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Abstract

We present a machine foreign-language teacher
that modifies text in a student’s native language
(L1) by replacing some word tokens with
glosses in a foreign language (L2), in such a
way that the student can acquire L2 vocabulary
simply by reading the resulting macaronic text.
The machine teacher uses no supervised data
from human students. Instead, to guide the
machine teacher’s choice of which words to
replace, we equip a cloze language model with
a training procedure that can incrementally
learn representations for novel words, and use
this model as a proxy for the word guessing
and learning ability of real human students. We
use Mechanical Turk to evaluate two variants
of the student model: (i) one that generates
a representation for a novel word using only
surrounding context and (ii) an extension that
also uses the spelling of the novel word.

1 Introduction

Reading plays an important role in building our
native language (L1) vocabulary (Nation, 2001).
While some novel words might require the assis-
tance of a dictionary, a large portion are acquired
through incidental learning – where a reader,
exposed to a novel word, tries to infer its meaning
using clues from the surrounding context and
spelling (Krashen, 1989). An initial “rough” under-
standing of a novel word might suffice for the reader
to continue reading, with subsequent exposures
refining their understanding of the novel word.

Our goal is to design a machine teacher that uses
a human reader’s incidental learning ability to teach
foreign language (L2) vocabulary. The machine
teacher’s modus operandi is to replace L1 words
with their L2 glosses, which results in a macaronic
document that mixes two languages in an effort to
ease the human reader into understanding the L2.
While some of our prior work (Renduchintala et al.,
2016b,a) considered incorporating other features of

the L2 such as word order and fixed phrases, in this
paper we only consider simple lexical substitutions.

Our hope is that such a system can augment tradi-
tional foreign language instruction. As an example,
consider a native speaker of English (learning
German) presented with the following sentence:
Der Nile is a Fluss in Afrika. With a
little effort, one would hope the student could infer
the meaning of the German words because there
is sufficient contextual information and spelling
information for the cognate Afrika.

In our previous papers on foreign language
teaching (Renduchintala et al., 2016b; Knowles
et al., 2016; Renduchintala et al., 2017), we focused
on fitting detailed models of students’ learning
when the instructional stimuli (macaronic or
otherwise) were chosen by a simple random or
heuristic teaching policy. In the present paper, we
flip the emphasis to choosing good instructional
stimuli—machine teaching. This still requires a
model of student learning. We employ a reasonable
model that is not trained on any human students
at all, but only on text that a generic student is
presumed to have read. Thus, our model is not
personalized, although it may be specialized to the
domain of L1 text that it was initially trained on.

That said, our model is reasonably sophisticated
and includes new elements. It uses a neural cloze
language model (in contrast to the weaker pairwise
CRF model of Renduchintala et al. (2016b))
to intelligently guess the meaning of L2 words
in full macaronic sentential context. Guessing
actually takes the form of a learning rule that jointly
improves the embeddings of all L2 words in the sen-
tence. This is our simulation of incidental learning
which accumulates over repeated exposures to the
same L2 words in different contexts.

Our machine teacher tries to construct macaronic
sentences that the human student ought to under-
stand, given all the learning that our generic model
predicts would have happened from the previous
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Sentence The Nile is a river in Africa

Gloss Der Nil ist ein Fluss in Afrika

Macaronic Der Nile ist a river in Africa
Configurations The Nile is a Fluss in Africa

Der Nil ist ein river in Africa

Table 1: An example English (L1) sentence with
German (L2) glosses. Using the glosses, many possible
macaronic configurations are possible. Note that the
gloss sequence is not a fluent L2 sentence.

macaronic sentences shown to the student. Our
teacher does not yet attempt to monitor the human
student’s actual learning. Still, we show that it is
useful to a beginner student and far less frustrating
than a random (or heuristic based) alternative.

A “pilot” version of the present paper appeared at
a recent workshop (Renduchintala et al., 2019): it ex-
perimented with three variants of the generic student
model, using an artificial L2 language. In this paper,
we extend the best of those models to consider an L2
word’s spelling (along with its context) when guess-
ing its embeddings. We therefore conduct our exper-
iments on real L2 languages (Spanish and German).

2 Related Work

Our motivation is similar to that of commercially
available prior systems such as Swych (2015) and
OneThirdStories (2018) that also incorporate inci-
dental learning within foreign language instruction.
Other prior work (Labutov and Lipson, 2014; Ren-
duchintala et al., 2016b) relied on building a model
of the student’s incidental learning capabilities,
using supervised data that was painfully collected
by asking students to react to the actions of an
initially untrained machine teacher. Our method, by
contrast, constructs a generic student model from
unannotated L1 text alone. This makes it possible
for us to quickly create macaronic documents in
any domain covered by that text corpus.

3 Method

Our machine teacher can be viewed as a search
algorithm that tries to find the (approximately) best
macaronic configuration for the next sentence in
a given L1 document. We assume the availability
of a “gold” L2 gloss for each L1 word: in our
experiments, we obtained these from bilingual
speakers using Mechanical Turk. Table 1 shows an
example English sentence with German glosses and
three possible macaronic configurations (there are
exponentially many configurations). The machine
teacher must assess, for example, how accurately

a student would understand the meanings of Der,
ist, ein, and Fluss when presented with the
following candidate macaronic configuration: Der
Nile ist ein Fluss in Africa.1 Under-
standing may arise from inference on this sentence
as well as whatever the student has learned about
these words from previous sentences. The teacher
makes this assessment by presenting this sentence
to a generic student model (§§3.1–3.3). It uses a L2
embedding scoring scheme (§3.4) to guide a greedy
search for the best macaronic configuration (§3.5).

3.1 Generic Student Model
Our model of a “generic student” (GSM) is equipped
with a cloze language model that uses a bidirectional
LSTM to predict L1 words in L1 context (Mousa and
Schuller, 2017; Hochreiter and Schmidhuber, 1997).
Given a sentence x= [x1,...,xt,...,xT ], the cloze
model defines p(xt |hf

t,hb
t)8t2{1,...,T}, where:

hf
t=LSTMf ([x1,...,xt�1];✓

f )2RD (1)

hb
t=LSTMb([xT ,...,xt+1];✓

b)2RD (2)

are hidden states of forward and backward LSTM
encoders parameterized by ✓f and ✓b respectively.
The model assumes a fixed L1 vocabulary of size V ,
and the vectors xt above are embeddings of these
word types, which correspond to the rows of an em-
bedding matrix E2RV⇥D. The cloze distribution
at each position t in the sentence is obtained using

p(· |hf ,hb)=softmax(Eh([hf ;hb];✓h)) (3)

where h(·;✓h) is a projection function that reduces
the dimension of the concatenated hidden states
from 2D to D. We “tie” the input embeddings and
output embeddings as in Press and Wolf (2017).

We train the parameters ✓ = [✓f ; ✓b; ✓h; E]
using Adam (Kingma and Ba, 2014) to maximizeP

xL(x), where the summation is over sentences
x in a large L1 training corpus, and

L(x)=
X

t

logp(xt |hf
t,h

b
t) (4)

We set the dimensionality of word embeddings
and LSTM hidden units to 300. We use the
WikiText-103 corpus (Merity et al., 2016) as the
L1 training corpus. We apply dropout (p=0.2) be-
tween the word embeddings and LSTM layers, and
between the LSTM and projection layers (Srivastava
et al., 2014). We assume that the resulting model rep-
resents the entirety of the student’s L1 knowledge.

1By “meaning” we mean the L1 token that was originally
in the sentence before it was replaced by an L2 gloss.
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3.2 Incremental L2 Vocabulary Learning
Our generic student model (GSM) supposes that to
learn new vocabulary, the student continues to try
to improve L(x) on additional sentences. Thus, if
xi is a new word, the student will try to adjust its
embedding to increase all summands of (4), both the
t= i summand (makingxi more predictable) and the
t 6= i summands (making xi more predictive of xt).

For our purposes, we do not update ✓ (which
includes L1 embeddings), as we assume that the
student’s L1 knowledge has already converged. For
the L2 words, we use another word-embedding
matrix, F, initialized to 0V

0⇥D, and modify (3) to
consider both the L1 and L2 embeddings:

p(· | [hf ;hb])=softmax([E;F]·h([hf ;hb];✓h))

We also restrict the softmax function here to produce
a distribution not over the full bilingual vocabulary
of size |V | + |V 0|, but only over the bilingual
vocabulary consisting of the L1 types V together
with only the L2 types v0⇢V 0 that actually appear in
the macaronic sentence. (In the above example mac-
aronic sentence, |v0|=4.) This restriction prevents
the model from updating the embeddings of L2
types that are not visible in the macaronic sentence,
on the grounds that students are only going to update
the meanings of what they are currently reading
(and are not even aware of the entire L2 vocabulary).

We assume that when a student reads a macaronic
sentence x, they update (only) F so as to maximize

L(x)��kF�Fprevk2 (5)

As mentioned above, increasing the L term adjusts
F so that the surrounding context can easily predict
each L2 word, and each L2 word can, in turn, easily
predict the surrounding context (both L1 and L2).
However, the penalty term with coefficient �> 0
prevents F from straying too far from Fprev, which
represents the value of F before this sentence
was read. This limits the degree to which a single
sentence influences the update to F. As a result, an
L2 word’s embedding reflects all the past sentences
that contained that word, not just the most recent
such sentence, although with a bias toward the
most recent ones, which is realistic. Given a
new sentence x, we (approximately) maximize
the objective above using 10 steps of gradient
ascent (with step-size of 0.1), which gave good
convergence in practice. In principle, � should
be set based on human-subject experiments. In
practice, in this paper, we simply took �=1.

3.3 Spelling-Aware Extension
So far, our generic student model ignores the fact
that a novel word like Afrika is guessable simply
by its spelling similarity to Africa. Thus, we
augment the generic student model to use character
n-grams. In addition to an embedding per word
type, we learn embeddings for character n-gram
types that appear in our L1 corpus. The row in E
for a word w is now parameterized as:

Ẽ ·w̃+
X

n

Ẽn ·w̃n 1

1·w̃n (6)

where Ẽ is the full-word embedding matrix and w̃
is a one-hot vector associated with the word type
w, Ẽn is a character n-gram embedding matrix
and w̃n is a multi-hot vector associated with all the
character n-grams for the word type w. For each
n, the summand gives the average embedding of all
n-grams in w (where 1·w̃n counts these n-grams).
We set n to range from 3 to 4 (see Appendix B).
This formulation is similar to previous sub-word
based embedding models (Wieting et al., 2016;
Bojanowski et al., 2017).

Similarly, the embedding of an L2 word w is
parameterized as

F̃ ·w̃+
X

n

F̃n ·w̃n 1

1·w̃n (7)

Crucially, we initialize F̃n to µẼn (where
µ > 0) so that L2 words can inherit part of their
initial embedding from similarly spelled L1 words:
F̃4

Afri :=µẼ4
Afri.2 But we allow F̃n to diverge

over time in case an n-gram functions differently
in the two languages. In the same way, we initialize
each row of F̃ to the corresponding row of µ · Ẽ,
if any, and otherwise to 0. Our experiments
set µ = 0.2 (see Appendix B). We refer to this
spelling-aware extension to GSM as sGSM.

3.4 Scoring L2 embeddings
Did the simulated student learn correctly and use-
fully? Let P be the “reference set” of all (L1 word,
L2 gloss) pairs from all tokens in the entire docu-
ment. We assess the machine teacher’s success by
how many of these pairs the simulated student has
learned. (The student may even succeed on some
pairs that it has never been shown, thanks to n-gram
clues.) Specifically, we measure the “goodness” of

2We set µ=0.2 based on findings from our hyperparameter
search (see Appendix B).
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the updated L2 word embedding matrix F. For each
pair p= (e,f)2P , sort all the words in the entire
L1 vocabulary according to their cosine similarity
to the L2 word f , and let rp denote the rank of e.
For example, if the student had managed to learn
a matrix F whose embedding of f exactly equalled
E’s embedding of e, then rp would be 1. We then
compute a mean reciprocal rank (MRR) score of F:

MRR(F)=
1

|P|
X

p2P

⇣ 1

rp
if rprmax else 0

⌘
(8)

We set rmax = 4 based on our pilot study. This
threshold has the effect of only giving credit to
an embedding of f such that the correct e is in the
simulated student’s top 4 guesses. As a result, §3.5’s
machine teacher focuses on introducing L2 tokens
whose meaning can be deduced rather accurately
from their single context (together with any prior
exposure to that L2 type). This makes the macaronic
text comprehensible for a human student, rather
than frustrating to read. In our pilot study we found
that rmax substantially improved human learning.

3.5 Macaronic Configuration Search
Our current machine teacher produces the maca-
ronic document greedily, one sentence at a time. Ac-
tual documents produced are shown in Appendix D.

Let Fprev be the student model’s embedding
matrix after the reading the first n� 1 macaronic
sentences. We evaluate a candidate next sentence x
by the score MRR(F)whereFmaximizes (5) and is
thus the embedding matrix that the student would ar-
rive at after reading x as the nth macaronic sentence.

We use best-first search to seek a high-scoring x.
A search state is a pair (i,x) where x is a macaronic
configuration (Table 1) whose first i tokens may
be either L1 or L2, but whose remaining tokens are
still L1. The state’s score is obtained by evaluating
x as described above. In the initial state, i=0 and
x is the nth sentence of the original L1 document.
The state (i,x) is a final state if i= |x|. Otherwise
its two successors are (i+1,x) and (i+1,x0), where
x0 is identical to x except that the (i+1)th token has
been replaced by its L2 gloss. The search algorithm
maintains a priority queue of states sorted by score.
Initially, this contains only the initial state. A step
of the algorithm consists of popping the highest-
scoring state and, if it is not final, replacing it by its
two successors. The queue is then pruned back to
the top 8 states. When the queue becomes empty,
the algorithm returns the configuration x from the
highest-scoring final state that was ever popped.

L2 Model Closed-class Open-class

Es
random 0.74±0.0126(54) 0.61±0.0134(17)
GSM 0.72±0.0061(54) 0.70±0.0084(17)
sGSM 0.82±0.0038(41) 0.80±0.0044(21)

De
random 0.59±0.0054(34) 0.38±0.0065(13)
GSM 0.80±0.0033(34) 0.78±0.0056(13)
sGSM 0.82±0.0063(33) 0.79±0.0062(14)

Table 2: Average token guess quality (⌧ = 0.6) in the
comprehension experiments. The ± denotes a 95%
confidence interval computed via bootstrap resampling
of the set of human subjects. The % of L1 tokens
replaced with L2 glosses is in parentheses. Appendix C
evaluates with other choices of ⌧ .

4 Evaluation

Does our machine teacher generate useful
macaronic text? To answer this, we measure
whether human students (i) comprehend the L2
words in context, and (ii) retain knowledge of those
L2 words when they are later seen without context.

We assess (i) by displaying each successive sen-
tence of a macaronic document to a human student
and asking them to guess the L1 meaning for each L2
token f in the sentence. For a given machine teacher,
all human subjects saw the same macaronic docu-
ment, and each subject’s comprehension score is the
average quality of their guesses on all the L2 tokens
presented by that teacher. A guess’s quality q2 [0,1]
is a thresholded cosine similarity between the em-
beddings3 of the guessed word ê and the original L1
word e: q=cs(e,ê) if cs(e,ê)�⌧ else 0. Thus, ê=
e obtains q=1 (full credit), while q=0 if the guess
is “too far” from the truth (as determined by ⌧ ).

To assess (ii), we administer an L2 vocabulary
quiz after having human subjects simply read a
macaronic passage (without any guessing as they
are reading). They are then asked to guess the L1
translation of each L2 word type that appeared
at least once in the passage. We used the same
guess quality metric as in (i).4 This tests if human
subjects naturally learn the meanings of L2 words,
in informative contexts, well enough to later
translate them out of context. The test requires only
short-term retention, since we give the vocabulary
quiz immediately after a passage is read.

We compared results on macaronic documents
constructed with the generic student model (GSM),
its spelling-aware variant (sGSM), and a random

3Here we used pretrained word embeddings from Mikolov
et al. (2018), in order to measure actual semantic similarity.

4If multiple L1 types e were glossed in the document with
this L2 type, we generously use the e that maximizes cs(e,ê).
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baseline. In the baseline, tokens to replace are
randomly chosen while ensuring that each sentence
replaces the same number of tokens as in the GSM
document. This ignores context, spelling, and prior
exposures as reasons to replace a token.

Our evaluation was aimed at native English (L1)
speakers learning Spanish or German (L2). We re-
cruited L2 “students” on Amazon Mechanical Turk
(MTurk). They were absolute beginners, selected
using a placement test and self-reported L2 ability.

4.1 Comprehension Experiments
We used the first chapter of Jane Austen’s “Sense
and Sensibility” for Spanish, and the first 60
sentences of Franz Kafka’s “Metamorphosis” for
German. Bilingual speakers provided the L2
glosses (see Appendix A).

For English-Spanish, 11, 8, and 7 subjects were
assigned macaronic documents generated with
sGSM, GSM, and the random baseline, respectively.
The corresponding numbers for English-German
were 12, 7 and 7. A total of 39 subjects were
used in these experiments (some subjects did both
languages). They were given 3 hours to complete
the entire document (average completion time was
⇡1.5 hours) and were compensated $10.

Table 2 reports the mean comprehension score
over all subjects, broken down into comprehen-
sion of function words (closed-class POS) and
content words (open-class POS).5 For Spanish,
the sGSM-based teacher replaces more content
words (but fewer function words), and furthermore
the replaced words in both cases are better
understood on average, which we hope leads to
more engagement and more learning. For German,
by contrast, the number of words replaced does
not increase under sGSM, and comprehension
only improves marginally. Both GSM and sGSM
do strongly outperform the random baseline.
But the sGSM-based teacher only replaces a few
additional cognates (hundert but not Mutter),
apparently because English-German cognates do
not exhibit large exact character n-gram overlap.
We hypothesize that character skip n-grams might
be more appropriate for English-German.

4.2 Retention Experiments
For retention experiments we used the first 25
sentences of our English-Spanish dataset. New par-
ticipants were recruited and compensated $5. Each

5https://universaldependencies.org/u/pos/

L2 Model Closed-class Open-class

Es
random 0.47±0.0058(60) 0.40±0.0041(46)
GSM 0.48±0.0084(60) 0.42±0.0105(15)
sGSM 0.52±0.0054(47) 0.50±0.0037(24)

Table 3: Average type guess quality (⌧ = 0.6) in the
retention experiment. The % of L2 gloss types that were
shown in the macaronic document is in parentheses.
Appendix C evaluates with other choices of ⌧ .

participant was assigned a macaronic document gen-
erated with the sGSM, GSM or random model (20,
18, and 22 participants respectively). As Table 3
shows, sGSM’s advantage over GSM on comprehen-
sion holds up on retention. On the vocabulary quiz,
students correctly translated > 30 of the 71 word
types they had seen (Table 8), and more than half
when near-synonyms earned partial credit (Table 3).

5 Future Work

We would like to explore different character-
based compositions such as Kim et al. (2016) that
can potentially generalize better across languages.
We would further like to extend our work beyond
simple lexical learning to allow learning phrasal
translations, word reordering, and morphology.

Beyond that, we envision machine teaching inter-
faces in which the student reader interacts with the
macaronic text—advancing through the document,
clicking on words for hints, and facing occasional
quizzes (Renduchintala et al., 2016b)—and with
other educational stimuli. As we began to explore
in Renduchintala et al. (2016a, 2017), interactions
provide feedback that the machine teacher could use
to adjust its model of the student’s lexicons (here
E,F), inference (here ✓f ,✓b,✓h,µ), and learning
(here �). In this context, we are interested in using
models that are student-specific (to reflect individ-
ual learning styles), stochastic (since the student’s
observed behavior may be inconsistent owing to
distraction or fatigue), and able to model forgetting
as well as learning (e.g., Settles and Meeder, 2016).

6 Conclusions

We presented a method to generate macaronic
(mixed-language) documents to aid foreign
language learners with vocabulary acquisition. Our
key idea is to derive a model of student learning
from only a cloze language model, which uses
both context and spelling features. We find that
our model-based teacher generates comprehensible
macaronic text that promotes vocabulary learning.
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