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Abstract

We propose LASERTAGGER—a sequence tag-
ging approach that casts text generation as
a text editing task. Target texts are recon-
structed from the inputs using three main edit
operations: keeping a token, deleting it, and
adding a phrase before the token. To pre-
dict the edit operations, we propose a novel
model, which combines a BERT encoder with
an autoregressive Transformer decoder. This
approach is evaluated on English text on four
tasks: sentence fusion, sentence splitting, ab-
stractive summarization, and grammar correc-
tion. LASERTAGGER achieves new state-of-
the-art results on three of these tasks, performs
comparably to a set of strong seq2seq base-
lines with a large number of training exam-
ples, and outperforms them when the number
of examples is limited. Furthermore, we show
that at inference time tagging can be more than
two orders of magnitude faster than compara-
ble seq2seq models, making it more attractive
for running in a live environment.

1 Introduction

Neural sequence-to-sequence (seq2seq) models
provide a powerful framework for learning to trans-
late source texts into target texts. Since their first
application to machine translation (MT) (Sutskever
et al., 2014) they have become the de facto ap-
proach for virtually every text generation task, in-
cluding summarization (Tan et al., 2017), image
captioning (Xu et al., 2015), text style transfer (Rao
and Tetreault, 2018; Nikolov and Hahnloser, 2018;
Jin et al., 2019), and grammatical error correction
(Chollampatt and Ng, 2018; Grundkiewicz et al.,
2019).

We observe that in some text generation tasks,
such as the recently introduced sentence splitting
and sentence fusion tasks, output texts highly over-
lap with inputs. In this setting, learning a seq2seq
model to generate the output text from scratch

Encode Tag

Turing was born in 1912 . Turing died in 1954 .

Turing was born in 1912 and he died in 1954 .

Realize

KEEP KEEP KEEP KEEP KEEP and heDELETE DELETE KEEP KEEP KEEP KEEP

Figure 1: LASERTAGGER applied to sentence fusion.

seems intuitively wasteful. Copy mechanisms (Gu
et al., 2016; See et al., 2017) allow for choosing
between copying source tokens and generating ar-
bitrary tokens, but although such hybrid models
help with out-of-vocabulary words, they still re-
quire large training sets as they depend on output
vocabularies as large as those used by the standard
seq2seq approaches.

In contrast, we propose learning a text editing
model that applies a set of edit operations on the
input sequence to reconstruct the output. We show
that it is often enough to use a relatively small set
of output tags representing text deletion, rephrasing
and word reordering to be able to reproduce a large
percentage of the targets in the training data. This
results in a learning problem with a much smaller
vocabulary size, and the output length fixed to the
number of words in the source text. This, in turn,
greatly reduces the number training examples re-
quired to train accurate models, which is particu-
larly important in applications where only a small
number of human-labeled data is available.

Our tagging approach, LASERTAGGER, consists
of three steps (Fig. 1): (i) Encode builds a represen-
tation of the input sequence, (ii) Tag assigns edit
tags from a pre-computed output vocabulary to the
input tokens, and (iii) Realize applies a simple set
of rules to convert tags into the output text tokens.

An experimental evaluation of LASERTAGGER
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on four different text generation tasks shows that it
yields comparable results to seq2seq models when
we have tens of thousands of training examples
and clearly outperforms them when the number of
examples is smaller.

Our contributions are the following:
1) We demonstrate that many text generation

tasks with overlapping inputs and outputs can be
effectively treated as text editing tasks.

2) We propose LASERTAGGER—a sequence
tagging-based model for text editing, together with
a method for generating the tag vocabulary from
the training data.

3) We describe two versions of the tag-
ging model: (i) LASERTAGGERFF—a tagger
based on BERT (Devlin et al., 2019) and
(ii) LASERTAGGERAR—a novel tagging model
combining the BERT encoder with an autoregres-
sive Transformer decoder, which further improves
the results over the BERT tagger.

4) We evaluate LASERTAGGER against strong
seq2seq baseline models based on the BERT ar-
chitecture. Our baseline models outperform previ-
ously reported state-of-the-art results on two tasks.

5) We demonstrate that a) LASERTAGGERAR
achieves state-of-the-art or comparable results on 3
out of 4 examined tasks, b) LASERTAGGERFF is up
to 100x faster at inference time with performance
comparable to the state-of-the-art seq2seq mod-
els. Furthermore, both models: c) require much
less training data compared to the seq2seq mod-
els, d) are more controllable and interpretable than
seq2seq models due to the small vocabulary of
edit operations, e) are less prone to typical seq2seq
model errors, such as hallucination.

The code will be available at:
lasertagger.page.link/code

2 Related Work

Recent work discusses some of the difficulties of
learning neural decoders for text generation (Wise-
man et al., 2018; Prabhakaran et al., 2018). Conven-
tional seq2seq approaches require large amounts of
training data, are hard to control and to constrain
to desirable outputs. At the same time, many NLP
tasks that appear to be full-fledged text generation
tasks are natural testbeds for simpler methods. In
this section we briefly review some of these tasks.

Text Simplification is a paraphrasing task that
is known to benefit from modeling edit operations.
A simple instance of this type are sentence com-

pression systems that apply a drop operation at the
token/phrase level (Filippova and Strube, 2008; Fil-
ippova et al., 2015), while more intricate systems
also apply splitting, reordering, and lexical substi-
tution (Zhu et al., 2010). Simplification has also
been attempted with systems developed for phrase-
based MT (Xu et al., 2016a), as well as with neural
encoder-decoder models (Zhang and Lapata, 2017).

Independent of this work, Dong et al. (2019)
recently proposed a text-editing model, similar to
ours, for text simplification. The main differences
to our work are: (i) They introduce an interpreter
module which acts as a language model for the
so-far-realized text, and (ii) they generate added
tokens one-by-one from a full vocabulary rather
than from an optimized set of frequently added
phrases. The latter allows their model to generate
more diverse output, but it may negatively effect the
inference time, precision, and the data efficiency of
their model. Another recent model similar to ours
is called Levenshtein Transformer Gu et al. (2019),
which does text editing by performing a sequence
of deletion and insertion actions.

Single-document summarization is a task that
requires systems to shorten texts in a meaning-
preserving way. It has been approached with
deletion-based methods on the token level (Filip-
pova et al., 2015) and the sentence level (Narayan
et al., 2018; Liu, 2019). Other papers have used
neural encoder-decoder methods (Tan et al., 2017;
Rush et al., 2015; Paulus et al., 2017) to do ab-
stractive summarization, which allows edits be-
yond mere deletion. This can be motivated by the
work of Jing and McKeown (2000), who identified
a small number of fundamental high-level editing
operations that are useful for producing summaries
(reduction, combination, syntactic transformation,
lexical paraphrasing, generalization/specification,
and reordering). See et al. (2017) extended a neu-
ral encoder-decoder model with a copy mechanism
to allow the model to more easily reproduce input
tokens during generation.

Out of available summarization datasets (Der-
noncourt et al., 2018), we find the one by Toutanova
et al. (2016) particularly interesting because (1) it
specifically targets abstractive summarization sys-
tems, (2) the lengths of texts in this dataset (short
paragraphs) seem well-suited for text editing, and
(3) an analysis showed that the dataset covers many
different summarization operations.

In Grammatical Error Correction (Ng et al.,

lasertagger.page.link/code
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2013, 2014) a system is presented with input texts
written usually by a language learner, and is tasked
with detecting and fixing grammatical (and other)
mistakes. Approaches to this task often incorporate
task-specific knowledge, e.g., by designing classi-
fiers for specific error types (Knight and Chander,
1994; Rozovskaya et al., 2014) that can be trained
without manually labeled data, or by adapting
statistical machine-translation methods (Junczys-
Dowmunt and Grundkiewicz, 2014). Methods for
the sub-problem of error detection are similar in
spirit to sentence compression systems, in that they
are implemented as word-based neural sequence la-
belers (Rei, 2017; Rei et al., 2017). Neural encoder-
decoder methods are also commonly applied to the
error correction task (Ge et al., 2018; Chollam-
patt and Ng, 2018; Zhao et al., 2019), but suffer
from a lack of training data, which is why task-
specific tricks need to be applied (Kasewa et al.,
2018; Junczys-Dowmunt et al., 2018).

3 Text Editing as a Tagging Problem

Our approach to text editing is to cast it into a
tagging problem. Here we describe its main com-
ponents: (1) the tagging operations, (2) how to
convert plain-text training targets into a tagging
format, as well as (3) the realization step to convert
tags into the final output text.

3.1 Tagging Operations

Our tagger assigns a tag to each input token. A tag
is composed of two parts: a base tag and an added
phrase. The base tag is either KEEP or DELETE,
which indicates whether to retain the token in the
output. The added phrase P , which can be empty,
enforces that P is added before the corresponding
token. P belongs to a vocabulary V that defines a
set of words and phrases that can be inserted into
the input sequence to transform it into the output.

The combination of the base tag B and the added
phrase P is treated as a single tag and denoted by
PB. The total number of unique tags is equal to
the number of base tags times the size of the phrase
vocabulary, hence there are ≈ 2|V | unique tags.

Additional task-specific tags can be employed
too. For sentence fusion (Section 5.1), the input
consists of two sentences, which sometimes need
to be swapped. Therefore, we introduce a custom
tag, SWAP, which can only be applied to the last
period of the first sentence (see Fig. 2). This tag
instructs the Realize step to swap the order of the

input sentences before realizing the rest of the tags.
For other tasks, different supplementary tags

may be useful. E.g., to allow for replacing en-
tity mentions with the appropriate pronouns, we
could introduce a PRONOMINALIZE tag. Given
an access to a knowledge base that includes entity
gender information, we could then look up the cor-
rect pronoun during the realization step, instead of
having to rely on the model predicting the correct
tag (sheDELETE, heDELETE, theyDELETE, etc.).

3.2 Optimizing Phrase Vocabulary

The phrase vocabulary consists of phrases that can
be added between the source words. On the one
hand, we wish to minimize the number of phrases
to keep the output tag vocabulary small. On the
other hand, we would like to maximize the per-
centage of target texts that can be reconstructed
from the source using the available tagging oper-
ations. This leads to the following combinatorial
optimization problem.

Problem 1 Given a collection of phrase sets
A1, A2, . . . Am, where Ai ⊆ P and P is the set
of all candidate phrases, select a phrase vocabu-
lary V ⊂ P of at most ` phrases (i.e. |V | ≤ `)
so that the number of covered phrase sets is max-
imized. A phrase set Ai is covered if and only if
Ai ⊆ V .

This problem is closely related to the mini-
mum k-union problem which is NP-hard (Vinterbo,
2002). The latter problem asks for a set of k phrase
sets such that the cardinality of their union is the
minimum. If we were able to solve Problem 1
in polynomial time, we could solve also the mini-
mum k-union problem in polynomial time simply
by finding the smallest phrase vocabulary size `
such that the number of covered phrase sets is at
least k. This reduction from the minimum k-union
problem gives us the following result:

Theorem 1 Problem 1 is NP-hard.

To identify candidate phrases to be included in
the vocabulary, we first align each source text s
from the training data with its target text t. This is
achieved by computing the longest common sub-
sequence (LCS) between the two word sequences,
which can be done using dynamic programming in
time O(|s| × |t|). The n-grams in the target text
that are not part of the LCS are the phrases that
would need to be included in the phrase vocabulary
to be able to construct t from s.
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Source: Dylan won Nobel prize . Dylan is an American musician .
Tags: DELETE KEEP KEEP KEEP SWAP KEEP commaDELETE KEEP KEEP KEEP commaDELETE
Realization: Dylan , an American musician , won Nobel prize .

Figure 2: An example sentence fusion obtained by tagging using the SWAP tag, which swaps the order of the two
source sentences.

In practice, the phrase vocabulary is expected
to consist of phrases that are frequently added to
the target. Thus we adopt the following simple ap-
proach to construct the phrase vocabulary: sort the
phrases by the number of phrase sets in which they
occur and pick ` most frequent phrases. This was
found to produce meaningful phrase vocabularies
based on manual inspection as shown in Section 5.
E.g., the top phrases for sentence fusions include
many discourse connectives.

We also considered a greedy approach that con-
structs the vocabulary one phrase at a time, always
selecting the phrase that has the largest incremental
coverage. This approach is not, however, ideal for
our use case, since some frequent phrases, such as
“(” and “)”, are strongly coupled. Selecting “(”
alone has close to zero incremental coverage, but
together with “)”, they can cover many examples.

3.3 Converting Training Targets into Tags

Once the phrase vocabulary is determined, we can
convert the target texts in our training data into tag
sequences. Given the phrase vocabulary, we do
not need to compute the LCS, but can leverage a
more efficient approach, which iterates over words
in the input and greedily attempts to match them
(1) against the words in the target, and in case
there is no match, (2) against the phrases in the
vocabulary V . This can be done in O(|s| × np)
time, where np is the length of the longest phrase
in V , as shown in Algorithm 1.

The training targets that would require adding
a phrase that is not in our vocabulary V , will not
get converted into a tag sequence but are filtered
out. While making the training dataset smaller, this
may effectively also filter out low-quality targets.
The percentage of converted examples for different
datasets is reported later in Section 5. Note that
even when the target cannot be reconstructed from
the inputs using our output tag vocabulary, our ap-
proach might still produce reasonable outputs with
the available phrases. E.g., a target may require the
use of the infrequent “;” token, which is not in our
vocabulary, but a model could instead choose to
predict a more common “,” token.

Algorithm 1 Converting a target string to tags.
Input: Source text s = [s(1), . . . , s(ns)], target text
t = [t(1), . . . , t(nt)], phrase vocabulary V , and the max-
imum added phrase length np.
Output: Tag sequence x of length ns or of length 0 if
conversion is not possible.

1: x(i) = DELETE, ∀i = 1, . . . , ns . Initialize tags.
2: is = 1 . Current source word index.
3: it = 1 . Current target word index.
4: while it ≤ nt do
5: if is > ns then
6: return [] . Conversion infeasibile.
7: if s(is) == t(it) then
8: x(is) = KEEP
9: it = it + 1

10: else
11: p = [] . Added phrase (word sequence).
12: match_found = 0
13: for j = 1, . . . , np do
14: p.append(t(it + j − 1))
15: if s(is) == t(it + j) and p ∈ V then
16: match_found = 1
17: break
18: if match_found then
19: x(is) =

pKEEP
20: it = it + |p|+ 1

21: is = is + 1
22: return x . Target has been consumed, so return tags.

3.4 Realization

After obtaining a predicted tag sequence, we con-
vert it to text (“realization” step). While classic
works on text generation make a distinction be-
tween planning and realization, end-to-end neural
approaches typically ignore this distinction, with
the exception of few works (Moryossef et al., 2019;
Puduppully et al., 2018).

For the basic tagging operations of keeping,
deleting, and adding, realization is a straightfor-
ward process. Additionally, we adjust capitaliza-
tion at sentence boundaries. Realization becomes
more involved if we introduce special tags, such as
PRONOMINALIZE mentioned in Section 3.1. For
this tag, we would need to look up the gender of
the tagged entity from a knowledge base. Having
a separate realization step is beneficial, since we
can decide to pronominalize only when confident
about the appropriate pronoun and can, otherwise,
leave the entity mention untouched.

Another advantage of having a separate realiza-
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Figure 3: The architecture of LASERTAGGERAR.

tion step is that specific loss patterns can be ad-
dressed by adding specialized realization rules. For
instance, one could have a rule that when applying
tag hisDELETE to an entity mention followed by ’s,
the realizer must always DELETE the possessive ’s
regardless of its predicted tag.

4 Tagging Model Architecture

Our tagger is composed of two components: an
encoder, which generates activation vectors for
each element in the input sequence, and a decoder,
which converts encoder activations into tag labels.

Encoder. We choose the BERT Transformer
model (Devlin et al., 2019) as our encoder, as
it demonstrated state-of-the-art results on a num-
ber of sentence encoding tasks. We use the
BERT-base architecture, which consists of 12
self-attention layers. We refer the reader to (Devlin
et al., 2019) for a detailed description of the model
architecture and its input representation. We initial-
ize the encoder with a publicly available checkpoint
of the pretrained case-sensitive BERT-base model.1

Decoder. In the original BERT paper a sim-
ple decoding mechanism is used for sequence tag-
ging: the output tags are generated in a single
feed-forward pass by applying an argmax over
the encoder logits. In this way, each output tag is
predicted independently, without modelling the de-
pendencies between the tags in the sequence. Such
a simple decoder demonstrated state-of-the-art re-
sults on the Named Entity Recognition task, when
applied on top of the BERT encoder.

To better model the dependencies between the
output tag labels, we propose a more powerful au-
toregressive decoder. Specifically, we run a single-
layer Transformer decoder on top of the BERT
encoder (see Fig. 3). At each step, the decoder is

1
github.com/google-research/bert

consuming the embedding of the previously pre-
dicted label and the activations from the encoder.

There are several ways in which the decoder can
communicate with the encoder: (i) through a full
attention over the sequence of encoder activations
(similar to conventional seq2seq architectures); and
(ii) by directly consuming the encoder activation at
the current step. In our preliminary experiments,
we found the latter option to perform better and
converge faster, as it does not require learning ad-
ditional encoder-decoder attention weights.

We experiment with both decoder variants (feed-
forward and autoregressive) and find that the au-
toregressive decoder outperforms the previously
used feedforward decoder. In the rest of this paper,
the tagging model with an autoregressive decoder
is referred to as LASERTAGGERAR and the model
with feedforward decoder as LASERTAGGERFF.

5 Experiments

We evaluate our method by conducting experiments
on four different text editing tasks: Sentence Fu-
sion, Split and Rephrase, Abstractive Summariza-
tion, and Grammatical Error Correction.

Baselines. In addition to reporting previously
published results for each task, we also train a set
of strong baselines based on Transformer where
both the encoder and decoder replicate the BERT-
base architecture (Devlin et al., 2019). To have
a fair comparison, similar to how we initialize a
tagger encoder with a pretrained BERT checkpoint,
we use the same initialization for the Transformer
encoder. This produces a very strong seq2seq base-
line (SEQ2SEQBERT), which already results in new
state-of-the-art metrics on two out of four tasks.

5.1 Sentence Fusion

Sentence Fusion is the problem of fusing sentences
into a single coherent sentence.

Data. We use the “balanced Wikipedia” por-
tion of Geva et al. (2019)’s DiscoFuse dataset for
our experiments (henceforth DfWiki). Out of the
4.5M fusion examples in the dataset, 10.5% require
reordering of the input. To cope with this, we intro-
duce the SWAP tag, which enables the model to flip
the order of two input sentences. We construct the
phrase vocabulary as described in Sec. 3.2 using
the validation set of 46K examples. The top 15
phrases are shown in the first column of Table 1.

Evaluation metrics. Following Geva et al.
(2019), we use two evaluation metrics: Exact score,

github.com/google-research/bert
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DfWiki WikiSplit AS GEC

, . 〈::::〉 , ,
and , . .

however , . 〈::::〉 he the the
, but . 〈::::〉 it a a
he the & to

because and and in
, although was is of

but is in on
, and ” " at

although . 〈::::〉 she ’s for
his . 〈::::〉 it is with have

, while a for is
it . 〈::::〉 they of was

, which . 〈::::〉 however n’t and
she he an that

Table 1: The 15 most frequently added phrases in the
datasets studied in this work, in order of decreasing fre-
quency. 〈::::〉 marks a sentence boundary. “AS”/“GEC”
is short for Abstractive Summarization/Grammatical
Error Correction.
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Figure 4: Performance of model LASERTAGGERAR on
the DfWiki dataset, conditioned on the vocabulary size
and the gold score, i.e. the percentage of examples that
can be reconstructed via text-edit operations.

which is the percentage of exactly correctly pre-
dicted fusions, and SARI (Xu et al., 2016b), which
computes the average F1 scores of the added, kept,
and deleted n-grams.2

Vocabulary Size. To understand the impact of
the number of phrases we include in the vocabulary,
we trained models for different vocabulary sizes
(only LASERTAGGERAR). The results are shown
in Figure 4. After increasing the vocabulary size
to 500 phrases, Exact score reaches a plateau, so
we set the vocabulary size to 500 in all the remain-
ing experiments of this paper.3 The Gold curve in
Fig. 4 shows that this vocabulary size is sufficient

2We use the implementation available at git.io/
fj8Av, setting β = 1 for deletion (Geva et al., 2019).

3For smaller datasets, a smaller vocabulary size may yield
better results, but for simplicity, we do not optimize the size
separately for each dataset.

Model Exact SARI

Transformer (Geva et al., 2019) 51.1 84.5
SEQ2SEQBERT 53.6 85.3

LASERTAGGERAR (no SWAP) 46.4 80.4
LASERTAGGERFF 52.2 84.1
LASERTAGGERAR 53.8 85.5

Table 2: Sentence fusion results on DfWiki.

to cover 85% of the training examples, which gives
us an upper bound for the Exact score.

Comparison against Baselines. Table 2 lists
the results for the DfWiki dataset. We obtain new
SOTA results with LASERTAGGERAR, outperform-
ing the previous SOTA 7-layer Transformer model
from Geva et al. (2019) by 2.7% Exact score and
1.0% SARI score. We also find that the pretrained
SEQ2SEQBERT model yields nearly as good per-
formance, demonstrating the effectiveness of un-
supervised pretraining for generation tasks. The
performance of the tagger is impaired significantly
when leaving out the SWAP tag due to the model’s
inability to reconstruct 10.5% of the training set.

Impact of Dataset Size. We also study the ef-
fect of the training data size by creating four in-
creasingly smaller subsets of DfWiki (see Fig. 5a).4

When data size drops to 450 or 4 500 examples,
LASERTAGGER still performs surprisingly well,
clearly outperforming the SEQ2SEQBERT baseline.

5.2 Split and Rephrase

The reverse task of sentence fusion is the split-
and-rephrase task, which requires rewriting a long
sentence into two or more coherent short sentences.

Data. We use the WikiSplit dataset (Botha et al.,
2018), which consists of 1M human-editor cre-
ated examples of sentence splits, and follow the
dataset split suggested by the authors. Using the
phrase vocabulary of size 500 yields a 31% cover-
age of the targets from the training set (top phrases
shown in Table 1). The lower coverage compared
to DfWiki suggests a higher amount of noise (due
to Wikipedia-author edits unrelated to splitting).

Results. Botha et al. (2018) report results us-
ing a one-layer, bi-directional LSTM (cell size
512) with attention and a copying mechanism (See

4For simplicity, we use the same phrase vocabulary of
size 500 computed using the validation set of 46K examples
for all experiments. Note that even though some subsampled
training sets contain less than 46K examples, using the same
vocabulary does not give the taggers an unfair advantage over
the baselines, because the tagger will never predict a phrase it
has not seen in the training data.

git.io/fj8Av
git.io/fj8Av
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(b) Split and Rephrase on WikiSplit.

Figure 5: SARI score as a function of the training-data size for three models. Unless we have tens of thousands of
training examples, the tagging approach clearly outperforms the seq2seq baseline.

Model BLEU Exact SARI

seq2seq (Botha et al., 2018) 76.0 14.6 60.6
SEQ2SEQBERT 76.7 15.1 62.3

LASERTAGGERFF 76.0 14.4 61.3
LASERTAGGERAR 76.3 15.2 61.7

Table 3: Results on the WikiSplit dataset.

et al., 2017).5 The results are shown in Table 3.
SEQ2SEQBERT and LASERTAGGERAR yield similar
performance with each other, and they both outper-
form the seq2seq model with a copying mechanism
from Botha et al. (2018).

We again studied the impact of training-data
size by subsampling the training set, see Fig-
ure 5b. Similar to the previous experiment, the
LASERTAGGER methods degrade more gracefully
when reducing training-data size, and start to out-
perform the seq2seq baseline once going below
circa 10k examples. The smallest training set for
LASERTAGGERAR contains merely 29 examples.
Remarkably, the model is still able to learn some-
thing useful that generalizes to unseen test exam-
ples, reaching a SARI score of 53.6% and pre-
dicting 5.2% of the targets exactly correctly. The
following is an example prediction by the model:
Source: Delhi Public Library is a national depository library

in Delhi , India , it has over 35 branches across the state .

Prediction: Delhi Public Library is a national depository li-

brary in Delhi , India . 〈::::〉 It has over 35 branches across the

state .

Here the model has picked the right comma to re-
place with a period and a sentence separator.

5Botha et al. (2018) report only BLEU but they kindly
shared with us their model’s predictions, allowing us to com-
pute the Exact and SARI score for their method. Similar to
their work, we used NLTK v3.2.2 for the BLEU computation.

Model BLEU-4 Exact SARI ROUGE-L

Filippova et al. (2015) 26.7 0.0 36.2 70.3
Clarke and Lapata (2008) 28.5 0.3 41.5 77.5
Cohn and Lapata (2008) 5.1 0.1 27.4 40.7
Rush et al. (2015) 16.2 0.0 35.6 62.5
SEQ2SEQBERT 8.3 0.1 32.1 52.7

LASERTAGGERFF 33.7 1.5 44.2 81.9
LASERTAGGERAR 35.6 3.8 44.8 82.8

Table 4: Results on summarization.

5.3 Abstractive Summarization

The task of summarization is to reduce the length
of a text while preserving its meaning.

Dataset. We use the dataset from Toutanova
et al. (2016), which contains 6,168 short input texts
(one or two sentences) and one or more human-
written summaries. The human experts were not
restricted to just deleting words when generating
a summary, but were allowed to also insert new
words and reorder parts of the sentence, which
makes this dataset particularly suited for abstrac-
tive summarization models.

We set the size of the phrase vocabulary to 500,
as for the other tasks, and extract the phrases from
the training partition. With a size of 500, we are
able to cover 89% of the training data.

Evaluation Metrics. In addition to the
metrics from the previous sections, we report
ROUGE-L (Lin, 2004), as this is a metric that is
commonly used in the summarization literature.
ROUGE-L is a recall-oriented measure computed
as the longest common sub-sequence between a
reference summary and a candidate summary.

Results. Table 4 compares our taggers against
seq2seq baselines and systems from the litera-
ture.6 Filippova et al. (2015) and Clarke and La-
pata (2008) proposed deletion-based approaches;

6Results are extracted from Toutanova et al. (2016).
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the former uses a seq2seq network, the latter for-
mulates summarization as an optimization prob-
lem that is solved via integer-linear programming.
Cohn and Lapata (2008) proposed an early ap-
proach to abstractive summarization via a parse-
tree transducer. Rush et al. (2015) developed a
neural seq2seq model for abstractive summariza-
tion.

In line with the results on the subsampled fu-
sion/splitting datasets (Figure 5), the tagger sig-
nificantly outperforms all baselines. This shows
that even though a text-editing approach is not well-
suited for extreme summarization examples (a com-
plete paraphrase with zero lexical overlap), in prac-
tice, already a limited paraphrasing capability is
enough to reach good empirical performance.

Note that the low absolute values for the Exact
metric are expected, since there is a very large
number of acceptable summaries.

5.4 Grammatical Error Correction (GEC)

GEC requires systems to identify and fix grammat-
ical errors in a given input text.

Data. We use a recent benchmark from a shared
task of the 2019 Building Educational Applications
workshop, specifically from the Low Resource
track7 (Bryant et al., 2019). The publicly avail-
able set has 4,384 ill-formed sentences together
with gold error corrections, which we split 9:1 into
a training and validation partition. We again create
the phrase vocabulary from the 500 most frequently
added phrases in the training partition, which gives
us a coverage of 40% of the training data.

Evaluation Metrics and Results. We report
precision and recall, and the task’s main metric
F0.5, which gives more weight to the precision of
the corrections than to their recall.

Table 5 compares our taggers against two base-
lines. Again, the tagging approach clearly out-
performs the BERT-based seq2seq model, here by
being more than seven times as accurate in the pre-
diction of corrections. This can be accounted to the
seq2seq model’s much richer generation capacity,
which the model can not properly tune to the task
at hand given the small amount of training data.
The tagging approach on the other hand is naturally
suited to this kind of problem.

We also report the best-performing method by
Grundkiewicz et al. (2019) from the shared task for
informational purposes. They train a Transformer

7
www.cl.cam.ac.uk/research/nl/bea2019st/

Model P R F0.5

Grundkiewicz et al. (2019) 70.19 47.99 64.24
SEQ2SEQBERT 6.13 14.14 6.91

LASERTAGGERFF 44.17 24.00 37.82
LASERTAGGERAR 47.46 25.58 40.52

Table 5: Results on grammatical-error correction. Note
that Grundkiewicz et al. (2019) augment the training
dataset of 4,384 examples by 100 million synthetic ex-
amples and 2 million Wikipedia edits.

batch size LASERTAGGERFF LASERTAGGERAR SEQ2SEQBERT

1 13 535 1,773
8 47 668 8,279
32 149 1,273 27,305

Table 6: Inference time (in ms) across various batch
sizes on GPU (Nvidia Tesla P100) averaged across 100
runs with random inputs.

model using a dataset which is augmented by 100
million synthetic examples and 2 million Wikipedia
edits, whereas we only use 4,384 sentences from
the provided training dataset.

5.5 Inference time

Getting state-of-the-art results often requires us-
ing larger and more complex models. When run-
ning a model in production, one cares not only
about the accuracy but also the inference time. Ta-
ble 6 reports latency numbers for LASERTAGGER

models and our most accurate seq2seq baseline.
As one can see, the SEQ2SEQBERT baseline is im-
practical to run in production even for the small-
est batch size. On the other hand, for a batch
size 8, LASERTAGGERAR is already 10x faster
than comparable-in-accuracy SEQ2SEQBERT base-
line. This difference is due to the former model
using a 1-layer decoder (instead of 12 layers) and
no encoder-decoder cross attention. We also tried
training SEQ2SEQBERT with a 1-layer decoder but
it performed very poorly in terms of accuracy. Fi-
nally, LASERTAGGERFF is more than 100x faster
while being only a few accuracy points below our
best reported results.

5.6 Qualitative evaluation

To assess the qualitative difference between the
outputs of LASERTAGGER and SEQ2SEQBERT, we
analyzed the texts generated by the models on the
test sets of the four tasks. We inspected the respec-
tive worst predictions from each model according
to BLEU and identified seven main error patterns,

www.cl.cam.ac.uk/research/nl/bea2019st/


5062

Error type LASERTAGGER SEQ2SEQBERT Example

Imaginary words not affected affected In: . . . Zenica (Cyrillic: “Зеница”) is . . .
Out: . . . Zenica (Cyrillic: “gratulationеница”) is . . .

Repeated phrases not affected affected In: I’m your employee, to serve on your company.
Out: I’m your company, to serve on your company.

Premature end-of-sentence less affected affected In: By the way, my favorite football team is Manchester United, they . . .
Out: By the way, my favorite football team is.

Hallucinations less affected affected In: Tobacco smokers may also experience . . .
Out: anthropology smokers may also experience . . .

Coreference issues affected affected In: She is the daughter of Alistair Crane . . . who secretly built . . .
Out: She is the daughter of Alistair Crane . . . 〈::::〉 She secretly built . . .

Misleading rephrasing affected affected In: . . . postal service was in no way responsible . . .
Out: . . . postal service was responsible . . .

Lazy sentence splitting affected not affected In: Home world of the Marglotta located in the Sagittarius Arm.
Out: Home world of the Marglotta . 〈::::〉 Located in the Sagittarius Arm.

Table 7: Main error patterns observed in the output of the tagging and seq2seq models on their test sets (all tasks).

two of which are specific to the seq2seq model, and
one being specific to LASERTAGGER.

This illustrates that LASERTAGGER is less prone
to errors compared to the standard seq2seq ap-
proach, due to the restricted flexibility of its model.
Certain types of errors, namely imaginary words
and repeated phrases, are virtually impossible for
the tagger to make. The likelihood of others, such
hallucination and abrupt sentence ending, is at least
greatly reduced.

In Table 7, we list the error classes and refer to
Appendix A for more details on our observations.

6 Conclusions

We proposed a text-editing approach to text-
generation tasks with high overlap between input
and output texts. Compared to the seq2seq models
typically applied in this setting, our approach re-
sults in a simpler sequence-tagging problem with
a much smaller output tag vocabulary. We demon-
strated that this approach has comparable perfor-
mance when trained on medium-to-large datasets,
and clearly outperforms a strong seq2seq baseline
when the number of training examples is limited.
Qualitative analysis of the model outputs suggests
that our tagging approach is less affected by the
common errors of the seq2seq models, such as hal-
lucination and abrupt sentence ending. We further
demonstrated that tagging can speed up inference
by more than two orders of magnitude, making it
more attractive for production applications.

Limitations. Arbitrary word reordering is not
feasible with our approach, although limited re-
ordering can be achieved with deletion and inser-
tion operations, as well as custom tags, such as
SWAP (see Section 3.1). To enable more flexible
reordering, it might be possible to apply techniques

developed for phrase-based machine translation.
Another limitation is that our approach may not
be straightforward to apply to languages that are
morphologically richer than English, where a more
sophisticated realizer might be needed to adjust,
e.g., the cases of the words.

In future work, we would like to experiment
with more light-weight tagging architectures (An-
dor et al., 2016) to better understand the trade-off
between inference time and model accuracy.
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