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Abstract

In this work we describe the system from
Natural Language Processing group at Ari-
zona State University for the TextGraphs 2019
Shared Task. The task focuses on Expla-
nation Regeneration, an intermediate step to-
wards general multi-hop inference on large
graphs. Our approach consists of modeling the
explanation regeneration task as a learning to
rank problem, for which we use state-of-the-
art language models and explore dataset prepa-
ration techniques. We utilize an iterative re-
ranking based approach to further improve the
rankings. Our system secured 2nd rank in the
task with a mean average precision (MAP) of
41.3% on the test set.

1 Introduction

Question Answering in natural language often re-
quires deeper linguistic understanding and reason-
ing over multiple sentences. For complex ques-
tions, it is very unlikely to build or have a knowl-
edge corpora that contains a single sentence an-
swer to all the questions from which a model
can simply cherrypick. The knowledge required
to answer a question may be spread over multi-
ple passages (Rajpurkar et al., 2016; Lai et al.,
2017). Such complex reasoning requires systems
to perform multi-hop inference, where they need
to combine more than one piece of information
(Welbl et al., 2018).

In this shared task of Explanation ReGenera-
tion, the systems need to perform multi-hop infer-
ence and rank a set of explanatory facts for a given
elementary science question and correct answer
pair. An example is shown in Table 1. The task
provides a new corpora of close to 5000 explana-
tions, and a set of gold explanations for each ques-
tion and correct answer pair (Jansen et al., 2018).
The example highlights an instance for this task,
where systems need to perform multi-hop infer-
ence to combine diverse information and identify

Question: Which of the following is an exam-
ple of an organism taking in nutrients?
(A) a dog burying a bone (B) a girl eating an
apple (C) an insect crawling on a leaf (D) a
boy planting tomatoes
Gold Explanation Facts:
A girl means a human girl. : Grounding
Humans are living organisms. : Grounding
Eating is when an organism takes in nutrients
in the form of food. : Central
Fruits are kinds of foods. : Grounding
An apple is a kind of fruit. : Grounding
Irrelevant Explanation Facts:
Some flowers become fruits.
Fruit contains seeds.
Organisms; living things live in their habitat;
their home
Consumers eat other organisms

Table 1: An example of Explanation Regeneration

relevant explanation sentences needed to answer
the specific question.

Explanation ReGeneration is a challenging
task. This is due to the presence of other irrelevant
sentences in the corpora with respect to the given
question, which have a good lexical and semantic
overlap (Jansen, 2018). Ideally, the explanations
need to be in order, but for the sake of simplicity,
ordering of the explanations are ignored.

In the dataset, to measure the performance of
the system over different types of explanations, the
explanations are further categorized into classes.
These classes differ in the importance of the expla-
nation in explaining the correct answer. These cat-
egories are Central, Grounding and Lexical Glue.
Central facts are often core scientific facts rele-
vant to answering the question. Grounding are
facts which connect to other core scientific facts,
present in the explanation. Examples of Central
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and Grounding facts are present in Table 2. Lexi-
cal glue facts express synonymy or definitional re-
lationships. An example of Lexical glue facts :
“glowing means producing light”.

This paper describes a system developed by the
Natural Language Processing group of Arizona
State University. We approach the task of expla-
nation regeneration as a learning to rank (Burges
et al., 2005) problem. The system utilizes state
of the art neural language models (Devlin et al.,
2019; Yang et al., 2019), finetunes them on the
knowledge corpora and trains them to perform the
task of ranking using customized dataset prepara-
tion techniques. We further improve on the rank-
ing using an iterative re-ranking algorithm.

We make the following contributions in the pa-
per: (a) We evaluate different ways for dataset
preparation to use neural language models for the
task of explanation generation; (b) We evaluate
different language models for ranking and analyse
their performance on the task; (c) We show how
to use iterative re-ranking algorithm to further im-
prove performance; (d) We also provide a detailed
analysis of the dataset.

In the following sections we first give an
overview of our system. We describe the individ-
ual components of the system in Sections 3,4. We
evaluate each component on the provided valida-
tion set and show the performance on the hidden
test set in Section 5. We conclude with a detailed
error analysis and evaluating our model with rele-
vant metrics in Section 6,7,8.

2 Approach

In recent years, several language models (Devlin
et al., 2019; Yang et al., 2019; Peters et al., 2018)
have shown considerable linguistic understand-
ing and perform well in tasks requiring multi-hop
reasoning such as question answering (Rajpurkar
et al., 2016; Mihaylov et al., 2018; Khashabi et al.,
2018; Lai et al., 2017), and document ranking
tasks (Callan et al., 2009).

For the task of Explanation ReGeneration we
chose BERT (Devlin et al., 2019) and XLNET
(Yang et al., 2019), two state-of-the-art neural
language models and explore their effectiveness
in capturing long inference chains and perform-
ing multi-hop inference. BERT and XLNET
are pretrained using Masked Language Modelling
(MLM) and Probabilistic Masked Language Mod-
elling (PMLM) respectively. These pretraining

tasks enables BERT and XLNET to understand
the dependencies between masked and unmasked
words. This is needed to capture relevant con-
cepts, words and entities linking between central,
grounding and lexical glue facts. We finetune
these language models on the knowledge corpora
of 5000 explanations using their respective lan-
guage modelling tasks.

To rank the explanations, we learn the rele-
vance of each explanation for a given question
and correct answer pair. We evaluate multiple
dataset preparation techniques for finetuning the
language models. We also evaluate different rele-
vance learner models by attaching different kinds
of classification and regression heads over the lan-
guage models. From the relevance learner, we ob-
tain the relevance scores and an initial ranking of
the explanations. We perform further re-ranking
using a custom re-ranking algorithm similar to in
Banerjee et al..

3 Dataset Preparation and Relevance
Learner

We prepare multiple datasets for the following
tasks. The preparation techniques are described
in the following sub-sections.

3.1 Language Modelling
The language models are initially finetuned on the
Explanation Knowledge corpora using MLM and
PMLM respectively. The dataset for this task is
prepared using scripts from pytorch-transformer
package. We prepare both MLM and PMLM
datasets and finetune the respective language mod-
els. We follow the steps as mentioned by Devlin
et al. and Yang et al. for generating the language
model datasets.

3.2 Relevance Learning using Classification
head

We model the relevance learning task as a two-
class classification task with class 0 represent-
ing irrelevance and class 1 representing relevance.
Here by relevance, we mean the fact is part of
the explanation. Finally, we take the probability
scores of class 1, and use them as relevance scores.
Formally,

Rel(Ej , Qi, Ai) = P (Ej ∈ G|Qi, Ai) (1)

where Ej is the jth explanation, Q,A are the ith
question and correct answer pair and G is the set
of gold explanation facts.

https://github.com/huggingface/pytorch-transformers
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The dataset provides the set of gold facts, but
does not provide the set of irrelevant facts. To
create the irrelevant set, for each gold fact we re-
trieve top k similar facts present in the explana-
tion corpora, but not present in the gold fact set.
This is done to make the model learn relevance
to the context of passage and correct answer, and
not focus on similar looking sentences. We com-
pute the similarity between sentences using cosine
similarity between sentence vectors (Honnibal and
Montani, 2017). We repeat the gold explanation k
times to maintain the balance between the classes.

We prepare another dataset where we provide
a context passage. This passage comprises of al-
ready selected n facts, and the rest |G| − n gold
facts are labelled as relevant class 1. We find ir-
relevant facts for the |G| − n gold facts using the
same process as above. In this case, we learn the
following probability:

Rel(Ej , Cn, Qi, Ai) = P (Ej ∈ G|Cn, Qi, Ai)
(2)

where Cn represents the n already selected facts,
1 ≤ n ≤ 16, as there are a maximum of 16 and
minimum of 1 gold explanation facts. This context
is given only during the training phase, while dur-
ing the validation and testing, we only provide the
question and correct answer pair along with expla-
nation Ej . Moreover, we ensure that the dataset is
balanced between two classes. To make the model
learn longer dependencies, we train using a con-
text. This classification task optimizes classifica-
tion accuracy metric.

3.3 Relevance Learning using Regression
head

The datasets for the regression tasks are similar to
the datasets of classification head. Instead of two
class classification, we provide target scores of 6,
5, 4, 0 for Central, Grounding, Lexical Glue and
Irrelevant facts respectively. The above scoring
scheme was decided to give central and ground-
ing facts higher precedence, as they are core for
a proper explanation. All target scores were en-
sured to be balanced. As described in the above
section, we prepare two datasets, one with and
another without context explanation sentences.
The regression task optimizes mean-squared-error
scores.

4 Iterative Re-Ranking

We sort the Relevance scores from the Relevance
Learner models and perform an initial ranking of
the explanation sentences. We feed this initial
ranked explanation facts to our iterative re-ranking
algorithm, which is defined as follows.

Let N be the depth of re-ranking from the top,
i.e, we run re-ranking for N rounds. Let E0 be
the top explanation fact in the initial ranking, Ei

be the last selected explanatory fact and Ej (i <
j ≤ N + i) is the current candidate explanation
fact for a given question Q and correct answer A.
We compute a weighted relevance score using the
top i (i <= N ) selected facts as:

Wscore(Ej , Ei) =

∑i
k=0Rel(Ek) ∗ Sim(Ej , Ek)∑i

k=0Rel(Ek)
(3)

We sort ranking scores of the candidate expla-
nation facts and choose the top explanation fact for
the i+1 th round, where the ranking score is given
by :

score(Ej , Ei, Q,A)

= Wscore(Ej , Ei) ∗ Sim(Ej , Q : A)
(4)

Here Rel is the relevance score from the Rele-
vance Learner models and Sim is the cosine sim-
ilarity of the explanation sentence vectors from
Spacy (Honnibal and Montani, 2017). For the
facts whose initial rank is greater than depth N ,
we keep the initial ranking as is. The itera-
tive re-ranking algorithm is designed to exploit
the overlapping nature of the explanations. The
above score gives importance to the initial rele-
vance score (facts already ranked by relevance),
the vector similarity of the candidate explanation
and both the selected explanation sentences and
question/correct answer pair.

5 Experiments and Test Results

The training dataset for the task contains 1191
questions, each having 4 answers. The gold expla-
nations set has a minimum size of 1 and maximum
size of 16. The validation dataset had 265 ques-
tions and the hidden test set has 1248 questions.
The explanation knowledge corpora has around
5000 explanation sentences. The two relevance
learner training dataset has size of 99687 without
context and 656250 with context. Several com-
binations of context are generated using the gold
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selected explanation facts, leading to such a large
training corpus. We evaluate both BERT Large
and XLNET large, using both the tasks and the two
different datasets. In Table 2 are the results of our
evaluation on the validation set. All the metrics are
Mean-Average-Precision unless mentioned other-
wise. All the metrics are on the validation set.

Task v/s Model BERT XLNET
Classification 0.3638 0.3254
Classification with Context 0.3891 0.3473
Regression 0.3288 0.3164
Regression with Context 0.3466 0.3273

Table 2: Comparison of the Relevance Learners with
different dataset preparation techniques without re-
ranking

It can be observed in Table 2 that the two class
classification head with context performs best and
BERT Large outperforms XLNET Large for this
particular task. In Table 3, we compare the Rel-
evance Learners before and after Iterative Re-
ranking. It can be seen that Iterative Re-ranking
improves the scores of both the Relevance Learn-
ers by around 2.5%.

Table 4 compares the MAP for different expla-
nation roles before and after iterative re-ranking.
It can be seen that Iterative re-ranking improves
MAP for Central and Grounding explanations but
penalizes Lexical Glue.

Figure 1 shows performance of the Relevance
Learner and Iterative Re-ranking for questions
with different length of gold explanations. It can
be seen that the model performs well for expla-
nations whose length are less than or equal to 5.
Performance decreases with increasing length of
gold explanations.

1Background and Neg roles were found in the gold expla-
nation set but definition for them are not shared.

N v/s Model BERT XLNET
1 0.3891 0.3473
3 0.4000 0.3556
5 0.4062 0.3661
10 0.4181 0.3701
15 0.4225 0.3738
20 0.4204 0.3721
30 0.4191 0.3665

Table 3: Comparison of Relevance Learners with Iter-
ative Re-ranking till depth N

Explanation Roles BERT N=15
CENTRAL 0.3589 0.3912
GROUNDING 0.0631 0.0965
LEXICAL GLUE 0.1721 0.1537
BACKGROUND 1 0.0253 0.0226
NEG 1 0.0003 0.000586

Table 4: MAP for different Explanation Roles for
BERT trained with classification head and context, be-
fore and after re-ranking till N=15

Figure 1: MAP v/s Length of the Gold Explanation

Table 5 shows the MAP scores for the best mod-
els on both the Validation and the hidden Test set.

6 Error Analysis

In the following sub-sections we analyse our sys-
tem components, the performance of the final re-
ranked Relevance Learner system and the shared
task dataset.

6.1 Model Analysis
1. XLNET performs poorly compared to BERT

for this task. The difference arises due to
two reasons, the way the datasets are pre-
pared and the way the language models are
finetuned. The dataset preparation tech-
niques BERT captures deeper chains and bet-
ter ranks those explanation which have low

Model Validation Test
BERT with Context 0.3891 0.3983
ReRanked N=15 0.4225 0.4130
Baseline SVM Rank 0.28 0.2962

Table 5: Validation and Test MAP for the best Rele-
vance Learner, Reranked and the provide baseline mod-
els
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Gold Explanation Predicted Explanation
heat means temperature increases adding heat means increasing temperature
sunlight is a kind of solar energy the sun is the source of solar energy called sunlight
look at means observe observe means see
a kitten is a kind of young; baby cat a kitten is a young; baby cat

Table 6: Similar Explanations present in top 30

Gold Explanation Predicted Explanation

an animal is a kind of living thing
an animal is a kind of organism

an organism is a living thing

a frog is a kind of aquatic animal
a frog is a kind of amphibian

an amphibian is a kind of animal
a leaf is a part of a tree

a leaf is a part of a,green plant
a tree is a kind of plant

Table 7: Single-hop and Multi-hop Errors in top 30

Gold Explanation
to reduce means to decrease
Predicted Explanation
to lower means to decrease
less means a reduced amount

Table 8: Errors due to Sentence Vectors in top 30

direct lexical or semantic overlap with the
question and correct answer.

2. XLNET focuses on explanations mainly on
the words whose word vectors are closely re-
lated to the question and answer, and per-
forms poorly for explanations which are one
or two hop away. The dataset with context,
improves the performance for both, enabling
capturing deeper chains to some extent.

3. The way the datasets are prepared introduces
bias against some explanation facts. For ex-
ample, the Lexical Glue facts are of the type
“X means Y” and the Grounding facts are of
the type “X is kind of Y”. Using sentence
vectors for identifying similar but irrelevant
explanations leads to a set of explanations be-
ing particularly tagged as irrelevant. These
are ranked low even if they are relevant for
the validation set. This leads to poor perfor-
mance compared to Central facts.

4. The Iterative Re-ranking algorithm improves
the performance irrespective of the Rele-
vance Learner model. The algorithm gives
importance to the relevance score, vector

Gold Explanation
temperature rise means become warmer
Predicted Explanation
warm up means increase temperature
warmer means greater; higher in temperature

Table 9: Model unable to understand ordering in Lexi-
cal Glue in top 30

similarity with previously selected explana-
tions and vector similarity with the question
answer pair. This introduces a bias against
Lexical Glue explanations, as they only have
a word common with the entire question, an-
swer and previously selected facts. The op-
timal depth of the re-ranking correlates with
the maximum length of explanations.

5. The model is able to rank Central explana-
tions with a high precision. Central facts
possess a significant overlap with the ques-
tion and correct answer. The re-ranking al-
gorithm improves the precision even further.
From Figure 1, it can be inferred, the expla-
nations with length 1 only contain Central ex-
planations. For explanations with length 2,
the model precision drops considerably. This
occurs because the model is poor in ranking
Lexical Glue and Grounding explanations.

6. For Lexical Glue and Grounding explana-
tions, which have the form “X means Y” and
“X is kind of Y”, the model is not able to un-
derstand the order between X and Y required
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for the explanation, i.e, instead of “X means
Y”, it ranks “Y means X” higher. Table 9 is
one such instance. This contributes to the low
MAP for these types of explanations.

7. The use of sentence vectors for similarity
introduces errors shown in Table 8, where
the correct explanation contains “reduce”, but
the predicted explanations which have simi-
lar words like “lower”, “less” and “reduced
amount”, are ranked higher.

8. Out of the total 226 questions in the vali-
dation set, there were only 13 questions for
which the system could not predict any of the
gold explanation facts in the top 30. The facts
predicted for these had a high word over-
lap, both symbolic and word-vector wise, but
were not relevant to the explanation set.

6.2 Dataset Analysis

1. We further looked at the gold annotations and
top 30 model predictions and identified few
predictions having similar semantic meaning
being present. For example in Table 6, the
predicted explanations were present in top
30. This shows there can be alternate expla-
nations other than the provided gold set.

2. In Table 7 we can see the model makes both
kinds of errors. For few gold explanations, it
brings two alternate explanation facts and for
some explanations it combines the facts and
ranks a single explanation in the top 30. This
also shows there can be several such combi-
nations possible.

7 Discussion

From the analysis, we can observe that multiple
alternate explanations are possible. This is analo-
gous to multiple paths being available for the ex-
planation of a phenomenon. Our model precision
should improve with availability of such alternate
explanations. We recommend enriching the gold
annotations with possible alternatives for future
rounds of the task.

It is promising to see a language model based on
stacked attention layers is able to perform multi-
hop inference with a reasonable precision, with-
out much feature engineering. The use of neu-
ral language models and sentence vector similar-
ities bring errors, such as point 6 and 7 in the

Error Analysis section. We can introduce sym-
bolic and graph based features to capture order-
ing (Witschel, 2007). We can also compute graph
feature-enriched sentence vectors using principles
of textual and visual grounding (Cai et al., 2018;
Guo et al., 2016; Yeh et al., 2018; Grover and
Leskovec, 2016). In our system design, we did
not use the different explanation roles and the de-
pendencies between them. Using such features the
precision is likely to improve further. Our Iterative
re-ranking algorithm shows it can improve the pre-
cision even more, given a reasonably precise Rel-
evance Learner model. This is the first time this
task has been organized and there is lot of scope
for improvement in precision.

8 Conclusion

In this paper, we have presented a system that par-
ticipated in the shared task on explanation regen-
eration and ranked second out of 4 participating
teams. We designed a simple system using a neu-
ral language model as a relevance learner and an
iterative re-ranking algorithm. We have also pre-
sented detailed error analysis of the system output,
the possible enrichments in the gold annotations of
the dataset and discussed possible directions for
future work.
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