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Abstract

Many tasks in natural language processing can
be viewed as multi-label classification prob-
lems. However, most of the existing mod-
els are trained with the standard cross-entropy
loss function and use a fixed prediction pol-
icy (e.g., a threshold of 0.5) for all the la-
bels, which completely ignores the complexity
and dependencies among different labels. In
this paper, we propose a meta-learning method
to capture these complex label dependencies.
More specifically, our method utilizes a meta-
learner to jointly learn the training policies and
prediction policies for different labels. The
training policies are then used to train the
classifier with the cross-entropy loss function,
and the prediction policies are further imple-
mented for prediction. Experimental results
on fine-grained entity typing and text classi-
fication demonstrate that our proposed method
can obtain more accurate multi-label classifi-
cation results.

1 Introduction

Multi-label classification aims at learning to make
predictions on instances that are associated with
multiple labels simultaneously, whereas in a clas-
sic multi-class classification setting, typically one
instance has only one label. Multi-label classifi-
cation is a common learning paradigm in a large
amount of real-world natural language process-
ing (NLP) applications, such as fine-grained en-
tity typing (Ling and Weld, 2012; Shimaoka et al.,
2017; Abhishek et al., 2017; Xin et al., 2018) and
text classification (Nam et al., 2014; Liu et al.,
2017; Chen et al., 2017; Wu et al., 2018).

Significant amounts of research studies have
been dedicated to tackle the multi-label classifica-
tion problem (Zhang and Zhou, 2014), from tradi-
tional statistical models (Zhang and Zhou, 2007;
Zhou et al., 2012; Surdeanu et al., 2012) to neu-
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Figure 1: Illustration of complex label dependencies in
multi-label classification. (1) Labels are aligned with
some knowledge graphs. In this case, labels are orga-
nized in a hierarchical dependency structure. (2) Even
if labels do not demonstrate explicit correlation, they
can still have implicit semantic dependencies.

ral network-based models (Nam et al., 2014; Shi-
maoka et al., 2017). These models have variable
structures, but usually, share the standard cross-
entropy loss function for training. After training,
these models tend to use a single prediction pol-
icy for all the labels to generate the final predic-
tions. Actually, the above process is based on
the assumption that there is no dependency among
the labels. However, as shown in Figure 1, this
assumption is hard to be satisfied in real-world
datasets, and the complex label dependencies re-
ceive little attention in multi-label classification
(Dembszynski et al., 2010; Dembczyński et al.,
2012). Owing to the impact of the label depen-
dencies, although one object may have multiple
labels simultaneously in the multi-label classifica-
tion setting, the level of difficulty of prediction for
different labels can vary a lot. Firstly, for those la-
bels that are aligned with knowledge graphs, they
usually indicate a hierarchical dependency struc-
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ture (Ling and Weld, 2012; Ren et al., 2016; Ruder
et al., 2016). It is intuitive that one trained clas-
sifier is easier to distinguish high-level parent la-
bels, such as /organization and /person,
but harder to distinguish low-level child labels,
such as /news and /broadcast. Secondly, for
those cases where labels do not demonstrate ex-
plicit correlation, the labels still contain implicit
semantic dependencies, which is extremely com-
mon in the NLP field. For instance, the label
/urban and /economics have obvious seman-
tic correlation even if they are not organized in a
hierarchical structure. Meanwhile, the labels with
more implicit dependencies are easier to predict
because they expose more semantic information
during the training. These intuitions inspire our
work on learning different training policies and
prediction policies for different labels.

The training policies and prediction policies
for all the labels can be viewed as a series of
hyper-parameters. However, to learn high-quality
policies, one needs to specify both explicit and
implicit label dependencies, which is not manu-
ally realistic. To resolve both issues mentioned
above, we propose a meta-learning framework to
model these label dependencies and learn training
and prediction policies automatically. Concretely,
we introduce a joint learning formulation of the
meta-learning method and multi-label classifica-
tion. A gated recurrent unit (GRU)-based (Chung
et al., 2014) meta-learner is implemented to cap-
ture the label dependencies and learn these hyper-
parameters during the training process of a clas-
sifier. Empirically, we show our method outper-
forms previous related methods on fine-grained
entity typing and text classification problems. In
summary, our contributions are three-fold:

• We are the first to propose a joint formulation
of “learning to learn” and “learning to pre-
dict” in a multi-label classification setting.

• Our learning method can learn a weight and a
decision policy for each label, which can then
be incorporated into training and prediction.

• We show that our method is model-agnostic
and can apply to different models in multi-
label classification and outperform baselines.

In Section 2, we outline related work in multi-
label classification and meta-learning. We then de-
scribe our proposed method in Section 3. We show

experimental results in Section 4. Finally, we con-
clude in Section 7.

2 Related Work

2.1 Multi-Label Classification

Multi-label classification assigns instances with
multiple labels simultaneously (Tsoumakas et al.,
2006). (Shore and Johnson, 1980; De Boer et al.,
2005) introduce prediction policies that weight
the training loss function with external knowl-
edge. However, in real-world multi-label clas-
sification, it is hard to obtain knowledge to de-
termine prediction policies. As for the predic-
tion policies, Yang (2001) select the thresholds
that achieve the best evaluation measure on a val-
idation set, while Lewis et al. (2004) utilize a
cross-validation method to determine the thresh-
olds. Lipton et al. (2014) propose an optimal deci-
sion rule to maximize F1 measure with thresholds.
However, most of the previous methods can be
viewed as post-processing because the prediction
policies are computed after training. Meanwhile,
the ability of prediction policies to help train the
classifier is less explored.

Compared to previous related methods, we pro-
pose a principled approach that learns a training
policy and a prediction policy for each label au-
tomatically with modeling label dependencies im-
plicitly. Furthermore, the prediction policies are
learned during the training process instead of the
post-processing, which can also help to train a bet-
ter classifier.

2.2 Meta-learning

Meta-learning is a “learning to learn” method, in
which a learner learns new tasks and another meta-
learner learns to train the learner (Bengio et al.,
1990; Runarsson and Jonsson, 2000; Thrun and
Pratt, 2012). There are two types of meta-learning:

• learning a meta-policy to update model pa-
rameters (Andrychowicz et al., 2016; Mishra
et al., 2018).

• learning a good parameter initialization for
fast adaptation (Duan et al., 2016; Vinyals
et al., 2016; Finn et al., 2017; Snell et al.,
2017; Gu et al., 2018).

In this paper, we propose to extend meta-learning
algorithm for multi-label classification based on
the first category. Instead of only training the
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Figure 2: The meta-learning framework for multi-label classification.

model with meta-policy, we also consider predic-
tion with meta-policy.

3 Method

In this section, we describe our meta-learning
framework for learning and predicting multi-label
classification in detail. In multi-label classifica-
tion, the conventional methods usually learn clas-
sifiers with the standard cross-entropy loss func-
tion. After training, a single prediction policy
(usually, a threshold of 0.5) is applied to all labels
to generate the prediction. However, as mentioned
in Figure 1, these methods ignore the explicit and
implicit label dependencies among the labels. To
improve the performance of multi-label classifica-
tion, our main idea is to learn high-quality training
policies and prediction policies by meta-learning,
which can also model the label dependencies.

We view the training policies and prediction
policies as a series of hyper-parameters, and then
formulate the training of the classifier as a sequen-
tial process. At each iteration (time step t), the
classifier updates its parameters with one sampled
batch. The exploration of this classifier’s hyper-
parameters can be modeled by a meta-learner. We
first briefly introduce the classifier model used
in multi-label classification. Then we describe
the meta-learner, and the interaction between the
meta-learner and the classifier. Finally, we explain
how to train the meta-learner in our unified frame-
work.

3.1 Classifier Model
As mentioned in Section 1, many different model
structures have already been explored in multi-
label classification. Our framework is model-
agnostic, which means different model structures
are compatible if only they choose the cross-
entropy loss function as the objective function.
The classifier is represented as C. For a N - class
multi-label classification, we represent the training
policy as the vector w = (w(1), w(2), · · · , w(N))
and the prediction policy as the vector p =
(p(1), p(2), · · · , p(N)), where w(i) and p(i) are the
training weight and predicting threshold for the i-
th class. wt and pt refer the weight vector and
threshold vector at time step t. Then the goal of
our framework is to learn a high-quality w and p
for a certain classifier C.

To update the parameters of the classifier C,
at each time step t, we sample a batch Bt from
the training set U . We then set a weighted cross-
entropy objective function to update the C, which
is defined as:

L(θCt ) = −
Bt∑
i

N∑
j

w
(j)
t N{y∗(j)i log y

(j)
i + (1− y∗(j)i ) log(1− y(j)i )},

(1)

where y∗i indicates the ground truth prediction of
the i-th sample from the Bt, and y(j)i is the j-th
entry of the corresponding output vector yi. The
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standard cross-entropy loss function is a special
case when w(j)

t = 1
N (j = 1, 2, · · · , N).

3.2 Meta-Learner

Meta-learning is a widely used reinforcement
learning method to learn the meta-information of
a machine learning system (Bengio et al., 1990;
Runarsson and Jonsson, 2000; Thrun and Pratt,
2012). The core of our proposed method is a meta-
learner, which is trained to learn a training and a
prediction policy for multi-label classification. At
each time step t, the meta-learner observes the cur-
rent state st, and then generate a training policywt
and a prediction policy pt. Based on the policies
wt and pt, the parameters of classifier C can be
update with the sampled batch Bt as described in
Section 3.1. After training, the meta-learner re-
ceives a reward rt. The goal of our meta-learner
at each time step t is to choose the two policies wt
and pt that can maximize the future reward

Rt =

T∑
t′=t

rt′ , (2)

where a training episode terminates at time T .

3.2.1 State Representation
The state representation, in our framework, is de-
signed to connect the policy generation and the en-
vironment. At each time step t, the training policy,
and the prediction policy are generated based on
the state st. A reward will be computed based on
the change of the environment. In our case, the
performance change of the classifier C. In order
to successfully explore the policy space and gener-
ate high-quality policies, the meta-learner needs to
remember what similar policies have already been
tried and make further generation based on these
memories.

Based on the above intuition, we formulate the
meta-learner as a recurrent neural network (RNN)-
based structure. To simplify our method, we use a
GRU in our experiments. The state representation
st is directly defined as the hidden state ht of the
GRU at time step t. The st is computed according
to:

st = GRU(st−1,

[
pt−1

wt−1

]
), (3)

where the input of GRU at time step t is the con-
catenation of the prediction policy and training
policy generated at time step t− 1.

Class N = 4
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Figure 3: A example about the computation process of
reward (one sample with class N = 4).

3.2.2 Policy Generation
At each time step t, the meta-learner can generate
two policies, the training policy wt and the predic-
tion policy pt. As mentioned in Section 3.1, both
wt and pt are represented as aN -dimensional vec-
tor format.

To incorporate the training policy wt into the
cross-entropy objective function in Equation 1
and keep the training gradients of the classifier
in the same magnitude during the whole training
episode, the condition

∑N
i w

(i)
t = 1 for wt must

be satisfied. Thus, at each time step t, the training
policy is generated as:

wt = softmax(Wwst + bw). (4)

As for the prediction policy, it is obvious that
p
(i)
t ∈ (0, 1) must be satisfied for i = 1, 2, · · · , N .

Then we define the prediction policy as:

pt = sigmoid(Wpst + bp). (5)

The st is the state representation of the meta-
learner at time step t. Ww, bw, Wp and bp all are
learnable parameters.

3.2.3 Reward Function
The meta-leaner is trained to generate high-quality
training and prediction policies jointly to improve
the performance of the classifierC. To capture this
performance change, we design a reward function
based on the probability distributions of samples.

At each time step t, we first generate the training
policy wt and the prediction policy pt according
to Section 3.2.2. Then a batch Bt is sampled from
the training set and used to update the classifier
C based on Equation 1. We evaluate the output
probability distribution of all the samples from Bt
on the classifier C and compute the reward as:

rt =

Bt∑
i

N∑
j=1

(−1)y
∗(j)
i

p
(j)
t − y

(j)
i

p
(j)
t

, (6)
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where yi is the output probability vector of the i-
th sample from the batch Bt and y∗i is the corre-
sponding ground truth vector. The superscript (j)
represents the j-th entry of a vector. A simple ex-
ample about how the reward is computed is shown
in Figure 3.

3.3 Training and Testing
The θmeta is the set of all the parameters in the
meta-learner, and the parameters can be trained by
maximizing the total expect reward. The expected
reward for an episode terminating at time step T is
defined as:

J(θmeta) = Eπ[
T∑
t=1

rt]. (7)

J(θmeta) can be maximized by directly apply-
ing gradient-based optimization methods. We op-
timize it using policy gradient descent and imple-
ment a reward baseline to lower the variance dur-
ing the training (Sutton, 1984). The details of the
training process are shown in Algorithm 1. During
the training, the reason why we use sample batches
instead of the full training set at each time step is
that we want to explore more policy space with di-
versity instead of iteratively fitting the whole train-
ing set.

At test time, we rerun the meta-learner and the
classifier simultaneously for one episode. How-
ever, we use the whole training set as a batch at
each time step. The generated policies wT and
pT is chosen as the final policies. We then train a
classifier with the wT -weighted cross-entropy ob-
jective function and test it based on the prediction
policy pT .

4 Experimental Setups

We evaluate our proposed method in following
two settings: (1) Fine-grained Entity Typing,
where the labels have explicit hierarchical depen-
dencies; (2) Text Classification, where one needs
to model the implicit label dependencies.

4.1 Baselines
Since our method is model-agnostic, we directly
employ the state-of-the-art (SOTA) models for
both two tasks. The details of SOTA models will
be discussed in Section 5 and 6. We compare our
method with multiple baselines:

• Hierarchy-Aware Training Policy: To ex-
plicitly add hierarchical information during

Algorithm 1: The algorithm of our meta-
learning framework.

1 Given a set of labeled training data U
2 Given a untrained classifier C
3 for episode← 1 to M do
4 Initialize w0 ← ( 1

N ,
1
N , · · · ,

1
N ) ∈ RN

5 Initialize p0 ← (0.5, 0.5, · · · , 0.5) ∈ RN
6 for time step t← 1 to T do

7 st ← GRU(st−1,

[
pt−1

wt−1

]
)

8 wt ← softmax(Wwst + bw)
9 pt ← sigmoid(Wpst + bp)

10 Sample a batch Bt from U
11 Update C using Bt with wt-based

objective function in Equation 1
12 Compute reward rt with pt in

Equation 6
13 Update θmeta using g ∝ ∇θJ(θmeta)

the training, the labels are first given integer
weights. For instance, the first-level (parent)
labels are given weight 1 while the third-level
labels are given 3. All the integer weights
then are normalized to add into the cross-
entropy loss function in Equation 1.

• SCutFBR Prediction Policy: The rank-
based policy method RCut and proportion-
based assignments PCut are jointly consid-
ered to set prediction policies for different
labels after obtaining the trained classifier
(Yang, 2001).

• ODR Prediction Policy: After training, an
optimal decision rule is to implement to
choose prediction policies based on maximiz-
ing micro F1 scores (Lipton et al., 2014).

• Predictions-as-Features: The model trains a
classifier for each label, organize the classi-
fiers in a partially ordered structure, and take
predictions produced by the former classi-
fiers as the latter classifiers’ features (Li et al.,
2015).

• Subset Maximization: The model views the
multi-label prediction problem as classifier
chains, and then replace classifier chains with
recurrent neural networks (Nam et al., 2017).
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Datasets FIGER OntoNotes BBN

#Types 128 89 47
Max Hierarchy Depth 2 3 2
#Training 2,690,286 220,398 86,078
#Testing 563 9,603 13,187

Table 1: The statistics of entity typing datasets.

5 Fine-grained Entity Typing

Entity type classification is the task for assign-
ing semantic types to entity mentions based on
their context. For instance, the system needs label
the entity “San Francisco Bay” as /location,
/location/region based on its context “...
the rest of San Francisco Bay, a spot ...”.

In a fine-grained classification setting, entities
are aligned with knowledge graphs (Ling and
Weld, 2012), which typically makes labels be ar-
ranged in a hierarchical structure. We utilize our
meta-learning framework to tackle this problem
and evaluate our method.

Datasets We evaluate our method on three
widely-used fine-grained entity typing datasets,
FIGER, OntoNotes, and BBN, which are pre-
processed by Ren et al. (2016). The statistics of
these datasets are listed in Table 1.

FIGER: The training data is automatically gen-
erated by distant supervision, and then aligned
with Freebase. The test data is collected from
news reports and manually annotated by Ling and
Weld (2012).

OntoNotes: The training sentences are col-
lected from OntoNotes text corpus (Weischedel
et al., 2013), and linked to Freebase. Gillick et al.
(2014) releases a manually annotated test dataset.

BBN: The dataset consists of sentences from
Wall Street Journal articles, which is entirely man-
ually annotated (Weischedel and Brunstein, 2005).

Implementation Details We choose the SOTA
model of fine-grained entity typing as the clas-
sifier C (Shimaoka et al., 2017; Abhishek et al.,
2017). The overall model structure is shown in
Figure 4. Given en entity and its context sentence,
the words are initialized with word embeddings
(Mikolov et al., 2013). The mention representa-
tion is simply computed by averaging the word
embeddings of entity mention words. As for the
context representation, a bidirectional LSTM and
attention mechanism are used to encode left and
right context representation separately. The atten-

San Francisco Bay… the rest of a spot … 

Word 
Embeddings

Bidirectional 
LSTM

Attention

Context & 
Mention 

Representation

Output

/location, /location/region

Figure 4: The SOTA model structure for fine-grained
entity type classification (Shimaoka et al., 2017; Ab-
hishek et al., 2017).
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Figure 5: A case study about weights. See Section 5
for the detailed explanation.

tion operation is computed using a Multi-Layer
Perceptron (MLP) as follows:

ai = σ{W1tanh(W2

[−→
h i←−
h i

]
)}, (8)

where W1 and W2 are parameter matrices of the

MLP, and

[−→
h i←−
h i

]
is the hidden state of Bi-LSTM

at the i-th position. Note that the parameters of
MLP are shared by all the entities. The left, right
context representations and mention representa-
tion are concatenated as the feature vector. A soft-
max layer is then implemented to perform final
prediction. The standard cross-entropy loss func-
tion is used and the thresholds of all the labels are
set as 0.5. To avoid overfitting, we employ dropout
operation on entity mention representation.

Following the previous researches (Ling and
Weld, 2012; Ren et al., 2016), we use strict accu-
racy, loose macro, and loose micro scores to eval-
uate the model performance.

Results The results of fine-grained entity typing
are shown in Table 2. From the results, we observe
that: (1) Our meta-learning method can outper-
form all the baselines in all three metrics, which
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Datasets FIGER OntoNotes BBN

Metrics Acc. Macro Micro Acc. Macro Micro Acc. Macro Micro

SOTA 0.659 0.807 0.770 0.521 0.686 0.626 0.655 0.729 0.751
SOTA+Hier-Training 0.661 0.812 0.773 0.532 0.690 0.640 0.657 0.735 0.754
SOTA+Meta-Training 0.670 0.817 0.779 0.539 0.702 0.648 0.662 0.736 0.761

SOTA+ScutFBR-Prediction 0.662 0.814 0.782 0.542 0.695 0.650 0.661 0.736 0.758
SOTA+ODR-Prediction 0.669 0.818 0.782 0.537 0.703 0.648 0.664 0.738 0.764
SOTA+Meta-Prediction 0.674 0.823 0.786 0.544 0.709 0.657 0.671 0.744 0.769

Predictions-as-Features 0.663 0.816 0.785 0.544 0.699 0.655 0.663 0.738 0.761
Subset Maximization 0.678 0.827 0.790 0.546 0.713 0.661 0.673 0.748 0.772

SOTA+Meta-Training-Prediction 0.685 0.829 0.794 0.552 0.719 0.661 0.678 0.752 0.775

Table 2: The experimental results on fine-grained entity typing datasets. Acc.: Accuracy.

indicates the capability of our methods in improv-
ing the multi-label classification. (2) The SOTA
model trained with learned training policy outper-
forms the one with hierarchy-aware training pol-
icy. It is because that our learned training policy
can capture not only explicit hierarchical depen-
dencies of labels, but also model other implicit la-
bel dependencies. (3) The three different predic-
tion policies can improve the performance of the
SOTA classifier. The results are consistent with
previous researches that choosing a good predic-
tion policy is an effective way to improve the per-
formance (Fan and Lin, 2007; Lipton et al., 2014).
(4) Compared with OntoNotes and BBN datasets,
the FIGER show a relatively less improvement
when applying these policies. The reason is that
the test set of FIGER is not fine-grained enough
(e.g., over 38% of entities are only annotated with
/person and no more fine-grained labels) (Xin
et al., 2018).

Algorithm Robustness Previous researches
(Morimoto and Doya, 2005; Henderson et al.,
2018) show that reinforcement learning-based
methods usually lack robustness and are sensi-
tive to the initialization, seeding datasets and
pre-trained steps. Thus, we design an experiment
to detect whether the trained meta-leaner is
sensitive to the initialization. During the test
time, instead of using the same initialization in
Algorithm 1, we randomly initialize the w0 and
p0 and learn 10 groups of policies wT and pT .
For each group of policies, we train a classifier
with wT and evaluate it with pT using the same
metric. The results are shown in Table 3. The
results demonstrate that our trained meta-learner
is robust to different initialization, which indicates
that the meta-learner in our method can generate

Metrics Best Worst Average STDEV

Accuracy 0.689 0.679 0.681 0.0043
Macro-F1 0.835 0.821 0.827 0.0039
Micro-F1 0.796 0.787 0.789 0.0036

Table 3: The robustness analysis on the FIGER dataset.

Datasets Reuters-21578 RCV1-V2

#Labels 90 103
#Average Labels/instance 1.13 3.24
#Training 7,769 781,265
#Testing 3,019 23,149

Table 4: The statistics of text classification datasets.

high-quality and robust training and prediction
policies to improve the multi-label classification.

Weight Analysis To analyze whether our meta-
learner can really model the label dependencies,
we perform a simple case study. In fine-grained
entity classification, we choose 5 labels that are
originally organized in a hierarchical structure
from the OntoNotes dataset. The corresponding
entries of the training policy vector wT are ex-
tracted and expressed with colors. The case study
is shown in Figure 5. From the results, we can ob-
serve that high-level (parent) labels tend to have
less training weights than low-level (child) labels.
The results are consistent with our intuition that
the labels with more dependencies expose more
semantic information during the training.

6 Text Classification

Text classification is a classic problem for NLP,
where one needs to categorized documents into
pre-defined classes (Nam et al., 2014; Liu et al.,
2017; Chen et al., 2017). We choose the datasets
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Datasets Reuters-21578 RCV1-V2

Metrics Accuracy Macro-F1 Micro-F1 Accuracy Macro-F1 Micro-F1

CNN 0.537 0.472 0.841 0.616 0.642 0.838
CNN+Meta-Training 0.542 0.476 0.843 0.631 0.655 0.852

CNN+ScutFBR-Prediction 0.549 0.477 0.849 0.634 0.651 0.856
CNN+ODR-Prediction 0.541 0.475 0.848 0.630 0.653 0.849
CNN+Meta-Prediction 0.549 0.479 0.851 0.639 0.658 0.857

Predictions-as-Features 0.539 0.476 0.845 0.621 0.644 0.847
Subset Maximization 0.543 0.478 0.849 0.632 0.660 0.859

CNN+Meta-Training-Prediction 0.556 0.483 0.854 0.647 0.669 0.864

Table 5: The experimental results on text classification datasets.

Metrics Best Worst Average STDEV

Accuracy 0.652 0.641 0.646 0.0028
Macro-F1 0.678 0.654 0.663 0.0041
Micro-F1 0.874 0.855 0.863 0.0033

Table 6: The robustness analysis on the RCV1 dataset.

in which samples have multiple labels and evalu-
ate our model on text classification problem.

Datasets Following the settings in (Nam et al.,
2014), we choose two multi-label datasets,
Reuters-21578 and RCV1-V2, to test our method.
The statistics of two datasets are listed in Table 4.

Reuters-21578: The instances are collected
Reuters news articles during the period 1987 to
1991. We use the same training/test split as pre-
vious work (Yang, 2001; Nam et al., 2014).

RCV1-V2: RCV1-V2 collects newswire stories
from Reuters (Lewis et al., 2004). The training
and test dataset originally consist of 23, 149 train
and 781, 265 test instances, but we switch them to
better training and evaluation (Nam et al., 2014).

Setup Many researches have proved convolu-
tional neural networks (CNN) are effective in ex-
tracting information for text classification (LeCun
et al., 1998; Kim, 2014; Zhang et al., 2015). Fol-
lowing the (Kim, 2014), we set a CNN model
as the classifier C to evaluate our method. Con-
cretely, we use CNN-non-static mentioned in Kim
(2014), which means we initialize the word em-
beddings with pre-trained Word2Vec and update
the word embeddings during the training. The
standard cross-entropy loss function is imple-
mented, and the thresholds of all the classes are
set as 0.5.

We still use strict accuracy, loose macro, and
loose micro scores to evaluate the model per-

formance following the settings in (Lewis et al.,
2004; Yang and Gopal, 2012; Nam et al., 2014).

Results The results of text classification are
shown in Table 5. From the results, we can ob-
serve that: (1) Our meta-learning method can out-
perform all the baselines on two text classification
tasks, which indicates that our approach is con-
sistent with different tasks. (2) Compared with
RCV1-V2, the classification results on Reuters-
21578 show less improvement. The reason is
that the number of average labels per instance in
Reuters-21578 is 1.13, while the number is 3.24
for RCV1-V2 according to Table 4. That means
the multi-label classification on Reuters is close to
the multi-class classification. There are little po-
tential label dependencies in Reuters-21578.

Algorithm Robustness Similar to Section 5, we
evaluate whether our trained meta-learner is sensi-
tive to the initialization. We follow the same steps
mentioned in Section 5, and show the results in
Table 6. The results indicate that the robustness
of our meta-learner is consistent within different
tasks and model structures, which again shows that
the trained meta-learner can generate high-quality
and robust policies.

7 Conclusion

In this paper, we propose a novel meta-learner to
improve the multi-label classification. By mod-
eling the explicit and implicit label dependencies
automatically, the meta-learner in our model can
learn to generate high-quality training and predic-
tion policies to help both the training and testing
process of multi-label classifiers in a principled
way. We evaluate our models on two tasks, fine-
grained entity typing and text classification. Ex-
perimental results show that our method outper-



4362

forms other baselines.
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Cheng, and Eyke Hüllermeier. 2012. On label de-
pendence and loss minimization in multi-label clas-
sification. Machine Learning, 88(1-2):5–45.

Krzysztof Dembszynski, Willem Waegeman, Weiwei
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