
Deep Contextualized Word Embeddings in Transition-Based and
Graph-Based Dependency Parsing – A Tale of Two Parsers Revisited∗

Artur Kulmizev Miryam de Lhoneux Johannes Gontrum Elena Fano Joakim Nivre
Department of Linguistics and Philology, Uppsala University

{artur.kulmizev,miryam.de lhoneux,joakim.nivre}@lingfil.uu.se
{johannes.gontrum.4608,elena.fano.3249}@student.uu.se

Abstract

Transition-based and graph-based dependency
parsers have previously been shown to have
complementary strengths and weaknesses:
transition-based parsers exploit rich structural
features but suffer from error propagation,
while graph-based parsers benefit from global
optimization but have restricted feature scope.
In this paper, we show that, even though some
details of the picture have changed after the
switch to neural networks and continuous rep-
resentations, the basic trade-off between rich
features and global optimization remains es-
sentially the same. Moreover, we show that
deep contextualized word embeddings, which
allow parsers to pack information about global
sentence structure into local feature represen-
tations, benefit transition-based parsers more
than graph-based parsers, making the two ap-
proaches virtually equivalent in terms of both
accuracy and error profile. We argue that the
reason is that these representations help pre-
vent search errors and thereby allow transition-
based parsers to better exploit their inherent
strength of making accurate local decisions.
We support this explanation by an error analy-
sis of parsing experiments on 13 languages.

1 Introduction

For more than a decade, research on data-driven
dependency parsing has been dominated by two
approaches: transition-based parsing and graph-
based parsing (McDonald and Nivre, 2007, 2011).
Transition-based parsing reduces the parsing task
to scoring single parse actions and is often com-
bined with local optimization and greedy search
algorithms. Graph-based parsing decomposes
parse trees into subgraphs and relies on global op-
timization and exhaustive (or at least non-greedy)

∗We gratefully acknowledge the inspiration for our sub-
title in the seminal paper by Zhang and Clark (2008).

search to find the best tree. These radically differ-
ent approaches often lead to comparable parsing
accuracy, but with distinct error profiles indicative
of their respective strengths and weaknesses, as
shown by McDonald and Nivre (2007, 2011).

In recent years, dependency parsing, like most
of NLP, has shifted from linear models and dis-
crete features to neural networks and continu-
ous representations. This has led to substantial
accuracy improvements for both transition-based
and graph-based parsers and raises the question
whether their complementary strengths and weak-
nesses are still relevant. In this paper, we repli-
cate the analysis of McDonald and Nivre (2007,
2011) for neural parsers. In addition, we investi-
gate the impact of deep contextualized word repre-
sentations (Peters et al., 2018; Devlin et al., 2019)
for both types of parsers.

Based on what we know about the strengths and
weaknesses of the two approaches, we hypothe-
size that deep contextualized word representations
will benefit transition-based parsing more than
graph-based parsing. The reason is that these rep-
resentations make information about global sen-
tence structure available locally, thereby helping
to prevent search errors in greedy transition-based
parsing. The hypothesis is corroborated in ex-
periments on 13 languages, and the error analysis
supports our suggested explanation. We also find
that deep contextualized word representations im-
prove parsing accuracy for longer sentences, both
for transition-based and graph-based parsers.

2 Two Models of Dependency Parsing

After playing a marginal role in NLP for many
years, dependency-based approaches to syntactic
parsing have become mainstream during the last
fifteen years. This is especially true if we consider
languages other than English, ever since the influ-



ential CoNLL shared tasks on dependency pars-
ing in 2006 (Buchholz and Marsi, 2006) and 2007
(Nivre et al., 2007) with data from 19 languages.

The transition-based approach to dependency
parsing was pioneered by Yamada and Matsumoto
(2003) and Nivre (2003), with inspiration from
history-based parsing (Black et al., 1992) and
data-driven shift-reduce parsing (Veenstra and
Daelemans, 2000). The idea is to reduce the com-
plex parsing task to the simpler task of predicting
the next parsing action and to implement parsing
as greedy search for the optimal sequence of ac-
tions, guided by a simple classifier trained on local
parser configurations. This produces parsers that
are very efficient, often with linear time complex-
ity, and which can benefit from rich non-local fea-
tures defined over parser configurations but which
may suffer from compounding search errors.

The graph-based approach to dependency pars-
ing was developed by McDonald et al. (2005a,b),
building on earlier work by Eisner (1996). The
idea is to score dependency trees by a linear com-
bination of scores of local subgraphs, often single
arcs, and to implement parsing as exact search for
the highest scoring tree under a globally optimized
model. These parsers do not suffer from search er-
rors but parsing algorithms are more complex and
restrict the scope of features to local subgraphs.

The terms transition-based and graph-based
were coined by McDonald and Nivre (2007,
2011), who performed a contrastive error anal-
ysis of the two top-performing systems in the
CoNLL 2006 shared task on multilingual depen-
dency parsing: MaltParser (Nivre et al., 2006) and
MSTParser (McDonald et al., 2006), which rep-
resented the state of the art in transition-based
and graph-based parsing, respectively, at the time.
Their analysis shows that, despite having almost
exactly the same parsing accuracy when averaged
over 13 languages, the two parsers have very dis-
tinctive error profiles. MaltParser is more accu-
rate on short sentences, on short dependencies,
on dependencies near the leaves of the tree, on
nouns and prounouns, and on subject and object
relations. MSTParser is more accurate on long
sentences, on long dependencies, on dependencies
near the root of the tree, on verbs, and on coordi-
nation relations and sentence roots.

McDonald and Nivre (2007, 2011) argue that
these patterns can be explained by the complemen-
tary strengths and weaknesses of the systems. The
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Figure 3: Dependency arc precision/recall relative to predicted/gold dependency length.
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Figure 4: Dependency arc precision/recall relative to predicted/gold distance to root.

ZPar performs better than MaltParser and MSTParser, particularly on short sentences ( 30),
due to the richest feature representation. For longer sentences (20 to 50), the performance of
ZPar drops as quickly as that of MaltParser. One possible reason is that the effect of a fixed-
size beam on the reduction of error propagation becomes less obvious when the number of
possible parse trees grows exponentially with sentence size. The performance of MSTParser
decreases less quickly as the size of the sentence increases, demonstrating the advantage of
exact inference. Sentences with 50+ words are relatively rare in the test set.

The three parsers show larger variance in performance when evaluated against specific proper-
ties of the dependency tree. Figure 3 shows the precision and recall for each parser relative to
the arc lengths in the predicted and gold-standard dependency trees. Here the length of an arc
is defined as the absolute difference between the indices of the head and modifier. Precision
represents the percentage of predicted arcs with a particular length that are correct, and recall
represents the percentage of gold arcs of a particular length that are correctly predicted.

MaltParser gives higher precision than MSTParser for short dependency arcs ( 4), but its pre-
cision drops rapidly for arcs with increased lengths. These arcs take more shift-reduce actions
to build, and are hence more prone to error propagation. The precision of ZPar drops much
slower compared to MaltParser, demonstrating the effect of beam-search for the reduction of
error propagation. Another important factor is the use of rich non-local features by ZPar, which
is a likely reason for its precision to drop slower even than that of MSTParser when the arc size
increases from 1 to 8. Interestingly, the precision of ZPar is almost indistinguishable from that
of MaltParser for size 1 arcs (arcs between neighbouring words), showing that the wider range
of features in ZPar is the most helpful in arcs that take more than one, but not too many shift-
reduce actions to build. The recall curves of the three parsers are similar, with ZPar having

1397

Figure 1: Labeled precision by dependency length for
MST (global–exhaustive–graph), Malt (local–greedy–
transition) and ZPar (global–beam–transition). From
Zhang and Nivre (2012).

transition-based MaltParser prioritizes rich struc-
tural features, which enable accurate disambigua-
tion in local contexts, but is limited by a locally
optimized model and greedy algorithm, resulting
in search errors for structures that require longer
transition sequences. The graph-based MSTParser
benefits from a globally optimized model and ex-
act inference, which gives a better analysis of
global sentence structure, but is more restricted in
the features it can use, which limits its capacity to
score local structures accurately.

Many of the developments in dependency pars-
ing during the last decade can be understood in this
light as attempts to mitigate the weaknesses of tra-
ditional transition-based and graph-based parsers
without sacrificing their strengths. This may
mean evolving the model structure through new
transition systems (Nivre, 2008, 2009; Kuhlmann
et al., 2011) or higher-order models for graph-
based parsing (McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010); it may mean
exploring alternative learning strategies, in partic-
ular for transition-based parsing, where improve-
ments have been achieved thanks to global struc-
ture learning (Zhang and Clark, 2008; Zhang and
Nivre, 2011; Andor et al., 2016) and dynamic or-
acles (Goldberg and Nivre, 2012, 2013); it may
mean using alternative search strategies, such as
transition-based parsing with beam search (Jo-
hansson and Nugues, 2007; Titov and Hender-
son, 2007; Zhang and Clark, 2008) or exact search
(Huang and Sagae, 2010; Kuhlmann et al., 2011)
or graph-based parsing with heuristic search to
cope with the complexity of higher-order models,
especially for non-projective parsing (McDonald
and Pereira, 2006; Koo et al., 2010; Zhang and
McDonald, 2012); or it may mean hybrid or en-



semble systems (Sagae and Lavie, 2006; Nivre and
McDonald, 2008; Zhang and Clark, 2008; Bohnet
and Kuhn, 2012). A nice illustration of the im-
pact of new techniques can be found in Zhang and
Nivre (2012), where an error analysis along the
lines of McDonald and Nivre (2007, 2011) shows
that a transition-based parser using global learn-
ing and beam search (instead of local learning and
greedy search) performs on par with graph-based
parsers for long dependencies, while retaining the
advantage of the original transition-based parsers
on short dependencies (see Figure 1).

Neural networks for dependency parsing, first
explored by Titov and Henderson (2007) and At-
tardi et al. (2009), have come to dominate the
field during the last five years. While this has
dramatically changed learning architectures and
feature representations, most parsing models are
still either transition-based (Chen and Manning,
2014; Dyer et al., 2015; Weiss et al., 2015; An-
dor et al., 2016; Kiperwasser and Goldberg, 2016)
or graph-based (Kiperwasser and Goldberg, 2016;
Dozat and Manning, 2017). However, more ac-
curate feature learning using continuous represen-
tations and nonlinear models has allowed parsing
architectures to be simplified. Thus, most recent
transition-based parsers have moved back to lo-
cal learning and greedy inference, seemingly with-
out losing accurracy (Chen and Manning, 2014;
Dyer et al., 2015; Kiperwasser and Goldberg,
2016). Similarly, graph-based parsers again rely
on first-order models and obtain no improvements
from using higher-order models (Kiperwasser and
Goldberg, 2016; Dozat and Manning, 2017).

The increasing use of neural networks has also
led to a convergence in feature representations
and learning algorithms for transition-based and
graph-based parsers. In particular, most recent
systems rely on an encoder, typically in the form
of a BiLSTM, that provides contextualized repre-
sentations of the input words as input to the scor-
ing of transitions – in transition-based parsers –
or of dependency arcs – in graph-based parsers.
By making information about the global sentence
context available in local word representations,
this encoder can be assumed to mitigate error
propagation for transition-based parsers and to
widen the feature scope beyond individual word
pairs for graph-based parsers. For both types of
parsers, this also obviates the need for complex
structural feature templates, as recently shown by

Falenska and Kuhn (2019). We should therefore
expect neural transition-based and graph-based
parsers to be not only more accurate than their
non-neural counterparts but also more similar to
each other in their error profiles.

3 Deep Contextualized Word
Representations

Neural parsers rely on vector representations of
words as their primary input, often in the form
of pretrained word embeddings such as word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), or fastText (Bojanowski et al., 2016),
which are sometimes extended with character-
based representations produced by recurrent neu-
ral networks (Ballesteros et al., 2015). These tech-
niques assign a single static representation to each
word type and therefore cannot capture context-
dependent variation in meaning and syntactic be-
havior.

By contrast, deep contextualized word repre-
sentations encode words with respect to the sen-
tential context in which they appear. Like word
embeddings, such models are typically trained
with a language-modeling objective, but yield
sentence-level tensors as representations, instead
of single vectors. These representations are typ-
ically produced by transferring a model’s entire
feature encoder – be it a BiLSTM (Hochreiter
and Schmidhuber, 1997) or Transformer (Vaswani
et al., 2017) – to a target task, where the dimen-
sionality of the tensor S is typically S ∈ RN×L×D

for a sentence of length N , an encoder with L lay-
ers, and word-level vectors of dimensionality D.
The advantage of such models, compared to the
parser-internal encoders discussed in the previous
section, is that they not only produce contextual-
ized representations but do so over several layers
of abstraction, as captured by the model’s different
layers, and are pre-trained on corpora much larger
than typical treebanks.

Deep contextualized embedding models have
proven to be adept at a wide array of NLP tasks,
achieving state-of-the-art performance in standard
Natural Language Understanding (NLU) bench-
marks, such as GLUE (Wang et al., 2019). Though
many such models have been proposed, we adopt
the two arguably most popular ones for our ex-
periments: ELMo and BERT. Both models have
previously been used for dependency parsing (Che
et al., 2018; Jawahar et al., 2018; Lim et al., 2018;



Kondratyuk, 2019; Schuster et al., 2019), but there
has been no systematic analysis of their impact on
transition-based and graph-based parsers.

3.1 ELMo
ELMo is a deep contextualized embedding model
proposed by Peters et al. (2018), which pro-
duces sentence-level representations yielded by a
multi-layer BiLSTM language model. ELMo is
trained with a standard language-modeling ob-
jective, in which a BiLSTM reads a sequence
of N learned context-independent embeddings
w1, . . . ,wN (obtained via a character-level CNN)
and produces a context-dependent representation
hj,k = BiLSTM(w1:N , k), where j (1≤ j≤L)
is the BiLSTM layer and k is the index of the word
in the sequence. The output of the last layer hL,k

is then employed in conjunction with a softmax
layer to predict the next token at k + 1.

The simplest way of transferring ELMo to a
downstream task is to encode the input sentence
S = w1, . . . , wN by extracting the representa-
tions from the BiLSTM at layer L for each token
wk ∈ S: hL,1, . . . ,hL,N ,. However, Peters et al.
(2018) posit that the best way to take advantage
of ELMo’s representational power is to compute a
linear combination of BiLSTM layers:

ELMok = γ
L∑

j=0

sjhj,k (1)

where sj is a softmax-normalized task-specific pa-
rameter and γ is a task-specific scalar. Peters et al.
(2018) demonstrate that this scales the layers of
linguistic abstraction encoded by the BiLSTM for
the task at hand.

3.2 BERT
BERT (Devlin et al., 2019) is similar to ELMo
in that it employs a language-modeling objective
over unannotated text in order to produce deep
contextualized embeddings. However, BERT dif-
fers from ELMo in that, in place of a BiLSTM,
it employs a bidirectional Transformer (Vaswani
et al., 2017), which, among other factors, carries
the benefit of learning potential dependencies be-
tween words directly. This lies in contrast to re-
current models, which may struggle to learn corre-
spondences between constituent signals when the
time-lag between them is long (Hochreiter et al.,
2001). For a token wk in sentence S, BERT’s
input representation is composed by summing a

word embedding xk, a position embedding ik,
and a WordPiece embedding sk (Wu et al., 2016):
wk = xk + ik + sk.

Each wk ∈ S is passed to an L-layered Bi-
Transformer, which is trained with a masked lan-
guage modeling objective (i.e., randomly masking
a percentage of input tokens and only predicting
said tokens). For use in downstream tasks, Devlin
et al. (2019) propose to extract the Transformer’s
encoding of each token wk ∈ S at layer L, which
effectively produces BERTk.

4 Hypotheses

Based on our discussion in Section 2, we assume
that transition-based and graph-based parsers still
have distinctive error profiles due to the basic
trade-off between rich structural features, which
allow transition-based parsers to make accurate
local decisions, and global learning and exact
search, which give graph-based parsers an advan-
tage with respect to global sentence structure. At
the same time, we expect the differences to be less
pronounced than they were ten years ago because
of the convergence in neural architectures and fea-
ture representations. But how will the addition
of deep contextualized word representations affect
the behavior of the two parsers?

Given recent recent work showing that deep
contextualized word representations incorporate
rich information about syntactic structure (Gold-
berg, 2019; Liu et al., 2019; Tenney et al., 2019;
Hewitt and Manning, 2019), we hypothesize that
transition-based parsers have most to gain from
these representations because it will improve their
capacity to make decisions informed by global
sentence structure and therefore reduce the num-
ber of search errors. Our main hypothesis can be
stated as follows:

Deep contextualized word representations are
more effective at reducing errors in transition-
based parsing than in graph-based parsing.

If this holds true, then the analysis of McDonald
and Nivre (2007, 2011) suggests that the differen-
tial error reduction should be especially visible on
phenomena such as:

1. longer dependencies,
2. dependencies closer to the root,
3. certain parts of speech,
4. certain dependency relations,
5. longer sentences.



The error analysis will consider all these factors as
well as non-projective dependencies.

5 Experimental Setup

5.1 Parsing Architecture

To be able to compare transition-based and graph-
based parsers under equivalent conditions, we
use and extend UUParser1 (de Lhoneux et al.,
2017a; Smith et al., 2018a), an evolution of bist-
parser (Kiperwasser and Goldberg, 2016), which
supports transition-based and graph-based parsing
with a common infrastructure but different scoring
models and parsing algorithms.

For an input sentence S = w1, . . . , wN , the
parser creates a sequence of vectors w1:N , where
the vector wk = xk ◦ BILSTM(c1:M ) represent-
ing input word wk is the concatenation of a pre-
trained word embedding xk and a character-based
embedding BILSTM(c1:M ) obtained by running a
BiLSTM over the character sequence c1:M of wk.
Finally, each input element is represented by a
BiLSTM vector, hk = BILSTM(w1:N , k).

In transition-based parsing, the BiLSTM vec-
tors are input to a multi-layer perceptron (MLP)
for scoring transitions, using the arc-hybrid transi-
tion system from Kuhlmann et al. (2011) extended
with a SWAP transition to allow the construction
of non-projective dependency trees (Nivre, 2009;
de Lhoneux et al., 2017b). The scoring is based
on the top three words on the stack and the first
word of the buffer, and the input to the MLP in-
cludes the BiLSTM vectors for these words as well
as their leftmost and rightmost dependents (up to
12 words in total).

In graph-based parsing, the BiLSTM vectors
are input to an MLP for scoring all possible de-
pendency relations under an arc-factored model,
meaning that only the vectors corresponding to the
head and dependent are part of the input (2 words
in total). The parser then extracts a maximum
spanning tree over the score matrix using the Chu-
Liu-Edmonds (CLE) algorithm2 (Edmonds, 1967)
which allows us to construct non-projective trees.

It is important to note that, while we acknowl-
edge the existence of graph-based parsers that out-
perform the implementation of Kiperwasser and
Goldberg (2016), such models do not meet our
criteria for systematic comparison. The parser

1https://github.com/UppsalaNLP/
uuparser

2We use the implementation from Qi et al. (2018).

by Dozat et al. (2017) is very similar, but em-
ploys the MLP as a further step in the featuriza-
tion process prior to scoring via a biaffine clas-
sifier. To keep the comparison as exact as pos-
sible, we forego comparing our transition-based
systems to the Dozat et al. (2017) parser (and its
numerous modifications). In addition, preliminary
experiments showed that our chosen graph-based
parser outperforms its transition-based counter-
part, which was itself competitive in the CoNLL
2018 shared task (Zeman et al., 2018).

5.2 Input Representations

In our experiments, we evaluate three pairs of sys-
tems – differing only in their input representations.
The first is a baseline that represents tokens by
wk = xk ◦ BILSTM(c1:M ), as described in Sec-
tion 5.1. The word embeddings xk are initialized
via pretrained fastText vectors (xk ∈ R300) (Grave
et al., 2018), which are updated for the parsing
task. We term these transition-based and graph-
based baselines TR and GR.

For the ELMo experiments, we make use of
pretrained models provided by Che et al. (2018),
who train ELMo on 20 million words randomly
sampled from raw WikiDump and Common Crawl
datasets for 44 languages. We encode each gold-
segmented sentence in our treebank via the ELMo
model for that language, which yields a tensor
SELMo = RN×L×D, where N is the number of
words in the sentence, L = 3 is the number of
ELMo layers, and D = 1024 is the ELMo vec-
tor dimensionality. Following Peters et al. (2018)
(see Eq. 1), we learn a linear combination and a
task-specific γ of each token’s ELMo representa-
tion, which yields a vector ELMok ∈ R1024. We
then concatenate this vector with wk and pass it
to the BiLSTM. We call the transition-based and
graph-based systems enhanced with ELMo TR+E
and GR+E.

For the BERT experiments, we employ the
pretrained multilingual cased model provided by
Google,3 4 which is trained on the concatenation
of WikiDumps for the top 104 languages with the
largest Wikipedias.5 The model’s parameters fea-
ture a 12-layer transformer trained with 768 hid-

3https://github.com/google-research/
bert

4Except for Chinese, for which we make use of a separate,
pretrained model.

5See sorted list here: https://meta.wikimedia.
org/wiki/List_of_Wikipedias

https://github.com/UppsalaNLP/uuparser
https://github.com/UppsalaNLP/uuparser
https://github.com/google-research/bert
https://github.com/google-research/bert
https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://meta.wikimedia.org/wiki/List_of_Wikipedias


den units and 12 self-attention heads. In order to
obtain a word-level vector for each token in a sen-
tence, we experimented with a variety of represen-
tations: namely, concatenating each transformer
layer’s word representation into a single vector
wconcat ∈ R768∗12, employing the last layer’s rep-
resentation, or learning a linear combination over
a range of layers, as we do with ELMo (e.g., via
Eq. 1). In a preliminary set of experiments, we
found that the latter approach over layers 4–8 con-
sistently yielded the best results, and thus chose
to adopt this method going forward. Regarding
tokenization, we select the vector for the first sub-
word token, as produced by the native BERT to-
kenizer. Surprisingly, this gave us better results
than averaging subword token vectors in a prelim-
inary round of experiments. Like with the ELMo
representations, we concatenate each BERT vec-
tor BERTk ∈ R768 with wk and pass it to the
respective TR+B and GR+B parsers.

It is important to note that while the ELMo
models we work with are monolingual, the BERT
model is multilingual. In other words, while
the standalone ELMo models were trained on
the tokenized WikiDump and CommonCrawl for
each language respectively, the BERT model was
trained only on the former, albeit simultaneously
for 104 languages. This means that the models
are not strictly comparable, and it is an interest-
ing question whether either of the models has an
advantage in terms of training regime. However,
since our purpose is not to compare the two mod-
els but to study their impact on parsing, we leave
this question for future work.

5.3 Language and Treebank Selection

For treebank selection, we rely on the criteria pro-
posed by de Lhoneux et al. (2017c) and adapted by
Smith et al. (2018b) to have languages from dif-
ferent language families, with different morpho-
logical complexity, different scripts and character
set sizes, different training sizes and domains, and
with good annotation quality. This gives us 13
treebanks from UD v2.3 (Nivre et al., 2018), in-
formation about which is shown in Table 1.

5.4 Parser Training and Evaluation

In all experiments, we train parsers with default
settings6 for 30 epochs and select the model with

6All hyperparameters are specified in the supplementary
material (Part A).

Language Treebank Family Order Train
Arabic PADT non-IE VSO 6.1k
Basque BDT non-IE SOV 5.4k
Chinese GSD non-IE SVO 4.0k
English EWT IE SVO 12.5k
Finnish TDT non-IE SVO 12.2k
Hebrew HTB non-IE SVO 5.2k
Hindi HDTB IE SOV 13.3k
Italian ISDT IE SVO 13.1k
Japanese GSD non-IE SOV 7.1k
Korean GSD non-IE SOV 4.4k
Russian SynTagRus IE SVO 48.8k
Swedish Talbanken IE SVO 4.3k
Turkish IMST non-IE SOV 3.7k

Table 1: Languages and treebanks used in experiments.
Family = Indo-European (IE) or not. Order = domi-
nant word order according to WALS (Haspelmath et al.,
2005). Train = number of training sentences.

the best labeled attachment score on the dev set.
For each combination of model and training set,
we repeat this procedure three times with different
random seeds, apply the three selected models to
the test set, and report the average result.

5.5 Error Analysis
In order to conduct an error analysis along the
lines of McDonald and Nivre (2007, 2011), we ex-
tract all sentences from the smallest development
set in our treebank sample (Hebrew HTB, 484 sen-
tences) and sample the same number of sentences
from each of the other development sets (6,292
sentences in total). For each system, we then ex-
tract parses of these sentences for the three train-
ing runs with different random seeds (18,876 pre-
dictions in total). Although it could be interest-
ing to look at each language separately, we follow
McDonald and Nivre (2007, 2011) and base our
main analysis on all languages together to prevent
data sparsity for longer dependencies, longer sen-
tences, etc.7

6 Results and Discussion

Table 2 shows labeled attachment scores for the
six parsers on all languages, averaged over three
training runs with random seeds. The results
clearly corroborate our main hypothesis. While
ELMo and BERT provide significant improve-
ments for both transition-based and graph-based

7The supplementary material contains tables for the error
analysis (Part B) and graphs for each language (Part C).



Language TR GR TR+E GR+E TR+B GR+B
Arabic 79.1 79.9 82.0 81.7 81.9 81.8
Basque 73.6 77.6 80.1 81.4 77.9 79.8
Chinese 75.3 76.7 79.8 80.4 83.7 83.4
English 82.7 83.3 87.0 86.5 87.8 87.6
Finnish 80.0 81.4 87.0 86.6 85.1 83.9
Hebrew 81.1 82.4 85.2 85.9 85.5 85.9
Hindi 88.4 89.6 91.0 91.2 89.5 90.8
Italian 88.0 88.2 90.9 90.6 92.0 91.7
Japanese 92.1 92.2 93.1 93.0 92.9 92.1
Korean 79.6 81.2 82.3 82.3 83.7 84.2
Russian 88.3 88.0 90.7 90.6 91.5 91.0
Swedish 80.5 81.6 86.9 86.2 87.6 86.9
Turkish 57.8 61.2 62.6 63.8 64.2 64.9
Average 80.5 81.8 84.5 84.6 84.9 84.9

Table 2: Labeled attachment score on 13 languages for
parsing models with and without deep contextualized
word representations.

parsers, the magnitude of the improvement is
greater in the transition-based case: 3.99 vs. 2.85
for ELMo and 4.47 vs. 3.13 for BERT. In terms
of error reduction, this corresponds to 21.1% vs.
16.5% for ELMo and 22.5% vs. 17.4% for BERT.
The differences in error reduction are statistically
significant at α = 0.01 (Wilcoxon).

Although both parsing accuracy and absolute
improvements vary across languages, the overall
trend is remarkably consistent and the transition-
based parser improves more with both ELMo and
BERT for every single language. Furthermore,
a linear mixed effect model analysis reveals that,
when accounting for language as a random effect,
there are no significant interactions between the
improvement of each model (over its respective
baseline) and factors such as language family (IE
vs. non-IE), dominant word order, or number of
training sentences. In other words, the improve-
ments for both parsers seem to be largely indepen-
dent of treebank-specific factors. Let us now see
to what extent they can be explained by the error
analysis.

6.1 Dependency Length
Figure 2 shows labeled F-score for dependencies
of different lengths, where the length of a depen-
dency between words wi and wj is equal to |i− j|
(and with root tokens in a special bin on the far
left). For the baseline parsers, we see that the
curves diverge with increasing length, clearly indi-
cating that the transition-based parser still suffers

Figure 2: Labeled F-score by dependency length.

Figure 3: Labeled F-score by distance to root.

Figure 4: Labeled precision (left) and recall (right) for
non-projective dependencies.

from search errors on long dependencies, which
require longer transition sequences for their con-
struction. However, the differences are much
smaller than in McDonald and Nivre (2007, 2011)
and the transition-based parser no longer has an
advantage for short dependencies, which is consis-
tent with the BiLSTM architecture providing the
parsers with more similar features that help the
graph-based parser overcome the limited scope of
the first-order model.

Adding deep contextualized word representa-
tions clearly helps the transition-based parser to
perform better on longer dependencies. For ELMo
there is still a discernible difference for dependen-
cies longer than 5, but for BERT the two curves



are almost indistinguishable throughout the whole
range. This could be related to the aforemen-
tioned intuition that a Transformer captures long
dependencies more effectively than a BiLSTM
(see Tran et al. (2018) for contrary observations,
albeit for different tasks). The overall trends for
both baseline and enhanced models are quite con-
sistent across languages, although with large vari-
ations in accuracy levels.

6.2 Distance to Root
Figure 3 reports labeled F-score for dependencies
at different distances from the root of the tree,
where distance is measured by the number of arcs
in the path from the root. There is a fairly strong
(inverse) correlation between dependency length
and distance to the root, so it is not surprising that
the plots in Figure 3 largely show the mirror image
of the plots in Figure 2. For the baseline parsers,
the graph-based parser has a clear advantage for
dependencies near the root (including the root it-
self), but the transition-based parser closes the gap
with increasing distance.8 For ELMo and BERT,
the curves are much more similar, with only a
slight advantage for the graph-based parser near
the root and with the transition-based BERT parser
being superior from distance 5 upwards. The main
trends are again similar across all languages.

6.3 Non-Projective Dependencies
Figure 4 shows precision and recall specifically for
non-projective dependencies. We see that there is
a clear tendency for the transition-based parser to
have better precision and the graph-based parser
better recall.9 In other words, non-projective de-
pendencies are more likely to be correct when they
are predicted by the transition-based parser using
the swap transition, but real non-projective depen-
dencies are more likely to be found by the graph-
based parser using a spanning tree algorithm. In-
terestingly, adding deep contextualized word rep-
resentations has almost no effect on the graph-
based parser,10 while especially the ELMo em-

8At the very end, the curves appear to diverge again, but
the data is very sparse in this part of the plot.

9Incidentally, the same pattern is reported by McDon-
ald and Nivre (2007, 2011), even though the techniques for
processing non-projective dependencies are different in that
study: pseudo-projective parsing (Nivre and Nilsson, 2005)
for the transition-based parser and approximate second-order
non-projective parsing (McDonald and Pereira, 2006) for the
graph-based parser.

10The breakdown per language shows marginal improve-
ments for the enhanced graph-based models on a few lan-

Figure 5: Labeled attachment score by sentence length.

beddings improve both precision and recall for the
transition-based parser.

6.4 Parts of Speech and Dependency Types

Thanks to the cross-linguistically consistent UD
annotations, we can relate errors to linguistic cate-
gories more systematically than in the old study.
The main impression, however, is that there are
very few clear differences, which is again indica-
tive of the convergence between the two parsing
approaches. We highlight the most notable differ-
ences and refer to the supplementary material (Part
B) for the full results.

Looking first at parts of speech, the baseline
graph-based parser is slightly more accurate on
verbs and nouns than its transition-based counter-
part, which is consistent with the old study for
verbs but not for nouns. After adding the deep
contextualized word representations, both differ-
ences are essentially eliminated.

With regard to dependency relations, the base-
line graph-based parser has better precision and
recall than the baseline transition-based parser for
the relations of coordination (conj), which is con-
sistent with the old study, as well as clausal sub-
jects (csubj) and clausal complements (ccomp),
which are relations that involve verbs in clausal
structures. Again, the differences are greatly re-
duced in the enhanced parsing models, especially
for clausal complements, where the transition-
based parser with ELMo representations is even
slightly more accurate than the graph-based parser.

6.5 Sentence Length

Figure 5 plots labeled attachment score for sen-
tences of different lengths, measured by number
of words in bins of 1–10, 11–20, etc. Here we

guages, canceled out by equally marginal degradations on
others.



find the most unexpected results of the study. First
of all, although the baseline parsers exhibit the
familiar pattern of accuracy decreasing with sen-
tence length, it is not the transition-based but the
graph-based parser that is more accurate on short
sentences and degrades faster. In other words, al-
though the transition-based parser still seems to
suffer from search errors, as shown by the results
on dependency length and distance to the root, it
no longer seems to suffer from error propagation
in the sense that earlier errors make later errors
more probable. The most likely explanation for
this is the improved training for transition-based
parsers using dynamic oracles and aggressive ex-
ploration to learn how to behave optimally also in
non-optimal configurations (Goldberg and Nivre,
2012, 2013; Kiperwasser and Goldberg, 2016).

Turning to the models with deep contextual-
ized word representations, we find that transition-
based and graph-based parsers behave more simi-
larly, which is in line with our hypotheses. How-
ever, the most noteworthy result is that accuracy
improves with increasing sentence length. For
ELMo this holds only from 1–10 to 11–20, but for
BERT it holds up to 21–30, and even sentences
of length 31–40 are parsed with higher accuracy
than sentences of length 1–10. A closer look at the
breakdown per language reveals that this picture is
slightly distorted by different sentence length dis-
tributions in different languages. More precisely,
high-accuracy languages seem to have a higher
proportion of sentences of mid-range length, caus-
ing a slight boost in the accuracy scores of these
bins, and no single language exhibits exactly the
patterns shown in Figure 5. Nevertheless, several
languages exhibit an increase in accuracy from the
first to the second bin or from the second to the
third bin for one or more of the enhanced mod-
els (especially the BERT models). And almost all
languages show a less steep degradation for the en-
hanced models, clearly indicating that deep con-
textualized word representations improve the ca-
pacity to parse longer sentences.

7 Conclusion

In this paper, we have essentially replicated the
study of McDonald and Nivre (2007, 2011) for
neural parsers. In the baseline setting, where
parsers use pre-trained word embeddings and
character representations fed through a BiLSTM,
we can still discern the basic trade-off identified

in the old study, with the transition-based parser
suffering from search errors leading to lower accu-
racy on long dependencies and dependencies near
the root of the tree. However, important details of
the picture have changed. The graph-based parser
is now as accurate as the transition-based parser on
shorter dependencies and dependencies near the
leaves of the tree, thanks to improved represen-
tation learning that overcomes the limited feature
scope of the first order model. And with respect
to sentence length, the pattern has actually been
reversed, with the graph-based parser being more
accurate on short sentences and the transition-
based parser gradually catching up thanks to new
training methods that prevent error propagation.

When adding deep contextualized word repre-
sentations, the behavior of the two parsers con-
verge even more, and the transition-based parser
in particular improves with respect to longer de-
pendencies and dependencies near the root, as a
result of fewer search errors thanks to enhanced
information about the global sentence structure.
One of the most striking results, however, is that
both parsers improve their accuracy on longer sen-
tences, with some models for some languages in
fact being more accurate on medium-length sen-
tences than on shorter sentences. This is a mile-
stone in parsing research, and more research is
needed to explain it.

In a broader perspective, we hope that future
studies on dependency parsing will take the re-
sults obtained here into account and extend them
by investigating other parsing approaches and neu-
ral network architectures. Indeed, given the rapid
development of new representations and archi-
tectures, future work should include analyses of
how all components in neural parsing architec-
tures (embeddings, encoders, decoders) contribute
to distinct error profiles (or lack thereof).
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Sagot, and Djamé Seddah. 2018. ELMoLex: Con-
necting ELMo and lexicon features for dependency
parsing. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 223–237.

Richard Johansson and Pierre Nugues. 2007. Incre-
mental dependency parsing using online learning. In
Proceedings of the CoNLL Shared Task of EMNLP-
CoNLL 2007, pages 1134–1138.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Daniel Kondratyuk. 2019. 75 languages, 1 model:
Parsing universal dependencies universally. CoRR,
abs/1904.02099.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 1–11.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1288–1298.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
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Celano, Slavomı́r Čéplö, Savas Cetin, Fabricio
Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun,
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