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Abstract
For text classification, traditional local fea-
ture driven models learn long dependency by
deeply stacking or hybrid modeling. This pa-
per proposes a novel Encoder1-Encoder2 ar-
chitecture, where global information is incor-
porated into the procedure of local feature
extraction from scratch. In particular, En-
coder1 serves as a global information provider,
while Encoder2 performs as a local feature
extractor and is directly fed into the classi-
fier. Meanwhile, two modes are also designed
for their interactions. Thanks to the aware-
ness of global information, our method is able
to learn better instance specific local features
and thus avoids complicated upper operations.
Experiments conducted on eight benchmark
datasets demonstrate that our proposed archi-
tecture promotes local feature driven models
by a substantial margin and outperforms the
previous best models in the fully-supervised
setting.

1 Introduction

Text classification is a fundamental task in natural
language processing, which is widely used in vari-
ous applications such as spam detection, sentiment
analysis and topic classification. One of the main-
stream approaches firstly utilizes explicit local ex-
tractors to identity key local patterns and classifies
based on them afterwards. In this paper, we call
this line of research as local feature driven mod-
els.

Lots of proposed methods can be grouped
into this scope. Ngrams have been tradition-
ally exploited in statistical machine learning ap-
proaches (Pang et al., 2002; Wang and Manning,
2012). For deep neural networks, encoding local
features into low-dimensional distributed ngrams

?These authors contributed equally to this work.
†This work was done while the author was an intern at

Baidu Inc.

Case1: Apple is really amazing! I am fed up to
carry my clunky camera.
Case2: Apple is famous around world and de-
serves to be called “nutritional powerhouses”.

Table 1: Topic classification examples for Technology
and Health, where Apple is ambiguous within local
context.

embeddings (Joulin et al., 2016; Qiao et al., 2018)
and simply bagging of them have been proved ef-
fective and highly efficient. Convolutional Neu-
ral Networks (CNN) (LeCun et al., 2010) are
promising methods for their strong capacities in
capturing local invariant regularities (Kim, 2014).
More recently, Wang (2018) proposes the Discon-
nected Recurrent Neural Network (DRNN), which
utilizes RNN to extract local features for larger
windows and has reported best results on several
benchmarks.

Despite having good interpretability and re-
markable performance, current local feature ex-
traction still has one shortcoming. As shown in
Table 1, the real meaning of Apple can only be
correctly recognized from overall view instead of
narrow window. If the local extractor in charge
of Apple cannot receive camera and nutritional
from the very beginning, it would require compli-
cated and costly upper structures to help revise the
imprecisely local representation and create newer
high-level features, such as deeply stacking (John-
son and Zhang, 2017; Conneau et al., 2016) and
hybrid integration (Xiao and Cho, 2016). To a cer-
tain extend, it is inefficient and hard to train espe-
cially in the case of insufficient corpus.

To address this issue, we believe a more ef-
ficient approach is to optimize the local extrac-
tion process directly. In this paper, we propose
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a novel architecture named Encoder1-Encoder21,
which innovatively contains two encoders for the
identical input sequence respectively, instead of
using only one single encoder in previous work.
Concretely, the Encoder1 can be any kind of neu-
ral network models designed for briefly grasping
global background, while the Encoder2 should be
a typical local feature driven model. The key
point is, the earlier generated global representa-
tions from Encoder1 is then incorporated into the
local extraction procedure of Encoder2. In this
way, local extractors can notice more long-range
information on the basis of its natural advantages.
As a result, better instance specific local features
can be captured and directly utilized for classifica-
tion owing to global awareness, which means fur-
ther upper complicated operations can be avoided.

We conduct experiments on eight public text
classification datasets introduced by Zhang et al.
(2015). The experimental results show that
our proposed architecture promotes local feature
driven models by a substantial margin. In fully-
supervised settings, our best models achieves new
state-of-the-art performances on all benchmark
datasets. We further demonstrate the ability and
generalization of our architecture in the semi-
supervised domain.

Our contributions can be concluded as follows:
1. We propose a novel Encoder1-Encoder2 ar-

chitecture, where better instance specific local fea-
tures are captured by incorporating global repre-
sentations into local extraction procedure.

2. Our architecture has great flexibility. Differ-
ent associations among Encoder1, Encoder2 and
Interaction Modes are studied, where any kind of
combination promotes vanilla CNN or DRNN sig-
nificantly.

3. Our architecture is more robust to the win-
dow size of local extractors and the corpus scale.

2 Related Work

Local Feature Driven Models FastText uses
bag of n-grams embeddings as text representa-
tion (Joulin et al., 2016), which has been proved
effective and efficient. Qiao et al. (2018) propose a
new method of learning and utilizing task specific
n-grams embeddings to conquer data sparsity.

1Our code will be available at https://github.com/PaddleP
addle/models/tree/develop/PaddleNLP/Research/EMNLP2019
-GELE. “GELE” is the abbreviation for Global Encoder and
Local Encoder, i.e., Encoder1 and Encoder2 respectively.

CNN (LeCun et al., 2010) are representative
methods of this category. Convolution opera-
tors are performed at every window based lo-
cation to extract local features, interleaved with
pooling layer for capturing invariant regularities.
From Kim (2014), CNN are widely used in text
classification. In addition to shallow structure,
very deep and more complex CNN based mod-
els have also been studied to establish long dis-
tance association. Examples are deep character-
level CNNs Zhang et al. (2015); Conneau et al.
(2016), deep pyramid CNN Johnson and Zhang
(2017) and convolution-recurrent networks Xiao
and Cho (2016), in which recurrent layers are de-
signed on top of convolutional layers for learning
long-term dependencies between local features.

CNN use simple linear operations on n-gram
vectors of each window, which enlightens re-
searchers to capture higher order local non-linear
feature using RNN. Shi et al. (2016) first replace
convolution filters with LSTM for query classifi-
cation. Wang (2018) proposes DRNN, which ex-
ploits large window size equipped with GRU.

To make full use of local and global informa-
tion, Zhao et al. (2018) propose a sandwich net-
work by carding a CNN in the middle of two
LSTM layers, where the output of CNN pro-
vides local semantic representations while the top
LSTM supplies global structure representations.
However, the global information they mainly fo-
cus on is the syntax part, which is produced by re-
organizing the already obtained local features. Be-
sides, both of them are directly used for final clas-
sification, while we use pre-acquired global repre-
sentations to help capture better local features. To
the best of our knowledge, we are the first to in-
corporate global representation into the extraction
procedure of local features for text classification.

Other Neural Network Models Recurrent Neu-
ral Networks (RNN) are naturally good at model-
ing variable-length sequential data and capturing
long-term dependencies (Hochreiter and Schmid-
huber, 1997; Chung et al., 2014). Global fea-
tures are encoded by semantically synthesizing
each word in the sequence in turn and there is
no explicit small regions feature extraction pro-
cedure in this process. Lai et al. (2015) equip
RNN with max-pooling to tackle the bias problem
where later words are more dominant than earlier
words. Tang et al. (2015) utilize LSTM to encode
semantics of sentences and their relations in doc-
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Figure 1: Encoder1-Encoder2 architecture mainly contains three components. (1) Encoder1 serves as a global
information provider. (2) Encoder2 is a local feature driven model whose output is directly fed into the classifier.
(3) Mode is the interaction manner between them. S and A are abbreviation of SAME and ATTEND respectively.

ument representation. Tai et al. (2015) introduce a
tree-structured LSTM for sentiment classification.

The attention mechanism proposed by Bah-
danau et al. (2014) has achieved great success in
machine translation (Vaswani et al., 2017). For
text classification which only has single input se-
quence, attention based models mainly focus on
applying attention mechanism on top of CNN or
RNN for selecting the more important informa-
tion (Yang et al., 2016; Er et al., 2016). Letarte
et al. (2018) and Shen et al. (2018) also explore
self-attention networks which is CNN/RNN free.

3 Encoder1-Encoder2 Architecture

3.1 Overview

In this paper, we propose a novel neural network
architecture named Encoder1-Encoder2 for text
classification, which is illustrated in Figure 1. The
identical input sequence will be encoded twice by
two encoders respectively, but only the output of
Encoder2 is used directly for the classifier. In par-
ticular, the Encoder1 serves as a pioneer for pro-
viding global information, while the Encoder2 fo-
cuses on extracting better local features by incor-
porating the former into the local extraction pro-
cedure. Besides, two Interaction Modes are devel-
oped for more targeted absorption of global infor-
mation.

3.2 Encoder1: Global Information Provider

Without loss of generality, we introduce three
types of models for Encoder1 in our architecture,

each of which can be an independent global in-
formation provider and they are compared in our
experiments.

CNN Let xt be the d-dimensional word vector
corresponding to the t-th word in a sequence of
length n, xt�h+1:t refers to the concatenation of
words xt�h+1,xt�h+2, . . . ,xt with size h and k

number of filters are applied to the input sequence
to generate features. Formally, filters Wf are ap-
plied to window xt�h+1:t to compute ht:

ht = Conv(xt�h+1,xt�h+2, . . . ,xt) (1)
= relu(Wfxt�h+1:t + bf ) (2)

By same padding, filters are applied to n possible
windows in the sequence and the global represen-
tation can be represented as enc1:

enc1 = [h1;h2; . . . ;hn] (3)

GRU Gated recurrent units (GRU) are a gat-
ing mechanism in RNN (Cho et al., 2014). Two
types of gates are used in GRU: reset gate decides
how much new information is updated, while up-
date gate controls the flow of previous informa-
tion. The hidden state ht is computed iteratively
based on ht�1 and xt. As a result, the all previ-
ous information can be encoded. For saving space,
here we abbreviate it as:

ht = GRU(x1,x2, . . . ,xt) (4)

The global representation produced by GRU is
hidden states of all time steps:

enc1 = [h1;h2; . . . ;hn] (5)
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Attention We also introduce attention mecha-
nism on GRU for enhancing valuable information
following Zhou et al. (2016). Define a context vec-
tor uw to measure the importance of each hidden
state ht in GRU, which is randomly initialized and
learned during training. A normalized importance
weight ↵t is obtained through a softmax function:

↵t =
exp(tanh(ht)

>uw)P
t exp(tanh(ht)

>uw)
(6)

The global representation produced by this atten-
tion mechanism is expressed as:

enc1 = [↵1h1;↵2h2; . . . ;↵nhn] (7)

3.3 Encoder2: Variant Local Extractor
Vanilla local feature extractor strictly focuses on
a limited size region. Here we propose a vari-
ant method. Apart from the expected local con-
text, global information distilled by Encoder1 is
also absorbed by a local extractor. In this way,
the local features extracted by Encoder2 can no-
tice the global background while still maintaining
the position-invariant local patterns.

For Encoder2, we introduce two kinds of local
feature driven models, i.e., CNN and DRNN. The
former is good at capturing local spatial structure,
while the latter is highlighted in capturing local
temporal part. Set gt as the required global infor-
mation for a certain size window starting from xt,
which will be introduced in 3.4 in detail.

CNN Here we treat each gt 2 Rd as a faked
extra global word, and do convolution with win-
dow words together. Based on Equation 1, fea-
tures produced by filters for window xt�h+1:t can
be represented as:

ht = Conv(gt,xt�h+1,xt�h+2, . . . ,xt) (8)

DRNN Different from CNN, DRNN utilizes
RNN to extract local features for each win-
dow (Wang, 2018). To introduce global informa-
tion into DRNN, faked global word gt is filled in
the head of each window like CNN does. Because
of the sequential nature of RNN, even for a limited
window, global information can be encoded into
RNN from scratch and motivate the latter words.
Here we use GRU as the local feature extractor,
and features produced for window xt�h+1:t can be
represented as:

ht = GRU(gt,xt�h+1,xt�h+2, . . . ,xt) (9)

To maintain translation invariant, a max-over-
time pooling layer is then applied to CNN or
DRNN layer, the pooling result is regarded as the
output of Encoder2:

enc2 = maxpool([h1;h2; . . . ;hn]) (10)

3.4 Interaction Modes between Encoders

Set enc1 as the global representation produced by
Encoder1, required information for a certain win-
dow xt�h+1:t with size h is defined as gt:

gt = G(enc1,xt�h+1,xt�h+2, . . . ,xt) (11)

where G is a function of interaction mode. Two
modes are devised from different point of views.

SAME Treat enc1 as a “reference book” pro-
vided by Encoder1. The basic idea of SAME
Mode is each window in Encoder2 will get in-
discriminate guidance regardless of the local in-
formation itself. For this purpose, max-over-time
pooling is operated on enc1 directly to extract the
most important information:

ĝt = maxpool(enc1) (12)

ATTEND Mode ATTEND utilizes global infor-
mation from another perspective. According to
different local contexts, the guidances from En-
coder1 can be be more targeted. Specifically, we
use attention mechanism.

For window xt:t+h�1 with size h, the context
vector is the average pooling of local words em-
beddings and the importance weight ↵t for each
hidden state ht in Encoder1 can be computed as:

↵t =
exp(tanh(ht)

>
avg(xt:t+h�1))P

t exp(tanh(ht)
>
avg(xt:t+h�1))

(13)

To maximize the profits obtained from En-
coder1, we concatenate both of maxpooling re-
sults and attention results. Then ĝt in ATTEND
mode can be represented as:

ĝt = Concat(maxpool(enc1),
X

t

↵tht) (14)

Finally, to keep consistent dimensions with
words in the text, we compress ĝt using MLP and
formalized as gt, which can be easily embedded
into the local feature extraction in Encoder2.
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Dataset C L N Test Tasks

Yelp P. 2 156 560k 38k SA
Yelp F. 5 158 650k 50k SA
Amz. P. 2 91 3M 650k SA
Amz. F 5 93 3.6M 400k SA
AG 4 44 120k 7.6k News
Sogou 5 579 450k 60k News
Yah. A. 10 112 1.4M 60k QA
DBP 14 55 560k 70k Ontology

Table 2: Datasets summary. C: Number of target
classes. L: Average sentence length. N: Dataset size.
Test: Test set size. In tasks, SA refers to sentiment
analysis, and QA refers to question answering.

3.5 Classification Layer
After incorporating the global information ob-
tained from Encoder1 into the local feature extrac-
tion of Encoder2, the output vector of latter can be
regarded as the representation of the entire text.
The vector is then fed into a softmax classifier to
predict the probability of each category and cross
entropy is used as loss function:

ŷ = softmax(Wcenc2 + bc) (15)

H(y, ŷ) =
X

i

yi log ŷi (16)

where ŷi is the predicted probability and yi is the
true probability of class i.

4 Experiments

We report experiments with proposed models in
comparison with previous methods.

4.1 Experiments Settings
Datasets Publicly available datasets from Zhang
et al. (2015) are used to evaluate our models.
These datasets contain various domains and sizes,
corresponding to sentiment analysis, news classi-
fication, question answering, and ontology extrac-
tion, which are summarized in Table 2.

Model Settings For data preprocessing, all the
texts of datasets are tokenized by NLTKs tokenizer
(Loper and Bird, 2002). For model hyperparame-
ters, notations are following in 3.2 and 3.3. We
adopt CNN, GRU and Attention for Encoder1. In
CNN (Encoder1), we use filter windows (h) of
[3, 5, 7] with 128 feature maps (k) each. The hid-
den unit number is 128 in GRU (Encoder1) and
Attention (Encoder1). For Encoder2, we conduct
experiments based on two types of local feature

Corpus Vocabulary Length Window size

Yelp P. 150k 300 20
Yelp F. 200k 300 20
Amz. P. 400k 256 15
Amz .F. 400k 256 15
AG 50k 128 15
Sogou 56k 400 15
Yah. A. 400k 256 20
DBP 400k 128 15

Table 3: Model settings. We limit the vocabulary size
and set maximum sequence length. We also show the
window size in DRNN following Wang (2018).

extractor, corresponding to CNN and DRNN re-
spectively. In CNN (Encoder2), window sizes of
filters are of [3, 5, 7] with 128 feature maps each.
In DRNN (Encoder2), all the dimensions of hid-
den states are set to 300. Other settings are shown
in Table 3, all trainable parameters including em-
beddings of words are initialized randomly with-
out any pre-trained techniques (Mikolov et al.,
2013; Peters et al., 2018; Devlin et al., 2018).

Training and Validation For each dataset, we
randomly split the full training corpus into train-
ing and validation set, where the validation size is
the same as the corresponding test size. Then the
validation set is fixed for all models for fair com-
parison. The reported test accuracy is evaluated in
the model which has lowest validation error.

AdaDelta (Zeiler, 2012) with ⇢ = 0.95 and
✏ = 1e � 6 is chosen to optimize all the train-
able parameters. Gradient norm clipping is em-
ployed to avoid the gradient explosion problem.
L2 normalization is used in all models which in-
clude RNN structures. The batch size is set to 64
for Yelp P. and Yelp F. while 128 for other datasets.
We train all the models using early stopping with
timedelay 10.

4.2 Experimental Results and Analysis

Table 4 is the summary of the experimental re-
sults. We use underscores to represent the best
published models, and bold the best records. Best
models in our proposed architecture beat previous
state-of-the-art models on all eight text classifica-
tion benchmarks.

For published models, best results are achieved
almost all by local feature driven models including
Region-emb, VDCNN and DRNN. Self-Attention
model SANet performs well, but does not achieve
advantageous results as in sequence to sequence



501

Model Yelp P. Yelp F. Amz. P. Amz. F. AG Sogou Yah. A. DBP

bigram-FastText (Joulin et al., 2016) 95.7 63.9 94.6 60.2 92.5 96.8 72.3 98.6
Region-emb (Qiao et al., 2018) 96.2 64.5 95.3 60.8 92.8 97.3 73.4 98.9

SANet(big) (Letarte et al., 2018) 95.2 64.0 95.5 61.3 92.6 - 74.1 98.8

LSTM (Zhang et al., 2015) 94.7 58.2 93.9 59.4 86.1 95.2 70.8 98.6
D-LSTM (Yogatama et al., 2017) 92.6 59.6 - - 92.1 94.9 73.7 98.7

char-CNN (Zhang et al., 2015) 94.7 62.0 94.5 59.6 87.2 95.1 71.2 98.3
VDCNN (Conneau et al., 2016) 95.7 64.7 95.7 63.0 91.3 96.8 73.4 98.7

CNN (Kim, 2014) 95.8 64.7 95.2 60.9 91.9 97.1 72.6 98.8
Encoder1-CNN-S (Ours) 96.5 66.2 95.9 63.3 92.5 97.5 74.5 98.8
Encoder1-CNN-A (Ours) 96.5 66.5 96.0 63.3 93.0 97.5 74.6 98.9

DRNN (Wang, 2018) 96.3 66.4 95.6 63.0 92.9 96.9 74.3 98.9
Encoder1-DRNN-S (Ours) 96.6 66.8 96.0 63.2 93.0 97.2 74.8 99.0
Encoder1-DRNN-A (Ours) 96.7 67.0 96.0 63.1 93.2 97.3 75.0 99.0

Table 4: Test accuracy [%] on several Datasets. We use Encoder1-Encoder2-Mode to represent our architecture,
where S indicates mode SAME while A indicates ATTEND. For each specialized Encoder2, we test three different
Encoder1. For the sake of brevity, Encoder1 here does not specifically refer to a certain model but the best
performance of the three combinations. Detailed experiments results for all combinations of Encoder1-Encoder2-
Mode are further reported and compared in Table 5. For compared previous models, first block lists n-grams based
models including bigram-FastText (Joulin et al., 2016) and region embedding (Qiao et al., 2018). Self-attention
Networks SANet (Letarte et al., 2018) is reported in the second block. RNN based models LSTM (Zhang et al.,
2015), D-LSTM (Yogatama et al., 2017) and CNN based models char-CNN (Zhang et al., 2015) and VDCNN
(Conneau et al., 2016) are listed in third and forth block respectively. Strong local feature driven models CNN
(Kim, 2014) and DRNN (Wang, 2018) are chosen as base model and directly compared with our architecture in
last two blocks.

scenes, neither do RNN based methods. We argue
that it is because key phrases and word order play
an important role in text classification.

For our models, the experimental results show
that enhanced local extractors with global encoder
outperform vanilla local models by a advanta-
geous margin. When CNN is chosen as local ex-
tractor, the performance gains are particularly sig-
nificant for relatively difficult tasks such as Amz.
F.(+2.4%) and Yah. A.(+2.0%). Encoder1-CNN
performs even better than VDCNN with 29 con-
volutional layers. The results are satisfying con-
sidering that our CNN used as local extractor here
is a shallow model with only one layer. Moreover,
complicated VDCNN performs best among pub-
lished models on larger datasets Amz. P.(95.7%)
and Amz. F.(63.0%) but not as expected on
smaller AG(91.3%), while our Encoder1-CNN has
stable superior performance on all datasets. When
DRNN is chosen as local extractor, the bonus from
the global encoder is not so big like CNN, but still
considerable and stable. Encoder1-DRNN beats
DRNN on all datasets with a highest gain up to
0.7%.

To better analyze the impact of specific En-
coder1 (global encoder) and different Interac-
tion Modes on architecture performance, Table
5 details all combinations results of Encoder1-
Encoder2-Mode on three datasets. We find the
local extractor benefits quite a lot for any intro-
duced global encoders. Overall, RNN and Atten-
tion based global encoders perform well-matched
for local extractor, and both of them often perform
better than CNN based global encoder. For ex-
ample, Attention-CNN wins CNN-CNN 1.0% on
Yelp F. and RNN-DRNN wins CNN-DRNN 0.4%
on Yah. A. This is intuitive since RNN and Atten-
tion are more appropriate in capturing global in-
formation compared with CNN, which is critical
for local extractor. The structures which special-
ize in modeling long-term dependency are more
recommended as the global encoder.

For two Interaction Modes, we find ATTEND
performs slightly better than SAME up to 0.4%,
which can verify the differentiated motivation. En-
coder1 (global encoder) can be viewed as a “refer-
ence book” about the whole text. Two Modes uti-
lize the information from different perspectives to
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(a) Experiments on Yelp F. (b) Experiments on Yah. A.

Figure 2: Model ablation experiments. “Vanilla” is the traditional CNN (Kim, 2014). “Concat” simply concate-
nates the output of Encoder1 and Encoder2 and directly classifies according to the concatenated result. “Same”
indicates the Interaction Mode in our architecture.

Model Yelp P. Yelp F. Yah. A.

CNN 95.8 64.7 72.6
CNN-CNN-S 96.0 65.5 73.9
CNN-CNN-A 96.3 65.5 74.1

RNN-CNN-S 96.5 66.2 74.5
RNN-CNN-A 96.5 66.4 74.6

Attention-CNN-S 96.4 66.2 74.2
Attention-CNN-A 96.5 66.5 74.1

DRNN 96.3 66.4 74.3
CNN-DRNN-S 96.5 66.6 74.6
CNN-DRNN-A 96.7 67.0 74.4

RNN-DRNN-S 96.6 66.6 74.7
RNN-DRNN-A 96.6 66.9 75.0

Attention-DRNN-S 96.6 66.8 74.9
Attention-DRNN-A 96.6 67.0 74.9

Table 5: Effect of Encoder1 and Interaction Mode.

assist the local extractor. SAME Mode selects the
most important information of global encoder and
provides same guidance for each window in En-
coder2, while the ATTEND Mode tends to make
use of the “reference” with purpose based on dif-
ferent local contexts as if we refer to a reference
book with initiative questions.

4.3 Model Ablation

In addition to introducing another encoder into
vanilla local feature driven models, the greatest
novelty of our architecture lies in that the global
encoding is used to generate local features di-
rectly. Based on this motivation, the local features
have the global awareness from the very begin-
ning. To verify that our novel architecture makes
key contribution to the performance improvement,
we carry out model ablation experiments.

Without loss of generality, we use CNN as local
extractor here and validate on Yelp F. and Yah. A.

datasets. The results are illustrated in Figure 2.
Firstly, we list the results of Vanilla CNN,

which is regarded as the most primitive state. Sec-
ondly, another additional encoder is introduced but
they both process inputs independently and then
their output representations are concatenated for
classification. We call it “Concat”, abbreviated as
“C”. For example, RNN-CNN-C stands for con-
catenating another RNN. Finally, we upgrade the
way to use the introduced encoder as our proposed
architecture. Here we list Mode SAME, abbrevi-
ated as “S”.

We find CNN-CNN-C loses 0.5% on Yelp P.
but wins 0.4% on Yah. A. compared with vanilla
CNN. CNN-CNN-C can be viewed as doubling
convolution filters and we can observe that intro-
ducing more parameters does not always perform
better. Meanwhile, RNN-CNN-C wins vanilla
CNN 0.7% on Yelp P. and 0.9% on Yah. A. It
makes sense since the classifier could use features
from CNN and RNN simultaneously and different
model structures complement each other for clas-
sification. In particular, our architecture performs
best for both cases. CNN-CNN-S wins CNN-
CNN-C 1.3% and 0.8%, and RNN-CNN-S wins
RNN-CNN-C 0.6% and 1.0% on Yelp P. and Yah.
A. respectively. In fact, CNN-CNN-S does not in-
troduce new model structure or complicated oper-
ations and the number of parameters are almost the
same. We attribute the great improvement to our
novel mechanism where the global representation
conduces to the local extraction.

4.4 Effect of Window Size

As an important hyperparameter, window size de-
termines how much information can be seen in a
specific window and often requires carefully tun-
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(a) The impact of window size on CNN. (b) The impact of window size on DRNN.

Figure 3: Window size experiments on Yelp F. ATT is the abbreviation of Attention.

Model Sentence Samples

CNN “Commission backs 5bn British Energy deal ”“ British Energy, the nuclear generator yesterday welcomed a

decision by the European commission to approve a government-backed 5bn rescue plan .” World 5

ATT-CNN “Commission backs 5bn British
::::::
Energy

::::
deal ”“ British

::::::
Energy, the

::::::
nuclear generator, yesterday welcomed a

decision by the European commission to approve a government-backed 5bn
:::::
rescue

:::::
plan .” Business 3

CNN The mac and cheese sticks were amazing ... highly recommend them . Overall, for the high price price pay

here, I would rather be across the casino with at least a great view of the fountains. Positive 5

ATT-CNN The mac and cheese sticks were
:::::::
amazing ... highly

::::::::::
recommend them .

:::::::
Overall, for the

::::
high

:::::
price you pay

here, I
::::::
would

:::::
rather be across the casino with at least a

::::
great view of the fountains. Negative 3

Table 6: Visualization of chosen samples on AG News and Yelp Review Polarity dataset. We use SAME Interaction
Mode in ATT-CNN where ATT is the abbreviation of Attention.

ing in traditional method. Small window sizes
may result in the loss of some critical informa-
tion whereas large windows result in an enormous
parameter space, which could be difficult to train
(Lai et al., 2015). In this section, we analyze the
impact of different window sizes on model perfor-
mances.

As shown in Figure 3, both CNN and DRNN are
very sensitive to window size, the optimal window
size in DRNN can be much larger than CNN due
to the sequential memory in RNN structure. Tun-
ing these models is often challenging. In contrast,
our Encoder1-Encoder2 architecture is insensitive
to the parameter and achieves stable satisfied per-
formance in various window sizes. We believe it is
because the local extraction has been enhanced by
global information and not strictly dependent on
large windows to capture long range information.

4.5 Case Study and Visualization

To investigate how our architecture makes a differ-
ence in details, we visualize the attending phrases
by the neural model in Table 6. Qualitatively, we
display the contribution of phrases in Encoder2 to
classification via max-pooling. The most impor-
tant phrases are highlighted red where the inten-
sity of the color indicates the contribution. Mean-
while, we use waves to roughly indicate the key

phrases with high attention scores in Encoder1.
Detailed visualization techniques have been intro-
duced in Li et al. (2015).

The first two lines compare CNN with our
Attention-CNN on an example from AG News.
CNN wrongly captures key phrases British Energy
and the nuclear generator and thus misclassifies
the example into World. In contrast, our Attention-
CNN is able to correctly classify it into Business.
The Encoder1 firstly captures the global descrip-
tion by Energy deal, nuclear, and rescue plan. In-
formed with these global information, Encoder2
reduces its attention to nuclear, which implies la-
bel World while captures key phrases British En-
ergy deal and 5bn rescue plan. Accordingly the
model makes a correct prediction labeled as Busi-
ness. For the second example, the global represen-
tations include phrases high price and conjunction
Overall, making Encoder2 activate I would rather
while reduce its sensitivity to highly recommend
them compared with CNN.

In short, the global representations learned by
Encoder1 provide a brief overall grasp of the
whole text, which includes both semantic and
structure information. It effectively helps En-
coder2 capture better instance specific local fea-
tures and improve model performance.
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4.6 Comparison to Pre-trained Models

As shown above, our paper mainly focuses on
fully-supervised domain where all model param-
eters are trained from scratch. Alternatively, sub-
stantial work has shown that pre-trained models
are beneficial for various NLP tasks. Typically,
they first pre-train neural networks on large-scale
unlabeled text corpora, and then finetune the mod-
els or representations on downstream tasks.

One kind of pre-trained models is the word
embeddings, such as word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014). More
recently, by utilizing larger-scale unsupervised
corpus and deeper architecture, pre-trained lan-
guage models have shown to be effective in learn-
ing common language representations and have
achieved great success. Among them, OpenAI
GPT (Radford et al., 2018), BERT (Devlin et al.,
2018), XLNet (Yang et al., 2019) and ERNIE
2.0 (Sun et al., 2019) are the most remarkable ex-
amples.

In this section, we generalize our architecture to
semi-supervised domain which is equipped with
pre-trained word embeddings and then compare
with popular pre-trained based models. Specifi-
cally, we use GloVe vectors2 with 300 dimensions
to initialize the word embeddings in our architec-
ture. BERTBASE

3 and ERNIE 2.0BASE
4 with 12-

layer Transformer (Vaswani et al., 2017) are cho-
sen for comparison. Here we report best model
for each specialized Encoder2 with SAME Mode.
Results on three datasets are listed in Table 7.

Overall, our architecture can be further boosted
a lot by utilizing pre-trained word embeddings.
For example, Encoder1-DRNN-S obtains a new
score of 76.2%(+1.4%) on Yah. A. and Encoder1-
CNN-S gets 94.1%(+1.6%) on AG. Vanilla local
extractors also achieve better performance as ex-
pected in most instances while our models are still
much better than them. Encoder1-CNN-S outper-
forms CNN by 0.9%, 1.8% and 2.0% on three
datasets respectively, and Encoder1-DRNN-S out-
performs DRNN by 0.4%, 0.6% and 0.7%. It
shows that our architecture is well generalized and
compatible with pre-training techniques.

It is interesting to compare with stronger pre-
trained models. Although we obtain close scores
on AG, BERT and ERNIE 2.0 indeed achieve

2http://nlp.stanford.edu/projects/glove
3https://github.com/google-research/bert
4https://github.com/PaddlePaddle/ERNIE

Model Yelp F. AG Yah. A.

CNN(n/y) 64.7/64.5 91.9/92.3 72.6/73.7
Encoder1-CNN-S(n/y) 66.2/66.6 92.5/94.1 74.5/75.7

DRNN(n/y) 66.4/66.8 92.9/93.6 74.3/75.5
Encoder1-DRNN-S(n/y) 66.8/67.2 93.0/94.2 74.8/76.2

BERTBASE 67.9 94.2 76.4
ERNIE 2.0BASE 69.1 94.3 77.0

Table 7: Semi-supervised generalization of our archi-
tecture and comparison with popular pre-trained mod-
els. Here “n” and “y” stand for initializing word em-
beddings randomly and with pre-trained GloVe vectors
separately.

more advanced results on others and the latter per-
forms best on all three datasets. Despite their su-
perb accuracy, we argue that the huge models are
resource-hungry in practice. Lightweight models
still have advantages under some circumstances
such as limited memory, longer text data to be pro-
cessed and requirements of faster inference time.

5 Conclusion

In this work, we demonstrate the local feature ex-
traction can be significantly enhanced with global
information. Instead of traditionally exploiting
deeper and complicated operations in upper neu-
ral layers, our work innovatively provides another
lightweight way for improving the ability of neu-
ral model. Specifically, we propose a novel archi-
tecture named Encoder1-Encoder2 with two In-
teraction Modes for their interacting. The archi-
tecture has high flexibility and our best models
achieve new state-of-the-art performance in fully-
supervised setting on all benchmark datasets. We
also find that our architecture is insensitive to win-
dow size and enjoy a better robustness. In fu-
ture work, we plan to validate its effectiveness
for multi-label classification. Besides, we are in-
terested in incorporating more powerful unsuper-
vised methods into our architecture.
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