and parameters of biLSTM networks are
set.

First, the entire sentence is inputted into the biL-
STM networks. At time step k, the forward net-
work encodes words from the beginning to the k-
th word. The backward network does the same
except in the opposite direction. Therefore, the
outputs of each LSTM network before and after a
target word represent the preceding and following
contexts surrounding the target word, respectively.
These outputs are concatenated and inputted into
a multi-layer perceptron to generate a unified con-
text embedding for the target word. On the other
hand, the target word is represented by a word em-
bedding that has the same dimensions as the con-

text embedding.
The objective function is the negative sampling

proposed by Mikolov et al. (2013). A positive ex-
ample is the target word and its context, whereas
negative examples are random words. Note that
word embeddings, forward LSTM network, and
the backward LSTM network each have their own
parameters.

3.3 Post-Training

Figure 1 (b) outlines post-training. Multiple word
embeddings are generated for words with the same
surface but with different dependency-words as
contextualized word embeddings.

First, the sentence is parsed to obtain
dependency-words of the target. For each
dependency-word and target pair, its word em-
bedding is trained. The process is simple. These
words are concatenated with an under-bar ( ) and
treated as a single word, whose embedding is used
as a contextualized word embedding of the target
word. The contextualized word embeddings are
trained in the same manner with pre-training.

The contextualized embeddings are initialized
by assigning the pre-trained word embeddings in
Section 3.2. The pre-trained word embeddings
and biLSTM networks are fixed, and only the con-
textualized word embeddings are updated during
post-training. This setting allows the contextual-
ized embeddings to be trained in parallel.

3.4 Application to Lexical Substitution Task

This section describes how to tackle the lexical
substitution task using both contextualized word
embeddings and context embeddings obtained by
the proposed method.

Ranking Method As shown in Table 1, lexical
substitution ranks substitution candidates of the
target word based on their paraphrasabilities under
a given context. We use the same ranking method
with context2vec, which assumes not only that a
good substitution candidate is semantically simi-
lar to the target word but also is suitable for a given
context. This assumption is commonly used in re-
cent lexical substitution models (Melamud et al.,
2015; Roller and Erk, 2016).

Here we have target word t and its dependency-
word d. The contextualized word embedding of t
is noted as vd

t and the word embedding of a sub-
stitution candidate s contextualized by d is vd

s . Fi-
nally, the context embedding is denoted as vc. The
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following scores are calculated for each substitu-
tion candidate and ranked them in descending or-
der.

S(vd
s |vd

t ,vc)

= (cos (vd
t ,v

d
s ) + 1)(cos (vd

s ,vc) + 1). (1)

Here, cos(·, ·) calculates the cosine similarity be-
tween two vectors. If the word embedding does
not exist in the vocabulary, the word embedding
of ⟨unk⟩ is used.

Dependency-word Selection When there are
multiple dependency-words to contextualize a
word embedding, the most appropriate one must
be selected to characterize the sense of the target
word in a given context. Ashihara et al. (2018)
proposed the following dependency-word selec-
tion method for the DMSE model.

Smaxc : d = arg max
d∈D

S(vd
s |vd

t ,vc),

where D is a set of dependency-words of the tar-
get word in the context. If the contextualized word
embedding vd

s or vd
t does not exist in the vocabu-

lary, the corresponding simple word embeddings
(vs or vt) pre-trained for context2vec are used.

Smaxc uses the dependency-word that maxi-
mizes the paraphrasability score, but there is no
guarantee that this dependency-word best charac-
terizes the sense of the word in the given context.
Therefore, we propose the following dependency-
word selection methods based on the similarity be-
tween the target word or candidate words and the
context.

Star : d = arg max
d∈D

cos(vd
t ,vc),

Scan : d = arg max
d∈D

cos(vd
s ,vc).

These methods should select more appropriate
dependency-word using both contextualized word
embeddings and context embeddings.

4 CEFR-LP: New Evaluation Dataset

In addition to proposing a method for lexical sub-
stitution, we created CEFR-LP, which mitigates
limitations of previous evaluation datasets.

4.1 Principle of CEFR-LP
LS-SE (McCarthy and Navigli, 2007) and LS-
CIC (Kremer et al., 2014) are the standard eval-
uation datasets for lexical substitution. However,

they have limited annotation coverage because the
annotators provide substitution candidates manu-
ally. Specifically, each annotator provides up to
three substitution candidates for LS-SE and up
to five substitution candidates for LS-CIC. These
candidates are regarded as appropriate candidates
for a target under a specific context. During an
evaluation, these candidates are combined for the
same targets with different contexts. This leads
to two limitations. First, annotators may not de-
rive all the appropriate candidates for the target.
Second, some appropriate candidates for a target
among the combined ones are regarded as inap-
propriate because they were missed by the anasno-
tators when annotating the target under the given
context.

To mitigate these limitations, CEFR-
LS (Uchida et al., 2018) was constructed to
improve the coverage. However, the target is
lexical simplification rather than substitution.
Herein we extend CEFR-LS and build a new
evaluation dataset called CEFR-LP for lexical
substitution tasks that:

1. Define the substitution candidates

2. Determine the paraphrasability label

3. Evaluate the number of annotators

The first extension adapts to lexical substitution.
CEFR-LS only includes substitutions from com-
plex words to simpler ones because it is specif-
ically intended for simplification. On the other
hand, CEFR-LP includes not only complex to
simple substitutions but also simple to complex
substitutions and substitutions between equivalent
complexities. The substitution candidates are a
synonym set of target words extracted from a
dictionary.4 The second extension generates fine-
grained judgments for paraphrasability. CEFR-
LS is annotated with binary labels, while CEFR-
LP is annotated with continuous values represent-
ing paraphrasability. This extension allows auto-
matic evaluation via the Generalized Average Pre-
cision (GAP) score (Kishida, 2005; Thater et al.,
2009), which is common in recent lexical substi-
tution studies. The last extension reduces poten-
tial annotation biases. While CEFR-LS was an-
notated by one expert, CEFR-LP employs more
than five annotators per target to reduce bias due
to annotator subjectivity. Following CEFR-LS,

4http://www.thesaurus.com/
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context ..., and to create elixirs to cure disease and extend life . From alchemy came the his-
torical progressions that led to modern chemistry : the isolation of drugs from natural
sources , metallurgy , and the dye industry . Today , chemistry continues to deepen our
understanding ...

target progressions [C1]
candidate block [B1] (0), development [B1] (6), advancement [B2] (8), break [A2] (1), ...

context ... Competition would ensure that prices remained low and faulty goods disappeared from
the market . In this way , businesses would reap profits , consumers would have their
needs satisfied , and society as a whole would prosper . Smith discussed these ideas, ...

target prosper [B2]
candidate thrive [C1] (8), blossom [B2] (6), yield [B2] (1), bear [A2] (0), flourish [C2] (8), ...

context ... That is , a member of the population may be chosen only once . Most samples are taken
from large populations and the sample tends to be small in comparison to the population
. Since this is the case , sampling without replacement is approximately ...

target large [A1]
candidate substantial [B1] (8), giant [B1] (6), extravagant [C2] (0), wide [A2] (1), ...

Table 2: Examples of CEFR-LP. “Context” shows context sentences where the target word is presented in bold.
“Target” shows the target and “candidate” lists the substitution candidates. Square brackets indicate CEFR levels
of targets and candidates. Round brackets indicate the weights of candidates.

CEFR-LP also provides CEFR (the Common Eu-
ropean Framework of Reference for Languages)
levels (A1 (lowest), A2, B1, B2, C1, and C2 (high-
est)) for the target and candidates as English pro-
ficiency levels.

4.2 Annotation

Following CEFR-LS, we use sentences extracted
from textbooks publicly available at the OpenStax
website5 initiated by Rice University. We hired
annotators on Amazon Mechanical Turk,6 who (1)
possessed a degree from an accredited university
in the United States and (2) held the Mechani-
cal Turk Masters qualification or a past acceptance
rate above 98%.

Annotators were given a target word, its con-
text, and a list of synonyms. They annotated each
substitution candidate in the synonym list with
paraphrasability labels (“sure”, “maybe”, and “not
possible”) considering the given context. As the
context, a sentence on which the target word ap-
peared as well as two more sentences before and
after it were provided. To avoid overloading the
annotator, target words with more than 30 syn-
onyms were excluded.

Following CEFR-LS, we used the following an-
notation criteria:

5https://cnx.org/
6https://www.mturk.com/

Grammatical Reformation Stage When para-
phrasing the target word into the substitution
candidate, grammatical accuracy such as
the part-of-speech and the connection to the
preposition must be maintained. The mor-
phology of the target word such as past tense
and third person singular are automatically
corrected.

Definition Stage The target word and the substi-
tution candidate have the same meaning.

Context Stage The candidate should retain the
nuance of the target word in a given context
and not affect the meaning of the sentence.

If all of the above conditions were met, a label
of “sure” is assigned. If either condition was not
met, a label of “not possible” was assigned. If the
judgment was difficult, a label of “maybe” was as-
signed.

Each annotation set was assigned to at least five
annotators. To improve the reliability of annota-
tion labels, we discarded the result from the anno-
tator who had the lowest agreement with the oth-
ers. Consequently, each set had four annotators
and the average Fleiss’ kappa was 0.33.

To use CEFR-LP for a lexical substitution task,
the assigned labels were consolidated as a weight.
For example, LS-SE and LS-CIC were set such
that a weight to the number of annotators produced
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CEFR-LP LS-SE LS-CIC

number of target words 863 2, 010 15, 344
number of substitution candidates 14, 259 34, 600 601, 257
average number of substitution candidates per target 16.5 17.2 39.2
average number of paraphrasable candidates per target 10.0 3.48 6.65

Table 3: Basic statistics in CEFR-LP compared to LS-SE and LS-CIC

CEFR level target candidate

all 863 14, 259

A1 300 2, 090
A2 190 2, 856
B1 110 4, 513
B2 186 3, 201
C1 30 648
C2 47 951

Table 4: Distribution of CEFR levels in CEFR-LP

a certain candidate. A “sure”, “maybe”, and “not
possible” label were assigned values of 2, 1, and
0 points, respectively. These values were summed
to give the weight of the candidate. Because each
substitution candidate has four annotation labels,
the weight ranged from 0 to 8. The larger the
value, the higher the paraphrase possibility.

Table 2 shows examples sampled from CEFR-
LP. “Context” gives sentences, including a target
word. “Target” is the target word with its CEFR
level in a square bracket, which is represented by
a bold style in the context sentences. “Candidate”
lists substitution candidates with their CEFR lev-
els in square brackets and weights computed based
on annotated labels in round brackets.

4.3 Analysis of CEFR-LP

Table 3 shows the basic statistics for CEFR-LP
compared to those in LS-SE and LS-CIC. CEFR-
LP provides 14, 259 substitution candidates for
863 target words. The average number of para-
phrasable candidates per word is 10.0, which is
larger than 3.48 of LS-SE and 6.65 of LS-CIC.
Here, a paraphrasable candidate means substitu-
tion candidates with a weight of 1 or more (i.e.,
at least one annotator judged it can paraphrase the
target in a given context). Compared to LS-SE and
LS-CIC, CEFR-LP has an enhanced coverage of
substitution candidates.

Table 4 shows the distribution of CEFR levels

context embedding units 300
LSTM hidden/output units 600
MLP input units 1200
MLP hidden units 1200
sentential context units 600
target word units 600
number of negative samples 10
negative sampling rate 0.75
number of epochs 10

Table 5: Context2vec hyper-parameters that show the
best performance in (Melamud et al., 2016).

in CEFR-LP. Words at the C1 and C2 levels are
naturally less frequent than others in general docu-
ments. The distribution reflects this tendency. We
believe that these CEFR levels are useful when ap-
plying lexical substitution technologies to educa-
tional applications.

5 Evaluation Settings

This section describes the evaluation settings used
to investigate the performance of our method on
lexical substitution tasks.

5.1 Training of Our Method

To train contextualized word embeddings by using
our method, we used 61.6M sentences7 extracted
from the main contents of English Wikipedia8 arti-
cles. We lemmatized each word using the Stanford
Parser (Manning et al., 2014) and replaced words
less than or equal to ten frequency to ⟨unk⟩ tag to
reduce the size of the vocabulary.

Pre-training used the same hyper-parameter set-
tings of context2vec (Table 5). These settings
achieved the best performance on lexical substi-
tution tasks in Melamud et al. (2016).

7To speed-up the training of context2vec, all sentences
consisting of more than 25 words are discarded.

8https://dumps.wikimedia.org/enwiki/
20170601/
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For post-training, dependency relations were
derived using the Stanford Parser. To avoid the
data sparseness problem, dependency-words were
limited to nouns, verbs, adjectives, and adverbs.
The number of training epochs in the post-training
was set to one because our post-training aims to
contextualize word embeddings that have been
pre-trained. Hence, a long-time training does not
have to be assumed. In the future, we plan to
investigate the effects of the number of training
epochs in post-training.

5.2 Evaluation Dataset
We used the following datasets in the evaluation.

LS-SE
This is an official evaluation dataset in the
lexical substitution task of SemEval-2007.
For each target word, five annotators sug-
gested up to three different substitutions. As
the context, a sentence where a target word
appears is provided. Every target has ten con-
text sentences. The number of targets is 201
(types). Consequently, there are 2, 010 sets of
target, candidates, and context sentences are
available.

LS-CIC
This is a large-scale dataset for a lexical sub-
stitution task. For 15, 629 target words, six
annotators suggested up to five different sub-
stitutions under a context. Unlike LS-SE,
three sentences are provided as context: a
sentence containing the target word, its pre-
ceding sentence, and its following sentences.

CEFR-LP
Our new dataset for lexical substitution,
which is described in Section 4.

5.3 Evaluation Metrics
We used GAP (Kishida, 2005; Thater et al., 2009)
as an evaluation metric. GAP is a commonly used
metric to evaluate lexical substitution tasks. GAP
calculates the ranking accuracy by considering the
weight of correct examples:

pi =

∑i
k=1 xk

i
,

GAP =
100

∑n
i=1 I(xi)pi∑n

i=1 I(yi)yi
,

where xi and yi represent the weight of the i-
th substitution candidate ranked by an automatic

method and by the ideal ranking, respectively. n
represents the number of substitution candidates.
I(x) (x ∈ N) is a binary function that returns 1
if x ≥ 1. Otherwise, it returns 0. In this ex-
periment, we regarded the number of annotators
suggesting a substitution candidate under a given
context as the weight of the candidate for LS-SE
and LS-CIC. For CEFR-LP, we used the weight
of the candidate that was computed based on the
annotated labels as described in Section 4.2.

5.4 Baseline Method

We used the following baselines for comparison.

DMSE (Smaxc)
For dependency-word selection, Smaxc show-
ing the highest performance is used herein.
This is the best-performing model among the
methods that generate contextualized word
embeddings.

Context2vec
This is the current state-of-the-art method
among those proposed for lexical substitu-
tion. Note that this corresponds to the pre-
trained model of our method.

ELMo
We concatenate embeddings generated from
three hidden layers in ELMo as contextual-
ized word embeddings.9

DMSE and ELMo were trained using the same
Wikipedia corpus as our method. These methods
rank the substitution candidates in descending or-
der of the cosine similarity between embeddings
of the target and substitution candidate. For con-
text2vec, the candidates are ranked in the same
manner using our method based on Equation (1).

5.5 Ideal Selection of Dependency-words

The performance of our method depends on how
dependency-words are selected. We simulate
the performance when our method selects ideal
dependency-words that maximize the GAP score.
This selection method of dependency-words is de-
noted as Sbest.

9As a preliminary experiment, we compared methods to
generate contextualized word embeddings. One used one of
three layers of embeddings, one summed these embeddings,
and one concatenated these embeddings. The results con-
firmed that concatenation performed best.

403



Model LS-SE LS-CIC CEFR-LP

DMSE (Smaxc) 49.3 46.5 71.1
ELMo 47.6 48.1 74.9
context2vec 51.1 50.0 75.3

context2vec + DMSE (Smaxc) 52.2 50.9 75.5
context2vec + DMSE (Star) 52.3 50.9 75.6
context2vec + DMSE (Scan) 52.3 51.0 75.6

context2vec + DMSE (Sbest) 55.6 52.9 77.2

Table 6: GAP scores on LS-SE, LS-CIC and CEFR-LP datasets, where bold denotes the highest scores.

A1 A2 B1 B2 C1 / C2

DMSE (Smaxc) 67.9 75.2 65.7 74.9 72.7
context2vec 75.2 78.5 69.4 75.7 75.2
context2vec+DMSE (Scan) 75.3 78.9 69.9 76.2 75.9

Table 7: GAP scores on different CEFR levels of target words in CEFR-LP

6 Results

Table 6 shows the GAP scores for LS-SE, LS-CIC
and CEFR-LS datasets. Our method is denoted as
context2vec + DMSE where the dependency-word
selection method is represented in parenthesis as
Smaxc, Star, or Scan.

When using Scan for dependency-word selec-
tion, context2vec + DMSE outperformed DMSE
by 3.0 points, 4.5 points, and 4.5 points for LS-SE,
LS-CIC, and CEFR-LP, respectively. It even out-
performed context2vec, the current state-of-the-art
method, by 1.2 points, 1.0 points, and 0.3 points
on these datasets, respectively. These results con-
firm the effectiveness of our method, which com-
bines contextualized word embeddings and con-
text embeddings to complement each other.

All dependency-word selection methods show
fairly competitive performances, but Scan consis-
tently achieved the highest GAP scores. Context
embedding may be effective to select dependency-
words rather than comparing contextualized word
embeddings. The last row of Table 6 shows
the performance of our method with Sbest (i.e.,
when the ideal dependency-word was selected).
This best selection method outperformed 1.6 - 3.3
points higher than our method with Scan, demon-
strating the importance of dependency-word selec-
tion. In the future, we will improve the selection
method.

CEFR-LP analyzes performances from the per-
spective of the CEFR levels of target words. Ta-

ble 7 shows the GAP score of DMSE (Smaxc),
context2vec, and context2vec+DMSE (Scan).
Note that scores are not comparable across lev-
els because the number of appropriate substitution
candidates varies. Our method consistently out-
performs DMSE (Smaxc) and context2vec. Such
an analysis is important when applying lexical
substitution to educational applications.

Table 8 lists the results where each row shows
a ranking of substitution candidates by compared
methods. The annotated weights of each candidate
are presented in parentheses. Here, the outputs
of context2vec+DMSE (Smaxc) to use the same
dependency-words with DMSE (Smaxc).

Inputs (1) and (2) show the cases where
the meanings of polysemous target words (go
and tender) are successfully captured by our
method. It ranks start and soft first for each
target, respectively. On the other hand, DMSE
(Smaxc) failed to rank correct candidates higher al-
though it referred to the same dependency-words.
Context2vec also failed, but it used context embed-
dings. These results demonstrate that contextu-
alized word embeddings and context embeddings
complement each other. On Input (3), both DMSE
(Smaxc) and our method failed while context2vec
successfully rank the correct candidate (grasp)
on top. This is caused by incorrect dependency-
word selection. In Input (3), there are two major
dependency-words, sat and hands. In this con-
text, hands should be useful as a clue to iden-
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Input (1) To make these techniques work well , explain the basic concept and
purpose and get it going with minimal briefing .

DMSE (Smaxc) try (0), move (1), proceed (1), leave (0), ...
context2vec proceed (1), run (0), start (4), move (1), ...

context2vec+DMSE (Smaxc) start (4), proceed (1), move (1), run (0), ...

Input (2) Rabbits often feed on young , tender perennial growth as it emerges
in spring , or on young transplants .

DMSE (Smaxc) immature (0), young (0), great (1), soft (4), ...
context2vec delicate (1), immature (0), soft (4), painful (0), ...

context2vec+DMSE (Smaxc) soft (4), delicate (1), immature (0), young (0), ...

Input (3) A doctor sat in front of me and held my hands .
DMSE (Smaxc) put (0), lift (1), grasp (3), carry (0), ...

context2vec grasp (3), carry (0), take (1), keep (0), ...
context2vec+DMSE (Smaxc) take (1), carry (0), keep (0), lift (1), ...

Table 8: Example outputs of each method. Target words in the input sentences are presented in bold and all of their
dependency-words are presented in italic. Outputs are ranked lists of candidates, where the numbers in parentheses
show candidates’ weights. Our method ranks the appropriate candidates on top for the first two examples, but it
failed on the last example due to incorrect dependency-word selection.

tify target word’s sense but sat was mistakenly
selected as the dependency-word. This result sug-
gests that dependency types matter when selecting
dependency-words, which we will tackle in the fu-
ture.

7 Conclusion

Herein we proposed a method that combines
DMSE and context2vec to simultaneously take ad-
vantage of contextualized word embeddings and
context embeddings. The evaluation results on
lexical substitution tasks confirm the effective-
ness of our method, which outperforms the cur-
rent state-of-the-art method. We also create a new
evaluation set for lexical substitution tasks called
CEFR-LP.

In the future, we will consider the dependency
types in contextualized word embeddings for fur-
ther improvements. Additionally, we plan to ex-
tend CEFR-LP to cover phrasal substitutions.
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Abstract

We present an approach to correct noisy User
Generated Content (UGC) in French aiming
to produce a pre-processing pipeline to im-
prove Machine Translation for this kind of non-
canonical corpora. Our approach leverages
the fact that some errors are due to confusion
induced by words with similar pronunciation
which can be corrected using a phonetic look-
up table to produce normalization candidates.
We rely on a character-based neural model
phonetizer to produce IPA pronunciations of
words and a similarity metric based on the IPA
representation of words that allow us to iden-
tify words with similar pronunciation. These
potential corrections are then encoded in a lat-
tice and ranked using a language model to out-
put the most probable corrected phrase. Com-
pared to other phonetizers, our method boosts
a Transformer-based machine translation
system on UGC.

1 Introduction

In this work we aim to improve the translation qual-
ity of User-Generated Content (UGC). This kind
of content generally contains many characters rep-
etitions, typographic errors, contractions, jargon
or non-canonical syntactic constructions, resulting
in a typically high number of Out-of-Vocabulary
words (OOVs), which, in turn, significantly de-
creases MT quality and can introduce noisy arte-
facts in the output due to rare tokens. Hereby, we
propose a normalization pipeline that leverages on
the existence of UGC specific noise due to the mis-
use of words or OOV contractions that have a simi-
lar pronunciation to those of the expected correct to-
kens. This method works without any supervision
on noisy UGC corpora, but exploits phonetic sim-
ilarity to propose normalization token candidates.
To explore the capacities of our system, we first
assess the performance of our normalizer and then

conduct a series of MT experiments to determine
if our method improves the translation quality of
some Phrase-Based Statistical Machine Translation
(PBSMT) and Neural Machine Translation (NMT)
baselines. Our results show that including a phone-
tization step in conjunction with a Transformer
architecture (Vaswani et al., 2017) can improve
machine translation over UGC with a minimum
impact on in-domain translations. This suggests
that phonetic normalization can be a promising re-
search avenue for MT and automatic correction of
UGC.

Our contribution in this paper is threefold:

• we propose a pre-processing pipeline to nor-
malize UGC and improve MT quality;

• by quantifying the corrections made by our
normalizer in our UGC corpora, we assess
the presence of noise due to phonetic writing
and demonstrate that this knowledge can be
potentially exploited to produce corrections
of UGC without any annotated data;

• we explore the performance improvement that
can be achieved in machine translation by us-
ing a phonetic similarity heuristic to propose
different normalization candidates.

2 Related Work

Several works have focused on using lattices to
model uncertain inputs or potential processing er-
rors that occur in the early stage of the pipeline.
For instance, Su et al. (2017) proposed lat2seq,
an extension of seq2seq models (Sutskever et al.,
2014) able to encode several possible input possi-
bilities by conditioning their GRU output to sev-
eral predecessors’ paths. The main issue with this
model is that it is unable to predict the score of
choosing a certain path by using future scores, i.e,
by considering words that come after the current
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token to be potentially normalized. Sperber et al.
(2017) introduced a model based on Tree-LSTMs
(Tai et al., 2015), to correct outputs of an Automatic
Speech Recognition (ASR) system. On the other
hand, Le et al. (2008) use lattices composed of writ-
ten subword units to improve recognition rate on
ASR.

However, none of the aforementioned works
have focused on processing noisy UGC corpora
and they do not consider our main hypotheses of
using phonetizers to recover correct tokens. They
aim to correct known tokens such that a neural
language model chooses the best output when an
uncertain input is present (typically words with sim-
ilar pronunciation from an ASR output). Instead,
our approach calculates the phonetization of the
source token and candidates are proposed based on
their phonetic similarity to it, where this original
observation can be a potential OOV.

On the same trend, (Qin et al., 2012) com-
bined several ASR systems to improve detection of
OOVs. More recently, van der Goot and van No-
ord (2018) achieved state-of-the-art performance
on dependency parsing of UGC using lattices.

Closely related to our work, Baranes (2015) ex-
plored several normalization techniques on French
UGC. In particular, to recover from typographical
errors, they considered a rule-based system, SxPipe
(Sagot and Boullier, 2008), that produced lattices
encoding OOVs alternative spelling and used a lan-
guage model to select the best correction.

Several works have explored different ap-
proaches to normalize noisy UGC in various lan-
guages. For instance, Stymne (2011) use Approx-
imate String Matching, an algorithm based on a
weighted Levenshtein edit distance to generate
lattices containing alternative spelling of OOVs.
Wang and Ng (2013) employ a Conditional Ran-
dom Field and a beam-search decoding approach
to address missing punctuation and words in Chi-
nese and English social media text. More recently,
Watson et al. (2018) proposed a neural sequence-to-
sequence embedding enhancing FastText (Bo-
janowski et al., 2017) representations with word-
level information, which achieved state-of-the-art
on the QALB Arabic normalization task (Mohit
et al., 2014).

3 Phonetic Correction Model

To automatically process phonetic writing and map
UGC to their correct spelling, we propose a sim-

ple model based on finding, for each token of the
sentence, words with similar pronunciations and
selecting the best spelling alternative, using a lan-
guage model. More precisely, we propose a four-
step process:

1. for each word of the input sentence, we au-
tomatically generate its pronunciation. We
consider all words in the input sentence as
misspelled tokens are not necessarily OOVs
(e.g. “j’ai manger” — literally “I have eat” —
which must be corrected to “j’ai mangé” — “I
have eaten”, the French words “manger” and
“mangé” having both the same pronunciation
/mÃ.ge/);

2. using these phonetic representations, we look,
for each word w of the input sentence, to every
word in the training vocabulary with a pronun-
ciation “similar” to w according to an ad-hoc
metric we discuss below;

3. we represent each input sentence by a lattice
of n + 1 nodes (where n is the number of
words in the sentence) in which the edge be-
tween the i-th and (i+ 1)-th nodes is labeled
with the i-th word of the sentence. Alternative
spellings can then be encoded by adding an
edge between the i-th and (i + 1)-th nodes
labeled by a possible correction of the i-th
word. Figure 1 gives an example of such a
lattice. In these lattices, a path between the
initial and final nodes represents a (possible)
normalization of the input sentence.

4. using a language model, we compute the prob-
ability to observe each alternative spelling of
the sentence (note that, by construction, the
input sentence is also contained in the lattice)
and find the most probable path (and there-
fore potential normalization) of the input sen-
tence. Note that finding the most probable
path in a lattice can be done with a complex-
ity proportional to the size of the sentence
even if the lattice encodes a number of paths
that grows exponentially with the sentence
size (Mohri, 2002). In our experiments we
used the OpenGRM (Roark et al., 2012) and
OpenFST (Allauzen et al., 2007) frameworks
that provide a very efficient implementation
to score a lattice with a language model.

This process can be seen as a naive spellchecker, in
which we only consider a reduced set of variations,
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tailored to the specificities of UGC texts. We will
now detail the first two steps discussed above.

Generating the pronunciation of the input
words To predict the pronunciation of an in-
put word, i.e. its representation in the Inter-
national Phonetic Alphabet (IPA), we use the
gtp-seq2seq python library1 to implement a
grapheme-to-phoneme conversion tool that relies
on a Transformer model (Vaswani et al., 2017).
We use a 3 layers model with 256 hidden units
that is trained on a pronunciation dictionary auto-
matically extracted from Wiktionary (see Sec-
tion 4.1 for a description of our datasets). This
vanilla model achieves a word-level accuracy of
94.6%, that is to say it is able to find the exact cor-
rect phonetization of almost 95% of the words of
our test set.

We also consider, as a baseline, the pronuncia-
tion generated by the Espeak program.2 that uses
a formant synthesis method to produce phonetiza-
tions based on acoustic parameters.

Finding words with similar pronunciation In
order to generate alternatives spelling for each in-
put word, we look, in our pronunciation dictio-
nary,3 for alternate candidates based on phonetic
similarity. We define the phonetic similarity of
two words as the edit distance between their IPA
representations, all edit operations being weighted
depending on the articulatory features of the sounds
involved. To compute the phonetic similarity we
used the implementation (and weights) provided
by the PanPhon library (Mortensen et al., 2016).

To avoid an explosion of the number of alter-
natives we consider, we have applied a threshold
on the phonetic distance and consider only homo-
phones, i.e. alternatives that have the exact same
pronunciation as the original word.4

To account for peculiarities of French orthog-
raphy we also systematically consider alternative
spellings in which diacritics (acute, grave and cir-
cumflex accents) for the letter “e” (which is the
only one that changes the pronunciation for differ-
ent accentuation in French) were added wherever

1https://github.com/cmusphinx/
g2p-seq2seq

2espeak.sourceforge.net
3see § 4.1 for the description of the data we used
4We have explored using several values for this parameter

but in this work only the most conservative distance (0) is
used since higher values add too much candidates and rapidly
decreases performance due to the number of ambiguities.

possible. Indeed, users often tend to ‘forget’ dia-
critics when writing online and this kind of spelling
error results in phonetic distances that can be large
(e.g. the pronunciation of bebe and bébé is very
different).

We ultimately only keep as candidates those that
are present in the train corpus of Section 4.3 to
filter out OOV, and nonexistent words.

4 Datasets

In this section, we present the different corpora
used in this work. We will first describe the dataset
used to train our phonetic normalizer; then, in §4.2,
the UGC corpora used both to measure the perfor-
mance of our normalization step and evaluate the
impact of phonetic spelling on machine translation.
Finally, in § 4.3 we introduce the (canonical) paral-
lel corpora we used to train our MT system. All our
experiments are made on French UGC corpora.5

Some statistics describing these corpora are listed
in Table 1.

4.1 Pronunciation Dictionary
To train our Grapheme-to-Phoneme model we use
a dictionary mapping words to their pronuncia-
tion (given by their IPA representation). To the
best of our knowledge, there is no free pronunci-
ation dictionary for French. In our experiments,
we have considered a pronunciation dictionary au-
tomatically extracted from Wiktionary dumps
building on the fact that, at least for French, pro-
nunciation information are identified using special
templates, which makes their extraction straightfor-
ward (Pécheux et al., 2016).6

The dictionary extracted from the French
Wiktionary contains 1,571,090 words. We
trained our G2P phonetizer on 1,200,000 exam-
ples, leaving the rest to evaluate its performance.
When looking for words with similar pronuncia-
tion (§3), we consider only the word that appear
in our parallel training data (described in §4.3) to
speed up the search. After filtering, our dictionary
contained pronunciation information for roughly
82K French words.

4.2 UGC Corpora
The Parallel Cr#pbank corpus The Parallel
Cr#pbank, introduced in (Rosales Núñez et al.,

5Applying our work to other languages is straightforward
and left to future work.

6Our French pronunciation dictionary will be made avail-
able upon publication.

409



Figure 1: Example of lattice for a segment of a Cr#pbank UGC sample.

Corpus #sentences #tokens ASL TTR

train set
WMT 2.2M 64.2M 29.7 0.20
Small 9.2M 57.7M 6.73 0.18
Large 34M 1.19B 6.86 0.25

test set
OpenSubTest 11,000 66,148 6.01 0.23
NeswTest 3,003 68,155 22.70 0.23

Corpus #sentences #tokens ASL TTR

UGC test set
Cr#pbank 777 13,680 17.60 0.32
MTNT 1,022 20,169 19.70 0.34

UGC blind test set
Cr#pbank 777 12,808 16.48 0.37
MTNT 599 8,176 13.62 0.38

Table 1: Statistics on the French side of the corpora used in our experiments. TTR stands for Type-to-Token

Ratio, ASL for average sentence length.

2019), consists of 1,554 comments in French, trans-
lated from an extension of the French Social Me-
dia Bank (Seddah et al., 2012) annotated with the
following linguistic information: Part-of-Speech
tags, surface syntactic representations, as well as
a normalized form whenever necessary. Com-
ments have been translated from French to En-
glish by a native French speaker with near-native
English speaker capabilities. Typographic and
grammar error were corrected in the gold transla-
tions but some of the specificities of UGC were
kept. For instance, idiomatic expressions were
mapped directly to the corresponding ones in En-
glish (e.g. “mdr” (mort de rire, litt. dying of
laughter) has been translated to “lol” and let-
ter repetitions were also kept (e.g. “ouiii” has
been translated to “yesss”). For our experiments,
we have divided the Cr#pbank into two sets
(test and blind) containing 777 comments each.
This corpus can be freely downloaded at https:
//gitlab.inria.fr/seddah/parsiti.

The MTNT corpus We also consider in our ex-
periments, the MTNT corpus (Michel and Neubig,
2018), a multilingual dataset that contains French
sentences collected on Reddit and translated into
English by professional translators. We used their
designated test set and added a blind test set of 599
sentences we sampled from the MTNT validation
set. The Cr#pbank and MTNT corpora both differ
in the domain they consider, their collection date,
and in the way sentences were filtered to ensure
they are sufficiently different from canonical data.

4.3 Canonical Parallel Corpora

To train our MT systems, we use the ‘stan-
dard’ parallel data, namely the Europarl and
NewsCommentaries corpora that are used in
the WMT evaluation campaign (Bojar et al., 2016)
and the OpenSubtitles corpus (Lison et al.,
2018). We will discuss the different training data
configurations for the MT experiments more in de-
tail in Section 5.

We also use the totality of the French part of
these corpora to train a 5-gram language model
with Knesser-Ney smoothing (Ney et al., 1994)
that is used to score possible rewritings of the input
sentence and find the best normalization, as we
have discussed in Section 3.

5 Machine Translation Experiments

To evaluate whether our approach improve the
translation quality of UGC, we have processed all
of our test sets, both UGC and canonical ones with
our phonetic normalization pipeline (Section 3).
The corrected input sentences are then translated
by a phrase-based and NMT systems.7 We evalu-
ate translation quality using SACREBLEU (Post,
2018).

The MT baselines models were trained us-
ing the parallel corpora described in Section 4.3.
We use 3 training data configurations in our ex-
periments: WMT, Small OpenTestand Large

7In our experiments we used Moses (Koehn et al., 2007)
and OpenNMT (Klein et al., 2018).
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PBSMT Transformer
Crap MTNT News Open Crap MTNT News Open

WMT 20.5 21.2 22.5† 13.3 15.4 21.2 27.4† 16.3
Small 28.9 27.3 20.4 26.1† 27.5 28.3 26.7 31.4†
Large 30.0 28.6 22.3 27.4† 26.9 28.3 26.6 31.5†

Table 2: BLEU score results for our two benchmark models for the different train-test combinations. None
of the test sets are normalized. The best result for each test set is marked in bold, in-domain scores with a
dag. Crap, News and Open respectively stand for the Cr#pbank, NeswTest and OpenSubTest.

PBSMT Transformer
Crap MTNT News Open Crap MTNT News Open

WMT 20.4 20.2 21.9† 13.4 15.0 20.4 26.7† 16.2

Small 28.4 26.2 19.9 26.1† 29.0 28.3 25.7 31.4†
Large 29.0 27.6 21.8 27.4† 28.5 28.2 25.9 31.5†

(a) (G2P) phonetizer.

PBSMT Transformer
Crap MTNT News Open Crap MTNT News Open

WMT 20.4 20.4 21.7† 13.4 14.6 20.7 26.5† 16.1

Small 28.0 26.3 19.8 26.2† 28.5 28.8 25.6 31.4†
Large 28.3 27.7 21.6 27.4† 27.5 28.6 25.8 31.5†

(b) (Espeak) phonetizer.

Table 3: BLEU score results for our three benchmark models on normalized test sets. The best result for
each test set is marked in bold, in-domain scores with a dag.

OpenTest, for which Table 1 reports some statis-
tics. We will denote Small and Large the two
OpenSubtitles training sets used in the MT
experiments. For every model, we tokenize the
training data using byte-pair encoding (Sennrich
et al., 2016) with a 16K vocabulary size.

BLEU scores for our normalized test sets are
reported in Table 3a and Table 3b, for the G2P
and Espeak phonetizers. Results of the unpro-
cessed test sets are reported in Table 2. We present
some UGC examples of positive and negative re-
sults along with their normalization and translation
in Table 6.

6 Results Discussion

We noticed significant improvement in results
for the UGC test corpora when using the
Transformer architecture trained with the
Small OpenTesttraining set. Specifically, a
BLEU score improvement for the Cr#pbank and
MTNT test corpora in Tables 3a and 3b, com-
pared to the baseline translation in Table 2. In-
terestingly, these improvements only hold for
the Transformer model, whereas we consis-
tently obtain a slight decrease of BLEU scores

when the normalized text is translated using the
PBSMT model. Moreover, our trained G2P phone-
tizer achieved the best improvement over the
Cr#pbank corpus, attaining +1.5 BLEU points
compared to the baseline. On the other hand, the
Espeak phonetizer produces the highest trans-
lation improvement on the MTNT corpus (+0.5
BLEU).

Regarding the performance decrease on our
non-UGC test corpora, newstest’14 and
OpenSubtitles, we observe that there is usu-
ally a considerable under-performance on the lat-
ter (-0.65 BLEU averaging over our 6 model
and training set configurations), that is not as no-
ticeable in the former (-0.1 BLEU in the worst
case). This could be explained by the substantially
longer sentences in newstest’14 compared to
OpenSubtitles, which have roughly 6 times
more words in average according to Table 1. When
sentences are longer, the number of possible lattices
paths grow exponentially, thus adding confusion to
our language model decisions that will ultimately
produce the most probable normalization. Such
observation strongly suggests that our normaliz-
ing method performances is somewhat dependent
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Figure 2: Bar plot of the BLEU score for the Cr#pbank test set translation divided in sentences’ length
groups.

on the length of the target sentence that are to be
normalized.

In addition, we display the number of replace-
ments performed by our normalizer over the
Cr#pbank test set for several values of the pho-
netic distance threshold in Figure 3. We can no-
tice that the higher this threshold is, the higher the
number of replacements. In our experience, the
normalization candidates proposed by our method
do not share a close pronunciation for threshold
values above 0.2, thus adding a substantial quantity
of spurious ambiguities.

We have also calculated and proceed to dis-
play the BLEU score of the Cr#pbank corpus
by groups of sentences length in Figure 2 in order
to further investigate why our method enhances the
Transformer MT systems output, whereas this
is not the case for the PBSMT models, as seen in
Table 3. In this way, in Figure 2, we can notice that
the highest improvement caused by our phonetic
normalization pipeline is present in short sentences
(between 1 and 10 words). It is worth noting that
this is the only case where the Transformer
outperforms PBSMT in this Figure. Hence, the
higher overall Transformer BLEU score over
PBSMT is certainly due to a relatively high success-
ful normalization over the shortest sentences of the
Cr#pbank test set. This agrees with the docu-
mented fact that NMT is consistently better than
PBSMT on short sentences (Bentivogli et al., 2016)
and, in this concrete example, it seems that the
Transformer can take advantage of this when
we apply our normalization pipeline. Additionally,
these results could be regarded as evidence support-
ing that our proposed method performs generally

better for short sentences, as observed in Table 3
results’ discussion.

Blind Tests
System MTNT Cr#pbank

Large - PBSMT Raw 29.3 30.5
Large - PBSMT Phon. Norm 26.7 26.9

Small - Transformer Raw 25.0 19.0
Small - Transformer Phon. Norm 24.5 18.3

M&N18 Raw 19.3 13.3
M&N18 UNK rep. Raw 21.9 15.4

Table 4: BLEU score results comparison on the
MTNT and Cr#pbank blind test sets. The G2P
phonetizer has been used for normalization.M&N18

stands for (Michel and Neubig, 2018)’s baseline system.

Furthermore, we have applied our method over
a blind test set of the UGC corpora MTNT and
Cr#pbank. These results are displayed in Table 4,
we also show the performance of the (Michel and
Neubig, 2018)’s baseline system on such test sets.
The translation system is selected as the best for
each of the UGC sets from Table 3. For such test
corpus, we noticed a 0.5 and a 3 BLEU points
decrease for Transformer and PBSMT systems,
respectively, when our normalizer is used over the
MTNT blind test. On the other hand, we obtained a
0.7 BLUE point loss for the Transformer and a
3.6 point drop for PBSMT, both on the Cr#pbank
blind test. These results suggest that, when we do
not tune looking for the best translation system,
and for certain UGC, our approach introduces too
much noise and MT performance can therefore be
detrimentally impacted.
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Normalization a→à sa→ça et→est la→là à→a tous→tout des→de regarder→regardé ils→il prend→prends
Number of app. 87 16 15 13 12 11 8 7 6 6

Table 5: Most frequent normalization replacements on the Cr#pbank test corpus.
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Figure 3: Number of replacement operations of
our normalizer over the Cr#pbank test set. The
quantity of non-homophones normalizations are
displayed as point labels.

7 Qualitative Analysis

We display the most frequent normalization
changes in the Cr#pbank test set, along with their
phonetic distance in Table 5. We notice that the
20 most frequent normalization changes are ho-
mophones, i.e. they have a 0.0 phonetic distance
even when the threshold is set to 0.2.8 Replace-
ments with a phonetic distance of 0.1 to 0.2, appear
at most twice in this test set, except for “apres”
→“après” and “tt” →“td” that appear, respec-
tively, 6 and 4 times.

Table 6 reports some examples of the output of
our method along with their translation before and
after correction.

For Example 6.1, we can notice that our normal-
izer enables the MT system to produce the first
part of the translation (“When I get to the taff ”).
This is a result of correctly changing the French
homophones “arriver”→ “arrivé”, i.e. from the
infinitive to the past form. It is very interesting
to notice that the robustness of the Transformer
using subword units seems to be good enough to
correctly translate the typographical error “ce met
a battre”, thus, the correct proposed normalization
(“se met à battre”) does not impact the MT result
but it certainly does impact the correctness of the

8This is the highest value for which we consider a related
pronunciation, according to our preliminary trials.

French phrase.
Regarding Example 6.2, we can notice that our

normalized proposition significantly improves MT
translation, producing an output closer to the refer-
ence translation, when compared to the raw MT out-
put. The key normalization change is the misused
French token “faite” (pronounced /fEt/) — “does”
in English — by its correct homophone “fête” —
“celebrates” in English —. It is worth noting that
the MT system robustness is once again capable of
correctly translating a phonetic contraction “c” as
the two correct tokens “c’est”.

Example 6.3 shows how semantically different
can be a misused French word due to homophones
confusion. We can observe that the normaliza-
tion replacement “nez” (“nose” in English)→ “né”
(“born” in English), which are French homophones,
drastically changes the meaning of the output trans-
lation. Additionally, the correction “marqué”→

“marquer”9 (changing to correct verb tense) also
causes the translation to be closer to the reference.

Finally, in Example 6 we display some incon-
veniences for our method, where the correct orig-
inal plural “Cartes bancaires ... restrouvés” was
changed to the singular form “Carte bancaire ...
retrouvé”. This is due to the homophonic property
of most French singular and plural pronunciations.
Whenever there is no discriminant token with dif-
ferent pronunciation, such as an irregular verb, the
language model has trouble choosing the correct
final normalized phrase since both plural and sin-
gular propositions are proposed as candidates and
can be indistinctly kept as final normalization since
both forms are correct and theoretically very simi-
lar in their perplexity measure.

8 Conclusions

In this work, we have proposed a pre-processing
method that relies on phonetic similarity to normal-
ize UGC. Our method is able to improve the trans-
lation quality of UGC of a state-of-the-art NMT
system. Conversely, we have performed error anal-
ysis showing that the MT system achieves to cor-
rectly translate phonetic-related errors with its in-
creased robustness. However, it must be noted that

9marked vs mark-INFINITIVE in English.
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À src arriver au taff, des que j’ouvre le magasin je commence a avoir le vertige mon coeur ce met a battre a
200 et je sens que je vais faire un malaise,

ref once at work, as soon as I open the store I’m starting to feel dizzy my heart starts racing at 200 and I
feel I’m gonna faint,

raw MT I start to get dizzy. My heart starts to beat at 200 and I feel like I’m going to faint.
norm arrivé au taff, dès que j’ouvre le magasin je commence à avoir le vertige mon coeur se met à battre à

200 et je sens que je vais faire un malaise,
norm MT When I get to the taff, as soon as I open the store, I start to get dizzy. My heart starts pounding at 200

and I feel like I’m gonna get dizzy.

Á src c un peu plus que mon ami qui faite son annif,
ref it’s a bit more than a friend to me who celebrate his birthday,
raw MT It’s a little more than my friend doing his birthday,
norm c un peu plus que mon amie qui fête son annif
norm MT It’s a little more than my friend celebrating her birthday,

Â src zlatan est nez pour marqué
ref Zlatan was born to score
raw MT Zlatan’s nose is for marking
norm zlatan est né pour marquer
norm MT Zlatan was born to score

Ã src Cartes bancaires de Zlatan retrouvés dans un taxi... On en parle ou pas WWW44
ref Zlatan’s bank cards found in a cab... we talk about it or not WW44
raw MT Zlatan’s bank cards found in a cab... we talk about it or not WW44
norm Carte bancaire de Zlatan retrouvé dans un taxi... On en parle ou pas WWW44
norm MT Zlatan bank card found in a taxi... we talk about it or not WWW44

Table 6: Examples from our noisy UGC corpus.

we obtained negative results on a blind test evalu-
ation, suggesting that the phonetic normalization
approach introduced more noise than useful cor-
rections on totally unseen data. This highlights
the importance of holding out data so that the real
efficiency of an MT system can be verified. In
addition, we have applied our normalizer to clean
canonical test data and have shown that it slightly
hurts MT quality. Further study is needed to assess
whether our proposed normalization pipeline can
correct phonetic-related errors on UGC for other
languages and other difficult UGC scenarios, such
as video-games chat logs (Martı́nez Alonso et al.,
2016) while maintaining the level of the perfor-
mance on cleanly edited text steady.
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Abstract

Twitter is an excellent source of data for NLP
researches as it offers a tremendous amount of
textual data. However, processing tweet to ex-
tract meaningful information is very challeng-
ing, at least for two reasons: (i) using non-
standard words as well as informal writing
manner, and (ii) code-mixing issues, which is
combining multiple languages in single tweet
conversation. Most of the previous works
have addressed both issues in isolated different
task. In this study, we work on normalization
task in code-mixed Twitter data, more specifi-
cally in Indonesian-English language. We pro-
pose a pipeline that consists of four modules,
i.e tokenization, language identification, lex-
ical normalization, and translation. Another
contribution is to provide a gold standard of
Indonesian-English code-mixed data for each
module.

1 Introduction

Twitter has gained interest from Natural Language
Processing (NLP) researchers over the last decade
because it offers various textual data, such as pub-
lic opinions, conversation, and breaking news, in
a huge number. However, tweets are mostly noisy
texts as they contain a lot of typos, slang terms,
and non-standard abbreviations. This noisy data
results dropping in the accuracy of the past NLP
systems (Liu et al., 2011).

Another common phenomenon found in social
media, including Twitter, is that people tend to
alternate between multiple languages in one ut-
terance. The embedding of linguistic units such
as phrases, words, and morphemes of one lan-
guage into the usage of other different languages
is known as code-mixing (Myers-Scotton, 1993).
The phenomenon of code-switching causing grief
for NLP systems due to the grammar and spelling
variations.

Indonesia, the most fourth populous country in
the world, is bilingual1. While Bahasa Indonesia
is the only official language, English is also used
in formal education and business. Nowadays, the
Indonesian young generation gets used to mix both
languages in daily life. Code-mixing is frequently
found in social media conversation in Indonesia.

In this paper, we design standardization system
for Indonesian-English code-mixed Twitter data.
Our solution is a pipeline of 4 modules, i.e. tok-
enization, language identification, lexical normal-
ization, and translation.

1. Tokenization: The tweet is tokenized into
several tokens. Each token may represent a
word, an idiom, an interjection (e.g. haha,
hehe, wkwkw), numbers, emoticon, punctua-
tion marks, and tweet entity (i.e link, hashtag,
mention). In this study, the name of entities
i.e movies, people, etc. is considered as one
single token.

2. Language Identification: Every token
within tweet is labeled with corresponding
language tag. The label ’en’ is assigned for
English token, ’id’ for Indonesian token, and
’rest’ for the token that not clearly belongs
to either English or Indonesian (e.g. proper
name, number).

3. Normalization: Tokens with label ’id’ or
’en’ are normalized into standard form. To
reduce the number of token variations in the
data set, we reduce character repetition to be
not more than two (e.g. the interjection token
”heheeee” is standardized into ”hehee”). The
tokens with label ”rest” are left as they are

1https://blog.swiftkey.com/celebrating-international-
mother-language-day/
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4. Translation: We merge the sequence of nor-
malized tokens back into complete tweet, and
translate the tweet into Indonesian, with the
exception of the name entities that are kept in
original language (i.e term ”The Lion King”
is not translated into ”Raja Singa”).

To our knowledge, this is the first attempt
to normalize Indonesian-English code-mixed lan-
guage. For our experiment, we build the data set
consisting of 825 tweets.

2 Related Work

Text normalization has been studied for Twitter
data using a variety of supervised or unsuper-
vised methods. Liu et al. (2011) modelled lexi-
cal normalization as a sequence labelling problem,
by generating letter-level alignment from standard
words into nonstandard variant words, using Con-
ditional Random Field (CRF).

Beckley (2015) performed English lexical nor-
malization task in three steps. First, compiled
a substitution list of nonstandard into standard
words, then built a rule-based components for -ing
and duplication rule as it is often found in the data
set. Last, applied sentence-level re-ranker using
bigram Viterbi algorithm to select the best candi-
date among all the candidates generated from first
and second steps.

Sridhar (2015) proposed an unsupervised ap-
proach for lexical normalization by training a
word embedding model from large English cor-
pora. The model is used to create a mapping be-
tween non-standard into standard words. Hanafiah
et al. (2017) approached lexical normalization for
Indonesian language using the rule-based method
with the help of a dictionary and a list of slang
words. If the token is OOV, then they create a can-
didate list based on the consonant skeleton from
the dictionary.

For code-mixed data, Singh et al. (2018) cre-
ated clusters of words based on embedding model
(pre-trained on large corpora) for the semantic fea-
tures and Levenshtein distance for lexical features.
Then, one word is picked to become the parent
candidate for each cluster, and other words in each
cluster are normalized into the parent candidate.

Mave et al. (2018) worked a language iden-
tification task on code-mixed data. The experi-
ment shown that Conditional Random Field (CRF)
model outperformed Bidirectional LSTM.

Types Count
Number of tweets 825
Number of tokens 22.736
Number of ’id’ tokens 11.204
Number of ’en’ tokens 5.613
Number of ’rest’ tokens 5.919

Table 1: Data Set Detail

Dhar et al. (2018) augmented existing ma-
chine translation by using Matrix Language-
Frame Model proposed by Myers-Scotton (1997)
to increase the performance of the machine trans-
lations apply on code-mixed data.

Bhat et al. (2018) presented a universal depen-
dency parsing with the Hindi-English dataset us-
ing a pipeline comprised of several modules such
as language identification, back-transliteration,
normalization using encoder-decoder framework
and dependency parsing using neural stacking. It
is found that normalization improves the perfor-
mance of POS tagging and parsing models.

3 Data Set

We utilize three kinds of Twitter corpora in this
study i.e. English, Indonesian, and Indonesian-
English code-mixed corpus. We obtain 1.6M En-
glish tweets collection from ’Sentimen40’ (Go
et al., 2009) and 900K Indonesian tweets from
Adikara (2015). We collect 49K Indonesian-
English code-mixed tweets by scrapping them us-
ing Twitter API. To harvest those tweets, first we
take 100 English and Indonesian stopwords from
wiktionary2. To fetch code-mixed tweets, we use
the stopwords as query term and set the language
filter as the opposite of the stopword one (e.g. In-
donesian tweets are collected using a English stop-
word as a query, vice versa).

We select 825 tweets randomly from code-
mixed corpus for the experiment. The data is la-
beled by two annotators. The gold standard is con-
structed for four individual tasks.

The inter-annotator agreement has 97,92% for
language identification and 99,23% for normaliza-
tion. Our data has a code-mixing index (Das and
Gambäck, 2014) of 33.37, means that the level of
mixing between languages in the data is quite high
(see Table 1 for detail)

2https://en.wiktionary.org/wiki/Wiktionary:Frequency
lists
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Figure 1: An Input-Output Example of Pipeline Model

4 Methods

The main objective of this study is to standardize
the lexical form of code-mixed tweets. To achieve
this, we propose a pipeline which is composed of
four modules, tokenization, language identifica-
tion, lexical normalization, and translation. The
pipeline takes the code-mixed Indonesian-English
tweet as the input, runs each module sequentially,
and produces tweet in well-formed Indonesian
language as output. Figure 1 depicts the pipeline
model with an example of input and output.

4.1 Tokenization
The tokenization module takes a single tweet as in-
put, and produces a sequence of tokens (one token
can be a multiword expression) as output. Default
delimiter in tokenization, i.e. whitespace, does not
work well for social media domain due to non-
standard writing style, for example, space disap-
pearance (of course not..absolutely not) and space
excesses (E N D). More specific problem found in
the Indonesian is writing inaccuracy of morpho-
logical affix ”di” as a preposition, and vice versa.
While whitespace is needed to separate preposi-
tion ”di” and the next word (e.g. ”di kelas”, in
English: ”at class”); this does not apply for affix-
ation case (e.g. ”dimakan”, in English: ”eaten”).

We approach this task as a sequence labeling at
the character level with inside/outside chunk rep-
resentation, as introduced by Ramshaw and Mar-
cus (1999). We use three different tags: B rep-
resents the beginning of a new chunk, I means
that the current token is inside the chunk, and O
indicates that the current token is outside of any
chunks. For instance, a sentence ”this car” will be
encoded into ”BIIIOBII”.

The features set used in tokenization comprises
of morphological information of the character i.e
current character, is alphabet, is digit, is upper-
case, and n-window character (n = 5). Sequence
labeling model is trained using Conditional Ran-
dom Field.

4.2 Language Identification

This module takes a sequence of tokens outputted
from the tokenization module as an input, and
identifies the language for each token. The lan-
guage tag is one of these labels: ’en’, ’id’, ’rest’.

The features set for language identification con-
sist of the current token in which the language to
be determined, morphological information of cur-
rent token, n-neighbor tokens, and n-gram charac-
ter of the current token (n = 5). For morpholog-
ical information, we use the binary features such
as is alphabet, is digit, is capital, contains alpha-
bet, contains digit, and has apostrophes. We do
not include Part-Of-Speech (POS) information in
our selected features, as recommended by Mave
et al. (2018). The model is trained using Condi-
tional Random Field.

4.3 Lexical Normalization

This module takes a sequence of tokens along with
their language tags as input, and normalize the
token one by one independently by substituting
out-of-vocabulary (OOV) tokens into their stan-
dard equivalents that exist in the vocabulary. We
identify nine common types of OOV token within
code-mixed data, as details in Table 2.

Our approach is unsupervised. We create a
mapping between OOV tokens into their stan-
dard forms using word distribution. However,
some types are specific to a language, and can-
not be solved with the word distribution informa-
tion only. Thus, we combine the distributional ap-
proach with the rule-based method. Our method is
outlined as follows.

1. OOV types which are encountered at both
languages is tackled using translation dictio-
nary built from word distribution approaches.

2. For ”reduplication with 2” problem, we re-
moves character 2, apply the reduplication,
and insert the hyphen in the text.
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Types Language Example / Explanation
Non-standard spelling/typo ’en’, ’id’ lvie or youuuu

Informal Abbreviations ’en’, ’id’
”lht” for ”lihat” (in English: ”see”), ”ppl” for
”people”

Slang words ’en’, ’id’ ”epic” or ”gue” for ”saya” (in English: ”I”)

Spelled phonetically ’en’, ’id’
”plis” for ”please”, ”kalo” for ”kalau” (in English:
”if”)

Reduplication with 2 ’id’

In Indonesian, plural form of noun is written with
a hyphen, e.g. ”orang-orang” (in English: ”peo-
ple”). However, informal writing style often use
the number ”2” to indicate this (e.g. ”orang2”)

Hyphenless reduplication ’id’
On the other hand, the hyphen is sometimes not
written (e.g. ”orang orang”)

Contracted words ’en’ ”im” for ”i am”

Combining English word
with Indonesian prefix (nge-)

’en’

Indonesian people tend to use an informal prefix
(nge-) before the words to stress that the word is
a verb. For instance, the word ”vote” is written as
”ngevote”

Combining English word
with Indonesian suffix (-nya)

’en’

Suffix ”-nya” in Indonesian means the possessive
pronoun (e.g. ”miliknya” similar to ”hers” or
”his”). Suffix ”-nya” can also refers to the definite
article (in English: ”the”). Informally, the suffix is
used to follow English word usage in Indonesian
conversation, e.g. ”jobnya” (in English: ”the job”)

Table 2: Type of OOV Tokens

3. For ”reduplication without hyphen” problem,
we check whether the token consists of mul-
tiple words, then replace the space delimiter
with ”-” if it is a reduplication case.

4. For ”contracted words” problem, we normal-
ize them by utilizing the list provided by
Kooten 3.

5. For problem of ”combining English word
with Indonesian prefix (nge-)”, we remove
the prefix (-nge) from the word.

6. For problem of ”combining English word
with Indonesian suffix (-nya)”, we remove
the suffix (-nya) and add the word ”the” be-
fore the word.

There are two sub tasks in lexical normalization
module. First, create mapping between OOV to-
kens to their standard forms. Then, build the sys-
tem to incorporate the rule-based method with the
distributional semantics.

3https://github.com/kootenpv/contractions

4.3.1 Build OOV and normal word mapping
Word embedding can be used to cluster words be-
cause it can model word relatedness, both syntacti-
cally and semantically. We use embedding model
to construct mapping between OOV and its nor-
mal form. The word embedding model is trained
by using skip-gram architecture (Mikolov et al.,
2013). The procedure is described as follows:

1. Collect Indonesian and English vocabulary
from Kateglo4 and Project Gutebnberg5.

2. For each word normal word in the vocabu-
lary, get 100 most similar words from social
media corpus by using embedding model.

3. For each most similar words wi to
normal word

• If wi exists in the dictionary, it means
that wi is already normalized.
• otherwise, wi is OOV, then add a map-

ping instance between OOV word wi

into normal word.
4http://kateglo.com/
5http://www.gutenberg.org/ebooks/3201
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4. If an OOV wj is mapped into several
normal word entries, choose one which has
the highest lexical similarity with wj .

We use the lexical similarity function (Has-
san and Menezes, 2013). The function is
based on the Longest Common Subsequence
Ration (LCSR), which is the ratio of the
length of the Longest Common Subsequence
(LCS) and the length of the longer token
(Melamed, 1999). The lexical similarity
function defined as:

lex sim(s1, s2) =
LCSR(s1, s2)

ED(s1, s2)
(1)

LCSR(s1, s2) =
LCS(s1, s2)

MaxLength(s1, s2)
(2)

We apply static mapping as our mapping mech-
anism instead of finding the replacement online
because of the execution time and memory perfor-
mance. It is much faster to look up at the mapping
rather than calculate it from the word embedding
model. Furthermore, the memory needed to store
the mapping is much smaller than the word em-
bedding model.

4.3.2 Combine rules with mapping list
Normalization system employs combination of
hand-crafted rules and mapping of words as fol-
lows.

1. Skip this procedure when the input is not a
word (e.g hastag, mention, link, emoticon).

2. If the token is a multiword (there are more
than one single word that is separated by
white space), split the token into the list of
single words. Try to normalize each word in-
dependently by applying the rules, and merge
them back into one token. For instance, put
the hyphen for reduplication case.

3. If the input is a word, then transform it into
lowercase format. Reduce character repeti-
tion to at most two and consider any pos-
sible transformation. For instance, word
”Pleasssseee” is transformed into ”pleassee”,
”pleasee”, ”pleasse”, and ”please”. Check
whether one of generated transformed word
is a normal form. If not, apply rule-based
strategy. Last, use the mapping list created
by utilizing word embedding.

4.4 Translation

This module aims to merge the list of tokens pro-
cessed in previous modules back into one tweet
and translates the tweet into Indonesian gram-
matical language. The module needs the Ma-
chine Translation (MT) system which is specific to
the Indonesian-English code-mixed text domain.
However, such MT system is not available at this
moment. Dhar et al. (2018) found similar problem
and tackled this by augmenting Matrix Language-
Frame (MLF) model on top of the existing state-
of-the-art MT system.

In the MLF model proposed by Myers-Scotton
(1997), the code-mixed sentence can be splitted
into the dominant language (the matrix language)
and the embedded language. The matrix language
grammar sets the morphosyntactic structure for
the code-mixed sentence, while the embedded lan-
guage borrows words from its vocabulary.

Thus, in this module, first, we merge the list
of tokens into one tweet. Then, we separate the
tweet into several sentences using sentence delim-
iter such as period (.), comma (,), the question
mark (?), the exclamation mark (!), etc. For each
sentence, we decide the language of the sentence
(English or Indonesian sentence). To do that, we
count how many words are English and how many
words are Indonesian. The language which has
a bigger frequency is the dominant language and
also the language of the sentence, and the language
which has a smaller frequency is the embedded
language. After we decide the language of the
sentence, we translate all the words into the lan-
guage of the sentence. Last, if the language of the
sentence in English, we translate the whole sen-
tence into Indonesian. We use Microsoft Machine
Translation6 as the MT system. Figure 2 shows an
example of input and output of translation module.

5 Experiments and Evaluation

We evaluate the performance of our implementa-
tion for each module and the pipeline model as
whole process. First two modules (tokenization
and language identification) are evaluated in su-
pervised way using 4-fold cross validation setting.

Tokenization is evaluated at both character-
level and token-level. The character-tagging
achieves 98.70 for F1-score, while token identi-
fication obtains 95.15 for F1-score.

6https://www.microsoft.com/en-
us/translator/business/machine-translation/
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Figure 2: An Input-Output Example of Translation Module

The performance of our tokenization module
excels NLTK TweetTokenizer tool, which scores
F1 of 90.98 on evaluating token identification.

Language Identification module gets 89.58
F1-score and 90.11 accuracy. F1-score for label
’en’, ’id’, and ’rest’ are respectively 87.07, 91.99,
and 89.44 (the detail is in Table 3)

Language prec recall F1-score
en 89.90 84.42 87.07
id 88.13 96.22 91.99
rest 94.99 83.96 89.14

Table 3: Language Identification Experiment Result

For evaluation of lexical normalization, we
conduct a number of scenario. We test the dif-
ference of corpus source for building embedding
model, i.e. combined corpora vs separated cor-
pora. In first scenario, we only build single em-
bedding model from merging of Indonesian and
English corpus. While, in later, two distinct mod-
els are learned respective from each monolingual
corpus. We also examine the contribution of rule-
based strategy to enhance the word normalizer.

F1-score and accuracy are used as metric for
evaluation. Those are measured across all the
unique OOV words. If an OOV appears several
times in the corpus, it is counted once. False posi-
tive is defined as a word that is actually a normal-
ized form, but the system detects it as OOV word
and normalizes the word incorrectly. On the con-
trary, false negative is a word that is OOV, but the
system fails to detect it or fails to normalize the
word into its standard form.

The best result is 81.31 for F1-score and 68.50
for accuracy, achieved when the mapping list of
OOV and normal form is provided for separated
language. A set of rules double the performance
of normalization system. See Table 4) for detail.

Type F1-score Accuracy
Combined Corpora 47.49 31.14
Separated Corpora 48.34 31.87
Combined Corpora
+ Rule-based

80.96 68.01

Separated Corpora
+ Rule-based

81.31 68.50

Table 4: Lexical Normalization Experimental Result

Moreover, we investigate the errors by draw-
ing sample of misclassified cases. False positive
mostly happens in affixed words. In this case, af-
fixed word is forced to transform into stem form.
False negative occurs with words that supposed to
be slang words, but they do exist in the vocabu-
lary. For example, the word ”aja” is commonly
slang form of word ”saja” (in English: ”only”), but
”aja” is found in Indonesia dictionary with differ-
ent meanings.

When evaluating translation module, we test
the effect of augmenting Matrix Language-Frame
(MLF) Model into MT system. Incorporating MT
system with MLF Model achieves better perfor-
mance, 71.54 for BLEU and 19.50 for WER, as
presented in Table 6.

Type BLEU WER
Without MLF 66.69 21.45
With MLF 71.54 19.50

Table 5: Translation Experimental Result
(BLEU: higher is better, WER: lower is better)

As integration of aforementioned modules, we
evaluate the pipeline model by conducting four
experiments, 1) comparing raw tweets with final
tweets, 2) comparing raw tweets which have been
translated (without MLF model) into Indonesian
with final tweets, 3) comparing raw tweets which

422



have been translated (with MLF Model) into In-
donesian with final tweets, and 4) comparing raw
tweets which have been normalized and trans-
lated (with MLF Model) into Indonesian with final
tweets. From the experiments, our final pipeline
obtains 54.07 for BLEU and 31.89 for WER. From
Table 6, we can see that each module affects posi-
tively toward the performance of the pipeline. The
pipeline model increases BLEU score for 8 points,
and WER for 14 points compared to the baseline
(raw tweets).

Pipeline BLEU WER
Raw Tweets 46.07 45.75
Raw Tweets + Translation
(1 + 4 Module)

51.02 34.37

Raw Tweets + Translation
with MLF Model (1 + 2 +
4 Modules)

51.75 34.39

Raw Tweets + Normal-
ization + Translation
with MLF Model (Full
pipeline)

54.07 31.89

Table 6: Pipeline Experiment Result
(BLEU: higher is better, WER: lower is better)

6 Conclusion and Future Work

In this paper, we have proposed a pipeline model
comprising of four modules, i.e. tokenization,
language identification, lexical normalization, and
translation. In addition, we also have prepared
gold standard data consisting of 825 Indonesian-
English code-mixed tweets for four different tasks
corresponding to the modules. The data set
is freely available online for research purpose
only.7 We experiments with Indonesian-English
code-mixed Twitter data and the evaluation shows
that our model works satisfactorily. Overall, the
pipeline yields 54.07 scores for BLEU and 31.89
scores for WER.

However, the final result is not as high as the
performance at the translation module because the
final result uses the output from previous mod-
ules as inputs. The error from each module will
propagate to the next modules. At the normal-
ization module, using vector representations from
word embedding for Indonesian-English code-
mixed data quite good and applying the rule-based

7https://github.com/seelenbrecher/code-mixed-
normalization

approach for each language improve the perfor-
mance significantly. At the translation module,
there are some errors caused by the MT system,
but we could not do much about it since we use
the existing MT system.

Moving forward, we would like to augment
more data and enhance technique in order to im-
prove performance of the model. Currently, lex-
ical normalization module is much dependent of
handcrafted rules. While the rule-based approach
can increase the performance, it still not a robust
solution seen from how language evolved.
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Abstract

This paper presents an approach for detect-
ing and normalizing neologisms in social me-
dia content. Neologisms refer to recent ex-
pressions that are specific to certain entities
or events and are being increasingly used by
the public, but have not yet been accepted in
mainstream language. Automated methods for
handling neologisms are important for natural
language understanding and normalization, es-
pecially for informal genres with user gener-
ated content. We present an unsupervised ap-
proach for detecting neologisms and then nor-
malizing them to canonical words without re-
lying on parallel training data. Our approach
builds on the text normalization literature and
introduces adaptations to fit the specificities of
this task, including phonetic and etymologi-
cal considerations. We evaluate the proposed
techniques on a dataset of Reddit comments,
with detected neologisms and corresponding
normalizations.

1 Introduction

Linguistic evolution and word coinage are natu-
rally occurring phenomena in languages. How-
ever, the proliferation of social media in recent
years may expedite these processes by enabling
the rapid spread of informal textual content. One
aspect of this change is the increasing use of ne-
ologisms. Neologisms are relatively recent terms
that are used widely and may be in the process
of entering common use, but have not yet been
fully accepted into mainstream language. Neol-
ogisms are rarely found in traditional dictionaries
or language lexica, and they usually have lexical,
phonetic or semantic connections to some rele-
vant canonical words. They are also often, but not
necessarily, generated by combining two different
words into a single blend word. Examples include
the word burkini, which is coined from the words
burka and bikini. The burkini has its own individ-
ual meaning that cannot be entailed by a burka or
bikini alone.

The goal of neologism normalization is not to
generate a perfect replacement for the original text
but rather to assist both humans and automated
systems in understanding informal text. Inexact
normalizations may nevertheless be useful hints to
human readers who are unfamiliar with the new
words. Normalizations can also substitute for out-
of-vocabulary words in downstream NLP applica-
tions in order to compensate for data sparsity.

In this paper, we present an unsupervised ap-
proach for normalization, based on the hypoth-
esis that neologisms—and non-standard words
(NSWs) in general—are likely to share contexts
with related canonical words. For instance, NSWs
may be expected to lie near their canonical forms
in a suitable embedding space. We develop mea-
sures to relate words more accurately using both
orthography and distributed representations. We
also enhance the embedding space with multi-
word phrases and subword units, which induces
a clustering of compound words with shared ety-
mology, phrases with overlapping words, and enti-
ties with common names, thereby capturing novel
puns, nicknames, etc.

2 Related Work

Prior work on automatic neologism handling,
whether for detection or normalization, is rela-
tively scarce. Most existing neologism detection
approaches rely on exclusions lists of canonical
or accepted words to filter plausible neologisms
(de Yzaguirre, Lluis, 1995; Renouf, 1993). Other
contributions based on the same architecture uti-
lize additional filters like eliminating words with
spelling errors or named entities to further reduce
the set of detected plausible neologisms (Kerre-
mans et al., 2012; Gérard et al., 2014; Cartier,
2016, 2017). There are also several machine learn-
ing based approaches, but with limited perfor-
mance (Falk et al., 2014; Stenetorp, 2010).

In the broader text normalization literature, sev-
eral supervised approaches have been proposed
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(Mays et al., 1991; Church and Gale, 1991;
Brill and Moore, 2000; Aw et al., 2006; Sproat
and Jaitly, 2016), all of which require relatively
large datasets. Several unsupervised normaliza-
tion models have also been presented. Li and
Liu (2014); Rangarajan Sridhar (2015) use dis-
tributed word embeddings, where the embeddings
are used to capture the notion of contextual sim-
ilarity between canonical and noisy words, along
with other measures. Rangarajan Sridhar (2015)
further builds on this approach with phrase-based
modeling using existing phrase corpora. Hassan
and Menezes (2013) use a random-walk based al-
gorithm to calculate contextual similarity, along
with edit distance metrics, to obtain normalization
candidates. In this paper, we extend the distributed
word representation approach (Rangarajan Srid-
har, 2015) for unsupervised neologism normaliza-
tion through several adaptations.

3 Neologism Detection

We first present our neologism and NSW detec-
tion approach for Reddit comments. The resulting
list of plausible neologisms is then used to ana-
lyze neologism etymology and coinage patterns,
and later to produce normalization candidates in
the normalization model.

Owing to the noisy domain of user-generated
text and to the fact that neologisms must ex-
clude names, domain jargon and typos, corpus fre-
quency alone is not reliable for identifying neolo-
gisms. Exclusion lists prove effective at recover-
ing a high-precision set of neologisms for this task
when combined with frequency-based filters and
adaptations to increase coverage. Our pipeline for
neologism detection includes the following steps:

• Tokenization: We split on whitespace and
handle many Reddit-specific issues, includ-
ing URLs and specific punctuation patterns.

• Named entity removal: We use the SpaCy
NLP toolkit1 to identify named entities in
context and eliminate them from the plausi-
ble neologisms list.

• English exclusion lists: We use several cor-
pora of English content as exclusion lists.

• Non-English content removal: We use the
Langdetect library2 to identify and eliminate
non-English content.

• Social media jargon removal: We use the so-
cial media word clusters from the work by

1Version 2.0.0: https://spacy.io
2Version 1.0.7: https://pypi.python.org/

pypi/langdetect

Owoputi et al. (2013) along with the Reddit
glossary3 as additional exclusion lists.

We apply exclusion list filtering on the stem level
to further reduce the sparsity of the analysis and
reduce the vocabulary. We use NLTK’s Snowball
stemmer.4

4 Neologism Normalization

Our approach is based on the hypothesis that neol-
ogisms and NSWs are likely to have similar con-
texts as their plausible canonical equivalents. We
model this using distributed word representations
derived from word2vec (Mikolov et al., 2013) via
Gensim (Řehůřek and Sojka, 2010). We use these
embeddings to learn normalization lexicons and
use these lexicons to obtain plausible candidates
for normalizing each neologism. We then select
among these candidates using a language model
and lattice-based Viterbi decoding.

4.1 Lexicon and Lattice Decoding

We use a list of canonical word forms as normal-
ization candidates. This list of canonical forms
can be obtained from traditional English language
lexica like the Gigaword corpus. For each canon-
ical candidate, we get the N nearest neighbors
from the embedding space. This effectively func-
tions as a reversed normalization lexicon, where
the canonical candidates are mapped to the poten-
tial neologisms. We score the canonical forms us-
ing several similarity metrics. We then reverse this
mapping to get the list of scored canonical candi-
dates for each neologism.

Neologisms are expected to share semantic, lex-
ical, and phonetic similarity with their canonical
counterparts. We capture these different aspects
using multiple measures of similarity:

Semantic similarity using the cosine distance
over embeddings Ri corresponding to strings Si.

COS(S1, S2) =
R1 ·R2

||R1|| × ||R2||
(1)

Lexical similarity based on the formula pre-
sented by Hassan and Menezes (2013) and used
by Rangarajan Sridhar (2015)

LEX(S1, S2) =
LCSR(S1, S2)

ED(S1, S2)
(2)

3https://www.reddit.com/r/
TheoryOfReddit/wiki/glossary

4Version 3.2.4: http://www.nltk.org/api/
nltk.stem.html

426



where ED is the edit distance and LCSR refers to
the longest common subsequence ratio

LCSR(S1, S2) =
LCS(S1, S2)

max(|S1|, |S2|)
(3)

where LCS is the longest common subsequence in
the two strings of length |S1| and |S2|.
Phonetic similarity through the Metaphone
phonetic representation algorithm (Philips, 1990),
which is used for indexing words by their English
pronunciation. We calculate the normalized edit
distance for the Metaphone representation of S1
and S2 and use this score to reflect the phonetic
similarity between the strings.

PHON(S1, S2) = 1− ED(mP (S1),mP (S2))

max(|S1|, |S2|)
(4)

where mP (Si) is a Metaphone representation.

Next, a language model is used to further con-
trol the fluency of the normalized output in con-
text. We use SRILM (Stolcke, 2002) to build the
model. To decode the optimal path given the simi-
larity scores and the language model probabilities,
we encode the sentence, along with the various
normalization candidates, in the HTK format. We
then use SRILM’s lattice-tool toolkit to decode the
space of potential paths using Viterbi decoding.

4.2 Phrases and Subword Units
The system so far is primarily targeted to word-
level normalization, without explicitly handling
multi-word phrases in the canonical form or rec-
ognizing shared etymology in the embeddings for
plausible neologisms. This limits the normaliza-
tion space for neologisms as the blending of two
or more words is a common neologism pattern.

Multi-word phrases: We use a data-driven ap-
proach for identifying common phrases within the
given corpus (Mikolov et al., 2013). Phrase can-
didates with scores above a certain threshold have
their constituent words joined by a delimiter and
are considered as a single word-like token for sub-
sequent analysis. We ensure that the detected
phrases do not contain punctuation sequences or
URLs, which are common in Reddit data.

Subword units: Traditional morphology-based
analysis falls short of detecting proper subword
entities in neologisms, where the form and etymol-
ogy of the neologisms are not fixed. Moreover, n-
gram character sequences are also not optimal here
given the intractability of the analysis. Instead we
segment words based on the byte pair encoding

(BPE) algorithm (Gage, 1994), which was adapted
for use in neural machine translation (NMT) by
Sennrich et al. (2016).

We add the detected phrases to the list of canon-
ical candidates as potential normalization targets
and add the subwords to the neologism lists.

4.3 Combining Word Representations

An important aspect to consider when combining
word, phrase and subword representations is to
maintain the distributional properties of the text.
We combine these representations by having the
choice to switch to a certain representation for
each word dictated through a uniformly distributed
random variable. That is, for a given sentence T
in a corpus, and for each word wi ∈ T , the re-
sulting representation w′

i based on the distribution
q(w′

i|wi) is managed by the control variable c =
rand(α), where α ∈ {0, 1, 2} indicates the choice
of word/phrase/subword representations. We re-
peat this process for all the words of each sentence
k different times, so we end up with k different
copies of the sentence, each having a randomly
selected representation for all of its words. k is
tunable and we set k = 5 for our experiments. A
somewhat similar approach is used by Wick et al.
(2016) to learn multilingual word embeddings.

5 Experimental Setup and Results

5.1 Dataset

We use a dataset of Reddit comments from June
2016 to June 2017 for the normalization experi-
ments in this paper, collected with the Reddit Big-
Query API.5 We focus on five popular subreddit
groups: worldnews, news, politics, sports, and
movies. This dataset contains about 51M com-
ments, 2B tokens (words), and 6M unique words.

A dataset of 2034 comments annotated with ne-
ologisms and their normalizations was used for
tuning6 and evaluating the normalization model.
These comments were selected from comments
identified as containing unique plausible neolo-
gisms using the neologism detection pipeline de-
scribed in Section 3. Normalization annotations
were obtained using Amazon Mechanical Turk us-
ing three judgments per comment. Annotators
were asked to provide up to five normalization
candidates for each neologism; candidates that at

5https://bigquery.cloud.google.com/
dataset/fh-bigquery:reddit_comments

6Parameters were tuned using a held-out validation set
drawn from the manual neologism annotations. This also ap-
plies to the tuning of weights for the linear combination of
the different similarity metrics.
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Sample of detected neologisms
politics pizzagate, drumpf, trumpster, shillary, killary
news antifa, brexit, drumpf, Libruls, redpilling, neonazi
worldnews burkini, brexit, pizzagate, edgelord, petrodollar
sports deflategate, handegg, ballboy, skurfing, playstyle
movies plothole, stuckmannized, jumpscare, MetaHuman
gaming playerbase, pokestop, jumpscare, hitscan

Table 1: Subreddit-level detected neologisms

Accuracy BLEU
Baseline 55.3 81.3
This work 64.2 87.7

Table 2: Evaluation of the normalization systems

least two of the three annotators agree upon were
selected as normalizations.7

5.2 Neologism Detection
We apply the detection pipeline we discussed ear-
lier on the Reddit dataset. We use the most fre-
quent 64K words in the Gigaword corpus as an
exclusion list for proper English words along with
NLTK’s Words and Wordnet corpora. We further
eliminated the terms that had a frequency lower
than 10 as potential spelling errors.

Table 1 shows samples of the top detected ne-
ologisms for each subreddit. We took a random
sample of 500 Reddit comments to inspect manu-
ally. Based on our observations, 5% of the com-
ments contained neologisms, and 82% of these ne-
ologisms are present in our list of plausible neol-
ogisms, which suggests the recall of the proposed
detection pipeline.

5.3 Normalization
We trained the word2vec model using the Red-
dit dataset using the skip-gram algorithm, a win-
dow of 5 words, and an embedding size of 250.
For phrase learning, we used a threshold score
of 10 and minimum count of 5. For lattice
decoding, we used a trigram language model
with Kneser-Ney discounting trained on LDC’s
Gigaword Fourth Edition corpus (LDC2009T13)
(Parker et al., 2009).

As a baseline, we use the model of Rangara-
jan Sridhar (2015), which does not consider sub-
words and phonological similarity. They use lan-
guage models and lattices, similar to our work,
but targeted for text normalization. Our work ex-
tends these ideas to normalize a wide variety of ne-
ologisms including phrases, nicknames and com-
pound words.

For evaluation metrics, we use the accuracy
of the normalization on the word level (the

7We started with a dataset of 5000 unique neologisms and
eliminated those that did not have a consensus of two or that
the annotators indicated they were not sure about.

Sentence
Raw republicans who don’t want drumpf are voting for hilldawg
Best system republicans who don’t want trump are voting for hillary
Reference republicans who don’t want trump are voting for hillary
Raw this is one of the biggest clickbate news outlets
Best system this is one of the biggest click bait news outlets
Reference this is one of the biggest click bait news outlets
Raw the hillbots have gone full insanity
Best system the hill bots have gone full insanity
Reference the hillary bots have gone full insanity

Table 3: Normalization examples

neologisms/canonical-equivalents level) along
with using BLEU score (Papineni et al., 2002).
BLEU is an algorithm for evaluating text quality
based on human references and is commonly
used in the machine translation literature. Using
BLEU is relevant here due to the potentially
multi-word output of the system with phrases and
subwords. Evaluation scores are calculated with
some relaxed matching, namely considering the
occurrences of plurals, lower/upper case, hyphen-
ation and punctuation, among others. So we treat
terms like trump and Trumps as equivalent, same
for posting and postings.

Table 2 shows the results. The system with
phrases and subwords clearly outperforms the
baseline, for both accuracy and BLEU scores.
BLEU scores are relatively high for both systems
since most of the sentences are preserved with
only modifications for the plausible neologisms.
The rest of the sentence should be an exact match
to the reference.

Table 3 presents three normalization examples,
with the raw, gold reference, and the output of our
system. The examples show a promising behavior,
but as can be seen at the third example, there is still
a room for improvement in normalizing the indi-
vidual phrase components. A potential future di-
rection here would be to improve embedding space
mappings for the subword entities.

6 Conclusion

We presented an approach to detect and normalize
neologisms in social media content. We leveraged
the fact that the neologisms and their canonical
equivalents are likely to share the same contexts
and hence have relatively close distributional rep-
resentations. We also presented some techniques
for handling phrases and subwords in the plausi-
ble neologisms, which is important given the et-
ymology behind most neologisms. Our approach
also makes use of the phonetic representation of
the words, to capture coinage patterns that involve
phonetic-based modification. Our results show
that the model is effective in both detection and
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normalization. Future work includes more explicit
generation models, utilizing natural language gen-
eration techniques, along with expanding and en-
hancing the coverage of the annotated data.
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Abstract

Understanding the vulnerability of linguistic
features extracted from noisy text is important
for both developing better health text classi-
fication models and for interpreting vulnera-
bilities of natural language models. In this
paper, we investigate how generic language
characteristics, such as syntax or the lexicon,
are impacted by artificial text alterations. The
vulnerability of features is analysed from two
perspectives: (1) the level of feature value
change, and (2) the level of change of fea-
ture predictive power as a result of text mod-
ifications. We show that lexical features are
more sensitive to text modifications than syn-
tactic ones. However, we also demonstrate
that these smaller changes of syntactic features
have a stronger influence on classification per-
formance downstream, compared to the im-
pact of changes to lexical features. Results
are validated across three datasets representing
different text-classification tasks, with differ-
ent levels of lexical and syntactic complexity
of both conversational and written language.

1 Introduction

It is important to understand the vulnerability of
linguistic features to text alteration because (1)
pre-defined linguistic features are still frequently
used in health text classification, e.g., detecting
Alzheimers disease (AD) (Masrani et al., 2017;
Zhu et al., 2018; Balagopalan et al., 2018), apha-
sia (Fraser et al., 2015), or sentiment from lan-
guage (Maas et al., 2011); and (2) understand-
ing the importance of syntactic and lexical infor-
mation separately as well as interactively is still
an open research area in linguistics (Lester et al.,
2017; Blaszczak, 2019).

Lexical richness and complexity relate to nu-
ances and the intricacy of meaning in language.
Numerous metrics to quantify lexical diversity,
such as type-token ratio (TTR) (Richards, 1987)

and MLTD (McCarthy, 2005), have been pro-
posed. These metrics capture various dimensions
of meaning, quantity and quality of words, such
as variability, volume, and rarity. Several of these
have been identified to be important for a variety
of tasks in applied linguistics (Daller et al., 2003).
For example, metrics related to vocabulary size,
such as TTR and word-frequencies, have proven
to help with early detection of mild cognitive im-
pairment (MCI) (Aramaki et al., 2016), hence are
important for early dementia diagnosis. Discourse
informativeness, measured via propositional idea
density, is also shown to be significantly affected
in speakers with aphasia (Bryant et al., 2013).
Furthermore, lexicon-based methods have proved
to be successful in sentiment analysis (Taboada
et al., 2011; Tang et al., 2014).

Syntactic complexity is evident in language pro-
duction in terms of syntactic variation and sophis-
tication or, in other words, the range and degree of
sophistication of the syntactic structures that are
produced (Lu, 2011; Ortega, 2003). This construct
has attracted attention in a variety of language-
related research areas. For example, researchers
have examined the developmental trends of child
syntactic acquisition (e.g., (Ramer, 1977)), the
role of syntactic complexity in treating syntac-
tic deficits in agrammatical aphasia (e.g., (Mel-
nick and Conture, 2000; Thompson et al., 2003)),
the relationship between syntactic complexity in
early life to symptoms of Alzheimers disease in
old age (e.g., (Kemper et al., 2001; Snowdon et al.,
1996)), and the effectiveness of syntactic com-
plexity as a predictor of adolescent writing quality
(e.g., (Beers and Nagy, 2009)).

Indefrey et al. (2001) reported data on brain ac-
tivation during syntactic processing and demon-
strated that syntactic processing in the human
brain happens independently of the processing of
lexical meaning. These results were supported
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by the more recent studies showing that differ-
ent brain regions support distinct mechanisms in
the mapping from a linguistic form onto mean-
ing, thereby separating syntactic agrammaticality
from linguistic complexity(Ullman et al., 2005;
Friederici et al., 2006). This motivates us to ex-
plore the importance of lexical and syntactic fea-
tures separately.

To our knowledge, there is no previous research
in medical text classification area exploring the
individual value of lexical and syntactic features
with regards to their vulnerability and importance
for ML models. Syntactic and lexical feature
groups are often used together without specifying
their individual value. For example, recent work
in text classification for AD detection revealed
that a combination of lexical and syntactic features
works well (Fraser et al., 2016; Noorian et al.,
2017); the same is true for other cognitive dis-
ease or language impairment detection (Meteyard
and Patterson, 2009; Fraser et al., 2014), as well
as sentiment detection in healthy speech and lan-
guage (Negi and Buitelaar, 2014; Marchand et al.,
2013; Pang et al., 2002).

In this paper, we focus on individual value of
lexical and syntactic feature groups, as studied
across medical text classification tasks, types of
language, datasets and domains. As such, the main
contributions of this paper are:

• Inspired by the results of neuroscience stud-
ies (Indefrey et al., 2001), we explore selec-
tive performance of lexical and syntactic fea-
ture groups separately.

• We demonstrate, using multiple analysis
methods, that there is a clear difference in
how lexical features endure text alterations in
comparison to the syntactic ones as well as
how the latter impact classification.

• We report results on three different datasets
and four different classifiers, which allows us
to draw more general conclusions.

• We conduct an example-based analysis that
explains the results obtained during the anal-
ysis.

2 Related Work

Prior research reports the utility of different
modalities of speech – lexical and syntac-
tic (Bucks et al., 2000; Fraser et al., 2016; Noo-

rian et al., 2017; Zhu et al.) – in detecting demen-
tia. Bucks et al. (2000) obtained a cross-validated
accuracy of 87.5% among a sample of 24 partic-
ipants in detecting AD using eight linguistic fea-
tures, including part-of-speech (POS) tag frequen-
cies and measures of lexical diversity. A similar
feature set was employed by Meilán et al. (2014)
in a larger sample, where measures of lexical rich-
ness were less useful than features indicative of
word finding difficulty (such as pauses and repeti-
tions). Orimaye et al. (2014) obtained F-measure
scores up to 0.74 using a combination of lexical
and syntactic features on transcripts from a large
dataset of AD and controls speech, DementiaBank
(see Section 3.1)

Similarly, varying feature sets have been used
for detecting aphasia from speech. Researchers
have studied the importance of syntactic com-
plexity indicators such as Yngve-depth and length
of various syntactic representations for detecting
aphasia (Roark et al., 2011), as well as lexical
characteristics such as average frequency and the
imageability of words used (Bird et al., 2000). Pat-
terns in production of nouns and verbs are also
particularly important in aphasia detection (Wil-
son et al., 2010; Meteyard and Patterson, 2009).
Fraser et al. (2014) used a combination of syn-
tactic and lexical features with ASR-transcription
for the diagnosis of primary progressive aphasia
with a cross-validated accuracy of 100% within
a dataset of 30 English-speakers. More recently,
Le et al. (2017) proposed methods to detect para-
phasia, a type of language output error commonly
associated with aphasia, in aphasic speech using
phone-level features.

Sentiment analysis methodologies often use
lexicon-based features (Taboada et al., 2011; Tang
et al., 2014). Syntactic characteristics of text such
as proportions of verbs and adjectives, nature of
specific clauses in sentences are also salient in
sentiment detection (Chesley et al., 2006; Meena
and Prabhakar, 2007). Additionally, systems us-
ing both syntactic and lexical features have been
proposed in prior work (Negi and Buitelaar, 2014;
Marchand et al., 2013). For example, Marchand
et al. (2013) trained ML models on patterns in syn-
tactic parse-trees and occurrences of words from a
sentiment lexicon to detect underlying sentiments
from tweets while Negi and Buitelaar (2014) em-
ployed syntactic and lexical features for sentence
level aspect based sentiment analysis. Pang et al.
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Datasets
DemB IMDBs AphB

Task nature
Structured X X
Partially structured X

Language type
Verbal X X
Written X

Lexics
Complex X
Medium X
Simple X

Syntax
Complex X
Medium X
Simple X

Table 1: Comparison of the datasets in terms of task
nature, type of language used to collect the data, lexical
and syntactic complexity.

(2002) showed that unigrams, bigrams and fre-
quencies of parts-of-speech tags such as verbs and
adjectives are important for an ML-based senti-
ment classifier.

3 Method

3.1 Datasets
In the following section, we provide context on
each of three similarly-sized datasets that we in-
vestigate that differ in the following ways (see also
Section 4):

1. Binary text classification task (AD detection,
sentiment classification, aphasia detection).

2. Type of language

3. Level of lexical and syntactic complexity.

3.1.1 DementiaBank (DemB)
DementiaBank1 is the largest publicly available
dataset for detecting cognitive impairments, and
is a part of the TalkBank corpus (MacWhinney,
2007). It consists of audio recordings of verbal de-
scriptions and associated transcripts of the Cookie
Theft picture description task from the Boston
Diagnostic Aphasia Examination (Becker et al.,
1994) from 210 participants aged between 45 to
90. Of these participants, 117 have a clinical diag-
nosis of AD (N = 180 speech recordings), while
93 (N = 229 speech recordings) are cognitively
healthy. Many participants repeat the task within
an interval of a year.

3.1.2 AphasiaBank (AphB)
AphasiaBank2 (MacWhinney, 2007) is another
dataset of pathological speech that consists of

1https://dementia.talkbank.org
2https://aphasia.talkbank.org

aphasic and healthy control speakers performing
a set of standard clinical speech-based tasks. The
dataset includes audio samples of speech and as-
sociated transcripts. All participants perform mul-
tiple tasks, such as describing pictures, story-
telling, free speech, and discourse with a fixed pro-
tocol. Aphasic speakers have various sub-types of
aphasia (fluent, non-fluent, etc.). In total, there
are 674 samples, from 192 healthy (N = 246
speech samples) and 301 (N = 428 speech sam-
ples) aphasic speakers.

3.1.3 IMDB Sentiment Extract (IMDBs)
The IMDB Sentiment (Maas et al., 2011) dataset
is a standard corpus for sentiment detection that
contains typewritten reviews of movies from the
IMDB database along with the review-associated
binary sentiment polarity labels (positive and neg-
ative). This dataset is used in order to extend
the range of ‘healthy’ language and test general-
izability of our findings. The core dataset consists
of 50,000 reviews split evenly into train and test
sets (with equal classes in both train and test). To
maintain a comparable dataset size to DemB and
AphB, we randomly choose 250 samples from the
train sets of each polarity, totalling 500 labeled
samples.

All the three datasets cover a breadth of tran-
scripts in terms of presence or absence of impair-
ment, as well as a spectrum of ‘healthy’ speech.

3.2 Feature Extraction

Following multiple previous works on text classifi-
cation, we extract two groups of linguistic features
– lexical and syntactic.

Lexical features: Features of lexical domain
have been recognized as an important construct in
a number of research areas, including stylistics,
text readability analysis, language assessment,
first and second language acquisition, and cogni-
tive disease detection. In order to measure vari-
ous dimensions of lexical richness in the datasets
under comparison, we compute statistics on to-
ken/unigram, bigram, and trigram counts. Addi-
tionally, we use the Lexical Complexity Analyser
(Ai and Lu, 2010) to measure various dimensions
of lexical richness, such as lexical density, sophis-
tication, and variation.

Following Oraby et al. (2018), Dušek et al.
(2019), and Jagfeld et al. (2018), we also use
Shannon entropy (Manning and Schtze, 2000,
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p. 61ff.) as a measure of lexical diversity in the
texts:

H(text) = −
∑

x∈ text

freq(x)

len(text)
log2

(
freq(x)

len(text)

)

(1)
Here, x stands for all unique tokens/n-grams,

freq stands for the number of occurrences in the
text, and len for the total number of tokens/n-
grams in the text. We compute entropy over tokens
(unigrams), bigrams, and trigrams.

We further complement Shannon text entropy
with n-gram conditional entropy for next-word
prediction (Manning and Schtze, 2000, p. 63ff.),
given one previous word (bigram) or two previous
words (trigram):

Hcond(text) = −∑(c,w)∈ text
freq(c,w)

len(text) log2

(
freq(c,w)

freq(c)

)
(2)

Here, (c, w) stands for all unique n-grams in the
text, composed of c (context, all tokens but the last
one) andw (the last token). Conditional next-word
entropy gives an additional, novel measure of di-
versity and repetitiveness: the more diverse text
is, the less predictable is the next word given the
previous word(s) is; on the other hand, the more
repetitive the text, the more predictable is the next
word given the previous word(s).

Syntactic Features: We used the D-Level Anal-
yser (Lu, 2009) to evaluate syntactic variation and
complexity of human references using the revised
D-Level Scale (Lu, 2014).

We use the L2 Syntactic Complexity Analyzer
(Lu, 2010) to extract 14 features of syntactic com-
plexity that represent the length of production
units, sentence complexity, the amount of subordi-
nation and coordination, and the frequency of par-
ticular syntactic structures. The full list of lexical
and syntactic features is provided in Appendix A.

3.3 Classification Models

We benchmark four different machine learn-
ing models on each dataset with 10-fold cross-
validation. In cases of multiple samples per par-
ticipant, we stratify by subject so that samples of
the same participant do not occur in both the train
and test sets in each fold. This is repeated for each
text alteration level. The minority class is over-
sampled in the training set using SMOTE (Chawla
et al., 2002) to deal with class imbalance.

Feature
subgroup Feature DemB IMDBs AphB

Lexical
richness

distinct tokens occuring once, % 0.58 0.64 0.32
distinct bigrams occuring once, % 0.89 0.95 0.83
distinct trigrams occuring once, % 0.96 0.99 0.92

Lexical
complexity

unigram entropy 5.42 6.53 6.70
bigram entropy 6.4 7.46 8.68
trigram entropy 6.55 7.54 9.19
bigram conditional entropy 1.01 0.95 1.99
trigram conditional entropy 0.16 0.09 0.51
lexicon complexity 1.33 1.47 1.32

Length of
production
unit

Mean length of clause 7.45 9.24 5.42
Mean length of sentence 8.77 21.42 6.01
Mean length of T-unit 11.85 18.99 6.15

Sentence
complexity

Clauses per sentence 1.21 2.35 1.08
D-level 0 0.63 0.26 0.74
D-level 1-4 0.23 0.21 0.14
D-level 5-7 0.14 0.52 0.11

Amount of
subordination

Clauses per T-unit 1.62 2.07 1.12
Complex T-units per T-unit 0.19 0.55 0.14
Dependent clauses per T-unit 0.68 1.00 0.19

Amount of
coordination

Coordinate phrases per clause 0.11 0.22 0.10
Coordinate phrases per T-unit 0.17 0.44 0.11
T-units per sentence 0.77 1.13 0.95

Particular
structures

Complex nominals per clause 0.64 1.09 0.33
Complex nominals per T-unit 1.03 2.28 0.38
Verb phrases per T-unit 1.93 2.64 1.19

Table 2: Lexical complexity and richness, and syntactic
complexity of the three datasets. Counts for n-grams
appearing only once are shown as proportions of the
total number of respective n-grams. Highest values on
each line are typeset in bold.

We consider Gaussian naive Bayes (with equal
priors), random forest (with 100 estimators and
maximum depth 5), support vector Machine (with
RBF kernel, penalty C = 1), and a 2-hidden layer
neural network (with 10 units in each layer, ReLU
activation, 200 epochs and Adam optimizer) (Pe-
dregosa et al., 2011). Since the datasets have im-
balanced classes, we identify F1 score with macro
averaging as the primary performance metric.

3.4 Altering Text Samples
There can be three types of language perturba-
tions at the word level: insertions, deletions,
and substitutions on words. (Balagopalan et al.,
2019) showed that deletions are more affected
(significantly) than insertions and substitutions, so
we likewise focus on deletions. Following Bal-
agopalan et al. (2019), we artificially add deletion
errors to original individual text samples at prede-
fined levels of 20%, 40%, 60%, and 80%. To add
the errors, we simply delete random words from
original texts and transcripts at a specified rate.

3.5 Evaluating Change of Feature Values
In order to evaluate the change of feature values
for different levels of text alterations, z-scores are
used. We calculate z-scores of each individual fea-
ture in the transcripts with each level of alteration,
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with relation to the value of that feature in the orig-
inal unaltered transcript.

Zx
feat = (featx − µno−alteration)/σno−alteration, (3)

where featx refers to a given syntactic or lexi-
cal feature extracted from a transcript with an al-
teration level of x = 20..80, µ and σ are computed
over the entire original unaltered dataset.

Then, we average the individual z-scores across
all the features within each feature group (syntac-
tic and lexical) to get a z-score per feature group.

Zx
syntactic =

1

Nsyn

Nsyn∑

i=1

Zx
feati (4)

Zx
lexical =

1

Nlex

Nlex∑

i=1

Zx
feati , (5)

where Nsyn and Nlex refer to the total number
of syntactic and lexical features, respectively.

3.6 Evaluating change of feature predictive
power

We extract ∆F1x, or change in classification F1
macro score, with x% alteration with respect to no
alteration, for x = 20, 40, 60, 80, i.e,

∆F1x = F1x%alteration − F1no−alteration. (6)

To identify the relative importance of syntactic
or lexical features on classification performance,
we estimate coefficients of effect for syntactic and
lexical features. These coefficients are obtained by
regressing to F1 deltas using the syntactic and lex-
ical feature z-scores described in Section 3.5 for
each alteration level. Thus, the regression equa-
tion can be expressed as:

∆F1 = αZsyntactic + βZlexical. (7)

The training set for estimating α and β con-
sists of ∆F1x; (Zx

syntactic, Z
x
lexical) for x =

20, 40, 60, 80.

4 Comparing datasets

Three datasets used in our exploration represent
different dimensions of lexical and syntactic com-
plexity, and are unique in the nature of the tasks
they involve and their type of language, as shown
in Tab.1. AphB is the only dataset that includes
speech samples of unstructured speech, while

Dataset Level (%) of
alterations

Lexical
features (z-score)

Syntactic
features (z-score)

DemB

20 0.35 0.30
40 0.75 0.62
60 1.21 0.94
80 1.85 1.31

AphB

20 0.10 0.15
40 0.26 0.26
60 0.51 0.37
80 0.93 0.51

IMDBs

20 0.29 0.13
40 0.61 0.25
60 1.00 0.35
80 1.61 0.31

Table 3: Change of feature values, per dataset and per
level of text alterations.

IMDBs is unique as it contains samples of written
language, rather than transcripts of verbal speech.

In terms of lexical and syntactic complexity, it
is interesting to note that AphB contains samples
that are most lexically complex, while at the same
time it is the most simple from the syntactic point
of view. We associate this with the fact that AphB
data come from partially unstructured tasks, where
free speech increases the use of a more complex
and more diverse vocabulary. IMDB is the most
lexically rich dataset (see Table 2), with the high-
est ratio of uni-, bi-, and trigrams occuring only
once.

IMDB is the most complex according to various
measures of syntactic complexity: it has the high-
est scores with metrics associated with length of
production unit, amount of subordination, coordi-
nation, and particular structures, and it also has the
highest amount of complex sentences (sentences
of D-level 5-7, as shown in Table 2). This may be
explained by the fact it is the only dataset based
on typewritten language. AphB has the lowest
level of syntactic complexity, containing the high-
est amount of the simplest sentences (D-level 0),
and lowest scores in other subgroups of syntactic
features (see Table 2).

Next, we analyse if these variously distinct
datasets have any common trend with regards to
the vulnerability and robustness of lexical and syn-
tactic feature groups.

5 Results and discussion

5.1 Feature vulnerability

Following the method described in Section 3.5,
we analyse if any of the feature groups (lexi-
cal or syntactic) is influenced more by text alter-
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Figure 1: Left: Change of syntactic and lexical feature values at different alteration levels, averaged across three
datasets. Right: Impact of syntactic and lexical features on classification for DementiaBank, AphasiaBank and
IMDBsentiment datasets, averaged across fours classifiers.

ations. As shown in Figure 1, the values of lex-
ical features are, on average, influenced signifi-
cantly more than syntactic ones (Kruskal-Wallis
test, p <0.05). Such a difference is observed in
all three datasets individually (see Table 3).

The differences of z-scores between lexical and
syntactic feature groups are higher for the IMDBs
dataset, which suggests that the difference is most
visible either in healthy or in written language.

These results suggest that lexical features are
more vulnerable to simple text alterations, such
as introduced deletion errors, while syntax-related
features are more robust to these modifications.
However, stronger changes of raw feature values
do not necessarily mean that the resulting mod-
ified features become more or less important for
classifiers. This leads us to inspect the impact of
text alteration on feature predictive power.

5.2 Feature significance and the impact of
alterations on feature predictive power

A simple method to understand the potential pre-
dictability of a feature is by looking at how
different the feature value is between classes
and whether this difference is statistically sig-
nificant. This method was previously used in
studies assessing automatic speech recognition for
Alzheimer’s (Zhou et al., 2016) and aphasia detec-
tion (Fraser et al., 2013).

We rank the p-values obtained, in each condi-
tion, from a two tailed non-parametric Kruskal-
Wallis test performed on each feature between
the two classes (healthy vs unhealthy in the DB
and AphB datasets, and positive vs negative in
IMDBs) and assign rank to each feature. It is in-
teresting to note that lexical features occupy the
overwhelming majority of first places across all

Dataset Classifiers
NN SVM RF NB

DemB 1.82 1.83 1.98 1.80
IMDBs 5.22 6.39 7.15 3.74
AphB 2.22 2.44 2.28 2.17

Table 4: Ratio of coefficients, calculated as
Importancesyntactic/Importancelexical. Ratio
higher than one indicates that syntactic features are
more important for a classifier than lexical ones.

datasets, showing that lexical features are signif-
icantly different between classes. We further anal-
yse, following (Brunato et al., 2018), how the
rank of each feature changes when different lev-
els of text alterations are introduced. The maxi-
mum rank increase is higher on average for lex-
ical features than for syntactic (see Figure 2 for
details of rank changes in DemB dataset) across
all datasets. The ratio of features that become in-
significant after text alteration is also higher for
lexical features rather than in syntactic on average
across all datasets. As Figure 2 shows, the features
with increased rank are those that were not ini-
tially significantly different between classes. The
combination of these results suggest that not so
important lexical features become more and more
important with addition of text alterations, which
may decrease the performance of classification.

The above method of calculating p-values is
analogous to feature selection performed as a pre-
processing step before classification. Although
this step may provide some initial insights into fea-
ture significance, it does not guarantee the most
significant features will be those having the most
predictive power in classification.
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Figure 2: Change of lexical (left) and syntactic (right) feature rank when text alterations of different levels are
introduced. Negative numbers denote decrease in rank, and positive numbers are an increase of rank. Blue cell
colours denote the highest increase in rank, red (the highest decrease) and yellow (a smaller level of increase or
decrease). Features are ranked based on p-values with the lowest p-value at the top. White cells show that features
were not significantly different between classes in the original text samples, based on DemB dataset.

We use the method described in Section 3.6 to
evaluate the impact of text alteration on the fea-
tures predictive power. The results in Table 4
show that syntactic features have more predictive
power than lexical features. The lowest ratio is
observed with DemB, and the AphB results are
very close, suggesting that syntactic features are
approximately twice as important than lexical fea-
tures in predicting pathological speech. In healthy
written language, the difference is even higher and
reaches 7.15 for the random forest classifier.

In summary, the predictive power of syntactic
features is much stronger than that of lexical fea-
tures across three datasets and four main classi-
fiers, which suggest the results can be generaliz-
able across several different tasks and domains.

5.3 Example-based Analysis
As shown in previous sections, values of lexical
features are on average more influenced by text
alterations but this change does not affect classi-
fication as much as smaller value changes in syn-
tactic features. Table 5 provides examples of two
features, one lexical and one syntactic, their value

changes when text samples are modified, and the
associated change of the classifier’s predictions.

The value of lexical feature
cond entropy 3gram, showing conditional
entropy calculated for trigrams, decreases by
more than 50% when the text sample is modified
by only 20%. This change is much higher than
the associated absolute change of the syntactic
feature C/S (that shows the number of clauses
per sentence) that increases by 11% only on
the same level of alteration. The prediction
made by a classifier in the case of the lexical
feature, however, is the same as the prediction
of original transcript. Only when the general
level of alteration reaches 60% and the value of
the lexical feature decreases by more than 85%,
the prediction becomes incorrect. In the case of
syntactic features, the prediction already changes
to incorrect with the general level of alteration of
20%, although the feature value is still quite close
to the original one.

Consider this sentence in the original transcript:
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Alteration
level Text sample Feature Feature

value / ∆
Prediction Dataset

original

&uh the boy is reaching into the cookie jar. he’s falling off the stool. the little girl is reaching for a cookie. mother is drying the
dishes. the sink is running over. mother’s getting her feet wet. they all have shoes on. there’s a cup two cups and a saucer on
the sink. the window has draw withdrawn drapes. you look out on the driveway. there’s kitchen cabinets. oh what’s happening.
mother is looking out the window. the girl is touching her lips. the boy is standing on his right foot. his left foot is sort of up in the
air. mother’s right foot is flat on the floor and her left she’s on her left toe. &uh she’s holding the dish cloth in her right hand and
the plate she is drying in her left. I think I’ve run out of. yeah.

lexical
(cond entropy 3gram)

0.24 / - Correct (healthy) DemB

20%

&uh the boy reaching the cookie jar. he’s falling off the stool. the little girl is reaching for cookie. mother is the dishes. the sink
is over. mother’s getting her feet. all have shoes. there’s cup two cups a saucer on sink. window has draw withdrawn drapes. you
look out on driveway. there’s kitchen cabinets. oh what’s happening. mother out the window. the girl is lips. the boy standing on.
his left foot is sort of up in the air. mother’s right foot is flat on the floor and left she’s on her left toe. &uh she’s holding the cloth
in right hand the plate she drying in her left. think I’ve run out of.

lexical
(cond entropy 3gram)

0.11 / 0.48 Correct (healthy) DemB

40%

&uh reaching the jar. he’s falling the stool. the little is reaching a cookie. mother drying the dishes. the sink is running over.
mother’s her wet. all have shoes on. a two and a sink. the. you look driveway. there’s kitchen. oh what’s happening. mother out
the window. the is her. is his foot. his left foot is sort of up air. foot is flat floor and she’s her toe. &uh she’s holding the dish cloth
in right the she is drying in left. I think of.

lexical
(cond entropy 3gram)

0.07 / 0.28 Correct (healthy) DemB

60%
&uh is cookie. falling stool. for cookie. the dishes. the. mother’s feet wet. they have. a two cups a sink. the has withdrawn drapes.
the. there’s. oh. mother the window. the lips. the boy right. is sort of. right foot is flat on floor on her left. &uh cloth right hand
and the she is in her left. yeah.

lexical
(cond entropy 3gram)

0.03 / 0.14 Incorrect (AD) DemB

original

okay. well in the first place the the mother forgot to turn off the water and the water’s running out the sink. and she’s standing
there. it’s falling on the floor. the child is got a stool and reaching up into the cookie jar. and the stool is tipping over. and he’s
sorta put down the plates. and she’s reaching up to get it but I don’t see anything wrong with her though. yeah that’s it. I can’t see
anything.

syntactic (C/S) 1.1 / - Correct (healthy) DemB

20%
well the first the the mother forgot to turn off the water the water’s out the sink. and standing there. it’s falling floor. is got a stool
and into the cookie jar. and the stool is tipping. and he’s sorta down the plates. and she’s reaching to get it but I don’t see anything
wrong with her though. that’s it. I can’t see anything.

syntactic (C/S) 1.22 / 1.11 Incorrect (AD) DemB

40%
okay. well in the forgot the water the water’s out the sink. and she’s standing there. it’s on the. the is got a stool and reaching up
the. the is tipping. and he’s sorta the. and she’s reaching up to get but I her. yeah that’s. I can’t.

syntactic (C/S) 1.0 / 0.91 Incorrect (AD) DemB

60%
okay. in water’s out the sink. falling. the got stool the cookie jar. and the stool is over. and he’s down the plates. and she’s up but
don’t wrong. can’t see anything.

syntactic (C/S) 1.0 / 0.91 Incorrect (AD) DemB

Table 5: Examples of two features, cond entropy 3gram and C/S, their value change when text samples are mod-
ified on the level of 20%, 40% and 60%, and associated classifier’s predictions. Examples are provided using the
DemB transcript samples and feature values.

She’s holding the dish cloth in her right
hand and the plate she is drying in her left.

With 20% of errors it is converted to the following:
She’s holding the cloth in right hand the
plate she drying in her left.

It is clear that lexical features based on the fre-
quency of uni-, bi- and trigrams are affected by
this change, because quite a few words disappear
in the second variant. In terms of syntactic struc-
tures, however, the sentence is not damaged much,
as we still can see the same number of clauses, co-
ordinate units, or verb phrases. Such an example
helps explain the results in the previous sections.

6 Conclusions and Future Research

This paper shows that linguistic features of text,
associated with syntactic and lexical complexity,
are not equal in their vulnerability levels, nor in
their predictive power. We study selective perfor-
mance of these two feature aggregations on three
distinct datasets to verify the generalizability of
observations.

We demonstrate that values of lexical features
are easily affected by even slight changes in text,
by analysing z-scores at multiple alteration lev-
els. Syntactic features, however, are more robust
to such modifications. On the other hand, lower
changes of syntactic features result in stronger
effects on classification performance. Note that
these patterns are consistently observed across dif-
ferent datasets with different levels of lexical and

syntactic complexity, and for typewritten text and
transcribed speech.

Several methods to detect and correct syntac-
tic (Ma and McKeown, 2012) and lexical er-
rors (Klebesits and Grechenig, 1994) as a post-
processing step for output from machine transla-
tion or ASR systems have been proposed in prior
work. Since our analysis indicates that error-
affected syntactic features have a stronger effect
on classification performance, we suggest impos-
ing higher penalties on detecting and correcting
syntactic errors than lexical errors in medical texts.
A limitation in our study is that we focused on text
alterations of a specific type, and the results were
only tested on relatively small datasets. In future
work, we will extend the analysis to other simple
text alterations such as substitutions as well as ad-
versarial text attacks (Alzantot et al., 2018). In
addition, we will extend the current work to see
how state-of-the-art neural network models, such
as Bert, can handle text alterations as they capture
lexical, syntactic and semantic features of the in-
put text in different layers. Finally, note that the
datasets considered in this study are fairly small
(between 500 and 856 samples per domain). Ef-
forts to release larger and more diverse data sets
through multiple channels (such as challenges) in
such domains as Alzheimer’s or aphasia detec-
tion, and depression detection (Valstar et al., 2016;
MacWhinney, 2007; Mozilla, 2019) need to be re-
inforced.
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Juan José G Meilán, Francisco Martı́nez-Sánchez, Juan
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A List of Linguistic Features

Lexical Feature Description
distinct tokens Number of distinct tokens
distinct tokens ratio Number of distinct tokens occuring once
bigrams Number of distinct bigrams
distinct bigrams Number of distinct bigrams occuring once
distinct bigrams ratio Ratio of distinct bigrams occuring once
trigrams Number of distinct trigrams
distinct trigrams Number of distinct trigrams occuring once
distinct trigrams ratio Ratio of distinct trigrams occuring once
entropy 1gram Unigram entropy
entropy 2gram Bigram entropy
entropy 3gram Trigram entropy
cond entropy 2gram Conditional bigram entropy
cond entropy 3gram Conditional trigram entropy
wordtypes Number of word types
swordtypes Number of sophisticated word types
lextypes Number of lexical types
slextypes Number of sophisticated lexical word types
wordtokens Number of word tokens
swordtokens Number of sophisticated word tokens
lextokens Number of lexical tokens
slextokens Number of sophisticated lexical tokens
ld Lexical density
ls1 Lexical sophistication I
ls2 Lexical sophistication II
vs1 Verb sophistication I
vs2 Verb sophistication II
cvs1 Corrected VS1
ndw Number of different words
ndwz NDW (first 50 words)
ndwerz NDW (expected random 50)
ndwesz NDW (expected sequence 50)
ttr Type / token ratio
msttr Mean segmental ttr (50)
cttr Corrected ttr
rttr Root ttr
logttr Bilogarithmic ttr
uber Uber coefficient
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Syntactic Feature Description
S Number of sentences
VP Number of verb phrases
C Number of clauses
T Number of T-units3

DC Number of dependent clauses
CT Number of complex T-units
CP Number of coordinate phrases
CN Number of complex nominals
MLS Mean length of sentence
MLT Mean length of T-units
MLC Mean length of clause
C/S Clauses per sentence
VP/T Verb phrases per T-unit
C/T Clauses per T-unit
DC/C Dependent clauses per clause
DC/T Dependent clauses per T-unit
T/S T-units per sentence
CT/T Complex T-units per T-unit
CP/T Coordinate phrases per T-unit
CP/C Coordinate phrases per clause
CN/T Complex nominals per T-units
CN/C Complex nominals per clause

3Here, T-unit is defined as the shortest grammatically al-
lowable sentences into which writing can be split or mini-
mally terminable unit. Often, but not always, a T-unit is a
sentence.
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Towards Actual (Not Operational) Textual Style Transfer Auto-Evaluation

Richard Yuanzhe Pang §

New York University, New York, NY 10011, USA
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There are advances on developing methods that
do not require parallel corpora, but issues remain
with automatic evaluation metrics. Current works
(Pang and Gimpel, 2018; Mir et al., 2019) agree on
the following three evaluation aspects. (1) Style
accuracy of transferred sentences (measured by a
pretrained classifier). (2) Semantic similarity be-
tween the original and transferred sentences. (3)
Naturalness or fluency: researchers use perplexity
of transferred sentences, using the language model
pretrained on the original corpora.

Problem 1: Style Transfer Tasks. If we think
about the practical use cases of style transfer (writ-
ing assistance, dialogue, author obfuscation or
anonymity, adjusting reading difficulty in educa-
tion, artistic creations such as works involving lit-
erature), we would find that the two would-be-
collected non-parallel corpora have different vo-
cabularies, and it is hard to differentiate style-
related words from content-related words. For
example, when transferring Dickens’ to modern
style literature (Pang and Gimpel, 2018), the for-
mer may contain “English farm”, “horses”; the
latter may contain “vampire”, “pop music.” But
these words should stay the same, as they are
content-related but not style-related. On the other
hand, Dickens’ literature may contain “devil-may-
care” and ”flummox”, but these words are style-
related and should be changed. Recent works,
however, mostly deal with the operational style
where corpus-specific content words are changed.
The operational style transfer models work well
on Yelp sentiment transfer which almost all re-
searches focus on, but it does not inspire systems
in practical use cases.

Problem 2: Metrics. Consider: Oliver deemed
the gathering in York a great success. The ex-

§ Abstract written while the author was a student at the
University of Chicago.

pected transfer from Dickens to modern litera-
ture style should be similar to “Oliver thought the
gathering was successful” (actual style transfer).
However, the most likely transfer (if we use most
existing models) will be “Karl enjoyed the party
in LA” (operational style transfer). In evaluating
semantic similarity, Mir et al. (2019) masked style
keywords determined by a classifier. In this case,
all corpus-specific content words (as well as style
words) will be masked, and evaluation will fail.
However, we can create the list of style keywords
with outside knowledge. We can also consider
keeping the words as they are without masking.
Similar problems exist for the other two metrics.

Problem 3: Trade-off and Aggregation. Ag-
gregation of metrics is especially helpful as there
are tradeoffs (Pang and Gimpel, 2018; Mir et al.,
2019), and we need to tune and select models sys-
tematically. Use A, B, C to represent the three
metrics. For sentence s, define Gt1,t2,t3,t4(s) =
(
[A−t1]+ ·[B−t2]+ ·min{[t3−C]+, [C−t4]+}

) 1
3

where ti’s are the parameters to be learned.1

(Small and large C’s are both bad.) The current
research strives for a universal metric. We can ran-
domly sample a few hundred pairs of transferred
sentences from a range of style transfer outputs
(from different models—good ones and bad ones)
from a range of style transfer tasks, and ask anno-
tators which of the two transferred sentences (from
the same original sentence) is better. We can then
train the parameters based on pairwise compari-
son. To make G more convincing, we may design
more complicated functions G = f(A,B,C). If
we do not need a universal evaluator, then we can
repeat the above procedure by only sampling pairs
of transferred sentences from the dataset of inter-
est, which is more accurate for the particular task.

1Inspired by geometric mean.
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Multilingual communities adopt various com-
municative strategies that navigate among multi-
ple languages. One of the most notable of such
strategies is code-switching (CS) – when a bilin-
gual mixes two or more languages within a dis-
course, or even within a single utterance.

The sociolinguistic underpinnings of code-
switching as an oral conversational strategy have
been investigated extensively for many decades.
By contrast, the analysis of written code-switching
has only recently enjoyed a surge of interest, and
remains seriously under-studied. Written text of-
ten differs greatly from conversation in its levels of
both spontaneity and formality, and findings thus
far have differed in their conclusions regarding the
extent to which various genres of written text re-
flect the same communicative functions of CS as
observed in oral conversation.

The growing popularity of social media and on-
line discussion platforms poses both opportuni-
ties and new research questions regarding writ-
ten code-switching. Global online forums, in
which English is a lingua franca, not only draw
on but create wide-reaching multilingual commu-
nities. The resulting communications lead to a
wealth of data that potentially includes a large
amount of code-switching across multiple lan-
guage pairs. Moreover, communication on discus-
sion platforms often resembles a hybrid between
speech and more formal writing. These differing
characteristics lead to new research questions re-
garding the extent to which findings from oral CS
carry over to these online interactions.

Research is only just beginning to grapple
with these issues. Computational work on code-
switching in online venues has largely focused on
the practical challenges that multiple interleaved
languages pose to the application of standard NLP

∗ Accepted for publication at EMNLP2019

tools, rather than on the communicative purposes
of CS. More broadly, computational investigation
of the sociolinguistic aspects of written CS is dom-
inated by studies conducted with a limited num-
ber of language-pairs and/or authors, thereby con-
straining the nature of questions that can be ad-
dressed with this data. Our work here seeks to
address these gaps in the study of code-switching
in online interactions. We begin by introducing
the CodeSwitch-Reddit corpus: a novel, large, and
diverse dataset of written code-switched produc-
tions, carefully curated from topical threads of
multiple (including understudied) bilingual com-
munities on the Reddit discussion platform. The
corpus comprises over 135K CS messages by over
20K unique authors, spanning five language-pairs,
with average post length of 75 tokens.

The uniform nature of our data (written com-
munication from a single online discussion plat-
form), as well as its ample size, pose novel op-
portunities for large-scale empirical investigation
of research questions on code-switching – ques-
tions that have thus far been mainly addressed in
the context of oral language. As a first study, here
we explore fundamental questions about both the
content and style of code-switched posts, as well
as about the English proficiency level of authors
who frequently code-switch.

The contribution of this work is twofold:
First, we construct a novel code-switching cor-
pus, whose size, number of language pairs, and
diversity of content (consisting of posts of unre-
stricted length in a variety of topics) make it a de-
sirable testbed for a range of research questions
on CS in online discussion forums. Second, we
demonstrate the usefulness of this dataset through
an empirical investigation that sheds new light on
postulated universals of CS – involving linguistic
proficiency, style, and content – when inspected
through the lens of online communication.
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