
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 4129–4142,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

4129

Certified Robustness to Adversarial Word Substitutions

Robin Jia Aditi Raghunathan Kerem Göksel Percy Liang
Computer Science Department, Stanford University

{robinjia,aditir,kerem,pliang}@cs.stanford.edu

Abstract

State-of-the-art NLP models can often be
fooled by adversaries that apply seemingly
innocuous label-preserving transformations
(e.g., paraphrasing) to input text. The num-
ber of possible transformations scales expo-
nentially with text length, so data augmenta-
tion cannot cover all transformations of an in-
put. This paper considers one exponentially
large family of label-preserving transforma-
tions, in which every word in the input can
be replaced with a similar word. We train
the first models that are provably robust to all
word substitutions in this family. Our train-
ing procedure uses Interval Bound Propaga-
tion (IBP) to minimize an upper bound on the
worst-case loss that any combination of word
substitutions can induce. To evaluate models’
robustness to these transformations, we mea-
sure accuracy on adversarially chosen word
substitutions applied to test examples. Our
IBP-trained models attain 75% adversarial ac-
curacy on both sentiment analysis on IMDB
and natural language inference on SNLI. In
comparison, on IMDB, models trained nor-
mally and ones trained with data augmentation
achieve adversarial accuracy of only 8% and
35%, respectively.

1 Introduction

Machine learning models have achieved impres-
sive accuracy on many NLP tasks, but they are
surprisingly brittle. Adding distracting text to the
input (Jia and Liang, 2017), paraphrasing the text
(Iyyer et al., 2018; Ribeiro et al., 2018), replacing
words with similar words (Alzantot et al., 2018),
or inserting character-level “typos” (Belinkov and
Bisk, 2017; Ebrahimi et al., 2017) can signifi-
cantly degrade a model’s performance. Such per-
turbed inputs are called adversarial examples, and
have shown to break models in other domains as
well, most notably in vision (Szegedy et al., 2014;

… made one of the

made

accomplished

delivered

one of the

best

better

finest

nicest

good

films…

films

movies

film

cinema

x1 x2 x3 x4 x5

x̃1 x̃2 x̃3 x̃4 x̃5

best
x6

x̃6

S(x, 1)

S(x, 2) S(x, 3) S(x, 4)

S(x, 5)
S(x, 6)

Input reviewaaa x

Substitution words

…delivered one of the movies…better
Perturbed reviewaaa

PositiveCNN

NegativeCNN

x̃

Figure 1: Word substitution-based perturbations in sen-
timent analysis. For an input x, we consider perturba-
tions x̃, in which every word xi can be replaced with
any similar word from the set S(x, i), without chang-
ing the original sentiment. Models can be easily fooled
by adversarially chosen perturbations (e.g., changing
“best” to “better”, “made” to “delivered”, “films” to
“movies”), but the ideal model would be robust to all
combinations of word substitutions.

Goodfellow et al., 2015). Since humans are not
fooled by the same perturbations, the widespread
existence of adversarial examples exposes trou-
bling gaps in models’ understanding.

In this paper, we focus on the word substitution
perturbations of Alzantot et al. (2018). In this set-
ting, an attacker may replace every word in the in-
put with a similar word (that ought not to change
the label), leading to an exponentially large num-
ber of possible perturbations. Figure 1 shows an
example of these word substitutions. As demon-
strated by a long line of work in computer vision,
it is challenging to make models that are robust to
very large perturbation spaces, even when the set
of perturbations is known at training time (Good-
fellow et al., 2015; Athalye et al., 2018; Raghu-
nathan et al., 2018; Wong and Kolter, 2018).

Our paper addresses two key questions. First,
is it possible to guarantee that a model is robust
against all adversarial perturbations of a given in-

4130

put? Existing methods that use heuristic search
to attack models (Ebrahimi et al., 2017; Alzantot
et al., 2018) are slow and cannot provide guaran-
tees of robustness, since the space of possible per-
turbations is too large to search exhaustively. We
obtain guarantees by leveraging Interval Bound
Propagation (IBP), a technique that was previ-
ously applied to feedforward networks and CNNs
in computer vision (Dvijotham et al., 2018). IBP
efficiently computes a tractable upper bound on
the loss of the worst-case perturbation. When this
upper bound on the worst-case loss is small, the
model is guaranteed to be robust to all perturba-
tions, providing a certificate of robustness. To
apply IBP to NLP settings, we derive new inter-
val bound formulas for multiplication and softmax
layers, which enable us to compute IBP bounds for
LSTMs (Hochreiter and Schmidhuber, 1997) and
attention layers (Bahdanau et al., 2015). We also
extend IBP to handle discrete perturbation sets,
rather than the continuous ones used in vision.

Second, can we train models that are robust in
this way? Data augmentation can sometimes mit-
igate the effect of adversarial examples (Jia and
Liang, 2017; Belinkov and Bisk, 2017; Ribeiro
et al., 2018; Liu et al., 2019), but it is insuf-
ficient when considering very large perturbation
spaces (Alzantot et al., 2018). Adversarial train-
ing strategies from computer vision (Madry et al.,
2018) rely on gradient information, and therefore
do not extend to the discrete perturbations seen in
NLP. We instead use certifiably robust training, in
which we train models to optimize the IBP upper
bound (Dvijotham et al., 2018).

We evaluate certifiably robust training on two
tasks—sentiment analysis on the IMDB dataset
(Maas et al., 2011) and natural language in-
ference on the SNLI dataset (Bowman et al.,
2015). Across various model architectures (bag-
of-words, CNN, LSTM, and attention-based), cer-
tifiably robust training consistently yields models
which are provably robust to all perturbations on a
large fraction of test examples. A normally-trained
model has only 8% and 41% accuracy on IMDB
and SNLI, respectively, when evaluated on adver-
sarially perturbed test examples. With certifiably
robust training, we achieve 75% adversarial accu-
racy for both IMDB and SNLI. Data augmenta-
tion fares much worse than certifiably robust train-
ing, with adversarial accuracies falling to 35% and
71%, respectively.

2 Setup

We consider tasks where a model must predict a
label y ∈ Y given textual input x ∈ X . For
example, for sentiment analysis, the input x is a
sequence of words x1, x2, . . . , xL, and the goal
is to assign a label y ∈ {−1, 1} denoting neg-
ative or positive sentiment, respectively. We use
z = (x, y) to denote an example with input x and
label y, and use θ to denote parameters of a model.
Let f(z, θ) ∈ R denote some loss of a model with
parameters θ on example z. We evaluate models
on f0-1(z, θ), the zero-one loss under model θ.

2.1 Perturbations by word substitutions
Our goal is to build models that are robust to label-
preserving perturbations. In this work, we focus
on perturbations where words of the input are sub-
stituted with similar words. Formally, for every
word xi, we consider a set of allowed substitution
words S(x, i), including xi itself. We use x̃ to de-
note a perturbed version of x, where each word
x̃i is in S(x, i). For an example z = (x, y), let
Bperturb(z) denote the set of all allowed perturba-
tions of z:

Bperturb(z) = {(x̃, y) : x̃i ∈ S(x, i) ∀i}. (1)

Figure 1 provides an illustration of word substitu-
tion perturbations. We choose S(x, i) so that x̃ is
likely to be grammatical and have the same label
as x (see Section 5.1).

2.2 Robustness to all perturbations
Let F(z, θ) denote the set of losses of the network
on the set of perturbed examples defined in (1):

F(z, θ) = {f(z̃, θ) : z̃ ∈ Bperturb(z)}. (2)

We define the robust loss as maxF(z, θ), the loss
due to worst-case perturbation. A model is ro-
bust at z if it classifies all inputs in the pertur-
bation set correctly, i.e., the robust zero-one loss
maxF0-1(z, θ) = 0. Unfortunately, the robust
loss is often intractable to compute, as each word
can be perturbed independently. For example, re-
views in the IMDB dataset (Maas et al., 2011)
have a median of 1031 possible perturbations and
max of 10271, far too many to enumerate. We
instead propose a tractable upper bound by con-
structing a set O(z, θ) ⊇ F(z, θ). Note that

maxO0-1(z, θ) = 0⇒ maxF0-1(z, θ) = 0

⇔ robust at z. (3)

4131

Therefore, whenever maxO0-1(z, θ) = 0, this
fact is sufficient to certify robustness to all per-
turbed examples Bperturb(z). However, since
O0-1(z, θ) ⊇ F0-1(z, θ), the model could be ro-
bust even if maxO0-1(z, θ) 6= 0.

3 Certification via Interval Bound
Propagation

We now show how to use Interval Bound Prop-
agation (IBP) (Dvijotham et al., 2018) to obtain
a superset O(z, θ) of the losses of perturbed in-
puts F(z, θ), given z, θ, and Bperturb(z). For no-
tational convenience, we drop z and θ. The key
idea is to compute upper and lower bounds on the
activations in each layer of the network, in terms
of bounds computed for previous layers. These
bounds propagate through the network, as in a
standard forward pass, until we obtain bounds on
the final output, i.e., the loss f . While IBP bounds
may be loose in general, Section 5.2 shows that
training networks to minimize the upper bound on
f makes these bounds much tighter (Gowal et al.,
2018; Raghunathan et al., 2018).

Formally, let gi denote a scalar-valued function
of z and θ (e.g., a single activation in one layer of
the network) computed at node i of the computa-
tion graph for a given network. Let dep(i) be the
set of nodes used to compute gi in the computation
graph (e.g., activations of the previous layer). Let
Gi denote the set of possible values of gi across all
examples in Bperturb(z). We construct an interval
Oi = [`i, ui] that contains all these possible val-
ues of gi, i.e., Oi ⊇ Gi. Oi is computed from the
intervals Odep(i) = {Oj : j ∈ dep(i)} of the de-
pendencies of gi. Once computed, Oi can then be
used to compute intervals on nodes that depend on
i. In this way, bounds propagate through the entire
computation graph in an efficient forward pass.

We now discuss how to compute interval
bounds for NLP models and word substitution per-
turbations. We obtain interval bounds for model
inputs given Bperturb(z) (Section 3.1), then show
how to compute Oi from Odep(i) for elementary
operations used in standard NLP models (Sec-
tion 3.2). Finally, we use these bounds to certify
robustness and train robust models.

3.1 Bounds for the input layer

Previous work (Gowal et al., 2018) applied IBP
to continuous image perturbations, which are
naturally represented with interval bounds (Dvi-

Figure 2: Bounds on the word vector inputs to the neu-
ral network. Consider a word (sentence of length one)
x = a with the set of substitution words S(x, 1) =
{a, b, c, d, e}. (a) IBP constructs axis-aligned bounds
around a set of word vectors. These bounds may be
loose, especially if the word vectors are pre-trained and
fixed. (b) A different word vector space can give tighter
IBP bounds, if the convex hull of the word vectors is
better approximated by an axis-aligned box.

jotham et al., 2018). We instead work with dis-
crete word substitutions, which we must convert
into interval bounds Oinput in order to use IBP.
Given input words x = x1, . . . , xL, we assume
that the model embeds each word as ginput =
[φ(x1), . . . , φ(xL)] ∈ RL×d, where φ(xi) ∈ Rd is
the word vector for word xi. To compute Oinput ⊇
Ginput, recall that each input word xi can be re-
placed with any x̃i ∈ S(x, i). So, for each coor-
dinate j ∈ {1, . . . , d}, we can obtain an interval
boundOinput

ij = [`
input
ij , u

input
ij] for ginput

ij by comput-
ing the smallest axis-aligned box that contains all
the word vectors:

`
input
ij = min

w∈S(x,i)
φ(w)j , u

input
ij = max

w∈S(x,i)
φ(w)j .

(4)

Figure 2 illustrates these bounds. We can view
this as relaxing a set of discrete points to a convex
set that contains all of the points. Section 4.2 dis-
cusses modeling choices to make this box tighter.

3.2 Interval bounds for elementary functions
Next, we describe how to compute the interval of
a node i from intervals of its dependencies. Gowal
et al. (2018) show how to efficiently compute in-
terval bounds for affine transformations (i.e., lin-
ear layers) and monotonic elementwise nonlin-
earities (see Appendix 3). This suffices to com-
pute interval bounds for feedforward networks and
CNNs. However, common NLP model compo-
nents like LSTMs and attention also rely on soft-
max (for attention), element-wise multiplication
(for LSTM gates), and dot product (for computing
attention scores). We show how to compute inter-
val bounds for these new operations. These build-
ing blocks can be used to compute interval bounds

4132

not only for LSTMs and attention, but also for any
model that uses these elementary functions.

For ease of notation, we drop the superscript
i on gi and write that a node computes a result
zres = g(zdep) where zres ∈ R and zdep ∈ Rm for
m = |dep(i)|. We are given intervals Odep such
that zdep

j ∈ Odep
j = [`

dep
j , u

dep
j] for each coordinate

j and want to compute Ores = [`res, ures].

Softmax layer. The softmax function is often
used to convert activations into a probability dis-
tribution, e.g., for attention. Gowal et al. (2018)
uses unnormalized logits and does not handle soft-
max operations. Formally, let zres represent the
normalized score of the word at position c. We

have zres = exp(z
dep
c)∑m

j=1 exp(z
dep
j)

. The value of zres is

largest when z
dep
c takes its largest value and all

other words take the smallest value:

ures =
exp(u

dep
c)

exp(u
dep
c) +

∑
j 6=c

exp(`
dep
j)

. (5)

We obtain a similar expression for `res. Note that
`res and ures can each be computed in a forward
pass, with some care taken to avoid numerical in-
stability (see Appendix A.2).

Element-wise multiplication and dot product.
Models like LSTMs incorporate gates which per-
form element-wise multiplication of two activa-
tions. Let zres = z

dep
1 z

dep
2 where zres, z

dep
1 , z

dep
2 ∈

R. The extreme values of the product occur at one
of the four points corresponding to the products of
the extreme values of the inputs. In other words,

C = {`dep
1 `

dep
2 , `

dep
1 u

dep
2

u
dep
1 `

dep
2 , u

dep
1 u

dep
2 }

`res = min
(
C
)

ures = max
(
C
)
. (6)

Propagating intervals through multiplication
nodes therefore requires four multiplications.

Dot products between activations are often used
to compute attention scores.1 The dot product
(z

dep
1)>z

dep
2 is just the sum of the element-wise

product zdep
1 � zdep

2 . Therefore, we can bound the
dot product by summing the bounds on each ele-
ment of zdep

1 �z
dep
2 , using the formula for element-

wise multiplication.
1This is distinct from an affine transformation, because

both vectors have associated bounds; in an affine layer, the
input has bounds, but the weight matrix is fixed.

3.3 Final layer
Classification models typically output a single
logit for binary classification, or k logits for k-way
classification. The final loss f(z, θ) is a function
of the logits s(x). For standard loss functions, we
can represent this function in terms of element-
wise monotonic functions (Appendix 3) and the
elementary functions described in Section 3.2.

1. Zero-one loss: f(z, θ) = I[max(s(x)) = y]
involves a max operation followed by a step
function, which is monotonic.

2. Cross entropy: For multi-class, f(z, θ) =
softmax(s(x)). In the binary case, f(z, θ) =
σ(s(x)), where the sigmoid function σ is
monotonic.

Thus, we can compute bounds on the loss
O(z, θ) = [`final, ufinal] from bounds on the logits.

3.4 Certifiably Robust Training with IBP
Finally, we describe certifiably robust training, in
which we encourage robustness by minimizing the
upper bound on the worst-case loss (Dvijotham
et al., 2018; Gowal et al., 2018). Recall that for an
example z and parameters θ, ufinal(z, θ) is the up-
per bound on the loss f(z, θ). Given a dataset D,
we optimize a weighted combination of the normal
loss and the upper bound ufinal,

min
θ

∑
z∈D

(1− κ)f(z, θ) + κufinal(z, θ), (7)

where 0 ≤ κ ≤ 1 is a scalar hyperparameter.
As described above, we compute ufinal in a mod-

ular fashion: each layer has an accompanying
function that computes bounds on its outputs given
bounds on its inputs. Therefore, we can easily ap-
ply IBP to new architectures. Bounds propagate
through layers via forward passes, so the entire ob-
jective (7) can be optimized via backpropagation.

Gowal et al. (2018) found that this objective was
easier to optimize by starting with a smaller space
of allowed perturbations, and make it larger during
training. We accomplish this by artificially shrink-
ing the input layer intervals Oinput

ij = [`
input
ij , u

input
ij]

towards the original value φ(xi)j by a factor of ε:

`
input
ij ← φ(xi)j − ε(φ(xi)j − `input

ij)

u
input
ij ← φ(xi)j + ε(u

input
ij − φ(xi)j).

Standard training corresponds to ε = 0. We train
for T init epochs while linearly increasing ε from 0

4133

to 1, and also increasing κ from 0 up to a maxi-
mum value of κ?, We then train for an additional
T final epochs at κ = κ? and ε = 1.

To summarize, we use IBP to compute an upper
bound on the model’s loss when given an adver-
sarially perturbed input. This bound is computed
in a modular fashion. We efficiently train models
to minimize this bound via backpropagation.

4 Tasks and models

Now we describe the tasks and model architec-
tures on which we run experiments. These models
are all built from the primitives in Section 3.

4.1 Tasks
Following Alzantot et al. (2018), we evaluate on
two standard NLP datasets: the IMDB sentiment
analysis dataset (Maas et al., 2011) and the Stan-
ford Natural Language Inference (SNLI) dataset
(Bowman et al., 2015). For IMDB, the model is
given a movie review and must classify it as pos-
itive or negative. For SNLI, the model is given
two sentences, a premise and a hypothesis, and
is asked whether the premise entails, contradicts,
or is neutral with respect to the hypothesis. For
SNLI, the adversary is only allowed to change the
hypothesis, as in Alzantot et al. (2018), though it
is possible to also allow changing the premise.

4.2 Models
IMDB. We implemented three models for
IMDB. The bag-of-words model (BOW) averages
the word vectors for each word in the input, then
passes this through a two-layer feedforward net-
work with 100-dimensional hidden state to obtain
a final logit. The other models are similar, except
they run either a CNN or bidirectional LSTM on
the word vectors, then average their hidden states.
All models are trained on cross entropy loss.

SNLI We implemented two models for SNLI.
The bag-of-words model (BOW) encodes the
premise and hypothesis separately by summing
their word vectors, then feeds the concatenation of
these encodings to a 3-layer feedforward network.
We also reimplement the Decomposable Attention
model (Parikh et al., 2016), which uses attention
between the premise and hypothesis to compute
richer representations of each word in both sen-
tences. These context-aware vectors are used in
the same way BOW uses the original word vec-
tors to generate the final prediction. Both models

are trained on cross entropy loss. Implementation
details are provided in Appendix A.4.

Word vector layer. The choice of word vectors
affects the tightness of our interval bounds. We
choose to define the word vector φ(w) for word w
as the output of a feedforward layer applied to a
fixed pre-trained word vector φpre(w):

φ(w) = ReLU(gword(φpre(w))), (8)

where gword is a learned linear transformation.
Learning gword with certifiably robust training en-
courages it to orient the word vectors so that the
convex hull of the word vectors is close to an
axis-aligned box. Note that gword is applied be-
fore bounds are computed via (4).2 Applying gword

after the bound calculation would result in looser
interval bounds, since the original word vectors
φpre(w) might be poorly approximated by interval
bounds (e.g., Figure 2a), compared to φ(w) (e.g.,
Figure 2b). Section 5.7 confirms the importance
of adding gword. We use 300-dimensional GloVe
vectors (Pennington et al., 2014) as our φpre(w).

5 Experiments

5.1 Setup
Word substitution perturbations. We base our
sets of allowed word substitutions S(x, i) on the
substitutions allowed by Alzantot et al. (2018).
They demonstrated that their substitutions lead to
adversarial examples that are qualitatively similar
to the original input and retain the original label,
as judged by humans. Alzantot et al. (2018) de-
fine the neighbors N(w) of a word w as the n = 8
nearest neighbors of w in a “counter-fitted” word
vector space where antonyms are far apart (Mrkšić
et al., 2016).3 The neighbors must also lie within
some Euclidean distance threshold. They also use
a language model constraint to avoid nonsensi-
cal perturbations: they allow substituting xi with
x̃i ∈ N(xi) if and only if it does not decrease the
log-likelihood of the text under a pre-trained lan-
guage model by more than some threshold.

We make three modifications to this approach.
First, in Alzantot et al. (2018), the adversary ap-
plies substitutions one at a time, and the neighbor-
hoods and language model scores are computed

2 Equation (4) must be applied before the model can com-
bine information from multiple words, but it can be delayed
until after processing each word independently.

3 Note that the model itself classifies using a different
set of pre-trained word vectors; the counter-fitted vectors are
only used to define the set of allowed substitution words.

4134

relative to the current altered version of the input.
This results in a hard-to-define attack surface, as
changing one word can allow or disallow changes
to other words. It also requires recomputing lan-
guage model scores at each iteration of the genetic
attack, which is inefficient. Moreover, the same
word can be substituted multiple times, leading
to semantic drift. We define allowed substitutions
relative to the original sentence x, and disallow re-
peated substitutions. Second, we use a faster lan-
guage model that allows us to query longer con-
texts; Alzantot et al. (2018) use a slower language
model and could only query it with short contexts.
Finally, we use the language model constraint only
at test time; the model is trained against all pertur-
bations in N(w). This encourages the model to be
robust to a larger space of perturbations, instead of
specializing for the particular choice of language
model. See Appendix A.3 for further details.

Analysis of word neighbors. One natural ques-
tion is whether we could guarantee robustness by
having the model treat all neighboring words the
same. We could construct equivalence classes of
words from the transitive closure of N(w), and
represent each equivalence class with one embed-
ding. We found that this would lose a significant
amount of information. Out of the 50,000 word
vocabulary, 19,122 words would be in the same
equivalence class, including the words “good”,
“bad”, “excellent”, and “terrible.” Of the remain-
ing words, 24,389 (79%) have no neighbors.

Baseline training methods. We compare certi-
fiably robust training (Section 3) with both stan-
dard training and data augmentation, which has
been used in NLP to encourage robustness to
various types of perturbations (Jia and Liang,
2017; Belinkov and Bisk, 2017; Iyyer et al., 2018;
Ribeiro et al., 2018). In data augmentation, for
each training example z, we augment the dataset
with K new examples z̃ by sampling z̃ uniformly
from Bperturb(z), then train on the normal cross
entropy loss. For our main experiments, we use
K = 4. We do not use adversarial training (Good-
fellow et al., 2015) because it would require run-
ning an adversarial search procedure at each train-
ing step, which would be prohibitively slow.

Evaluation of robustness. We wish to evaluate
robustness of models to all word substitution per-
turbations. Ideally, we would directly measure ro-
bust accuracy, the fraction of test examples z for

which the model is correct on all z̃ ∈ Bperturb(z).
However, evaluating this exactly involves enu-
merating the exponentially large set of perturba-
tions, which is intractable. Instead, we compute
tractable upper and lower bounds:

1. Genetic attack accuracy: Alzantot et al. (2018)
demonstrate the effectiveness of a genetic al-
gorithm that searches for perturbations z̃ that
cause model misclassification. The algorithm
maintains a “population” of candidate z̃’s and
repeatedly perturbs and combines them. We
used a population size of 60 and ran 40 search
iterations on each example. Since the algorithm
does not exhaustively search over Bperturb(z),
accuracy on the perturbations it finds is an up-
per bound on the true robust accuracy.

2. Certified accuracy: To complement this upper
bound, we use IBP to obtain a tractable lower
bound on the robust accuracy. Recall from Sec-
tion 3.3 that we can use IBP to get an upper
bound on the zero-one loss. From this, we
obtain a lower bound on the robust accuracy
by measuring the fraction of test examples for
which the zero-one loss is guaranteed to be 0.

Experimental details. For IMDB, we split
the official train set into train and devel-
opment subsets, putting reviews for different
movies into different splits (matching the origi-
nal train/test split). For SNLI, we use the official
train/development/test split. We tune hyperparam-
eters on the development set for each dataset. Hy-
perparameters are reported in Appendix A.4.

5.2 Main results
Table 1 and Table 2 show our main results for
IMDB and SNLI, respectively. We measure ac-
curacy on perturbations found by the genetic at-
tack (upper bound on robust accuracy) and IBP-
certified accuracy (lower bound on robust accu-
racy) on 1000 random test examples from IMDB,4

and all 9824 test examples from SNLI. Across
many architectures, our models are more robust
to perturbations than ones trained with data aug-
mentation. This effect is especially pronounced
on IMDB, where inputs can be hundreds of words
long, so many words can be perturbed. On
IMDB, the best IBP-trained model gets 75.0% ac-
curacy on perturbations found by the genetic at-

4We downsample the test set because the genetic attack is
slow on IMDB, as inputs can be hundreds of words long.

4135

System Genetic attack
(Upper bound)

IBP-certified
(Lower bound)

Standard training
BOW 9.6 0.8
CNN 7.9 0.1
LSTM 6.9 0.0
Robust training
BOW 70.5 68.9
CNN 75.0 74.2
LSTM 64.7 63.0
Data augmentation
BOW 34.6 3.5
CNN 35.2 0.3
LSTM 33.0 0.0

Table 1: Robustness of models on IMDB. We report ac-
curacy on perturbations obtained via the genetic attack
(upper bound on robust accuracy), and certified accu-
racy obtained using IBP (lower bound on robust accu-
racy) on 1000 random IMDB test set examples. For
all models, robust training vastly outperforms data aug-
mentation (p < 10−63, Wilcoxon signed-rank test).

System Genetic attack
(Upper bound)

IBP-certified
(Lower bound)

Normal training
BOW 40.5 2.3
DECOMPATTN 40.3 1.4
Robust training
BOW 75.0 72.7
DECOMPATTN 73.7 72.4
Data augmentation
BOW 68.5 7.7
DECOMPATTN 70.8 1.4

Table 2: Robustness of models on the SNLI test set.
For both models, robust training outperforms data aug-
mentation (p < 10−10, Wilcoxon signed-rank test).

tack, whereas the best data augmentation model
gets 35.2%. Normally trained models are even
worse, with adversarial accuracies below 10%.

Certified accuracy. Certifiably robust train-
ing yields models with tight guarantees on
robustness—the upper and lower bounds on robust
accuracy are close. On IMDB, the best model is
guaranteed to be correct on all perturbations of
74.2% of test examples, very close to the 75.0%
accuracy against the genetic attack. In contrast, for
data augmentation models, the IBP bound cannot
guarantee robustness on almost all examples. It
is possible that a stronger attack (e.g., exhaustive
search) could further lower the accuracy of these
models, or that the IBP bounds are loose.

LSTM models can be certified with IBP, though
they fare worse than other models. IBP bounds
may be loose for RNNs because of their long com-
putation paths, along which looseness of bounds
can get amplified. Nonetheless, in Appendix A.7,

78 80 82 84 86 88
Clean accuracy

0

20

40

60

80

Ge
ne

tic
 se

ar
ch

 a
cc

ur
ac

y

Robust training
Data augmentation
Normal training

Figure 3: Trade-off between clean accuracy and ge-
netic attack accuracy for CNN models on IMDB. Data
augmentation cannot achieve high robustness. Certifi-
ably robust training yields much more robust models,
though at the cost of some clean accuracy. Lines con-
nect Pareto optimal points for each training strategy.

we show on synthetic data that robustly trained
LSTMs can learn long-range dependencies.

5.3 Clean versus robust accuracy
Robust training does cause a moderate drop in
clean accuracy (accuracy on unperturbed test ex-
amples) compared with normal training. On
IMDB, our normally trained CNN model gets 89%
clean accuracy, compared to 81% for the robustly
trained model. We also see a drop on SNLI: the
normally trained BOW model gets 83% clean ac-
curacy, compared to 79% for the robustly trained
model. Similar drops in clean accuracy are also
seen for robust models in vision (Madry et al.,
2017). For example, the state-of-the-art robust
model on CIFAR10 (Zhang et al., 2019) only has
85% clean accuracy, but comparable normally-
trained models get > 96% accuracy.

We found that the robustly trained models
tend to underfit the training data—on IMDB, the
CNN model gets only 86% clean training accu-
racy, lower than the test accuracy of the normally
trained model. The model continued to underfit
when we increased either the depth or width of
the network. One possible explanation is that the
attack surface adds a lot of noise, though a large
enough model should still be able to overfit the
training set. Better optimization or a tighter way to
compute bounds could also improve training accu-
racy. We leave further exploration to future work.

Next, we analyzed the trade-off between clean
and robust accuracy by varying the importance

4136

0 5 10 15 20
Number of words perturbed

0

10

20

30

40

50

60
Fr

eq
ue

nc
y

Robust training
Data augmentation
Normal training

Figure 4: Number of words perturbed by the genetic
attack to cause errors by CNN models on 1000 IMDB
development set examples. Certifiably robust training
reduces the effect of many simultaneous perturbations.

placed on perturbed examples during training.
We use accuracy against the genetic attack as
our proxy for robust accuracy, rather than IBP-
certified accuracy, as IBP bounds may be loose
for models that were not trained with IBP. For
data augmentation, we varyK, the number of aug-
mented examples per real example, from 1 to 64.
For certifiably robust training, we vary κ?, the
weight of the certified robustness training objec-
tive, between 0.01 and 1.0. Figure 3 shows trade-
off curves for the CNN model on 1000 random
IMDB development set examples. Data augmen-
tation can increase robustness somewhat, but can-
not reach very high adversarial accuracy. With
certifiably robust training, we can trade off some
clean accuracy for much higher robust accuracy.

5.4 Runtime considerations

IBP enables efficient computation of ufinal(z, θ),
but it still incurs some overhead. Across model
architectures, we found that one epoch of certi-
fiably robust training takes between 2× and 4×
longer than one epoch of standard training. On
the other hand, IBP certificates are much faster to
compute at test time than genetic attack accuracy.
For the robustly trained CNN IMDB model, com-
puting certificates on 1000 test examples took 5
seconds, while running the genetic attack on those
same examples took over 3 hours.

5.5 Error analysis

We examined development set examples on which
models were correct on the original input but in-

correct on the perturbation found by the genetic
attack. We refer to such cases as robustness errors.
We focused on the CNN IMDB models trained
normally, robustly, and with data augmentation.
We found that robustness errors of the robustly
trained model mostly occurred when it was not
confident in its original prediction. The model had
> 70% confidence in the correct class for the orig-
inal input in only 14% of robustness errors. In con-
trast, the normally trained and data augmentation
models were more confident on their robustness
errors; they had > 70% confidence on the original
example in 92% and 87% of cases, respectively.

We next investigated how many words the ge-
netic attack needed to change to cause misclas-
sification, as shown in Figure 4. For the nor-
mally trained model, some robustness errors in-
volved only a couple changed words (e.g., “I’ve
finally found a movie worse than . . . ” was clas-
sified negative, but the same review with “I’ve fi-
nally discovered a movie worse than. . . ” was clas-
sified positive), but more changes were also com-
mon (e.g., part of a review was changed from “The
creature looked very cheesy” to “The creature
seemed supremely dorky”, with 15 words changed
in total). Surprisingly, certifiably robust training
nearly eliminated robustness errors in which the
genetic attack had to change many words: the ge-
netic attack either caused an error by changing a
couple words, or was unable to trigger an error
at all. In contrast, data augmentation is unable
to cover the exponentially large space of perturba-
tions that involve many words, so it does not pre-
vent errors caused by changing many words.

5.6 Training schedule
We investigated the importance of slowly increas-
ing ε during training, as suggested by Gowal et al.
(2018). Fixing ε = 1 during training led to a 5
point reduction in certified accuracy for the CNN.
On the other hand, we found that holding κ fixed
did not hurt accuracy, and in fact may be prefer-
able. More details are shown in Appendix A.5.

5.7 Word vector analysis
We determined the importance of the extra feed-
forward layer gword that we apply to pre-trained
word vectors, as described in Section 4.2. We
compared with directly using pre-trained word
vectors, i.e. φ(w) = φpre(w). We also tried us-
ing gword but applying interval bounds on φpre(w),
then computing bounds on φ(w) with the IBP for-

4137

mula for affine layers. In both cases, we could
not train a CNN to achieve more than 52.2% certi-
fied accuracy on the development set. Thus, trans-
forming pre-trained word vectors and applying in-
terval bounds after is crucial for robust training.
In Appendix A.6, we show that robust training
makes the intervals around transformed word vec-
tors smaller, compared to the pre-trained vectors.

6 Related Work and Discussion

Recent work on adversarial examples in NLP has
proposed various classes of perturbations, such
as insertion of extraneous text (Jia and Liang,
2017), word substitutions (Alzantot et al., 2018),
paraphrasing (Iyyer et al., 2018; Ribeiro et al.,
2018), and character-level noise (Belinkov and
Bisk, 2017; Ebrahimi et al., 2017). These works
focus mainly on demonstrating models’ lack of ro-
bustness, and mostly do not explore ways to in-
crease robustness beyond data augmentation. Data
augmentation is effective for narrow perturbation
spaces (Jia and Liang, 2017; Ribeiro et al., 2018),
but only confers partial robustness in other cases
(Iyyer et al., 2018; Alzantot et al., 2018). Ebrahimi
et al. (2017) tried adversarial training (Goodfellow
et al., 2015) for character-level perturbations, but
could only use a fast heuristic attack at training
time, due to runtime considerations. As a result,
their models were still be fooled by running a more
expensive search procedure at test time.

Provable defenses have been studied for sim-
pler NLP models and attacks, particularly for tasks
like spam detection where real-life adversaries try
to evade detection. Globerson and Roweis (2006)
train linear classifiers that are robust to adversar-
ial feature deletion. Dalvi et al. (2004) analyzed
optimal strategies for a Naive Bayes classifier and
attacker, but their classifier only defends against a
fixed attacker that does not adapt to the model.

Recent work in computer vision (Szegedy et al.,
2014; Goodfellow et al., 2015) has sparked re-
newed interest in adversarial examples. Most
work in this area focuses on L∞-bounded pertur-
bations, in which each input pixel can be changed
by a small amount. The word substitution attack
model we consider is similar to L∞ perturbations,
as the adversary can change each input word by
a small amount. Our work is inspired by work
based on convex optimization (Raghunathan et al.,
2018; Wong and Kolter, 2018) and builds directly
on interval bound propagation (Dvijotham et al.,

2018; Gowal et al., 2018), which has certified ro-
bustness of computer vision models toL∞ attacks.
Adversarial training via projected gradient descent
(Madry et al., 2018) has also been shown to im-
prove robustness, but assumes that inputs are con-
tinuous. It could be applied in NLP by relaxing
sets of word vectors to continuous regions.

This work provides certificates against word
substitution perturbations for particular models.
Since IBP is modular, it can be extended to
other model architectures on other tasks. It is
an open question whether IBP can give non-
trivial bounds for sequence-to-sequence tasks like
machine translation (Belinkov and Bisk, 2017;
Michel et al., 2019). In principle, IBP can handle
character-level typos (Ebrahimi et al., 2017; Pruthi
et al., 2019), though typos yield more perturba-
tions per word than we consider in this work. We
are also interested in handling word insertions and
deletions, rather than just substitutions. Finally,
we would like to train models that get state-of-
the-art clean accuracy while also being provably
robust; achieving this remains an open problem.

In conclusion, state-of-the-art NLP models are
accurate on average, but they still have significant
blind spots. Certifiably robust training provides
a general, principled mechanism to avoid such
blind spots by encouraging models to make cor-
rect predictions on all inputs within some known
perturbation neighborhood. This type of robust-
ness is a necessary (but not sufficient) property of
models that truly understand language. We hope
that our work is a stepping stone towards models
that are robust against an even wider, harder-to-
characterize space of possible attacks.

Acknowledgments

This work was supported by NSF Award Grant no.
1805310 and the DARPA ASED program under
FA8650-18-2-7882. R.J. is supported by an NSF
Graduate Research Fellowship under Grant No.
DGE-114747. A.R. is supported by a Google PhD
Fellowship and the Open Philanthropy Project AI
Fellowship. We thank Allen Nie for providing
the pre-trained language model, and thank Peng
Qi, Urvashi Khandelwal, Shiori Sagawa, and the
anonymous reviewers for their helpful comments.

Reproducibility

All code, data, and experiments are available on
Codalab at https://bit.ly/2KVxIFN.

https://bit.ly/2KVxIFN

4138

References
M. Alzantot, Y. Sharma, A. Elgohary, B. Ho, M. Sri-

vastava, and K. Chang. 2018. Generating natural
language adversarial examples. In Empirical Meth-
ods in Natural Language Processing (EMNLP).

A. Athalye, N. Carlini, and D. Wagner. 2018. Obfus-
cated gradients give a false sense of security: Cir-
cumventing defenses to adversarial examples. arXiv
preprint arXiv:1802.00420.

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural
machine translation by jointly learning to align and
translate. In International Conference on Learning
Representations (ICLR).

Y. Belinkov and Y. Bisk. 2017. Synthetic and natural
noise both break neural machine translation. arXiv
preprint arXiv:1711.02173.

S. Bowman, G. Angeli, C. Potts, and C. D. Manning.
2015. A large annotated corpus for learning natural
language inference. In Empirical Methods in Natu-
ral Language Processing (EMNLP).

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants,
P. Koehn, and T. Robinson. 2013. One billion word
benchmark for measuring progress in statistical lan-
guage modeling. arXiv preprint arXiv:1312.3005.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and
D. Verma. 2004. Adversarial classification. In Inter-
national Conference on Knowledge Discovery and
Data Mining (KDD).

K. Dvijotham, S. Gowal, R. Stanforth, R. Arand-
jelovic, B. O’Donoghue, J. Uesato, and P. Kohli.
2018. Training verified learners with learned veri-
fiers. arXiv preprint arXiv:1805.10265.

J. Ebrahimi, A. Rao, D. Lowd, and D. Dou. 2017. Hot-
flip: White-box adversarial examples for text classi-
fication. arXiv preprint arXiv:1712.06751.

A. Globerson and S. Roweis. 2006. Nightmare at test
time: robust learning by feature deletion. In Inter-
national Conference on Machine Learning (ICML),
pages 353–360.

I. J. Goodfellow, J. Shlens, and C. Szegedy. 2015. Ex-
plaining and harnessing adversarial examples. In
International Conference on Learning Representa-
tions (ICLR).

S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel,
C. Qin, J. Uesato, T. Mann, and P. Kohli. 2018.
On the effectiveness of interval bound propagation
for training verifiably robust models. arXiv preprint
arXiv:1810.12715.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9(8):1735–
1780.

M. Iyyer, J. Wieting, K. Gimpel, and L. Zettlemoyer.
2018. Adversarial example generation with syn-
tactically controlled paraphrase networks. In North
American Association for Computational Linguis-
tics (NAACL).

R. Jia and P. Liang. 2017. Adversarial examples for
evaluating reading comprehension systems. In Em-
pirical Methods in Natural Language Processing
(EMNLP).

D. Kingma and J. Ba. 2014. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

N. F. Liu, R. Schwartz, and N. A. Smith. 2019. Inocu-
lation by fine-tuning: A method for analyzing chal-
lenge datasets. In North American Association for
Computational Linguistics (NAACL).

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng,
and C. Potts. 2011. Learning word vectors for sen-
timent analysis. In Association for Computational
Linguistics (ACL).

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. 2017. Towards deep learning models
resistant to adversarial attacks (published at ICLR
2018). arXiv.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. 2018. Towards deep learning models re-
sistant to adversarial attacks. In International Con-
ference on Learning Representations (ICLR).

P. Michel, X. Li, G. Neubig, and J. M. Pino. 2019. On
evaluation of adversarial perturbations for sequence-
to-sequence models. In North American Association
for Computational Linguistics (NAACL).

N. Mrkšić, D. Ó Séaghdha, B. Thomson, M. Gašić,
L. Rojas-Barahona, P. Su, D. Vandyke, T. Wen, and
S. Young. 2016. Counter-fitting word vectors to lin-
guistic constraints. In North American Association
for Computational Linguistics (NAACL).

A. Parikh, O. Täckström, D. Das, and J. Uszkoreit.
2016. A decomposable attention model for natural
language inference. In Empirical Methods in Natu-
ral Language Processing (EMNLP).

J. Pennington, R. Socher, and C. D. Manning. 2014.
GloVe: Global vectors for word representation. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

D. Pruthi, B. Dhingra, and Z. C. Lipton. 2019. Com-
bating adversarial misspellings with robust word
recognition. In Association for Computational Lin-
guistics (ACL).

A. Raghunathan, J. Steinhardt, and P. Liang. 2018.
Certified defenses against adversarial examples. In
International Conference on Learning Representa-
tions (ICLR).

4139

M. T. Ribeiro, S. Singh, and C. Guestrin. 2018. Se-
mantically equivalent adversarial rules for debug-
ging NLP models. In Association for Computational
Linguistics (ACL).

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. 2014. Intriguing
properties of neural networks. In International Con-
ference on Learning Representations (ICLR).

E. Wong and J. Z. Kolter. 2018. Provable defenses
against adversarial examples via the convex outer
adversarial polytope. In International Conference
on Machine Learning (ICML).

H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and
M. I. Jordan. 2019. Theoretically principled trade-
off between robustness and accuracy. In Interna-
tional Conference on Machine Learning (ICML).

A Supplemental material

A.1 Additional interval bound formulas
Gowal et al. (2018) showed how to compute inter-
val bounds for affine transformations and mono-
tonic element-wise functions. Here, we review
their derivations, for completeness.

Affine transformations. Affine transformations
are the building blocks of neural networks. Sup-
pose zres = a>zdep + b for weight a ∈ Rm and
bias b ∈ R. zres is largest when positive entries of
a are multiplied with udep and negative with `dep:

ures = 0.5(a+ |a|)>︸ ︷︷ ︸
positive

udep + 0.5(a− |a|)>︸ ︷︷ ︸
negative

`dep + b

= µ+ r, (9)

where µ = 0.5a>(`dep + udep) + b and r =
0.5|a|>(u − l). A similar computation yields that
`res = µ − r. Therefore, the interval Ores can
be computed using two inner product evaluations:
one with a and one with |a|.

Monotonic scalar functions. Activation func-
tions such as ReLU, sigmoid and tanh are mono-
tonic. Suppose zres = σ(zdep) where zres, zdep ∈
R, i.e. the node applies an element-wise function
to its input. The intervals can be computed triv-
ially since zres is minimized at `dep and maximized
at udep.

`res = σ(`dep), ures = σ(udep). (10)

A.2 Numerical stability of softmax
In this section, we show how to compute interval
bounds for softmax layers in a numerically stable

way. We will do this by showing how to handle
log-softmax layers. Note that since softmax is just
exponentiated log-softmax, and exponentiation is
monotonic, bounds on log-softmax directly yield
bounds on softmax.

Let zdep denote a vector of length m, let c be
an integer ∈ {1, . . . ,m}, and let zres represent the
log-softmax score of index c, i.e.

zres = log
exp(z

dep
c)∑m

j=1 exp(z
dep
j)

(11)

= zdep
c − log

m∑
j=1

exp(z
dep
j). (12)

Given interval bounds `j ≤ z
dep
j ≤ uj for each j,

we show how to compute upper and lower bounds
on zres. For any vector v, we assume access to a
subroutine that computes

logsumexp(v) = log
∑
i

exp(vi)

stably. The standard way to compute this
is to normalize v by subtracting maxi(vi) be-
fore taking exponentials, then add it back at
the end. logsumexp is a standard function
in libraries like PyTorch. We will also rely
on the fact that if v is the concatenation
of vectors u and w, then logsumexp(v) =
logsumexp([logsumexp(u), logsumexp(w)]).

Upper bound. The upper bound ures is achieved
by having the maximum value of zdep

c , and mini-
mum value of all others. This can be written as:

ures = udep
c − log

exp(udep
c) +

∑
1≤j≤m,j 6=c

exp(`dep
j)

 .

(13)

While we could directly compute this expression,
it is difficult to vectorize. Instead, with some rear-
ranging, we get

ures = udep
c − log

(
exp(udep

c)− exp(`dep
c) +

m∑
j=1

exp(`dep
j)

)
.

(14)

The second term is the logsumexp of

log
(
exp(udep

c)− exp(`dep
c)
)

(15)

and

logsumexp(`dep). (16)

4140

Since we know how to compute logsumexp, this
reduces to computing (15). Note that (15) can be
rewritten as

udep
c + log

(
1− exp(`dep

c − udep
c)
)

(17)

by adding and subtracting udep
c . To compute this

quantity, we consider two cases:

1. udep
c � `

dep
c . Here we use the fact that sta-

ble methods exist to compute log1p(x) =
log(1 + x) for x close to 0. We compute the
desired value as

udep
c + log 1p(− exp(`dep

c − udep
c)),

since exp(`
dep
c − udep

c) will be close to 0.

2. udep
c close to `

dep
c . Here we use the

fact that stable methods exist to compute
expm1(x) = exp(x) − 1 for x close to 0.
We compute the desired value as

udep
c + log(− expm1(`dep

c − udep
c)),

since `dep
c − udep

c may be close to 0.

We use case 1 if udep
c − `dep

c > log 2, and case 2
otherwise.5

Lower bound. The lower bound `res is achieved
by having the minimum value of zdep

c , and the
maximum value of all others. This can be written
as:

`res = `dep
c − log

exp(`dep
c) +

∑
1≤j≤m,j 6=c

exp(udep
j)

 .

(18)

The second term is just a normal logsumexp,
which is easy to compute. To vectorize the imple-
mentation, it helps to first compute the logsumexp
of everything except `dep

c , and then logsumexp
that with `dep

c .

A.3 Attack surface differences
In Alzantot et al. (2018), the adversary applies re-
placements one at a time, and the neighborhoods
and language model scores are computed relative
to the current altered version of the input. This re-
sults in a hard-to-define attack surface, as the same

5See https://cran.r-project.org/web/
packages/Rmpfr/vignettes/log1mexp-note.
pdf for further explanation.

word can be replaced many times, leading to se-
mantic drift. We instead pre-compute the allowed
substitutions S(x, i) at index i based on the origi-
nal x. We define S(x, i) as the set of x̃i ∈ N(xi)
such that

logP (xi−W :i−1, x̃i, xi+1:i+W) ≥
logP (xi−W :i+W)− δ (19)

where probabilities are assigned by a pre-trained
language model, and the window radius W and
threshold δ are hyperparameters. We use W =
6 and δ = 5. We also use a different lan-
guage model6 from Alzantot et al. (2018) that
achieves perplexity of 50.79 on the One Billion
Word dataset (Chelba et al., 2013). Alzantot et al.
(2018) use a different, slower language model,
which compels them to use a smaller window ra-
dius of W = 1.

A.4 Experimental details
We do not run training for a set number of epochs
but do early stopping on the development set in-
stead. For normal training, we early stop on nor-
mal development set accuracy. For training with
data augmentation, we early stop on the accuracy
on the augmented development set. For certifiably
robust training, we early stop on the certifiably ro-
bust accuracy on the development set. We use the
Adam optimizer (Kingma and Ba, 2014) to train
all models.

On IMDB, we restrict the model to only use the
50, 000 words that are in the vocabulary of the
counter-fitted word vector space of Mrkšić et al.
(2016). This is because perturbations are not al-
lowed for any words not in this vocabulary, i.e.
N(w) = {w} for w /∈ V . Therefore, the model
is strongly incentivized to predict based on words
outside of this set. While this is a valid way to
achieve high certified accuracy, it is not a valid ro-
bustness strategy in general. We simply delete all
words that are not in the vocabulary before feeding
the input to the model.

For SNLI, we use 100-dimensional hidden state
for the BOW model and a 3-layer feedforward net-
work. These values were chosen by a hyperpa-
rameter search on the dev set. For DECOMPATTN,
we use a 300-dimensional hidden state and a 2-
layer feedforward network on top of the context-
aware vectors. These values were chosen to match
Parikh et al. (2016).

6https://github.com/windweller/l2w

https://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf
https://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf
https://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf
https://github.com/windweller/l2w

4141

System κ Learning Rate Dropout Prob. Weight Decay Gradient Norm Clip Val. T init

IMDB, BOW 0.8 1× 10−3 0.2 1× 10−4 0.25 40
IMDB, CNN 0.8 1× 10−3 0.2 1× 10−4 0.25 40
IMDB, LSTM 0.8 1× 10−3 0.2 1× 10−4 0.25 20
SNLI, BOW 0.5 5× 10−4 0.1 1× 10−4 0.25 35
SNLI, DECOMPATTN 0.5 1× 10−4 0.1 0 0.25 50

Table 3: Training hyperparameters for training the models. The same hyperparameters were used for all training
settings(plain, data augmentation, robust training)

Our implementation of the Decomposable At-
tention follows the original described in (Parikh
et al., 2016) except for a few differences listed be-
low;

• We do not normalize GloVe vectors to have
norm 1.

• We do not hash out-of-vocabulary words to
randomly generated vectors that we train, in-
stead we omit them.

• We do randomly generate a null token vector
that we then train. (Whether the null vector is
trained is unspecified in the original paper).

• We use the Adam optimizer (with a learning
rate of 1× 10−4) instead of AdaGrad.

• We use a batch size of 256 instead of 4.

• We use a dropout probability of 0.1 instead
of 0.2

• We do not use the intra-sentence attention
module.

A.5 Training schedule

In Table 4, we show the effect of holding ε or κ
fixed during training, as described in Section 5.6.
All numbers are on 1000 randomly chosen ex-
amples from the IMDB development set. Slowly
increasing ε is important for good performance.
Slowly increasing κ is actually slightly worse than
holding κ = κ∗ fixed during training, despite ear-
lier experiments we ran suggesting the opposite.
Here we only report certified accuracy, as all mod-
els are trained with certifiably robust training, and
certified accuracy is much faster to compute for
development purposes.

A.6 Word vector bound sizes

To better understand the effect of gword, we
checked whether gword made interval bound boxes
around neighborhoods N(w) smaller. For each

System
IBP-certified

(Lower bound)
BOW 68.8
→ Fixed ε 46.6
→ Fixed κ 69.8
→ Fixed ε and κ 66.3

CNN 72.5
→ Fixed ε 67.6
→ Fixed κ 74.5
→ Fixed ε and κ 65.3

LSTM 62.5
→ Fixed ε 43.7
→ Fixed κ 63.0
→ Fixed ε and κ 62.0

Table 4: Effects of holding ε and κ fixed during train-
ing. All numbers are on 1000 randomly chosen IMDB
development set examples.

word w with |N(w)| > 1, and for both the pre-
trained vectors φpre(·) and transformed vectors
φ(·), we compute

1

d

d∑
i=1

1

σ i

(
uword
w − `word

w

)
where `word

w and uword
w are the interval bounds

around either {φpre(w̃) : w̃ ∈ N(w)} or {φ(w̃) :
w̃ ∈ N(w)}, and σi is the standard deviation
across the vocabulary of the i-th coordinate of the
embeddings. This quantity measures the average
width of the IBP bounds for the word vectors of
w and its neighbors, normalized by the standard
deviation in each coordinate. On 78.2% of words
with |N(w)| > 1, this value was smaller for the
transformed vectors learned by the CNN on IMDB
with robust training, compared to the GloVe vec-
tors. For same model with normal training, the
value was smaller only 54.5% of the time, imply-
ing that robust training makes the transformation
produce tighter bounds. We observed the same
pattern for other model architectures as well.

4142

A.7 Certifying long-term memory
We might expect that LSTMs are difficult to cer-
tify with IBP, due to their long computation paths.
To test whether robust training can learn recurrent
models that track state across many time steps, we
created a toy binary classification task where the
input is a sequence of words x1, . . . , xL, and the
label y is 1 if x1 = xL and 0 otherwise. We trained
an LSTM model that reads the input left-to-right,
and tries to predict y with a two-layer feedforward
network on top of the final hidden state. To do
this task, the model must encode the first word in
its state and remember it until the final timestep; a
bag of words model cannot do this task. For per-
turbations, we allow replacing every middle word
x2, . . . , xL−1 with any word in the vocabulary.
We use robust training on 4000 randomly gener-
ated examples, where the length of each exam-
ple is sampled uniformly between 3 and 10. The
model obtains 100% certified accuracy on a test set
of 1000 examples, confirming that robust training
can learn models that track state across many time
steps.

For this experiment, we found it important to
first train for multiple epochs with no certified
objective, before increasing ε and κ. Otherwise,
the model gets stuck in bad local optima. We
trained for 50 epochs using the normal objective,
50 epochs increasing ε towards 1 and κ towards
0.5, then 17 final epochs (determined by early
stopping) with these final values of ε and κ.7 We
leave further exploration of these learning sched-
ule tactics to future work. We also found it nec-
essary to use a larger LSTM—we used one with
300-dimensional hidden states.

7 Note that this dataset is much smaller than IMDB and
SNLI, so each epoch corresponds to many fewer parameter
updates.

