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Abstract

The successful application of neural networks
to a variety of NLP tasks has provided strong
impetus to develop end-to-end models for se-
mantic role labeling which forego the need
for extensive feature engineering. Recent
approaches rely on high-quality annotations
which are costly to obtain, and mostly unavail-
able in low resource scenarios (e.g., rare lan-
guages or domains). Our work aims to re-
duce the annotation effort involved via semi-
supervised learning. We propose an end-to-
end SRL model and demonstrate it can effec-
tively leverage unlabeled data under the cross-
view training modeling paradigm. Our LSTM-
based semantic role labeler is jointly trained
with a sentence learner, which performs POS
tagging, dependency parsing, and predicate
identification which we argue are critical to
learning directly from unlabeled data without
recourse to external pre-processing tools. Ex-
perimental results on the CoNLL-2009 bench-
mark dataset show that our model outperforms
the state of the art in English, and consistently
improves performance in other languages, in-
cluding Chinese, German, and Spanish.

1 Introduction

Semantic role labeling — the task of automatically
identifying and labeling the semantic roles con-
veyed by sentential constituents — has enjoyed
renewed interest in the last few years thanks to
the popularity of neural network models and their
ability to learn continuous representations which
forego the need for extensive feature engineer-
ing. Recent modeling developments aside, seman-
tic role labeling (SRL) has been generally recog-
nized as a core task in NLP with relevance for ap-
plications ranging from machine translation (Aziz
et al., 2011; Marcheggiani et al., 2018), to infor-
mation extraction (Christensen et al., 2011), and
summarization (Khan et al., 2015).

State-of-the art semantic role labelers (He et al.,
2018b; Cai et al., 2018) rely on high-quality an-
notations (of semantic predicates and their argu-
ments) for use in training. These annotations are
costly to obtain, and mostly unavailable in low re-
source scenarios (e.g., rare languages or domains)
motivating the need for effective semi-supervised
methods that leverage unlabeled examples. Cross-
View Training (CVT; Clark et al. 2018) is a re-
cently proposed semi-supervised learning algo-
rithm that improves representation learning using
a mix of labeled and unlabeled data. The main idea
behind CVT is to train a model to produce consis-
tent predictions across different restricted views of
the input with the aid of auxiliary prediction tasks.
Clark et al. (2018) demonstrate performance gains
when applying CVT to sequence tagging tasks,
machine translation, and dependency parsing.

Unfortunately, application of CVT to seman-
tic role labeling is fraught with difficulty. This
is partly due to the nature of the task which re-
lies on various syntactic features, even when con-
ceptualized as a sequence labeling task (Marcheg-
giani et al., 2017; He et al., 2018b; Cai et al.,
2018). The reliance on syntactic features is prob-
lematic for semi-supervised training, since these
would have to be extracted from large amounts of
unlabeled data. In addition, any semantic role la-
beler would need to identify (and disambiguate)
predicates prior to labeling their augments which
might be given during training (e.g., as in the
CoNLL 2009 dataset), but would still have to be
detected on unlabeled data. Resorting to various
pre-processing tools for semi-supervised training
almost defeats the purpose of using unlabeled data
which would have to be annotated, albeit automat-
ically, with pre-trained models which require la-
beled data on their own, and might not be portable
across languages and domains. Moreover, the us-
age of external tools often leads to pipeline-style



1019

(a) Semantic role labeler (left) and sequence learner (right) (b) Sentence learner.

Figure 1: Overview of end-to-end SRL model.

architectures where errors propagate to later pro-
cessing stages, affecting model performance.

In this paper we aim to render semi-supervised
learning for semantic role labeling as simple as
possible, by eliminating the reliance on multiple
external pre-processing tools. We develop a sen-
tence learner which is able to perform all tasks
subsidiary to semantic role labeling (i.e., POS tag-
ging, dependency parsing, and predicate detec-
tion) on labeled and unlabeled data. The sen-
tence learner is jointly trained with a semantic
role labeler, and its outputs are fed to the se-
mantic role labeler during supervised and semi-
supervised learning. Aside from building a self-
sufficient semantic role labeler which can be di-
rectly applied on plain text, an added benefit of
the proposed approach is that the sentence learner
naturally provides multiple hidden layers (for the
various subtasks) from which “multi-task hidden
features” (Peters et al., 2018) can be extracted.

In addition to overcoming the difficulty of uti-
lizing plain text for semi-supervised SRL, we
show that application of CVT to SRL requires spe-
cial attention over and above the sequence tagging
and dependency parsing tasks discussed in Clark
et al. (2018). We investigate how to best formu-
late different views for CVT focusing on seman-
tic predicates which have been proven to be very
useful in recent SRL models (Marcheggiani et al.,
2017; Marcheggiani and Titov, 2017; Cai et al.,
2018). Experimental results on the CONLL-2009
benchmark datasets show that our model is able

to outperform the state of the art in English, and
to improve SRL performance in other languages,
including Chinese, German, and Spanish.

2 Model Description

Figure 1 provides a schematic overview of our
model which has two main components, namely
a sentence learner and a semantic role labeler. The
sentence learner consists of:

• look-ups of word embeddings and character
embeddings;
• a bidirectional LSTM (BiLSTM) encoder

which takes as input the representation of
each word in a sentence and produces
context-dependent representations;
• a multi-task prediction module to perform

POS tagging, dependency parsing, and pred-
icate identification.

While the semantic role labeler consists of:

• an input layer which combines multi-source
representations of the input sentence;
• a primary bidirectional LSTM (BiLSTM) en-

coder which takes as input the representa-
tion of each word in a sentence and produces
context-dependent embeddings;
• a high-level BiLSTM encoder which takes as

input the hidden states of the primary BiL-
STM and multi-task hidden features;
• a biaffine classifier for calculating the score

of each semantic role for each word.
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2.1 Sentence Learner

The sentence learner (see Figure 1b) operates over
sentences to perform the intermediate tasks of
POS tagging, dependency parsing, and predicate
identification, which are subsequently used to in-
form the decisions of the semantic role labeler.

Sentence Encoder As we expect the sentence
encoder to be applied directly to plain text, we
represent words as the concatenation of character-
and word-level features. We learn character-level
representations xcr by feeding character embed-
dings to a convolutional neural network mod-
ule. We represent words with randomly initialized
word embeddings xre ∈ Rdw , pre-trained word
embeddings xpe ∈ Rdw estimated on an exter-
nal text collection, and pre-trained ELMo embed-
dings xelmo (Peters et al., 2018). The final word
representation is given by x = xre ◦ xpe ◦ xcr ◦
xelmo, where ◦ represents concatenation.

Following Marcheggiani et al. (2017), sen-
tences are represented using a two-layer bi-
directional LSTM (Hochreiter and Schmidhuber,
1997); the BiLSTM receives at time step t a rep-
resentation x for each word and recursively com-
putes two hidden states, one for the forward pass
(
−→
h t), and another one for the backward pass (

←−
h t).

Each word is the concatenation of its forward and
backward LSTM state vectors ht =

−→
h t ◦

←−
h t.

Multi-task Learning After obtaining word rep-
resentations with the sentence encoder, the input
is POS tagged, dependency parsed, and predicates
are identified. Given sentence s, the probability
distribution of POS tags for word w is obtained
using a one hidden-layer neural network applied
to the corresponding encoder output hw2 :

p(ypos|s, w) = softmax(U ·ReLU(Whw2 )+b) (1)

For dependency parsing, words in a sentence are
treated as nodes in a graph. In particular, each
wordw in sentence s receives exactly one in-going
edge (u,w, r) from head word u to its dependent
w with relation r. We use a graph-based depen-
dency parser similar to the one presented in Clark
et al. (2018), which treats dependency parsing as a
classification task and its goal is to predict which
in-going edge (u,w, r) connects to each word w.
Mathematically, the probability of an edge is:

p((u,w, r)|s) =∝ exp(score(hu2 , h
w
2 , r)) (2)

where “score” is the scoring function:

score(z1, z2, r) = ReLU(Wheadz1 + bhead)

(Wr +W ) ReLU(Wdepz2 + bdep)
(3)

The bilinear classifier uses a weight matrix Wr

specific to the candidate relation and a weight ma-
trix W shared across all dependency relations.

With regard to predicate identification, we intro-
duce a virtual root following Cai et al. (2018) who
model the entire SRL task as word pair classifica-
tion. Similarly to the dependency parsing module
described above, representations produced by the
encoder for the virtual root and words are passed
through separate hidden layers and a biaffine clas-
sifier is applied to produce a score for each word.

2.2 Semantic Role Labeler

Word Representation For our SRL model,
words are represented by a vector x which is the
concatenation of four types of features: predicate-
specific, character-level, word-level, and multi-
task features. Following previous work (Marcheg-
giani et al., 2017), we leverage a predicate specific
indicator embedding xie rather than directly using
a binary flag. Character- and word-level features
are shared with the sentence learner.

With regard to multi-task features, for each
word w in input sentence s, we employ a
probability-weighted POS tag embedding epos and
dependency relation embedding edep:

epos =
∑
l∈tags

p(ypos = l|s, w)[l] ∗ el

edep =
∑
r∈rels

p(ydep = r|s, u, w)[r] ∗ er
(4)

where el and er and the embeddings of POS
tags and dependency relations respectively, and
p(ydep = r|s, u) is the probability of relation r
given its predicted dependency head u.

In order to incorporate more syntactic informa-
tion, we adopt as an additional feature the proba-
bility of linking a word to candidate predicate xpr
which we obtain from the sentence learner. xpr is
made of two scalar values, phead and pdep, which
represent the probability of a word being the syn-
tactic head or dependent of the current predicate,
respectively.

Multi-task Hidden Features Drawing inspira-
tion from ELMo (Peters et al., 2018), a recently
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proposed model for generating word representa-
tions based on bidirectional LSTMs trained with
a coupled language modeling objective, we ex-
tract various hidden features via multi-task learn-
ing. ELMo representations are deep, essentially
a linear combination of representations learnt at
all layers of an LSTM instead of just the final
layer. Compared with unsupervised ELMo rep-
resentations, our sentence learner takes advantage
of labeled data — it attempts to learn represen-
tations towards multiple SRL-related tasks rather
than generally effective ones.

In order to utilize all hidden layers in the sen-
tence learner, we collapse them into a single vec-
tor. Although we could simply concatenate these
or select the top layer, we compute multi-task hid-
den features hMT as a weighting of the BiLSTM
layers, followed by a non-linear projection:

hMT = ReLU(Whidden(γ

j=L∑
j=1

βjhj)) (5)

where L is the depth of sentence learner, β are
softmax-normalized weights for hj , and the scalar
parameter γ is of practical importance to aid opti-
mization (Peters et al., 2018).

Biaffine Role Scorer After the high-level BiL-
STM encoder produces representations h for each
word, we perform two distinct non-linear transfor-
mations for the currently considered predicate and
its candidate arguments, respectively:

hpred = ReLU(Wpredh+ bpred)

harg = ReLU(Wargh+ barg)
(6)

where hpred and harg are hidden representations
for the predicate and candidate arguments. The
score srole of a semantic role between a predicate
and its arguments is calculated as:

srole = h>argWrolehpred

+ Urole(harg ◦ hpred)
+ brole

(7)

where Wrole, Urole, and brole are parameters up-
dated during training.

2.3 Cross-view Training for SRL
CVT works by improving representation learning
for a model. Let Dul = {x1, x2, .., xN} represent
an unlabeled dataset. We use pθ(y|xi) to denote
the output distribution over classes produced by

the model with parameters θ. CVT adds multiple
different auxiliary prediction modules to a model,
which are used when learning on unlabeled exam-
ples. Each prediction module takes as input an
intermediate representation hj(xi) produced by a
primary BiLSTM encoder and outputs a distribu-
tion over all possible classes pjθ(y|xi). Each hj is
chosen such that it can only see parts of the input.

Given an unlabeled example, the model first
produces soft targets pθ(y|xi) by performing infer-
ence. CVT then trains auxiliary prediction mod-
ules to match the teacher prediction module on the
unlabeled data by minimizing:

LCVT(θ)=
1

Dul

∑
xi∈Dul

k∑
j=1

D(pθ(y|xi), pjθ(y|xi)) (8)

where D is a distance function between probabil-
ity distributions (we use KL divergence). During
training, we keep predictions pθ(y|xi) from the
teacher module fixed so that the auxiliary modules
learn to imitate the teacher, but not vice versa. As
auxiliary modules train, the representations they
use as input improve so they are useful for making
predictions even when some of the models’ inputs
are not available. This in turn improves the pri-
mary prediction module, which is built on top of
the same shared representations.

We applied CVT on the primary Bi-LSTM en-
coder of our semantic role labeler, while utilizing
the output of the sentence learner on the unlabeled
data. Given unlabeled sentence s = w1, ..., wT ,
the primary Bi-LSTM encoder produces hidden
representations hpri for each word, while the se-
mantic role labeler produces the teacher predic-
tion. The sentence learner may recognize more
than one words as predicates in sentence s, and
we just randomly choose one as the target predi-
cate wp.

The auxiliary prediction modules take
−→
h tpri and

←−
h tpri as input. Specifically, we add the following
four auxiliary prediction modules to the model:

pfwd
θ (rt|wt, wp, s) = NNfwd(

−→
h tpri(s))

pbwd
θ (rt|wt, wp, s) = NNbwd(

←−
h tpri(s))

pfutureθ (rt|wt, wp, s) = NNfuture(
−→
h t−1pri (s))

ppastθ (rt|wt, wp, s) = NNpast(
←−
h t+1
pri (s))

(9)

The “forward” module makes predictions with-
out seeing the right context of the current word.
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Figure 2: CVT on a sentence from the CoNLL 2009
training set. The current predicate is “believe”, while
“commission” and “in” are two candidate arguments.

The “future” module makes predictions without
seeing the right context and the current word itself.
The “backward” and “past” modules are defined
analogously for left contexts. Figure 2 illustrates
the auxiliary modules and the types of context they
see. Unlike the biaffine role scorer, the auxiliary
modules do not explicitly use the hidden state of
the target predicate, so as to encourage the pri-
mary Bi-LSTM encoder to capture long-distance
relations between the predicate and its context.

We empirically observed (see Section 3) that
applying CVT on representations which do not
“see” the target predicate is not ideal for SRL. We
therefore devised a strategy which applies differ-
ent auxiliary modules to each word depending on
its relative position to the target predicate. We only
apply “backward” and “past” modules to words
preceding the predicate, while “forward” and “fu-
ture” modules apply to words following the predi-
cate. This way, we ensure that each word is aware
of the current predicate when performing CVT. In
the example in Figure 2, “backward” and “past”
views would be applied to commission and “for-
ward” and “future” views to in.

We also apply CVT on the first hidden layer of
the sentence learner to further improve the perfor-
mances of auxiliary tasks, utilizing the views in-
troduced in Clark et al. (2018) for sequence tag-
ging and dependency parsing.

2.4 Training Objectives
For both supervised learning and cross-view train-
ing our model makes predictions on labeled and

Hyperparameter value
dw (English word embeddings) 100
dw (other languages word embeddings) 300
dcr (character-level representations) 100
dpos (POS embeddings) 32
dde (dependency label embeddings) 32
die (predicate indicator embeddings) 16
Bi-LSTM hidden states size 400
hidden-layer size in biaffine scorers 300
Multi-task hidden features size 200
primary BiLSTM depth 1
high-level BiLSTM depth 2
batch size 30
learning rate 0.001

Table 1: Hyperparameter values.

unlabeled examples across all tasks (SRL and
auxiliary tasks). During supervised learning, the
model is trained on labeled data and its objective is
the sum of cross-entropy losses for all tasks. With
respect to multi-task CVT, the model takes unla-
beled examples as input and calculates the CVT
loss given in Equation (8). The semi-supervised
objective is the sum of the CVT loss for all auxil-
iary modules across all tasks.

3 Experiments

We implemented our model1 in PyTorch and eval-
uated it on the English CoNLL-2009 benchmark
following the standard training, testing, and de-
velopment set splits. To evaluate whether our
model generalizes to other languages, we also re-
port experiments on Chinese, German, and Span-
ish, again using standard CoNLL-2009 splits. This
subset of languages has been commonly used in
previous work (Björkelund et al., 2010; Roth and
Lapata, 2016; Lei et al., 2015) and allows us to
compare our model against a wide range of alter-
native approaches. The benchmarks contain gold-
standard dependency annotations, and also gold
lemmas, part-of-speech tags, and morphological
features. With regard to unlabeled datasets, we
used the 1 Billion Word Language Model Bench-
mark (Chelba et al., 2013) for English, the Sougou
News Data2 for Chinese, the NEGRA corpus 3 for

1Our code is publicly available at https://github.
com/RuiCaiNLP/SemiSRL.

2www.sogou.com/labs/resource/ca.php
3www.coli.uni-sb.de/sfb378/

negra-corpus/

https://github.com/RuiCaiNLP/SemiSRL
https://github.com/RuiCaiNLP/SemiSRL
www.sogou.com/labs/resource/ca.php
www.coli.uni-sb.de/sfb378/negra-corpus/
www.coli.uni-sb.de/sfb378/negra-corpus/
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Single Models P R F1

Björkelund et al. (2010) 87.1 84.5 85.8
Lei et al. (2015) — — 86.6
FitzGerald et al. (2015) — — 86.7
Roth and Lapata (2016) 88.1 85.3 86.7
Marcheggiani and Titov (2017) 89.1 86.8 88.0
Marcheggiani et al. (2017) 88.7 86.8 87.7
He et al. (2018b) 89.7 89.3 89.5
Cai et al. (2018) 89.9 89.2 89.6
Li et al. (2018) 90.3 89.3 89.8
Ours (supervised training) 91.1 90.4 90.7
Ours (with CVT) 91.7 90.8 91.2
Ensemble Models P R F
FitzGerald et al. (2015) — — 87.7
Roth and Lapata (2016) 90.3 85.7 87.9
Marcheggiani and Titov (2017) 90.5 87.7 89.1

Table 2: English results on CoNLL-2009 in-domain
(WSJ) test set. Differences in F1 between our mod-
els and previous systems are statistically significant
(p < 0.05) using stratified shuffling (Noreen, 1989).

German, and the Spanish Language News Corpus4

for Spanish.
For experiments on English, we used the em-

beddings of Dyer et al. (2015) which were learned
using the structured skip n-gram approach of Ling
et al. (2015). We also used a convolutional neural
network (Chiu and Nichols, 2016; Ma and Hovy,
2016) to learn character-level representations. For
Chinese, Spanish, and German word embeddings
were pre-trained on Wikipedia using fastText
(Bojanowski et al., 2017).

The Bi-LSTM encoders in our model, used re-
current dropout (Gal and Ghahramani, 2016) with
an 80% keep probability between time-steps and
layers during supervised training; keep probability
was set to 90% when applying the model to unla-
beled data. We used the Adam optimizer (Kingma
and Ba, 2014) and performed hyperparameter tun-
ing and model selection on the English develop-
ment set; optimal hyperparameter values (for all
languages) are shown in Table 1.

3.1 Results

Our results on the English (in-domain) test set are
summarized in Table 2. We compared our sys-
tem against previous models which employ exter-
nal tools to obtain required features. We also re-
port the results of various ensemble SRL models

4catalog.ldc.upenn.edu/LDC99T41

Single Models P R F1

Björkelund et al. (2010) 75.7 72.2 73.9
Lei et al. (2015) - - 75.6
FitzGerald et al. (2015) - - 75.2
Roth and Lapata (2016) 76.9 73.8 75.3
Marcheggiani and Titov (2017) 78.5 75.9 77.2
Marcheggiani et al. (2017) 79.4 76.2 77.7
He et al. (2018b) 81.9 76.9 79.3
Cai et al. (2018) 79.8 78.3 79.0
Li et al. (2018) 80.6 79.0 79.8
Ours (supervised training) 82.1 81.3 81.6
Ours (with CVT) 83.2 81.9 82.5
Ensemble Models P R F
FitzGerald et al. (2015) - - 75.5
Roth and Lapata (2016) 79.7 73.6 76.5
Marcheggiani and Titov (2017) 80.8 77.1 78.9

Table 3: CoNLL-2009 out-of domain results (English;
Brown test set). Differences in F1 between our mod-
els and previous systems are statistically significant
(p < 0.05) using stratified shuffling (Noreen, 1989).

(second block). Most comparisons involve neural
systems which are based on BiLSTMs (Marcheg-
giani et al., 2017; He et al., 2018b; Marcheggiani
and Titov, 2017; Cai et al., 2018) or use neural
networks for learning SLR-specific embeddings
(FitzGerald et al., 2015; Roth and Lapata, 2016).
We also report the results of two strong symbolic
models based on tensor factorization (Lei et al.,
2015) and a pipeline of modules that carry out to-
kenization, lemmatization, part-of-speech tagging,
dependency parsing, and semantic role labeling
(Björkelund et al., 2010). As can be seen in Ta-
ble 2, our supervised model outperforms previ-
ously published single and ensemble models. With
cross-view training, our model achieves 91.2% F1

(the difference over the supervised model is statis-
tically significant at p < 0.05), which is an abso-
lute improvement of 1.4% over the state of the art
(Li et al., 2018).

Results on the out-of-domain English test set
are presented in Table 3. We include comparisons
with the same models as in the in-domain case.
Again, our end-to-end model significantly outper-
forms previously published single and ensemble
models, even without taking unlabeled data into
account. We achieve a relatively higher improve-
ment with CVT on out-of-domain data (F1 in-
creases from 81.6% to 82.5%, and the difference is
significant at p < 0.05). This suggests that semi-

catalog.ldc.upenn.edu/LDC99T41
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Chinese P R F1

Björkelund et al. (2010) 82.4 75.1 78.6
Roth and Lapata (2016) 83.2 75.9 79.4
Marcheggiani and Titov (2017) 84.6 80.4 82.5
He et al. (2018b) 84.2 81.5 82.8
Cai et al. (2018) 84.7 84.0 84.3
Li et al. (2018) 84.8 81.2 83.0
Ours (supervised training) 84.9 84.3 84.6
Ours (with CVT) 85.4 84.6 85.0
German P R F1

Björkelund et al. (2010) 81.2 78.3 79.7
Roth and Lapata (2016) 81.8 78.5 80.1
Ours (supervised training) 84.5 82.1 83.3
Ours (with CVT) 84.9 82.7 83.8
Spanish P R F
Björkelund et al. (2010) 78.9 74.3 76.5
Roth and Lapata (2016) 83.2 77.4 80.2
Marcheggiani et al. (2017) 81.4 79.3 80.3
Ours (supervised training) 83.0 81.3 82.1
Ours(with CVT) 83.6 82.2 82.9

Table 4: CoNLL-2009 results on Chinese, German, and
Spanish (test sets). Differences in F1 between our mod-
els and previous systems are statistically significant
(p < 0.05) using stratified shuffling (Noreen, 1989).

supervised training indeed increases the robust-
ness of our model, leading to more accurate pre-
dictions for both SRL and auxiliary tasks.

Table 4 presents the results of our experiments
(without ELMo) on Chinese, German, and Span-
ish. Although we have not performed detailed pa-
rameter selection in these languages (i.e., we used
the same parameters as in English), our model
achieves state-of-the-art performance across all
three languages.

3.2 Ablation Studies

To investigate the contribution of the sentence
learner and cross-view training, we conducted a
series of ablation studies on the English develop-
ment set without predicate disambiguation.

Our experiments are summarized in Table 5.
The first block shows the performance of the full
model. In the second block, we assess the effect
of different kinds of representations used in our
model. Interestingly, the impact of ELMo (about
0.6 in F1) is slightly less compared to multi-task
hidden features (about 0.7 in F1). This suggests
that multi-task hidden features provide as use-
ful information for SRL as pre-trained represen-

Model P R F1

Ours 88.6 86.8 87.7
w/o ELMo 87.9 86.4 87.1
w/o multi-task hidden features 88.0 86.1 87.0
w/o sentence learner 87.2 85.5 86.3
w/o cross-view training 88.0 85.8 86.9
w/o splitting sentence 87.4 85.7 86.6

Table 5: Ablation results on the CoNLL-2009 English
development set.

Preceding Following F1 ∆F1

Backward Forward 87.3 0.4
Past Future 87.4 0.5

Table 6: CVT with different auxiliary modules for SRL
(CoNLL-2009 English development set). ∆ denotes
difference from model trained without CVT.

tations. We next eliminate the sentence learner
model and have the semantic role labeler use the
predicted POS tags and dependency labels pro-
vided in CoNLL-2009 dataset. As can be seen,
this leads to a substantial drop in performance over
the full model (1.4% in F1).

In the third block, we remove cross-view train-
ing from our model, and observe a 0.8% drop in F1

over the full model. Finally, we apply the auxiliary
modules on the full sentence instead of treating the
words preceding and following the target predicate
differently, and observe a 0.3% drop in F1 over
the supervised model. This is not surprising as the
predicate indicator plays an important role in im-
proving the performance of semantic role labeler.

3.3 CVT Analysis

In Table 6, we briefly explore which auxiliary pre-
diction modules are more important for CVT when
applied to SRL. We apply two types of auxiliary
modules both of which take care not to “see” the
target predicate directly. The “forward/backward”
module does not see the right/left context of the
current word, while the “future/past” module does
not see the right/left context and the current to-
ken itself. Both kinds of modules improve per-
formance (over a supervised model without CVT,
see second row in Table 5); future and past mod-
ules are slightly better corroborating the results of
Clark et al. (2018) on sequence tagging. Overall,
the results in Table 6 suggest that more restricted
views of the input are beneficial.
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Strategy F1 ∆F1

Randomly chosen word 87.0 0.1
Randomly chosen predicate 87.7 0.8
Most confident predicate 86.4 -0.5

Table 7: CVT with different predicate selection strate-
gies for SRL (CoNLL-2009 English development set).
∆ denotes difference from model trained without CVT.

We further explore how the strategy of selecting
the target predicate (in sentences containing multi-
ple candidates) influences performance. For each
unlabeled sentence, we adopt the strategy of ran-
domly selecting a predicate amongst those words
identified as predicate candidates by the sentence
learner. We could also select the predicate with
the highest predicted score or a random word from
the sentence. The experiments in Table 7 confirm
that the adopted strategy works best delivering a
0.8 improvement in F1 over a supervised model
without CVT (second row in Table 5). Selecting
the most confident predicate is the worst possible
strategy, decreasing F1 performance by 0.6 over
a supervised model without CVT (see Table 5);
the model concentrates on a few predicates with
very high scores (these tend to be common verbs
such as say, is, and have), while ignoring nominal
predicates and less frequent verbs. The strategy of
randomly selecting a word from the sentence per-
forms better, precisely because it pays attention to
a wider range of predicates.

4 Related Work

Our model resonates the recent trend of develop-
ing neural network models for semantic role label-
ing using relatively simple architectures based on
bidirectional LSTMs (Marcheggiani et al., 2017;
Cai et al., 2018; Strubell et al., 2018). It also
agrees with previous work in adopting multi-task
learning as a means to improve a main task by
jointly learning one or more related auxiliary tasks
(Collobert et al., 2011; Søgaard and Goldberg,
2016; Swayamdipta et al., 2017; Peng et al., 2017;
Strubell et al., 2018).

The idea of resorting to semi-supervised learn-
ing as a means of reducing the annotation effort
involved in creating labeled data for SRL is by no
means new. Fürstenau and Lapata (2012) propose
to augment a labeled dataset with unlabeled exam-
ples whose roles are inferred automatically via an-
notation projection. Other work uses a language

model to learn word similarities from unlabeled
texts (Croce et al., 2010; Deschacht and Moens,
2009) or constructs an informed prior from labeled
data in order to learn a generative model from un-
labeled data (Titov and Klementiev, 2012).

More recently, Mehta et al. (2018) have pro-
posed a semi-supervised method for constituency-
based SRL. Their work builds upon a state-of-the-
art neural model (He et al., 2018b; Peters et al.,
2018) whose training objective they augment with
a syntactic inconsistency loss component. Their
hypothesis is that by leveraging syntactic structure
during training, the SRL model may become more
robust in low resource scenarios. This method is
very much geared towards improving constituent-
based SRL, where syntactic constraints are widely
used during decoding (He et al., 2017, 2018a).
And requires a robust syntactic parser to ana-
lyze (out-of-domain) unlabeled sentences for con-
sistency. Our model does not rely on external
tools, and is generally applicable across seman-
tic role representations based on dependencies or
constituents (i.e., phrases or spans). However, we
leave experiments on the latter for future work.

Although the focus of this work has been on
semi-supervised learning, we have developed a
competitive SRL system which could be used on
its own, after being trained on labeled data. Fol-
lowing previous work (Strubell et al., 2018; Cai
et al., 2018) we proposed an end-to-end model,
which is able to distinguish predicates and label
their arguments while learning a POS-tagger and
a dependency parser. Importantly, our model can
be simultaneously used for supervised and semi-
supervised learning without modification. Cai
et al. (2018) do not use any syntactic informa-
tion which is critical when dealing with unlabeled
data. Strubell et al. (2018) directly predict POS
tags and predicates on top of the lower layers of
their model; while this information is fed to the fi-
nal SRL classifier, it is not propagated through the
network, and is not shared with their multi-head
self-attention layers.

5 Conclusions

In this paper we developed an end-to-end SRL
model and demonstrated it can effectively lever-
age unlabeled data under the crossview training
modeling paradigm. Experiments on the CONLL-
2009 benchmark datasets show that our model de-
livers state of the art performance in English, Chi-
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nese, German, and Spanish. Directions for future
work are many and varied. We would like to ap-
ply the proposed model in low-resource settings,
e.g., to transfer roles from English to another lan-
guage via annotation projection or to learn an SRL
model from weak supervision where only annota-
tions for dependency labels are available.

Acknowledgments

We thank the anonymous reviewers for their help-
ful feedback and suggestions. We gratefully
acknowledge the support of the European Re-
search Council (award number 681760, “Translat-
ing Multiple Modalities into Text”).

References
Wilker Aziz, Miguel Rios, and Lucia Specia. 2011.

Shallow semantic trees for SMT. In Proceedings of
the Sixth Workshop on Statistical Machine Transla-
tion, pages 316–322, Edinburgh, Scotland.

Anders Björkelund, Bernd Bohnet, Love Hafdell, and
Pierre Nugues. 2010. A high-performance syntactic
and semantic dependency parser. In Coling 2010:
Demonstrations, pages 33–36, Beijing, China.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018.
A full end-to-end semantic role labeler, syntactic-
agnostic over syntactic-aware? In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 2753–2765, Santa Fe, New Mex-
ico, USA.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Lin-
guistics, 4:357–370.

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2011. An analysis of open informa-
tion extraction based on semantic role labeling. In
Proceedings of the 6th International Conference on
Konwledge Capture, pages 113–119, Banff, Canada.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914–
1925, Brussels, Belgium.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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