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Abstract

We propose a method based on neural net-
works to identify the sentiment polarity of
opinion words expressed on a specific aspect
of a sentence. Although a large majority of
works typically focus on leveraging the ex-
pressive power of neural networks in handling
this task, we explore the possibility of inte-
grating dependency trees with neural networks
for representation learning. To this end, we
present a convolution over a dependency tree
(CDT) model which exploits a Bi-directional
Long Short Term Memory (Bi-LSTM) to learn
representations for features of a sentence, and
further enhance the embeddings with a graph
convolutional network (GCN) which operates
directly on the dependency tree of the sen-
tence. Our approach propagates both contex-
tual and dependency information from opin-
ion words to aspect words, offering discrimi-
native properties for supervision. Experimen-
tal results ranks our approach as the new state-
of-the-art in aspect-based sentiment classifica-
tion.

1 Introduction

The current explosion in digital technology in re-
cent years has led to a vast amount of opinion-
ated materials on the internet. In particular, in-
dividuals have expressed opinions on several as-
pects of products, services, blogs, and comments
which are deemed to be influential, especially
when making purchase decisions based on prod-
uct reviews (Schouten and Frasincar, 2015). How-
ever, due to the voluminous amount of content on-
line, sifting through reviews to learn knowledge
of opinions expressed on specific aspects of a re-
view is cumbersome. This fact has led to an in-
crease in research in aspect-based sentiment anal-
ysis (ABSA), which aims to find scalable solu-
tions to address the problem automatically. More
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specifically, ABSA involves two tasks: (1) to iden-
tify aspects of a sentence, and (2) to determine the
sentiment polarity (e.g. positive, negative, neutral)
expressed on a specific aspect. In this paper, we
focus on the second task: aspect-based sentiment
classification.

We ordered the special grilled branzino , that was so infused with bone, it was difficult to eat.

TONNVBD DT JJ WDT VBD RB VBN IN NN PRP VBVBD JJPRP JJ TO

We ordered the special grilled branzino, that was so infused with bone, it was difficult to eat

Figure 1: An example of a dependency tree where an
opinion word (blue) and the specific aspect expression
(red) are connected with other word tokens based on
their syntactic dependencies.

With the aim to address the classification task,
several methods have been developed. Majority
of recent works such as (Dong et al., 2014; Tang
et al., 2015; Wang et al., 2016; Chen et al., 2017;
Cheng et al., 2017) have exploited neural networks
due to its ability to model representations for sen-
tences automatically. Even so, some recent meth-
ods have integrated both lexical resources with
neural networks to achieve state-of-the-art perfor-
mance in ABSA (Wang et al., 2018; Ouyang and
Su, 2018).

Generally, we find that a dependency tree short-
ens the distance between the aspects and opin-
ion words of a sentence, captures the syntactic re-
lations between words, and offers discriminative
syntactic paths on arbitrary sentences for infor-
mation propagation across the tree. For instance,
consider the dependency tree as depicted in Fig-
ure 1, the distance between the aspect expression
‘grilled branzino’ and the opinion word ‘difficult’
is shortened by a single path based on their syn-
tactic dependencies. These properties allow neu-
ral network models to capture long-term syntactic
dependencies effortlessly. Besides, dependency
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trees have graph-like structures bringing to play
the recent class of neural networks, namely, graph
convolutional networks (GCN) (Kipf and Welling,
2016). The GCN has been successful in learning
representations for nodes, capturing the local posi-
tion of nodes in the graph. Several AI applications
such as link prediction (Schlichtkrull et al., 2018;
Zitnik et al., 2018; Kong et al., 2019), semantic
role labeling (Marcheggiani and Titov, 2017), and
relation extraction (Zhang et al., 2018) have suc-
cessfully exploited GCNs to improve representa-
tion learning.

These observations motivate us to develop a
neural model which can operate on the depen-
dency tree of a sentence, with the aim to make
accurate sentiment predictions with respect to spe-
cific aspects. Specifically, we propose a convolu-
tion over a dependency tree (CDT) model which
exploits a GCN to model the structure of a sen-
tence through its dependency tree, where node
(word) embeddings of the tree are initialized by
means of a Bi-directional Long Short Term Mem-
ory (Bi-LSTM) network. Motivated by the re-
cent work of (Zhang et al., 2018) in a relation
extraction task, we find that the architecture of
CDT allows the Bi-LSTM account for contextual
information between successive words, while the
GCN enhances the embeddings by modeling the
dependencies along the syntactic paths of the de-
pendency tree. Such operations allow informa-
tion to be transferred from opinion words to as-
pect words, implying that the encoding for aspect
words is sufficient for supervision in the classifi-
cation task. Experimental results, including visu-
alizations show the effectiveness of our proposed
model.

2 Related Work

The performance bottleneck in the classification
task of ABSA comes from modeling represen-
tations which efficiently encode the relationship
between a specific aspect and the opinion words
of a sentence. Most recent methods have fo-
cused on leveraging neural networks (Chen et al.,
2017; Gu et al., 2018; Majumder et al., 2018; Fan
et al., 2018a; Xue and Li, 2018; Huang and Carley,
2018; Zheng and Xia, 2018) which model repre-
sentations automatically. Besides, in contrast to
rule-based methods (Hu and Liu, 2004; Popescu
and Etzioni, 2005; Ding et al., 2008; Popescu and
Etzioni, 2005), neural networks are more capable

of dealing with situations where opinion words are
found in more complicated contexts.

Among neural network methods, some model
the sentence representation using RNN variants
such as LSTM and gated recurrent units (GRU).
(Chen et al., 2017) handles the encoding of re-
views using BiLSTM and attention networks. (Gu
et al., 2018) improves the performance by con-
sidering the position of the aspect words. Simi-
larly, (Zheng and Xia, 2018) use LSTMs to learn
embeddings for the left context, right context and
target phrase of sentences while considering the
interactions between targets and contexts. (Ma-
jumder et al., 2018) on the other hand models
the sentence representations using GRU and at-
tention mechanisms. However convenient, these
neural network based methods neglect informative
resources such as dependency trees which is capa-
ble of shortening the distance between aspect and
opinion words, enabling dependency information
to be preserved effectively in lengthy sentences.

The state-of-the-art methods for representation
learning have integrated dependency trees with
neural networks. (Tai et al., 2015) proposed a tree-
structured LSTM: a generalized class of LSTMs
which enables the learning of dependency infor-
mation between words and phrases. (Mou et al.,
2015) exploit the short paths of dependency trees
to learn representations of sentences using con-
volutional neural networks, while preserving de-
pendency information. Motivated by such works,
(Gu et al., 2018) proposed a position encoding
convolutional neural network which takes into ac-
count the relative position of words and entities
of a dependency tree for relation classification.
Given that dependency trees can be considered
as a graph, (Marcheggiani and Titov, 2017) intro-
duced a variant of a GCN to model representations
for dependency graphs in semantic role labeling
tasks.

In a recent relation extraction task, (Zhang et al.,
2018) extract entity-based representations via a
GCN which operates on a dependecy tree. (Zhang
et al., 2018) observed that stacking a GCN layer
over an LSTM improves performance immensely.
We follow a similar approach and propose CDT: a
method which performs convolutions over a de-
pendency tree to extract rich representations for
aspect-based sentiment classification. CDT ex-
tracts a final representation for the ABSA classi-
fication task by aggregating only the aspect vec-
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tors. We believe this is sufficient because the GCN
componet can be interpreted as a messaging pass-
ing network which propagates information along
edges. Thus, successive GCN operations allow
information to be propagated across the network,
and hence aspect vectors are encoded with infor-
mation from opinion words which should be suffi-
cient for supervision.

3 Convolution over Dependency Tree
Model

In this section, we describe the CDT model which
takes as input a dependency tree of a sentence.
Node embeddings of the dependency tree are ini-
tially modeled by means of a BiLSTM, and the
embeddings are further enhanced via a GCN. Fi-
nally, an aggregator is applied over the enhanced
aspect embeddings to distill a dense vector em-
bedding for the classification task. In particular,
we aim to extract embeddings which encode both
contextual and dependency information between
a specific aspect expression and opinion words,
providing supervisory signals for the aspect-based
classification task.

We briefly describe the BiLSTM model, which
takes as input the sentence s with n ordered word
embeddings. The BiLSTM integrates context in-
formation in the word embeddings by keeping
track of dependencies along the chain of words.
Given an aspect-sentence pair (a, s), where a =
{a1, a2, . . . , al} is a sub-sequence of the sentence
s = {w1, w2, . . . , wn}. The sentence s has corre-
sponding word embeddings x = {x1, x2, . . . xn}.
The LSTM learns hidden state representations
{
−→
h01,
−→
h02, . . .

−→
h0n} in the forward direction on the

word embeddings in x. This allows contextual in-
formation to be captured in a forward direction.
In a similar fashion, a backward LSTM will learn
representations {

←−
h01,
←−
h02, . . .

←−
h0n} on x. Finally, we

can concatenate the corresponding parallel rep-
resentations modeled by both forward and back-
ward LSTMs into higher dimensional represen-
tations {h01, h02, . . . , h0n}, which contains the sub-
sequence {h0a1 , h

0
a2 , . . . , h

0
al
} corresponding to the

aspect expression a. In doing so, we capture con-
textual information between opinion words and as-
pects. Besides, we integrate dependency infor-
mation in the contextualized embeddings using a
GCN which operates directly on the dependency
tree of the sentence.

3.1 Graph Convolutional Network
The dependency tree can be interpreted as a graph
G with n nodes, where nodes represent words in
the sentence and edges represent syntactic depen-
dency paths between words in the graph. The
nodes of the dependency tree are given by real-
valued vectors modeled by BiLSTM as described
above. This structure allows a GCN to operate di-
rectly on the graph to model dependencies that ex-
ist between words. To allow the GCN to model
node embeddings efficiently, we allow G to have
self-loops. The GCN approach ensures that the
sentence structure represented by the dependency
tree is encoded efficiently, whereby the represen-
tations for nodes encode the local position of opin-
ion words and the target words in the dependency
tree.

The dependency tree G for any arbitrary sen-
tence can be represented as an n × n adjacency
matrix A, with entries Aij signaling if node i is
connected to node j by a single dependency path
in G. Specifically, Aij = 1 if node i is con-
nected to node j, andAij = 0 otherwise. Together
with node embeddings modeled by BiLSTMs, we
can exploit a GCN capable of operating directly
on graphs. The GCN makes efficient use of de-
pendency paths to transform and propagate infor-
mation across the paths, and update node embed-
dings by aggregating the propagated information.
In such an operation, the GCN only considers the
first-order neighborhood of a node when model-
ing its embeddings. However, k successive GCN
operations result in the propagation of information
across the k-th order neighborhood. A single node
embedding update takes the form

h
(k+1)
i = φ

 n∑
j=1

ciAij

(
W (k)h

(k)
j + b(k)

) ,
(1)

where h(k)j is the hidden state representation for
node j at the kth layer of the GCN, b(k) is a bias
term, W (k) is a parameter matrix, ci is a normal-
ization constant, which we choose as ci = 1/di.
di denotes the degree of node i in the graph calcu-
lated as di =

∑n
j=1Aij . φ(·) is a relu elementwise

non-linear activation function. Note that h0i rep-
resent the initial embeddings modeled by a BiL-
STM, and h(k+1)

i is the final output for node i at
layer k.

In extracting a final embedding for the classifi-
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Figure 2: Overview of the CDT model based on the sentence s = [w1, w2, wa1
, wa2

, w5]

, where [wa1 , wa2 ] is the specific aspect expression in s, and k is the number of GCN layers.

cation task, we exploit a simple aggregator. For
our framework, we choose an average pool which
aggregates information over the aspect vectors.
We choose to aggregate only the aspect vectors
because we believe that these vectors encode con-
textual and dependency information owing to the
BiLSTM and the GCN respectively. The BiLSTM
and the GCN can be interpreted as message pass-
ing networks. Specifically, the BiLSTM allow as-
pect words of an arbitrary sentence to be contex-
tualize, while the GCN finds the local position of
aspect words in the syntactic dependency tree. The
local position within the dependency tree encodes
dependency information of a word with respect to
its neighbors. As a result, the BiLSTM and the
GCN allow embeddings for aspect words to have
discriminative features, providing supervisory sig-
nals for the classification task. Moreover, we per-
form an average pool to retain most of the infor-
mation in the aspect vectors. The pool operation
over the aspect vectors takes the form of

h(k+1)
a = f

(
{hk+1

a1 , hk+1
a2 , . . . , hk+1

al
}
)
, (2)

where f(·) is an average pool function applied
over the enhanced aspect vectors. We present an
overview of the model architecture in Figure 2
based on an example sentence input.

4 Model Training

The aspect-based representation h(k+1)
a is passed

to a fully connected softmax layer σ whose out-
put is a probability distribution over the different
sentiment polarities. The model is trained end-to-
end through a backpropagation, where the objec-
tive function to be minimized is the cross entropy
error defined as

J(θ1, θ2) = −
∑

(a,s)∈D

∑
c∈C

yc((a, s)) log ŷc((a, s)),

(3)
whereD is a collection of aspect-sentence pairs,

C is the collection of distinct sentiment classes,
yc((a, s)) is the ground truth for (a, s) which
takes the value of either 1 or 0. Besides, (a, s)
can belong to only one sentiment class. Hence
yc((a, s)) = 1 indicates that the ground truth sen-
timent class for (a, s) is c. ŷc((a, s)) is the model’s
prediction for (a, s). θ1, θ2 are trainable parame-
ters for the BiLSTM and GCN respectively.

5 Experiment

In this section, we conduct experiments to validate
our model which we denote as CDT on bench-
mark datasets. We also present restricted versions
of our model denoted as ASP-BiLSTM and ASP-
GCN. Unlike our main model, ASP-BiLSTM only
exploits BiLSTM to model contextual information
with respect to a specific aspect expression, while
ASP-GCN exploits a GCN to model dependencies
between words. Both models extract a final em-
bedding on the aspect vectors. We propose these
two models to observe the performance of GCN
and BiLSTM, as well as the performance when we
stack a GCN on a BiLSTM which forms the CDT
model. To distinguish CDT as the new state-of-
the-art in aspect-based sentiment classification, we
compare CDT with several well established mod-
els, showing that CDT outperforms the very recent
models in the classification task. In particular, we
perform case studies with visualizations to verify
our approach of aggregating only aspect vectors
for the final embedding. We further present vi-
sualizations on case examples showing how GCN
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improves on a simple BiLSTM model.

5.1 Datasets
We evaluate the performance of our model on Se-
mEval 2014 (Pontiki et al., 2014), which con-
sists of restaurant reviews (Rest14) and laptop re-
views (Laptop14). We also evaluate our model
on SemEval 2016 1 containing restaurant reviews
(Rest16). Experiments are also performed on a
collection of tweets from Twitter provided in the
works of (Dong et al., 2014). We summarize the
statistics of the datasets in Table 1.

Positive Neutral Negative
Dataset train test train test train test
Rest14 2164 727 637 196 807 196

Laptop14 976 337 455 167 851 128
Rest16 1657 611 101 44 748 204
Twitter 1507 172 3016 336 1528 169

Table 1: Distribution of samples by class labels on
benchmark datasets

5.2 Implementation and parameter settings
For fairness in model comparation, we use similar
parameters in compared models. Specifically, we
exploit 300-dimensional Glove vectors (Penning-
ton et al., 2014) for the word embeddings, as well
as a 30-dimensional part-of-speech (POS) em-
beddings, 30-dimensional position embeddings,
which is used to identify the relative position of
each word with respect to the aspect in the sen-
tence. We concatenate both word, POS and posi-
tion embeddings, and learn a 50-dimensional BiL-
STM embeddings for each word. The GCN op-
erates on the dependency tree of the sentence to
enhance the BiLSTM embeddings. All sentences
are parsed by the Stanford parser. 2 To encourage
the GCN to model dependencies between words,
we randomly dropout 10% of neurons per layer,
and about 0.7 at the input layer. The GCN model
is trained for 100 epochs with batch size 32. We
use the adam optimizer with learning rate 0.01 for
all datasets. The code for our model is found on
the Github page 3.

5.3 Compared Prior Art
As a baseline, we include CNN and LSTM
models, which learn representations from both

1http://alt.qcri.org/semeval2016/
task5/

2https://stanfordnlp.github.io/
CoreNLP/

3https://github.com/sunkaikai/CDT_ABSA

word embeddings and position embeddings. We
denote these models as CNN+Position and
LSTM+Position. We also include a CNN baseline
method which exploits an attention mechanism to
model the relation between aspect words and con-
text words. We denote this model as CNN+ATT.
These models extract a final embedding by ag-
gregating all learned embeddings using an aver-
age pool. In particular, we compare our proposed
model with very recent models on the benchmark
datasets. The models we consider include,

• TNet (Li et al., 2018a): In this work,
BiLSTM embeddings are transformed into
target-specific embeddings, and a CNN
model is used to extract a final embedding.

• PRET+MULT (He et al., 2018b): A multi-
task framework based on LSTMs is proposed
to transfer knowledge from a document-level
model task to an aspect-level model task.

• SA-LSTM-P (Wang and Lu, 2018): This
work first learn embeddings using BiLSTM
and model structural dependencies between
words by means of a segmentation attention
mechanism.

• LSTM+SynATT+TarRep (He et al., 2018a):
This method models target representation as
a weighted sum of aspect embeddings, and
models the syntactic structure of the sentence
using an attention mechanism.

• MGAN (Fan et al., 2018b): A BiLSTM is ex-
ploited to capture contextual information in
the sentence, while a multi-grained attention
mechanism is proposed to extract an embed-
ding which effectively captures the interac-
tion between the aspect and the context.

• MGAN (Li et al., 2018b): This work inte-
grates an alignment mechanism in a multi-
task model comprising of an aspect-term task
and an aspect-category task to effectively ex-
tract aspect-specific representations.

• HSCN (Lei et al., 2019): A model is pro-
posed to capture interactions between the
context and target, select target words and
extract target-specific contextual representa-
tion, while measuring the deviation between
target-specific contextual representation and
target representations.

http://alt.qcri.org/semeval2016/task5/
http://alt.qcri.org/semeval2016/task5/
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/sunkaikai/CDT_ABSA
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Rest14 Laptop Twitter Rest16
Model ACC F1 ACC F1 ACC F1 ACC F1
SOTA 81.60 �71.91 76.54 71.75 74.97 73.6 85.58 69.76

CNN+Position 79.37 68.64 72.73 68.28 72.69 70.92 84.63 64.75
LSTM+Position 77.59 67.05 70.06 64.46 71.39 69.45 83.47 62.69

CNN+ATT 79.46 69.44 70.53 64.27 73.12 71.01 84.28 60.86
TNet (Li et al., 2018a) 80.79 70.84 76.54 71.75 74.97 73.6 - -

PRET+MULT (He et al., 2018b) 79.11 69.73 71.15 67.46 - - 85.58 69.76
SA-LSTM-P (Wang and Lu, 2018) 81.60 - 75.1 - 69.0 - - -

LSTM+SynATT+TarRep (He et al., 2018a) 80.63 71.32 71.94 69.23 - - 84.61 67.45
MGAN (Fan et al., 2018b) 81.25 71.94 75.39 72.47 72.54 70.81 - -
MGAN (Li et al., 2018b) 81.49 71.48 76.21 71.42 74.62 73.53 - -
HSCN (Li et al., 2018b) 77.8 70.20 76.1 72.5 69.6 66.1 - -

ASP-BiLSTM 80.95 72.38 74.22 69.35 73.66 72.32 85.12 66.92
ASP-GCN 81.30 73.18 74.53 69.78 70.91 69.07 81.85 61.2

CDT 82.30 74.02 77.19 72.99 74.66 73.66 85.58 69.93

Table 2: Performance comparison on different models on the benchmark datasets. The best performance are
bold-typed.

5.4 Performance Comparison

In this section, we compare model performance
of recent methods with CDT, ASP-BiLSTM
and ASP-GCN. We implement and report re-
sults for the baseline methods CNN+Position,
LSTM+Position and CNN+ATT, and report the re-
sults in the original paper for the recent models
under comparison. The classification results are
shown in Table 2.

From the table, we find that CDT generally
ouperforms all models for the different datasets,
while having a slight accuracy performance degra-
dation of 0.31 on the twitter dataset for the TNet
model. The difference between TNet and CDT is
not really significant. Hence it is fair to conclude
that both models are competitive on the Twitter
dataset. Even with simple architectures, we find
that ASP-BiLSTM and ASP-GCN have competi-
tive performance with the recent models on bench-
mark datasets. Particularly, ASP-GCN outper-
forms the models on the Rest14 dataset.

ASP-BiLSTM, ASP-GCN and CDT extract fi-
nal representations from only the aspect vectors.
Based on the performance, it seems as a suffi-
cient technique for the classification task. We be-
lieve that the aspect vector is encoded with con-
text and dependency information from the context
and structure of the sentence by means of the BiL-
STM and the GCN. The BiLSTM and GCN can
be regarded as message passing networks, propa-
gating information along a chain of sequence of
words(BiLSTM) or along syntactic dependency
path(GCN). Due to the fact that relevant informa-
tion is passed to the aspect words, a simple average
pool is all we need to retain information relevant

to the classification task. Note that the informa-
tion propagated in the network is learned there-
fore only weighed information is encoded within
the aspect words.

5.5 GCN Performance

We conduct an experiment to demonstrate that
the performance of our proposed models, namely
CDT and ASP-GCN, depend on the number of
layers of the GCN. We perform this experiment
on the Rest14 dataset and present the result in Fig-
ure 4.

In our experimentation, we find that as we in-
crease the number of layers the accuracy perfor-
mance increase to an extent. In particular, ASP-
GCN increase in model performance over 6 layers
of the GCN. The performance becomes unstable
after the 6-th layer. Since GCN passes information
in the local neighborhood of any node, successive
operations on the dependency tree allows ASP-
GCN to pass information to the furthest node. The
problem of overfitting takes effect when the layers
rises beyond a threshold, explaining the accuracy
curve after the 6-th layer in the figure. Another im-
portant observation is the convergence of accuracy
performance of the ASP-BiLSTM and ASP-GCN
at the 6-th layer. Note that ASP-BiLSTM only
captures contextual information while ASP-GCN
captures dependency information. However, both
models converge in performance at the 6-th layer.
Taking advantage of the GCN and the BiLSTM
we expect to improve performance, capturing both
context and dependencies with respect to the as-
pect expression. As seen in the accuracy curve
of CDT, the GCN integrates dependency informa-
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(a) Case Example 1: aspect word is ‘Sangria’ (b) Case Example 2: aspect word is ‘LASAGNA’

Figure 3: Word relevance scores with respect to the final embedding of ASP-GCN. Number of layers for ASP-GCN
is 1, 2, 3 for row 1, row 2, and row 3 respectively in both examples.

1 2 3 4 5 6 7 8 9 10
number of GCN layers

74

75

76

77

78

79

80

81

82

ac
cu

ra
cy

ASP-GCN
ASP-BiLSTM
CDT

Figure 4: Accuracy curves for ASP-GCN, ASP-
BiLSTM and CDT on the Rest14 dataset

tion in the contextualized embeddings to improve
accuracy performance over just 2 layers, reducing
the number of GCN layers needed.

5.6 Mask Experiment

Our primary assumption was that the aspect em-
beddings learned by our GCN model contains suf-
ficient information necessary for the classification
task. Based on this assumption we aggregate only
the aspect embeddings using a max pool with the
aim to retain most of the information. To ver-
ify this assumption, we trace from the input em-
beddings to the final embedding. We propose a
mask method designed to estimate the relevance
of a word with respect to the final embedding, and
perform mask experiments using ASP-GCN.

The mask method works as follows. First, we
follow through the conventional procedure to ex-
tract a final embedding hs for a given sentence s
using ASP-GCN. We perform a subsequent run of
ASP-GCN on the same sentence s to extract a final
embedding, but in this instance we conceal a spe-
cific input word w. We conceal w by mapping it
to the zero vector before applying ASP-GCN on s.
As a result a final embedding h(s\w) is generated
for s. If hs = h(s\w), the word w has no impact

on the representation hs. In other words, hs does
not capture w or no information flows from w to
hs. To this end, we can define a score function to
estimate the relevance of w on hs. We define the
score function for w as

γ(w, s) = m
d∑

i=1

|his − hi(s\w)| (4)

where d is the dimension of the final embed-
ding distilled by ASP-GCN, m is a normalization
constant which we choose as m = max

w∈s
γ(w, s).

Generally, the final embedding should capture in-
formation on opinion words with respect to the tar-
get aspect. Hence, we expect to score high val-
ues for opinion words. Consider the scores for
words shown in Figure 3, we find that γ scores
high values for opinion words as we increase the
number of layers of ASP-GCN, while reducing
scores on irrelevant words. Implying that the fi-
nal embedding captures information from opin-
ions. The results as seen in these case examples
convinces us that the final embedding distilled by
our model captures relevant information necessary
for the classification task.

5.7 Case Study

In this section we study the behaviour of ASP-
BiLSTM, TNet and CDT on case examples. To
this end we present visualizations showing the at-
tention these models place on words. For a good
model, we expect the model to attend to words
which influence the sentiment inferred on a spe-
cific aspect.

From Table 2 and Figure 4, it is clear that GCN
complements the BiLSTM to improve model per-
formance. This means that the BiLSTM can iden-
tify opinion words within the context with respect
to a specific aspect. However, in some compli-
cated contexts, it might perform poorly. But the
GCN can build upon BiLSTM to attend to the cor-
rect opinion words by leveraging the dependencies
among words. Consider the case example shown
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Figure 5: Attention visualization for ASP-BiLSTM
(1st row), TNet(2nd row) and CDT (3rd row) for the
aspect word ‘Sangria’

Figure 6: Attention visualization for ASP-BiLSTM
(1st row), TNet (2nd row) and CDT (3rd row) for the
aspect word ‘paratha’

in Figure 5, ASP-BiLSTM was clever to know that
the word ‘good’ is an opinion word with respect
to the aspect ‘Sangria’. But ASP-BiLSTM failed
to identify whether ‘good’ on the far left is asso-
ciated to the ‘Sangria’ or ‘good’ on the far right
is associated to ‘Sangria’. Interestingly, we find
that the GCN could analyze this further through
the dependencies between words to identify that it
is the ‘good’ on the far right. TNet on the other
hand measures the association between ‘Sangria’
and ‘good’ in both directions to identify the cor-
rect ‘good’.

In Figure 6, even though the BiLSTM is able
to identify the opinion word ‘GREAT’ which ex-
presses an opinion on the aspect ‘parathra’, CDT is
able to capture the opinion word ‘FRESH’ which
directly expresses the sentiment towards the as-
pect. However, from the visualization is eas-
ily observed that CDT still attends to ‘GREAT’.
This suggest that the GCN is able to model the
importance of the words with respect to the as-
pect, placing larger weights to words directly ex-
pressing the opinion on the aspect. At the same
time, TNet misses the opinion word ‘FRESH’ and
places attention to the word ‘GREAT’ just like
ASP-BiLSTM.

In the case example shown in Figure 7, we find
that ASP-BiLSTM places small attention on the
opinion word ‘BEST’ which expresses the senti-
ment on the aspect word ‘LASAGNA’, while fo-
cusing its attention on ‘WAS PROBABLY’ which
is not meaningful alone. Interestingly, CDT builds
upon this little information and rely on the de-
pendencies between the words through the de-

Figure 7: Attention visualization for ASP-BiLSTM
(1st row), TNet (2nd row) and CDT (3rd row) for the
aspect word ‘LASAGNA’

pendency tree to learn that ‘BEST’ is the correct
word to attend to. Similar to ASP-BiLSTM, TNet
misses the important word ‘BEST’ and places at-
tention to ‘WAS PROBABLY’. This result suggest
that TNet heavily depends on the representations
modeled by its BiLSTM layer, while CDT con-
siders other information such as the dependencies
among words to accurately identify words which
expresses opinions on specific aspects.

6 Conclusion

Modeling representations for aspect-based senti-
ment classification generally require capturing in-
formative words which express the sentiment in-
ferred on the target aspect. Leveraging neural
networks are highly desirable for representation
learning. BiLSTM-based models have been suc-
cessful to capture contextual information in prior
works.

In this paper, we integrate a GCN with a simple
BiLSTM model, with the aim to capture structural
and contextual information of sentences. We have
shown that the GCN successfully performs convo-
lutions on the dependency tree to refine BiLSTM
embeddings. Experimental results with visualiza-
tions support our argument on the extraction of a
final embedding based on only the aspect vectors.
In fact, the model we propose is simple and out-
performs more complex and recent models tack-
ling the same problem.
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