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Abstract

Pre-training has proven to be effective in
unsupervised machine translation due to its
ability to model deep context information in
cross-lingual scenarios. However, the cross-
lingual information obtained from shared BPE
spaces is inexplicit and limited. In this paper,
we propose a novel cross-lingual pre-training
method for unsupervised machine translation
by incorporating explicit cross-lingual train-
ing signals. Specifically, we first calculate
cross-lingual n-gram embeddings and infer an
n-gram translation table from them. With
those n-gram translation pairs, we propose a
new pre-training model called Cross-lingual
Masked Language Model (CMLM), which
randomly chooses source n-grams in the in-
put text stream and predicts their translation
candidates at each time step. Experiments
show that our method can incorporate benefi-
cial cross-lingual information into pre-trained
models. Taking pre-trained CMLM models
as the encoder and decoder, we significantly
improve the performance of unsupervised ma-
chine translation. Our code is available at
https://github.com/Imagist-Shuo/CMLM.

1 Introduction

Unsupervised machine translation has become an
emerging research interest in recent years (Artetxe
et al., 2017; Lample et al., 2017, 2018; Artetxe
et al., 2018b; Marie and Fujita, 2018; Ren et al.,
2019; Lample and Conneau, 2019). The common
framework of unsupervised machine translation
builds two initial translation models at first (i.e.,
source to target and target to source), and then
does iterative back-translation (Sennrich et al.,
2016a; Zhang et al., 2018) with the two models us-
ing pseudo data generated by each other. The ini-
tialization process is crucial to the final translation
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performance as pointed in Lample et al. (2018),
Artetxe et al. (2018b) and Ren et al. (2019).

Previous approaches benefit mostly from cross-
lingual n-gram embeddings, but recent work
proves that cross-lingual language model pre-
training could be a more effective way to build
initial unsupervised machine translation models
(Lample and Conneau, 2019). However, in their
method, the cross-lingual information is mostly
obtained from shared Byte Piece Encoding (BPE)
(Sennrich et al., 2016b) spaces during pre-training,
which is inexplicit and limited. Firstly, although
the same BPE pieces from different languages
may share the same semantic space, the semantic
information of n-grams or sentences in different
languages may not be shared properly. However,
cross-lingual information based on n-gram level is
crucial to model the initialization of unsupervised
machine translation (Lample et al., 2018; Artetxe
et al., 2018b), which is absent in the current pre-
training method. Secondly, BPE sharing is lim-
ited to languages that share much of their alpha-
bet. For language pairs that are not the case, the
above pre-training method may not provide much
useful cross-lingual information.

In this paper, by incorporating explicit cross-
lingual training signals, we propose a novel cross-
lingual pre-training method based on BERT (De-
vlin et al., 2018) for unsupervised machine transla-
tion. Our method starts from unsupervised cross-
lingual n-gram embeddings, from which we in-
fer n-gram translation pairs. Then, we propose
a new pre-training objective called Cross-lingual
Masked Language Model (CMLM), which masks
the input n-grams randomly and predicts their cor-
responding n-gram translation candidates inferred
above. To solve the mismatch between different
lengths of the masked source and predicted tar-
get n-grams, IBM models are introduced (Brown
et al., 1993) to derive the training loss at each
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Figure 1: Masked Language Model (MLM) for BERT training. For a given sentence, this task is to predict
randomly masked tokens, i.e., “contrast”, “held” and “opinion”. In practice, it is implemented based on BPE.

time step. In this way, we can guide the model
with more explicit and strong cross-lingual train-
ing signals, and meanwhile, leverage the potential
of BERT to model context information. We then
use two pre-trained cross-lingual language models
as the encoder and decoder respectively to build
desired machine translation models. Our method
can be iteratively performed with the n-gram trans-
lation table updated by downstream tasks. Exper-
iments show that our method can produce better
cross-lingual representations and significantly im-
prove the performance of unsupervised machine
translation. Our contributions are listed as follows.

• We propose a novel cross-lingual pre-training
method to incorporate explicit cross-lingual
information into pre-trained models, which
significantly improves the performance of
unsupervised machine translation.

• We introduce IBM models to calculate the
step-wise training loss for CMLM, which
breaks the limitation that masked n-grams
and predicted ones have to be the same length
during BERT training.

• We produce strong context-aware cross-
lingual representations with our pre-training
method, which helps in word alignment and
cross-lingual classification tasks.

2 Background

2.1 BERT
BERT (Devlin et al., 2018), short for Bidirectional
Encoder Representations from Transformers, is a
powerful pre-training method for natural language
processing and breaks records of many NLP tasks
after corresponding fine-tuning. The core idea of
BERT is pre-training a deep bidirectional Trans-
fomer encoder (Vaswani et al., 2017) with two

training tasks. The first one is Masked Language
Model (MLM) referring to the Cloze task (Taylor,
1953), which takes a straightforward approach of
masking some percentage of the input tokens at
random, and then predicting them with the corre-
sponding Transformer hidden states, as shown in
Figure 1. The second one is Next Sentence Pre-
diction, which means to predict whether two sen-
tences are adjacent or not. This task is designed
for some tasks that need modeling the relationship
between two sentences such as Question Answer-
ing (QA) and Natural Language Inference (NLI).

2.2 XLM
Based on BERT, Lample and Conneau (2019) pro-
pose a cross-lingual version called XLM and reach
the state-of-the-art performance on some cross-
lingual NLP tasks including cross-lingual classifi-
cation (Conneau et al., 2018), machine translation,
and unsupervised cross-lingual word embedding.
The basic points of XLM are mainly two folds.
The first one is to use a shared vocabulary of BPE
(Sennrich et al., 2016b) to provide potential cross-
lingual information between two languages just as
mentioned in Lample et al. (2018), in an inexplicit
way though. The second point is a newly pro-
posed training task called Translation Language
Modeling (TLM), which extends MLM by con-
catenating parallel sentences into a single training
text stream. In this way, the model can leverage
the cross-lingual information provided by parallel
sentences to predict the masked tokens. However,
for unsupervised machine translation, TLM can-
not be used due to the lack of parallel sentences.
Different from them, we are motivated to give the
model more explicit and strong cross-lingual in-
formation and propose a new pre-training method
by (1) masking source n-grams and (2) predicting
their corresponding translation candidates.
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Figure 2: Method overview. Our method consists of three steps. The first one is the n-gram translation table
inferring. The second one is pre-training with our proposed objective Cross-lingual Masked Language Model
(CMLM) which is to predict the translation candidates of randomly masked n-grams. The last step is to leverage
the pre-trained cross-lingual language models as the encoder and decoder of a neural machine translation model
and fine-tune the translation model iteratively.

3 Method

3.1 Overview
Our method can be divided into three steps as
shown in Figure 2. Given two languages X and
Y , we first get unsupervised cross-lingual n-gram
embeddings of them, from which we infer n-gram
translation tables (source-to-target and target-to-
source). The n-gram translation pairs inferred in
this way have proven to be instructive for initial
unsupervised machine translation models (Artetxe
et al., 2018b; Lample et al., 2018; Marie and Fu-
jita, 2018; Ren et al., 2019). Then, we pre-train
cross-lingual BERT language models with our
proposed Cross-lingual Masked Language Model
(CMLM) objective. Specifically, we randomly
choose n-grams in the monolingual sentences and
predict corresponding translation candidates in the
n-gram translation table inferred in the first step.
In this way, we can guide the model with explicit
and strong cross-lingual training signals. Finally,
two pre-trained cross-lingual language models are
used to initialize the encoder and decoder respec-
tively, based on which, denoising auto-encoder
and iterative back-translation are leveraged to fine-
tune the unsupervised machine translation models.

The above process is repeated by updating the
n-gram table with the n-gram translation pairs ex-
tracted from the pseudo data generated by the
translation models. In the following subsections,
we will give details of each step.

3.2 N-gram Translation Table Inferring

Following previous work of unsupervised machine
translation (Artetxe et al., 2018b; Lample et al.,
2018; Ren et al., 2019), given two languages X
and Y , we build our n-gram translation tables as
follows. First, we obtain monolingual n-gram em-
beddings using fastText (Bojanowski et al., 2017)
and then get cross-lingual n-gram embeddings us-
ing vecmap (Artetxe et al., 2018a) in a fully un-
supervised way. Based on that, we calculate the
similarity score of n-grams x and y in two lan-
guages respectively with the marginal-based scor-
ing method (Conneau et al., 2017; Artetxe and
Schwenk, 2018). Specifically, given the cross-
lingual embeddings of x and y, denoted as ex and
ey, the similarity score is calculated as:

sim(x, y) = margin(cos(ex, ey),∑
z∈NNn(x)

cos(ex, ez)

2n
+

∑
z∈NNn(y)

cos(ey, ez)

2n
)

(1)
where margin(a, b) is a marginal scoring function
and NNn(x) denotes x’s k-nearest neighbors in the
other language. In our experiments, n is 5 and
margin(a, b) = a

b .
We take the above similarity scores as the trans-

lation probabilities between x and y in the n-
gram table. For each top frequent n-gram in the
source language, we retrieve top-k n-gram trans-
lation candidates in the target language.
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3.3 Cross-lingual Masked Language Model

In this section, we introduce our proposed method
for pre-training cross-lingual language models
based on BERT. Unlike the masked language
model (MLM) described in Section 2.2 which
masks several tokens in the input stream and pre-
dict those tokens themselves, we randomly select
some percentage of n-grams in the input source
sentence, and predict their translation candidates
retrieved from Section 3.2. We call our proposed
pre-training objective “Cross-lingual Masked Lan-
guage Model” (CMLM) as shown in Figure 2.
The difficulty for BERT to predict target phrases
during training is that the lengths of the transla-
tion candidates are sometimes different from the
source n-grams. To deal with this problem, we
turn to IBM Model 2 (Brown et al., 1993) to cal-
culate the training loss at each time step. Our pro-
posed method breaks the limitation that masked
n-grams and predicted ones have to be the same
length during BERT training.

Specifically, according to IBM Model 2, given
a source n-gram xl1 and a target one ym1 , where l
and m are the numbers of tokens in the source and
target n-grams respectively, the translation proba-
bility from xl1 to ym1 is calculated as:

Pr(ym1 |xl1) = ε
m∏
j=1

l∑
i=0

a(i|j, l,m)p(yj |xi) (2)

where ε = p(m|xl1), i.e. the probability that the
translation of xl1 consists of m tokens; a(j|i, l,m)
is the probability that the ith source token is
aligned with the jth target token conditioned on
the lengths l and m, while p(yj |xi) is the trans-
lation probability from the source token xi to the
target token yi. Based on the IBM Model 2, the
loss function of our CMLM is defined as

Lcmlm = − logPr(ym1 |xl1)

= − log ε−
m∑
j=1

log

l∑
i=0

a(i|j, l,m)p(yj |xi)

(3)
The derived gradient w.r.t model parameters θ at
each time step can be calculated as follows:

∇θLcmlm

=−
m∑
j=1

a(i|j, l,m)p(yj |xi)∑l
i=0 a(i|j, l,m)p(yj |xi)

∇θ log p(yj |xi)

(4)

Since the target n-gram ym1 is predicted with our
modified BERT, in practice, the source word xi
in Eq.(4) is replaced with its context-sensitive em-
bedding C(xl1), which is the corresponding hidden
state of the top Transformer layer. The alignment
probability a(i|j, l,m) cannot be learned during
training because of the absence of bilingual cor-
pus. Therefore, cross-lingual BPE embeddings are
leveraged to calculate the normalized sim(xi, yj)
to approximate a(i|j,m, l). p(yj |xi) is the model
prediction in Softmax outputs. For each source n-
gram, all of the retrieved k translation candidates
are used to calculate the cross entropy loss, which
are weighted with their translation probabilities in
the n-gram table.

Given a language pair X − Y , we process both
languages with the same shared BPE vocabulary
using their monolingual sentences together dur-
ing pre-training. Following Devlin et al. (2018);
Lample and Conneau (2019), in our CMLM ob-
jective, we randomly sample 15% of the BPE n-
grams from the text streams, and replace them by
[MASK] tokens 70% of the time. During pre-
training, in each iteration, a batch is composed of
sentences sampled from the same language, and
we alternate between MLM and CMLM objec-
tives. Different from the original MLM in BERT,
in the half of the MLM time, we randomly choose
some source n-grams in the input text stream, and
replace them with their translation candidates to
construct code-switching sentences. Our final pre-
training loss is defined as

Lpre = Lcmlm + Lmlm (5)

3.4 Unsupervised Machine Translation
Taking two cross-lingual language models pre-
trained with the above method as the encoder and
decoder, we build an initial unsupervised neural
machine translation model. Then, we train the
model with monolingual data until convergence
via denoising auto-encoder and iterative back-
translation, as described in Artetxe et al. (2017);
Lample et al. (2017, 2018). Different from them,
we step further and make another iteration with
updated n-gram translation tables. Specifically, we
translate the monolingual sentences with our latest
translation model and run GIZA++ (Och and Ney,
2003) on the generated pseudo parallel data to ex-
tract updated n-gram translation pairs, which are
used to tune the encoder as Section 3.3, together
with the back-translation within a multi-task learn-
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ing framework. Experimental results show that
running another iteration can further improve the
translation performance.

It is also interesting to explore the usage of
pre-trained decoders in the translation model. It
seems that pre-training decoders has a smaller ef-
fect on the final performance than pre-training en-
coders (Lample and Conneau, 2019), one reason
for which could be that the encoder-to-decoder at-
tention is not pre-trained. Therefore, the param-
eters of the decoder need to be re-adjusted sub-
stantially in the following tuning process for MT
task. In our experiments, we explore some other
usage of pre-trained decoders, i.e., we use the pre-
trained decoder as the feature extractor and feed
the outputs into a new decoder consisting of sev-
eral Transformer layers with the attention to the
encoder. We find this method improves the perfor-
mance of some language translation directions.

4 Experiments

In this section, we conduct experiments to eval-
uate our proposed pre-training method. In Sec-
tion 4.1, we will introduce the setup of our ex-
periments, followed by the overall results of the
final unsupervised MT models. Then, in Section
4.3, we will discuss another usage of pre-trained
decoders for translation models. To evaluate the
cross-lingual modeling capacity of our pre-trained
encoders, in Section 4.4, we conduct experiments
on word alignment and cross-lingual classification
tasks. Finally, we do the ablation study to check
the performance contribution of each component
in our proposed method.

4.1 Setup

Data and Preprocess
In our experiments, we consider three language
pairs, English-French (en-fr), English-German
(en-de) and English-Romanian (en-ro). For each
language, we use all the available sentences in
NewsCrawl till 2018, monolingual datasets from
WMT. The NewsCrawl data are used in both pre-
training and the following unsupervised NMT it-
eration process. Our CMLM is optimized based
on the pre-trained models released by Lample
and Conneau (2019)1, which are trained with
Wikipedia dumps. For fair comparison, we use
newstest 2014 as the test set for en-fr, and newstest
2016 for en-de and en-ro.

1https://github.com/facebookresearch/XLM

We use Moses scripts for tokenization, and use
fastBPE2 to split words into subword units with
their released BPE codes1. The number of shared
BPE codes for each language pair is 60,000.

Implementation Details
Our implementation is based on the released code
of XLM1 (Paszke et al., 2017). Specifically, we
use a Transformer architecture with 1024 hid-
den units, 8 heads, GELU activations (Hendrycks
and Gimpel, 2016), with a dropout rate of 0.1.
The models are trained with the Adam optimizer
(Kingma and Ba, 2014), a linear warmup (Vaswani
et al., 2017) and the learning rates varying from
104 to 5× 104.

For both of the MLM and CMLM objectives,
we use streams of 256 tokens and mini-batches
of size 64. We use the averaged perplexity over
languages as a stopping criterion for training. For
machine translation, we use 6 Transformer layers,
and we create mini-batches of 2000 tokens.

Baselines
Our method is compared with six baselines of un-
supervised MT systems listed in the upper part of
Table 1. The first two baselines (Artetxe et al.,
2017; Lample et al., 2017) use a shared encoder
and different decoders for two languages with
the training methods of denoising auto-encoder
and iterative back-translation. The third baseline
(Artetxe et al., 2018b) is an unsupervised PB-
SMT model, which uses the initial PBSMT mod-
els built with language models and n-gram trans-
lation tables inferred from cross-lingual embed-
dings, followed with the iterative back-translation.
The fourth baseline (Lample et al., 2018) is a hy-
brid method of unsupervised NMT and PBSMT by
combining the pseudo data generated by PBSMT
models into the final iteration of NMT. The fifth
baseline (Ren et al., 2019) is also a hybrid method
of NMT and PBSMT but different from Lample
et al. (2018), they leverage PBSMT as posterior
regularization in each NMT iteration. The last
baseline is XLM described in Section 2.2.

4.2 Overall Results
The overall comparison results of unsupervised
machine translation are shown in Table 1. From
the table, we find that our proposed method signif-
icantly outperforms previous methods on all lan-
guage pairs by the average BLEU score of 1.7,

2https://github.com/glample/fastBPE



775

Method fr2en en2fr de2en en2de ro2en en2ro

Baselines

(Artetxe et al., 2017) 15.6 15.1 - - - -
(Lample et al., 2017) 14.3 15.1 13.3 9.6 - -
(Artetxe et al., 2018b) 25.9 26.2 23.1 18.2 - -
(Lample et al., 2018) 27.7 28.1 25.2 20.2 23.9 25.1
(Ren et al., 2019) 28.9 29.5 26.3 21.7 - -
(Lample and Conneau, 2019) 33.3 33.4 34.3 26.4 31.8 33.3

Ours Iter 1 34.8 34.9 35.5 27.9 33.6 34.7
Iter 2 34.9 35.4 35.6 27.7 34.1 34.9

Table 1: Comparison of the final unsupervised MT performance (BLEU). In this table, “Iter 2” means we do the
whole process with another iteration as described in Section 3.4.

and both the improvements of en2fr and ro2en
are over 2 BLEU points. The results indicate that
the explicit cross-lingual information incorporated
by our proposed CMLM is beneficial to the unsu-
pervised machine translation task. Notice that by
doing another iteration (“Iter 2”) with updated n-
gram tables as described in Section 3.4, we fur-
ther improve the performance a bit for most trans-
lation directions with the improvements of en2fr
and ro2en bigger than 0.5 BLEU point, which con-
firms the potential that fine-tuned machine transla-
tion models contain more beneficial cross-lingual
information than the initial n-gram translation ta-
bles, which can be used to enhance the pre-trained
model iteratively.

The improvement made by Lample and Con-
neau (2019) compared with the first five baselines
shows that cross-lingual pre-training can be nec-
essary for unsupervised MT. However, the cross-
lingual information learned with this method dur-
ing pre-training is mostly from the shared subword
space, which is inexplicit and not strong enough.
Our proposed method can give the model more
explicit and strong cross-lingual training signals
so that the pre-trained model contains much ben-
eficial cross-lingual information for unsupervised
machine translation. As a result, we can further
improve the translation performance significantly,
compared with Lample and Conneau (2019) (with
the significance level of p<0.01).

4.3 Usage of Pre-trained Decoder

As mentioned in Section 3.4, it is interesting to
explore the different usage of pre-trained decoders
in the MT task. According to our intuition, di-
rectly using the pre-trained model as the decoder
may not work well because parameters of the de-
coder need substantial adjustment due to the at-
tention part between the encoder and the decoder.
Therefore, we treat the pre-trained decoder as the

feature extractor and add several Transformer lay-
ers with the encoder-to-decoder attention on top
of it. We also try to fix the pre-trained decoder
and just fine-tune the encoder and the added de-
coder part. The experiments are conducted based
on “Iter 1” with the results reported in Table 2.

From this table, we can see that directly us-
ing the pre-trained model as the decoder may be
the best choice for most of the time, with the ex-
ceptions of en2fr and ro2en. By adding 6 Trans-
former layers on top of the original pre-trained de-
coder can achieve higher performance for en2fr
and ro2en, but not significant. The reason could
be that it is difficult to train the additional Trans-
former layers from scratch in the unsupervised
scenario. There is also an interesting phenomenon
that if we fix the pre-trained part of the decoder
and only tune the added Transformer layers, the
final performance will drop drastically, which in-
dicates that the representation space of the decoder
requires substantial adaptation, even though the
pre-trained models already contain cross-lingual
information. We think that further deep research
on the decoder initialization could be a necessary
and interesting topic in the future.

4.4 Evaluation of Cross-lingual Pre-trained
Encoder

Word Alignment
To evaluate the cross-lingual modeling capacity of
our pre-trained models, we first conduct experi-
ments on the English-French (en-fr) dataset of the
HLT/NAACL 2003 alignment shared task (Mihal-
cea and Pedersen, 2003). Given two parallel sen-
tences in English and French respectively, we feed
each sentence into the pre-trained cross-lingual
encoder and get its respective outputs. Then, we
calculate the similarities between the outputs of
the two sentences and choose target words with
max similarity scores as the alignments of corre-
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Decoder type fr2en en2fr de2en en2de ro2en en2ro
Pre-trained 34.8 34.5 35.5 27.9 33.4 34.7
Pre-trained + 4 TF layers 34.2 33.9 34.9 26.8 32.5 33.2
Pre-trained + 6 TF layers 34.6 34.9 34.9 27.5 33.6 34.1
Pre-trained (fix) + 4 TF layers 26.8 22.0 23.9 19.2 24.7 25.9
Pre-trained (fix) + 6 TF layers 28.2 22.4 24.2 19.7 25.1 26.2

Table 2: Test BLEU scores with different usage of the pre-trained decoder.

sponding source words.
We compare the context-unaware method (i.e.,

directly calculating the similarity scores between
unsupervised cross-lingual embeddings (Artetxe
et al., 2018a) of source and target words), XLM
(Lample and Conneau, 2019) and our proposed
CMLM pre-training method in the Table 3. In this
experiment, we leave out all the OOV words and
those torn apart by the BPE operations.

Method P R F AER
Context-unaware 0.3860 0.1854 0.2505 0.6061
XLM 0.5480 0.3178 0.4023 0.4302
Ours 0.5898 0.3497 0.4391 0.4016

Table 3: Results of word alignment tasks using differ-
ent cross-lingual word embeddings. In this table, “P”
means “precision”, “R” means recall”, “F” means “F-
measure” and “AER” means the “alignment error rate”.

From this table, we find that, based on BERT,
both XLM and our method can model cross-
lingual context information, indicating that con-
text information can greatly enhance the cross-
lingual mapping between the source and target
words. By leveraging the explicit cross-lingual in-
formation in the model training, our CMLM can
outperform XLM significantly. This confirms that
our CMLM does better to connect the source and
target representation space, with which as pre-
trained models, the performance of unsupervised
NMT can be improved.

Cross-lingual Classification
We also conduct experiments on the cross-lingual
classification task (Conneau et al., 2018) using the
cross-lingual language inference (XNLI) dataset
(Conneau et al., 2018). Specifically, we add a lin-
ear classification layer on top of the first hidden
state of our pre-trained model and fine-tune its pa-
rameters on the English NLI dataset. Without us-
ing any labeled data for French (fr) and Germany
(de) languages, we only report the zero-shot clas-
sification results for them as shown in Table 4. We
can find that our method reaches a new record of

the zero-shot cross-lingual classification task on
languages of French (fr) and Germany (de), which
confirms again that our CMLM works better on
modeling cross-lingual information than previous
methods in the unsupervised scenario.

Method en fr de
(Conneau et al., 2018) 73.7 67.7 67.7
(Devlin et al., 2018) 81.4 - 70.5
(Lample and Conneau, 2019) 83.2 76.5 74.2
Ours 83.4 77.1 74.7

Table 4: Results of zero-shot cross-lingual classifica-
tion (on XNLI test sets).

4.5 Ablation Study

In this section, we will discuss the different set-
tings of our method. Firstly, the training loss of
our pre-trained method contains two parts, i.e.,
CMLM and MLM, just as Eq.(5) shows. To study
the respective influences of these two parts, we
remove the MLM loss from it and compare the
performance on en-fr and en-de translation tasks.
Since our CMLM task differs from XLM in two
aspects during pre-training. The first one is that
we randomly choose n-grams to mask in the input
text stream rather than BPE tokens, and the second
one is that we predict the translation candidates of
a source n-gram rather than predicting the source
n-gram itself. Although the first one has proven
to be beneficial during pre-training to some NLP
tasks, we want to check how much its influence
is to our final translation performance. Therefore,
we disable those two modifications in CMLM one
by one and report the translation results. Our ex-
periments are conducted based on “Iter 1” with the
results in Table 5.

From Table 5, we can find that the combination
of CMLM and MLM can improve the translation
performance by about 0.6 to 0.7 BLEU compared
with any one only. This confirms the monolingual
context modeling capacity of the MLM, which is
quite useful for unsupervised machine translation.
By combining CMLM and MLM, we can enforce



777

fr2en en2fr de2en en2de
CMLM + MLM 34.8 34.9 35.5 27.9
CMLM 34.1 34.3 35.1 27.2
- translation prediction 33.7 33.9 34.8 26.6
- - n-gram mask 33.3 33.4 34.3 26.4

Table 5: Ablation study. “CMLM + MLM” means we use Lpre as the pre-training loss; “CMLM” means we only
use Lcmlm as the pre-training loss; “- translation prediction” means we predict the masked n-grams themselves
rather than their translation candidates during pre-training; “- - n-gram mask” means we randomly mask BPE
tokens rather than n-grams based on “- translation prediction” during pre-training, which degrades our method to
XLM.

our model to learn both monolingual and cross-
lingual information during pre-training. Besides,
we find the two modifications(translation predic-
tion and n-gram mask) made by CMLM have
nearly equal contributions to the translation per-
formance, except for en2de, where the “n-gram
mask” has little influence.

5 Related Work

Unsupervised machine translation dates back to
Klementiev et al. (2012); Nuhn et al. (2012), but
becomes a hot research topic in recent years. As
the pioneering methods, Artetxe et al. (2017);
Lample et al. (2017); Yang et al. (2018) are mainly
the modifications of the encoder-decoder struc-
ture. The core idea is to constrain outputs of en-
coders of two languages into a same latent space
with a weight sharing mechanism such as using a
shared encoder. Denoising auto-encoder (Vincent
et al., 2010) and adversarial training methods are
also leveraged. Besides, they apply iterative back-
translation to generated pseudo data for cross-
lingual training. In addition to NMT methods for
unsupervised machine translation, some follow-
ing work shows that SMT methods and the hybrid
of NMT and SMT can be more effective (Artetxe
et al., 2018b; Lample et al., 2018; Marie and Fu-
jita, 2018; Ren et al., 2019). They all build unsu-
pervised PBSMT systems, and all of their models
are initialized with language models and phrase ta-
bles inferred from cross-lingual word or n-gram
embeddings and then use the initial PBSMT mod-
els to do iterative back-translation. Lample et al.
(2018) also build a hybrid system by combining
the best pseudo data that SMT models generate
into the training of the NMT model while Ren
et al. (2019) alternately train SMT and NMT mod-
els with the framework of posterior regularization.

More recently, Lample and Conneau (2019)
reach new state-of-the-art performance on unsu-

pervised en-fr and en-de translation tasks. They
propose a cross-lingual language model pre-
training method based on BERT (Devlin et al.,
2018), and then treat two cross-lingual language
models as the encoder and decoder to finish the
translation. Leveraging much more monolingual
data from Wikipedia, their work shows a big po-
tential of pre-training for unsupervised machine
translation. However, the cross-lingual informa-
tion is obtained mostly from the shared BPE space
during their pre-training method, which is inex-
plicit and limited. Therefore, we figure out a new
pre-training method that gives the model more ex-
plicit and stronger cross-lingual information.

In the recent work of Song et al. (2019), they
also mask several consecutive tokens in the source
sentence, but jointly pre-train the encoder and
decoder by making the decoder to predict those
masked tokens in both the source and target sides.
Their method is a good case of pre-training for
seq-to-seq tasks but the cross-lingual information
incorporated with their method is from BPE shar-
ing, which is also implicit. Our proposed method
can be combined with their method within a multi-
task framework, which could be done in the future.

6 Conclusion

In this paper, we propose a novel cross-lingual pre-
training method for unsupervised machine trans-
lation. In our method, we leverage Cross-lingual
Masked Language Model (CMLM) to incorporate
explicit and strong cross-lingual information into
pre-trained models. Experimental results on en-fr,
en-de, and en-ro language pairs demonstrate the
effectiveness of our proposed method.

In the future, we may apply our pre-training
method to other language pairs and delve into the
performance of the pre-trained encoders on other
NLP tasks, such as Name Entity Recognition.



778

Acknowledgments

This work is supported in part by National Key
R&D Program of China 2018YFB1700403, and
NSFC U1636210&61421003.

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre.

2018a. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 789–798.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018b. Unsupervised statistical machine transla-
tion. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
Brussels, Belgium. Association for Computational
Linguistics.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. arXiv preprint arXiv:1710.11041.

Mikel Artetxe and Holger Schwenk. 2018. Margin-
based parallel corpus mining with multilin-
gual sentence embeddings. arXiv preprint
arXiv:1811.01136.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263–311.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
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