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Abstract
This paper presents a new sequence-to-
sequence (seq2seq) pre-training method PoDA
(Pre-training of Denoising Autoencoders),
which learns representations suitable for text
generation tasks. Unlike encoder-only (e.g.,
BERT) or decoder-only (e.g., OpenAI GPT)
pre-training approaches, PoDA jointly pre-
trains both the encoder and decoder by denois-
ing the noise-corrupted text, and it also has the
advantage of keeping the network architecture
unchanged in the subsequent fine-tuning stage.
Meanwhile, we design a hybrid model of
Transformer and pointer-generator networks
as the backbone architecture for PoDA. We
conduct experiments on two text generation
tasks: abstractive summarization, and gram-
matical error correction. Results on four
datasets show that PoDA can improve model
performance over strong baselines without us-
ing any task-specific techniques and signifi-
cantly speed up convergence. 1

1 Introduction

Methods based on unsupervised pre-training and
supervised fine-tuning for NLP have achieved phe-
nomenal successes in the last two years. Most of
the proposed methods in the literature choose lan-
guage modeling or its variant as the pre-training
task. After the pre-training stage, ELMo (Pe-
ters et al., 2018) and CoVe (McCann et al.,
2017) directly use the learned representations as
additional features for downstream tasks, while
BERT (Devlin et al., 2018), ULMFiT (Howard
and Ruder, 2018), XLM (Lample and Conneau,
2019), and OpenAI GPT (Radford et al., 2018,
2019) require fine-tuning both pre-trained param-
eters and task-specific parameters on labeled data.
The state-of-the-art performances have been sig-
nificantly advanced for classification and sequence
1The code and pre-trained models are available at https:
//github.com/yuantiku/PoDA.

labeling tasks, such as natural language inference
(Bowman et al., 2015), named-entity recognition,
SQuAD question answering (Rajpurkar et al.,
2016) etc.

However, little attention has been paid to pre-
training for seq2seq text generation (Sutskever
et al., 2014). A typical seq2seq network con-
sists of a bidirectional encoder, a unidirectional
decoder and attention between the encoder and de-
coder. Previous work mainly focuses on encoder-
only or decoder-only pre-training. For example,
BERT pre-trains a bidirectional encoder, and Ope-
nAI GPT pre-trains a language model which is es-
sentially a unidirectional decoder. Ramachandran
et al. (2016) propose to train two independent lan-
guage models for the encoder and decoder respec-
tively. All of the aforementioned methods are only
able to partially pre-train the seq2seq networks,
and therefore are unable to unleash the full poten-
tial of transfer learning for text generation.

In this paper, we present PoDA, a denoising
based pre-training method that is able to jointly
pre-train all components of seq2seq networks.
Like denoising autoencoders, PoDA works by de-
noising the noise-corrupted text sequences. Any
noising function that fits in the seq2seq frame-
work can be used. We experiment with three types
of noises: randomly shuffle, delete or replace the
words in a given sequence. It is noted PoDA is
simple, easy-to-implement and applicable to virtu-
ally all seq2seq architectures, including ConvS2S
(Gehring et al., 2017) and Transformer (Vaswani
et al., 2017). Here, we adopt the hybrid archi-
tecture of Transformer and pointer-generator net-
works (See et al., 2017). Transformer is effective
at modeling long-distance dependencies, highly
parallelizable and demonstrates good performance
empirically. Pointer-generator network incorpo-
rates copying mechanism (Gu et al., 2016; Gul-
cehre et al., 2016) which is helpful for most text

https://github.com/yuantiku/PoDA
https://github.com/yuantiku/PoDA
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Figure 1: PoDA model architecture. The masked loss is calculated only for the blue underlined words. “<bos>”
is a special begin-of-sequence padding symbol. The example input-output pair is explained in Section 2.2.

generation tasks.
The text corpora used for pre-training are the

Billion Word Benchmark (Chelba et al., 2013)
and English Wikipedia, both of which are pub-
licly available and consists of nearly 2.99 billion
words in total. We conduct experiments on two
abstractive summarization datasets (CNN/Daily
Mail (See et al., 2017) and Gigaword (Rush
et al., 2015)), and two grammatical error correc-
tion datasets (CoNLL-2014 (Ng et al., 2014) and
JFLEG (Napoles et al., 2017)). With simple maxi-
mum likelihood training and no task-specific tech-
niques, PoDA achieves superior or comparable
performance against state-of-the-art systems and
speeds up convergence for all four datasets.

2 Method

2.1 Model Architecture

First, we design a seq2seq model as the back-
bone architecture of our proposed pre-training
method, which is a combination of Transformer
and pointer-generator networks, as shown in Fig-
ure 1.

The input representations are the sum of word
embeddings and sinusoidal positional encodings.
Both the Transformer encoder and the decoder
consist of 6 layers of transformer blocks, and each
block is a multi-head self-attention layer followed
by one layer of positionwise feedforward network.

For the output layer, we use a pointer-generator
layer to allow both copying from the input se-
quence and generation from a fixed vocabulary.
The implementation is detailed in Appendix.

As a side note, we want to point out that the
seq2seq architecture is not limited to the one we
propose and other networks such as ConvS2S,
RNN-based seq2seq models are also applicable.

Pointer-generator networks are also not the only
solution for handling out-of-vocabulary(OOV)
words, and subword-based methods such as sen-
tencepiece (Kudo and Richardson, 2018) can be
used at the cost of making the input and output se-
quences longer.

2.2 Noising and Denoising
Similar to denoising autoencoders, PoDA involves
two parts: noising and denoising. The noising part
corrupts a given word sequence x = {xi}ni=1 and
gets a noisy word sequence x′ = {x′

i}n
′

i=1. The
denoising part tries to recover x given x′ using a
seq2seq model.

We use three noising functions: randomly shuf-
fle, delete or replace the words in x. The details
are shown in Algorithm 1, where N(0, σ) is a
gaussian distribution with mean 0 and variance σ.
B(p) is a Bernoulli distribution, and Beta(α, β)
is a beta distribution serving as the prior for B(p).
Take function DELETE (line 10 to line 15 in Algo-
rithm 1) as an example, it first samples a Bernoulli
distribution with expectation p from Beta(α, β),
then each word is deleted with probability p. The
usage of Beta(α, β) prior can make the model ro-
bust to different degrees of noises.

We exemplify the operations above in Figure 1.
The original word sequence x =“The fox jumps
over the lazy dog .”, after three noising opera-
tions: delete “The”, replace “jumps” with “fly”
and swap “lazy” and “dog”, we get the noisy
word sequence x′ =“fox fly over the dog lazy .”.

The denoising part maximizes the conditional
probability p(x|x′), which can be factorized as:

p(x|x′) = Πn
i=1p(xi|x′,x<i) (1)

When predicting xi, it is conditioned on the
noise-corrupted full context x′ and the clean left
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Algorithm 1 The Noising Algorithm
Input: x is a sequence of words

α, β, σ are hyperparameters

1: function NOISING(x)
2: Apply SHUFFLE, DELETE, REPLACE to

x in random order
3: end function

4: function SHUFFLE(x)
5: for i← 1 to len(x) do
6: indices[i]← i+ δi ∼ N(0, σ)
7: end for
8: Rearrange x based on argsort(indices)
9: end function

10: function DELETE(x)
11: Sample p ∼ Beta(α, β)
12: for w in x do
13: Delete w if µ ∼B(p) is 1
14: end for
15: end function
16: function REPLACE(x)
17: Sample p ∼ Beta(α, β)
18: for w in x do
19: Replace w with w′ sampled from uni-

gram distribution if µ ∼B(p) is 1
20: end for
21: end function

context x<i. This shows that our seq2seq for-
mulation is capable of unifying both encoder-only
pre-training and decoder-only pre-training meth-
ods, since a bidirectional language model used by
BERT can be seen as simulating p(xi|x′) , while a
traditional unidirectional language model used by
OpenAI GPT as resembling p(xi|x<i).

Like BERT, we add a mask to the target se-
quence when computing the loss function. To
force the model to learn meaningful representa-
tions, instead of copying from the input most of
the time, the positions where the corresponding
words are corrupted in the input are kept. We also
keep a small percentage (3%) of positions where
the words are not corrupted, so that the model can
learn to copy from the input when appropriate.
Then, the training loss with mask is as follows (Θ
is model parameters):

L = −
n∑

i=1

mask(i) · log p(xi|x′,x<i,Θ) (2)

Empirically, we set σ = 0.5 for Gaussian distri-

bution. α and β are chosen to have a Beta distribu-
tion with mean 0.15 and standard deviation 0.03.

2.3 Pre-training Procedure

Corpus #words
English Wikipedia 2.22B

Billion Word Benchmark 0.76B
Total 2.99B

Table 1: Text corpora used for pre-training.

For pre-training, we use two text corpora: the
full dump of English Wikipedia2 and the Billion
Word Benchmark3, as shown in Table 1. For En-
glish Wikipedia, we remove paragraphs with less
than 3 words or more than 30% OOV words, and
each paragraph is split into text segments with no
more than 128 words for each segment. The Bil-
lion Word Benchmark is a sentence-level corpus.
Sentences with more than 500 words are ignored
during training.

The pre-training is performed on 4 GPUs using
synchronous data parallelism, gradients are aver-
aged across different GPUs. Each batch on a sin-
gle GPU consists of at most 3000 tokens. We pre-
train the network for 5 million iterations, which
is roughly 14 epochs over the entire dataset. The
final perplexity on the validation set is about 6.8.
Each epoch takes approximately 2 days. Details
on the network hyperparameters and optimizers
are given in Section 3.1.

2.4 Fine-tuning Procedure

With our pre-training method, we do not need to
change the network architecture during the fine-
tuning stage, since both the pre-training task and
text generation tasks take a source sequence as in-
put and return a target sequence as output. The
network is initialized with pre-trained parame-
ter values. For fine-tuning, the preprocessing is
dataset-specific, but the learning rate scheduling,
dropout, early stopping, and gradient clipping are
exactly the same as pre-training.

The objective function for fine-tuning is the
word-level negative log-likelihood. Here we do
not use reinforcement learning to tune towards
the automatic evaluation metrics such as ROUGE
2https://dumps.wikimedia.org/
3http://www.statmt.org/lm-benchmark/, we do
not use BooksCorpus (Zhu et al., 2015) used by BERT, be-
cause it is not publicly available now.

https://dumps.wikimedia.org/
http://www.statmt.org/lm-benchmark/
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(Lin, 2004) or BLEU (Papineni et al., 2002), be-
cause it may overfit evaluation metrics and barely
show improvements in human evaluations (Wu
et al., 2016).

3 Experiments

3.1 Setup

The network architecture used by our experiments
has 97 million parameters. It consists of 6 lay-
ers of encoder blocks, 6 layers of decoder blocks,
and 1 pointer-generator layer. The hidden size
of each positionwise feedforward layer is 4096.
We use 8 heads for all multi-head attention lay-
ers. The vocabulary consists of the top 50k most
frequent words (case sensitive), and the dimension
of word embedding is 512. We tie the parame-
ters of encoder word embeddings, decoder word
embeddings, and the output softmax layer. NAG
(Nesterov Accelerated Gradient) optimizer is used
with initial learning rate 2× 10−3. Dropout of 0.2
is applied for all self-attention layers, positionwise
feedforward layers and input embedding layers.
The gradient norm is clipped to have a maximum
value of 2. We follow the Transformer implemen-
tation from fairseq4.

For task-specific fine-tuning, unless explicitly
specified, we reuse the hyperparameters from the
pre-training stage. After each training epoch, we
compute the validation loss and halve the learning
rate whenever the validation loss stops decreasing.
The training procedure terminates if the learning
rate drops below 10−4. Exponential moving av-
erage (EMA) with decay rate 0.9995 is used to
make the training stabilized. At inference time,
we use standard beam search decoding based on
the length-normalized log-likelihood. For ensem-
ble models, we use different random seeds and
pre-trained checkpoints for fine-tuning. Ensemble
decoding is used by averaging the output probabil-
ities from different models at every decoding step.

When reporting experimental results, “PoDA
w/o pre-training” refers to the proposed architec-
ture in Section 2.1 trained only on the supervised
data, and “PoDA w/o fine-tuning” only pre-trains
on unlabeled data. PoDA first pre-trains a denois-
ing autoencoder and then fine-tunes on the super-
vised data.

4https://github.com/pytorch/fairseq

3.2 Abstractive Summarization

Datasets We use two summarization datasets:
CNN/Daily Mail5 (See et al., 2017) and Gigaword
(Rush et al., 2015) dataset. The official split for
training, validation, and test is shown in Table 2.

Corpus
# of examples

train valid test

CNN/Daily Mail 287, 113 13, 368 11, 490
Gigaword 3, 803, 957 189, 651 1, 951

Table 2: Dataset statistics for abstractive summariza-
tion.

The CNN/Daily Mail dataset contains approxi-
mately 300k news articles with an average of 781
words for each article, and each article is paired
with summaries with 56 words on average. We use
the preprocessing script6 provided by See et al.
(2017). The articles are truncated to 800 words
for both training and testing. The summaries are
truncated to 130 words for training.

The Gigaword is a headline-generation dataset
consisting of nearly 4 million examples. Headline
generation can be seen as a sentence summariza-
tion task. Each example in Gigaword consists of
one sentence with an average length of 31.3 words,
which is much shorter than CNN/Daily Mail, and
one short headline with an average length of 8.3
words. The Gigaword dataset provided by Rush
et al. (2015) is already tokenized and lower-cased.
Since our vocabulary is case-sensitive, such incon-
sistency is expected to hurt our system’s perfor-
mance.
Evaluation We report evaluation results in terms
of of ROUGE-1, ROUGE-2 and ROUGE-L (Lin,
2004) using the pyrouge7 package. For the
CNN/Daily Mail dataset, PGNet (See et al.,
2017), Lead3 (See et al., 2017), rnn-ext + RL (?),
NeuSum (Zhou et al., 2018) are used as baselines.
For the Gigaword dataset, ABS+ (Rush et al.,
2015), CGU (Lin et al., 2018), FTSum (Cao et al.,
2018b), and Re3Sum (Cao et al., 2018a) are used
as baselines.
Results for CNN/Daily Mail Considering the
characteristics of news articles, baselines such as
Lead3 (simply choose the first 3 sentences) can
achieve strong performance in terms of ROUGE

5We use the non-anonymized version, which is considered to
be more realistic.

6https://github.com/abisee/cnn-dailymail
7https://github.com/andersjo/pyrouge

https://github.com/pytorch/fairseq
https://github.com/abisee/cnn-dailymail
https://github.com/andersjo/pyrouge
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System
ROUGE

1 2 L
Lead3 40.34 17.70 36.57
PGNet 36.44 15.66 33.42

rnn-ext + RL 41.47 18.72 37.76
NeuSum 41.59 19.01 37.98

PoDA w/o pre-training 40.82 18.46 37.61
PoDA 41.87 19.27 38.54

Table 3: ROUGE scores for CNN/Daily Mail dataset.

scores, as shown in Table 3. “rnn-ext+RL”
combines both extractive and abstractive meth-
ods and achieves performance improvements (?).
PoDA is a purely abstractive summarization sys-
tem and performs stably better than all the meth-
ods. “PoDA w/o pre-training” only has moderate
success with ROUGE-1 40.82, ROUGE-2 18.46
and ROUGE-L 37.61. When combined with pre-
training, PoDA establishes new state-of-the-art on
CNN/Daily Mail dataset.

System
ROUGE

1 2 L
ABS+ 29.76 11.88 26.96
CGU 36.3 18.0 33.8

FTSum 37.27 17.65 34.24
Re3Sum 37.04 19.03 34.46

PoDA w/o pre-training 37.24 18.28 34.53
PoDA 38.29 19.06 35.45

Table 4: ROUGE scores for Gigaword dataset.

Results for Gigaword The Gigaword dataset
is much larger than CNN/Daily Mail, and this
enables “PoDA w/o pre-training” to have com-
petitive performance even without pre-training.
As in Table 4, PoDA substantially improves
ROUGE-1 from 37.24 to 38.29(+1.05), ROUGE-
2 from 18.28 to 19.06(+0.78), and ROUGE-L
from 34.53 to 35.45(+0.92), with pre-training
added. We can see that PoDA performs favorably
over the state-of-the-art Re3Sum method, which
utilizes unlabeled text corpora by first retrieving
and then rewriting relevant snippets.

3.3 Grammatical Error Correction (GEC)
Datasets GEC can also be seen as a text gen-
eration task, where the input sequence is a sen-
tence possibly containing some grammatical er-
rors, and the output is a clean and grammatical
sentence. We experiment PoDA on two GEC
datasets: CoNLL-2014 (Ng et al., 2014) and JF-
LEG (Napoles et al., 2017). We use three pub-

lic datasets for training: Lang-8 NAIST (Mizu-
moto et al., 2011), NUCLE (Dahlmeier et al.,
2013) and CLC FCE (Felice et al., 2014). The
test set of CoNLL-2013 shared task is used as val-
idation set for the CoNLL-2014 task. JFLEG has
its own validation set. For preprocessing, we use
NLTK8 to tokenize sentences, and remove all sen-
tence pairs without any edits in Lang-8 NAIST.
Simple spelling errors are corrected based on edit
distance. The dataset statistics are shown in Table
5.

Corpus #Sent Pairs Split
Lang-8 NAIST 1, 097, 274 train

NUCLE 57, 113 train
CLC FCE 32, 073 train

CoNLL-2013 test set 1, 381 valid
JFLEG valid set 754 valid

CoNLL-2014 test set 1, 312 test
JFLEG test set 747 test

Table 5: Dataset statistics for grammatical error correc-
tion. Due to the lack of standard preprocessing script,
the number of sentence pairs in the training set are
slightly different from previous work.

Evaluation To compare with previous work, we
use the official evaluation metrics: MaxMatch
(M2) F0.5 (Dahlmeier and Ng, 2012) for CoNLL-
2014 and GLEU (Napoles et al., 2015) for JF-
LEG dataset. Both metrics are shown to cor-
relate well with human evaluation scores. ML-
Conv (Chollampatt and Ng, 2018a), char-seq2seq
(Xie et al., 2016), dual-boost (Ge et al., 2018a),
Hybrid SMT-NMT (Grundkiewicz and Junczys-
Dowmunt, 2018), NQE (Chollampatt and Ng,
2018b), and NRL (Sakaguchi et al., 2017) are
used as baselines.
Results As shown in Table 6 and Table 7, when
trained only on the supervised data, “PoDA w/o
pre-training” can still achieve an impressive per-
formance with F0.5 score 54.01 on CoNLL-2014
test set and GLEU score 56.52 on JFLEG test set,
surpassing previous state-of-the-art single model
results. This once again shows the effectiveness
of the Transformer architecture. For GEC task,
most words in the output sequence also appear in
the input sequence, pointer-generator makes it eas-
ier to learn such prior. With denoising based pre-
training, PoDA greatly boosts the F0.5 score from
54.01 to 59.40(+5.39) for CoNLL-2014 dataset,

8https://www.nltk.org/

https://www.nltk.org/
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System (single) P R F0.5

char-seq2seq 49.24 23.77 40.56
MLConv 60.90 23.74 46.38

dual-boost 62.70 27.69 50.04
PoDA w/o fine-tuning 19.22 31.73 20.86

PoDA w/o pre-training 65.63 31.62 54.01
PoDA 70.10 36.88 59.40

Ensemble
MLConv(+rerank) 65.49 33.14 54.79

SMT-NMT(+rerank) 66.77 34.49 56.25
NQE - - 56.52
PoDA 71.01 37.68 60.34

Table 6: Precision (P ), recall (R) and F0.5 scores for
CoNLL-2014 test set. We only list systems trained on
public data. Ge et al. (2018b) reported better perfor-
mance with additional 4 million non-public sentence
pairs.

System (single) valid test
MLConv 47.71 51.34

NRL 49.82 53.98
dual-boost 51.35 56.33

PoDA w/o fine-tuning 34.43 36.83
PoDA w/o pre-training 51.57 56.52

PoDA 53.16 59.02

Ensemble
MLConv(+rerank) 52.48 57.47

SMT-NMT(+rerank) - 61.50
PoDA 53.29 59.48

Human - 62.38

Table 7: GLEU scores for JFLEG dataset.

and GLEU score from 56.52 to 59.02(+2.50)
for JFLEG. By ensembling 4 models initialized
with different pre-trained checkpoints and trained
with different random seeds, the performance can
be further boosted on both datasets (+0.94 for
CoNLL-2014 and +0.46 for JFLEG), outperform-
ing the other ensemble models such as “Hybrid
SMT-NMT”.

We also report the performance of “PoDA w/o
fine-tuning” which does not conduct fine-tuning.
The F0.5 score only reaches 20.86 on CoNLL-
2014 dataset and the GLEU score is 36.83 on JF-
LEG. These results are even worse than the weak-
est baselines in Table 6 and Table 7. The de-
noising based pre-training and the GEC task share
some similarities in the sense that both of them
attempt to convert noisy texts to clean and gram-
matical texts. However, the poor results of “PoDA
w/o fine-tuning” show that PoDA cannot be seen

as a simple data augmentation method for GEC.
Instead, PoDA learns generic text representations
and requires task-specific fine-tuning.

Techniques from previous work for GEC such
as language model based rerank (Chollampatt and
Ng, 2018a), data augmentation (Ge et al., 2018a),
and domain adaptation (Junczys-Dowmunt et al.,
2018) can be easily incorporated. A parallel work
(Zhao et al., 2019) observes similar gain by com-
bining simpler pre-training strategy and various
GEC-specific techniques.

4 Analysis

In the following analysis, we only choose one task
(summarization or GEC) to analyze each aspect
due to space limitation. Similar conclusions also
hold for the other task.

4.1 Linguistic Quality Analysis

In Table 8, we show some generated summaries
by PoDA from Gigaword dataset. In the first ex-
ample, PoDA successfully deletes the relatively
unimportant modifier “ivory coast striker”, and
keeps the picture complete by including both “bre-
men” and “saint-etienne” in the summary. In the
second example, “PoDA w/o pre-training” misses
an important date (“first quarter”) of the event
“economic crisis”. Both examples show our model
is able to identify the important text snippets in
the source sequence and organize them into a short
and fluent summary.

More example outputs by PoDA are listed in
Appendix.

4.2 Effects of the Number of Pre-training
Iterations

0 1 2 3 4 5 6
Pre-training Iterations (in millions)

52

53
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56
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59
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F-
0.

5 
sc

or
e

PoDA

Figure 2: F0.5 score on CoNLL-2014 test set with re-
spect to the number of pre-training iterations.
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Source
ivory coast striker boubacar sanogo is set to leave werder bremen
for french first division side saint-etienne.

Target sanogo set to sign for saint-etienne
PoDA w/o pre-training ivory coast striker sanogo set to join saint-etienne

PoDA sanogo set to leave bremen for saint-etienne

Source
thailand’s battered economy should start to bottom out in the first quarter
of #### provided the government’s efforts are n’t neutralized
by outside developments, a news report said monday.

Target economic crisis to bottom out early next year minister says
PoDA w/o pre-training thai economy expected to start to bottom out in UNK

PoDA thai economy to start to bottom out in first quarter

Table 8: Examples of generated summaries from Gigaword dataset.

In Figure 2, we show the F0.5 score on CoNLL-
2014 dataset when the model is initialized with
different pre-trained checkpoints. Though the F0.5

score has some fluctuations due to the random fac-
tors in training neural networks and the limited
size of the test set, the overall trend is very clear:
the F0.5 score first improves greatly and then keeps
a slow improvement after about 1 million itera-
tions, from 54 at the very beginning to 59 after
convergence.

4.3 Effects of Pre-trained Encoder and
Decoder

To show the effectiveness of the pre-trained en-
coder and decoder, we train the model by only us-
ing the encoder-side pre-trained parameters (“w/o
pre-trained decoder”) or decoder-side pre-trained
parameters (“w/o pre-trained encoder”) We do not
compare with pre-trained encoder from BERT or
pre-trained decoder from OpenAI GPT, mainly be-
cause the corresponding model capacity, tokeniza-
tion and text corpora used for pre-training are very
different.

System P R F0.5

Fully pre-trained 70.10 36.88 59.40

w/o pre-trained encoder 66.14 34.67 55.98
w/o pre-trained decoder 66.62 36.10 56.98
w/o pre-training 65.63 31.62 54.01

Table 9: Ablations for pre-trained encoder and decoder
on CoNLL-2014 test set.

Table 9 shows that the performance degrades
by a large margin if the network is only partially
pre-trained. The pre-trained encoder (−3.42 drop
in F0.5) is more important than the pre-trained de-
coder (−2.42 drop in F0.5).

4.4 Effects of Dataset Size

We also conduct ablations in few-shot learning set-
tings to see how the performance changes when
the model only accesses a small percentage of la-
beled data. We randomly sample 103 to 105 train-
ing examples from the Gigaword dataset and train
“PoDA w/o pre-training” and PoDA (with pre-
training) using exactly the same hyperparameters.

103 104 105

# of training examples

15

20

25

30

35

RO
UG

E-
1

PoDA w/o pre-training
PoDA
ABS+

Figure 3: ROUGE-1 on Gigaword test set with respect
to the number of training examples. ABS+ is a baseline
method from Rush et al. (2015) using attention. The
x-axis is in log scale.

Figure 3 shows the ROUGE-1 score on Giga-
word test set. With only 103 training examples,
PoDA reaches a reasonably good performance
comparable to ABS+ (an attention-based system
trained on nearly 4 million examples). With more
labeled data available, the performance gap be-
tween “PoDA w/o pre-training” and PoDA slowly
decreases from 15 to 2 in Figure 3. However, the
pre-training still helps even when the models are
trained on the full dataset (shown in Table 4).
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Figure 4: Validation perplexity with respect to the training epochs on CNN/Daily Mail and Gigaword datasets.
Perplexity is related to the vocabulary size, so the values here are not comparable with previous work.

4.5 Convergence Analysis

Pre-training can not only achieve better final per-
formance but also helps the model converge faster.
In Figure 4, we show the validation perplexity af-
ter each training epoch for both “PoDA w/o pre-
training” and PoDA.

We can clearly see that the validation perplex-
ity of PoDA is consistently lower than that of
“PoDA w/o pre-training”, especially at the first
few epochs. After 5 epochs, PoDA can arrive
at a validation perplexity that “PoDA w/o pre-
training” usually takes 30 or more epochs for both
CNN/Daily Mail and Gigaword datasets. This
nice property is particularly helpful when the
computational resources are limited. Other pre-
training methods such as BERT also demonstrate
similar behaviors.

5 Related Work

Network Pre-training The idea of pre-training
neural networks dates back to the early days of
deep learning. Bengio et al. (2007) proposed
layer-wise pre-training for deep belief networks
(DBN) to tackle the difficulty of training deep
neural networks based on a reconstruction ob-
jective. (Erhan et al., 2010; Dahl et al., 2012)
showed the effectiveness of pre-training for
tasks such as speech recognition. In the area
of computer vision, using ImageNet pre-trained
models have become a standard practice. In NLP
community, using pre-trained word embeddings is
the most popular way to transfer knowledge from
the unlabeled corpus. There are also work on
semi-supervised sequence learning (Dai and Le,
2015; Peters et al., 2017) attempting to incorporate
language modeling as an auxiliary task. Recently,

several pre-training methods based on language
models are presented, such as ELMo (Peters
et al., 2018), OpenAI GPT (Radford et al., 2018),
BERT (Devlin et al., 2018), XLM (Lample and
Conneau, 2019) etc. The combination of more
compute, larger model capacity and large-scale
text corpora lead to significant improvements on
NLP benchmarks (Wang et al., 2018).

Autoencoders have long been used for represen-
tation learning of images (Vincent et al., 2010)
and text (Li et al., 2015). However, precisely
reconstructing the clean input is probably too easy
for high-capacity models. Sparse autoencoders
(Deng et al., 2013), contractive autoencoders
(Rifai et al., 2011), and denoising autoencoders
(Vincent et al., 2010) are several popular variants.
Denoising autoencoders (DA) are shown to be
able to learn better representations for down-
stream tasks (Vincent et al., 2010, 2008; Hill
et al., 2016). Freitag and Roy (2018) use seq2seq
DAs for unsupervised natural language generation
in dialogue, and (Kim et al., 2018) propose to im-
prove the quality of machine translation with DAs.

Text Generation covers a wide spectrum of
NLP tasks, including machine translation (Wu
et al., 2016), summarization (See et al., 2017), re-
sponse generation (Vinyals and Le, 2015), para-
phrase generation, grammatical error correction
etc. Early studies on text generation mainly
adopt template-based (Reiter and Dale, 2000)
or example-based (Watanabe and Takeda, 1998)
methods. With the emergence of deep learning for
NLP, seq2seq models (Sutskever et al., 2014) be-
come a popular choice for text generation tasks
and show better performance in terms of both
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automatic evaluation metrics and human evalua-
tions (Wu et al., 2016). There are also stud-
ies focusing on text generation from structured
data such as SQL-to-text (Xu et al., 2018). Pre-
vious pre-training for text generation is usually
done by independently pre-training encoder-side
or decoder-side language models (Ramachandran
et al., 2016). Concurrent to our work, Edunov
et al. augment encoder representation with ELMo-
style models, MASS (Song et al., 2019) masks
continuous text fragments for pre-training, and
UNILM (Dong et al., 2019) proposes to pre-train
for both language understanding and generation
tasks.

6 Conclusion

This paper presents a new transfer learning ap-
proach for seq2seq text generation named PoDA.
It involves two steps: first, pre-train a customized
seq2seq denoising autoencoder on large-scale un-
labeled text corpora; then, fine-tune on in-domain
labeled data. The pre-training step is independent
of downstream tasks and jointly learns both en-
coder and decoder representations. PoDA is sim-
ple, intuitive and doesn’t require changing net-
work architecture during the fine-tuning stage. Ex-
periments on several abstractive summarization
and grammatical error correction datasets demon-
strate that PoDA leads to better performance and
faster convergence.

For future work, we would like to validate our
model on other tasks such as response generation,
explore more effective unsupervised sequence-to-
sequence pre-training methods, and handle cross-
lingual tasks such as machine translation.
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A Supplemental Material

A.1 Implementation of Pointer-Generator
Layer

The pointer-generator layer calculates a proba-
bility distribution over the union of a fixed vo-
cabulary V and the words in the input sequence
{xi}ni=1.

For a word w, the probability p(w) can be cal-
culated as follows:

α = MultiHeadAttention(ht
dec,henc)

pgen = σ(W1AttPooling(henc,α))

p(w) = pgenpv(w) + (1− pgen)
∑

i:x′
i=w

αi

(3)

henc is the top layer output of the Transformer
encoder, and ht

dec is the output of the Transformer
decoder at timestep t. pv(w) is the standard soft-
max probability for word w over the vocabulary
(pv(w) = 0 if w is an OOV word). α is the copy
attention over the input sequence, AttPooling is the
attentive pooling of encoder outputs henc with dis-
tribution α, and pgen denotes the probability of
generating from the fixed vocabulary. p(w) is a
linear interpolation of the generation and copying
probabilities.
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Source I do think there is difference in it and I believe many of us will agree.
Target I do think there is a difference and I believe many of us will agree.

PoDA w/o pre-training I do think there is difference in it and I believe many of us will agree.
PoDA I do think there is a difference in it and I believe many of us will agree.
Source Almost all students and young adults possess the Facebook or Twitter account.
Target Almost all students and young adults possess a Facebook or Twitter account.

PoDA w/o pre-training Almost all students and young adults possess Facebook or Twitter accounts.
PoDA Almost all students and young adults possess a Facebook or Twitter account.

Table 10: Examples of corrected sentences from CoNLL-2014 dataset. The important text snippets are highlighted
with bold font.

Source But, on the contrary, he argues that fluoride also some disadvantage.
Target But, on the contrary, he argues that fluoride also has some disadvantages.

PoDA w/o pre-training But, on the contrary, he argues that there are also some disadvantages.
PoDA But, on the contrary, he argues that fluoride also has some disadvantages.
Source Such people impressed other people through their strong well and divoution to duty.
Target Such people impressed others through their strong will and devotion to duty.

PoDA w/o pre-training Such people impressed other people through their strong and divoution to duty.
PoDA Such people impressed other people through their strong will and devotion to duty.

Table 11: Examples of corrected sentences from JFLEG dataset. The important text snippets are highlighted with
bold font.

Input Output samples

the best university in the world.

Harvard is considered the 10th best university in the world.
I believe that’s the best university in the world.
Nevada offers the best continuing education in the whole world.
Greek is becoming the best university in the world.

The meaning of life is.

The meaning of daily life is unclear.
“The real meaning of daily life is peaceful.”
The underlying meaning of your life is lost forever.
The immediate meaning of our political life is undeniable.

Table 12: Some input-output samples by our pre-trained PoDA models. We input some incomplete sentences and
output the generated sentences by sampling the output distribution of pre-trained PoDA models at each timestep.
We can see that PoDA successfully transforms the inputs to coherent and grammatical sentences, though the
statements entailed by these output sentences are not always correct.


