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Abstract

This paper tackles automation of the pyramid
method, a reliable manual evaluation frame-
work. To construct a pyramid, we transform
human-made reference summaries into extrac-
tive reference summaries that consist of El-
ementary Discourse Units (EDUs) obtained
from source documents and then weight ev-
ery EDU by counting the number of extractive
reference summaries that contain the EDU. A
summary is scored by the correspondences be-
tween EDUs in the summary and those in the
pyramid. Experiments on DUC and TAC data
sets show that our methods strongly correlate
with various manual evaluations.

1 Introduction

To develop high quality summarization systems,
we need accurate automatic content evaluation.
Although, various evaluation measures have been
proposed, ROUGE-N (Lin, 2004), Basic Elements
(BE) (Hovy et al., 2006) remain the de facto stan-
dard measures since they strongly correlate with
various manual evaluations and are easy to use.
However, the evaluation scores computed by these
automatic measures are not so useful for improv-
ing system performance because they merely con-
firm if the summary contains small textual frag-
ments and so they do not address semantic cor-
rectness.

The pyramid method was proposed as a man-
ual evaluation that well supports the improvement
of summarization systems (Nenkova and Passon-
neau, 2004; Nenkova et al., 2007). First, the
method identifies conceptual contents, Summary
Content Units (SCUs), in reference summaries
and then constructs a pyramid by collecting se-
mantically equivalent SCUs. The weight of an
SCU in the pyramid is defined as the number of
reference summaries that contain the SCU. Thus,
an SCU shared by many reference summaries is

given higher weight. Second, a system summary
is scored by the correspondences between SCUs
in the summary and the pyramid. Its results are
very useful for system improvement, i.e., we can
know which important SCUs the system could or
could not include in the summary. Although the
pyramid method is reliable, it requires consider-
able cost and effort.

To address the weaknesses, automatic pyra-
mid evaluation, Pyramid Evaluation via Auto-
mated Knowledge Extraction (PEAK) was pro-
posed (Yang et al., 2016). Since SCU is the
conceptual content of the text, it is difficult to
automatically extract them from reference sum-
maries by systems. Thus, PEAK regards subject-
predicate-object triples as alternatives to SCUs
and constructs a pyramid by clustering semanti-
cally equivalent triples. However, the performance
of subject-predicate-object triples extraction is not
satisfying for the practical demands and seman-
tic similarity utilized for clustering the triples does
not correlate well with human judgment (see Sec-
tion 2). As a result, the resultant pyramid is un-
reliable. Actually, PEAK is significantly inferior
to ROUGE and BE (see Section 4.3) in terms of
correlation.

To cope with the above problems, this paper
proposes yet another automatic pyramid evalua-
tion method. Its key feature is constructing a
pyramid that consists of Elementary Discourse
Units (EDUs), clause-like text units introduced
in Rhetorical Structure Theory (Mann, William
Charles and Thompson, Sandra Annear, 1988),
in the source documents. In other words, we
regard EDUs as alternatives to SCUs. To con-
struct the pyramid, we transform human-made ref-
erence summaries into EDU-based extractive ref-
erence summaries and then weight every EDU
by counting the number of the extractive refer-
ence summaries that contain the EDU. The rea-
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son why we derive extractive reference summaries
whose SCUs are EDUs is as follows. First, Li
et al. (2016) reported that EDUs are very simi-
lar to SCUs. Second, the performance of EDU
segmenter is sufficient to satisfy practical require-
ments (see Section 2). Third, we do not need
measure any semantic similarity to identify EDUs
common to the extractive reference summaries.
We also examine two types of extractive refer-
ence summary. One is based on the alignment
between EDUs in reference summary and source
documents. The other is based on the extractive
oracle summary (Hirao et al., 2017). We con-
ducted experiments on the Document Understand-
ing Conference (DUC) 2003 to 2007 data sets and
Text Analysis Conference (TAC) 2008 to 2011
data sets. The results showed that our methods ex-
hibit strong correlation with manual evaluations.

2 Background and Related Work

The pyramid method (Nenkova and Passonneau,
2004; Nenkova et al., 2007), a manual evaluation
framework, was developed to measure the con-
tent coverage of summaries. The pyramid method
consists of two steps: (1) pyramid construction,
and (2) summary scoring based on the pyramid.
First, human annotators identify Summary Con-
tent Units (SCUs), conceptual content units in
the reference summaries. They then construct a
pyramid by clustering and weighting SCUs. The
weight of an SCU is defined as the number of ref-
erence summaries that contain the SCU. As a re-
sult, if there are K reference summaries, the up-
per bound weight of an SCU in the pyramid is K
and the lower bound is 1. Second, the score for
a summary is determined by the correspondences
between SCUs in the summary and those in the
pyramid. Thus, the score is defined as the sum
of weights of SCUs that correspond to those in
the pyramid in the summary divided by the sum
of SCU weight possible for an average-length ref-
erence summary. The pyramid method has two
advantages over conventional manual evaluations:
(1) the score is not intuitive but is systematically
computed, i.e., the score can be explained as the
sum of weights of SCUs in the pyramid, (2) the
correspondences between the SCUs in a summary
and the pyramid tell us whether the summary con-
tains important SCUs or not. Thus, the results ex-
plicitly tell us why a summary was given a good
or bad score.

During the past few years, studies have focused
on the automatic scoring of summaries based on
manually generated pyramids. Harnly et al. (2005)
proposed a scoring method that matches SCUs
in the pyramid with possible textual fragments in
the summary. They enumerate all possible textual
fragments within a sentence in the summary and
compute similarity scores between the fragments
and the SCUs in the pyramid based on unigram
overlap. Then, they find the optimal correspon-
dences between SCUs and the fragments that max-
imize the sum of similarity scores. Passonneau
et al. (2013) extended the method by introducing
distributional semantics to compute the similarity
scores between SCUs and the fragments.

Recently, Yang et al. (2016) proposed the first
automatic pyramid method, Pyramid Evaluation
via Automated Knowledge Extraction (PEAK).
PEAK employs subject-predicate-object triples
extracted by ClausIE (Del Corro and Gemulla,
2013) as SCUs, and constructs pyramids by cut-
ting a graph whose vertices represent the triples
and whose edges represent semantic similarity
scores between the triples computed by Align,
Disambiguate and Walk (ADW) (Pilehvar et al.,
2013). When evaluating a summary, PEAK con-
structs a weighted bipartite graph whose vertices
represent subject-predicate-object triples extracted
from the pyramid and the summary, respectively;
the edges represent the similarity scores between
the triples as computed by ADW. It scores the
summary by solving the Linear Assignment Prob-
lem which involves maximizing the sum of the
similarity scores on the bipartite graph.

The major difference between PEAK and our
method is that the former regards the refer-
ence summary as a set of subject-predicate-object
triples while the latter regards a reference sum-
mary as a set of EDUs obtained from the source
documents. Thus, to construct high quality pyra-
mids, PEAK is required to not only accurately
extract the triples but also measure the seman-
tic similarity between them accurately. However,
in general, both extracting the triples and mea-
suring the semantic similarity are still challeng-
ing NLP tasks. The performances are not always
achieved in practical use. Actually, the F-measure
of ClausIE is around 0.6 (Del Corro and Gemulla,
2013) and the correlation coefficients between the
semantic similarity obtained from ADW and hu-
man judgment lie in the range of 0.55 to 0.88
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Figure 1: Overview of our pyramid construction.

(Pilehvar et al., 2013). As a result, the resultant
pyramids have insufficient quality to be practical.
Clearly, further improvement is necessary.

While our method is required to decompose
a document into EDUs accurately, the EDU
segmenter offers accurate decomposition perfor-
mance; existing EDU boundary detection meth-
ods have F-measures over 0.9 (Fisher and Roark,
2007; Feng and Hirst, 2014). Moreover, since ex-
tractive reference summaries are set of EDUs from
the source documents, we do not need semantic
similarity to identify EDUs that have the same
meaning. Thus, we can easily construct a pyra-
mid by simply counting the number of extractive
reference summaries that contains each EDU.

3 Automatic Pyramid Evaluation

First, we transform human-made reference sum-
maries into extractive reference summaries; the
EDUs in the source documents are used as the
atomic units. Second, we construct a pyramid by
weighting EDUs in the extractive reference sum-
maries. EDU weights are defined as the number of
reference summaries that contain each EDU (see
Figure 1). In addition, we propose two techniques
for deriving the extractive reference summaries.

3.1 Extractive Reference Summaries based
on Alignment between EDUs

When similarity scores between EDUs in a refer-
ence summary and those in the source documents
are available, we can regard extractive reference
summary derivation as an optimal alignment prob-
lem with a length constraint, an extension of Lin-
ear Assignment Problem. We assume that a bi-
partite graph in which the vertices represent EDUs
in the reference summary and source documents,
and the edges represent similarity scores between
the EDUs. The optimal alignment is obtained by
solving following ILP problem:

maximize
|E|∑
j=1

|M|∑
k=1

φ(ej ,mk)aj,k (1)

s.t.
|E|∑
j=1

|M|∑
k=1

`(ej)aj,k ≤ Lmax (2)

|E|∑
j=1

aj,k ≤ 1 ∀k (3)

|M|∑
k=1

aj,k ≤ 1 ∀j (4)

aj,k ∈ {0, 1} ∀j, k. (5)

E is the set of all EDUs in the source documents
andM is the set of all EDUs in the reference sum-
mary. `() returns the length (the number of words)
of a textual unit. φ(ej ,mk) returns the similarity
score between the j-th EDU in the source docu-
ments and the k-th EDU in the reference summary
as follows:

φ(ej ,mk) =
`(LCS(ej ,mk))

`(mk)
. (6)

LCS(·, ·) returns the Longest Common Subse-
quence between ej and mk. aj,k is a binary in-
dicator, and aj,k = 1 denotes that the j-th EDU
ej in the source documents is aligned to the k-
th EDU in the reference summary, i.e., ej is in-
cluded in the extractive reference summary. Equa-
tion (2) ensures the the length of the extractive ref-
erence summary is less than Lmax, the length of
the human-made reference summary. After solv-
ing the ILP problem, we can obtain the extractive
reference summaries by collecting EDUs accord-
ing to aj,k = 1.
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3.2 Extractive Reference Summaries based
on Extractive Oracle Summaries

As another extractive reference summary, we can
utilize extractive oracle summary (Hirao et al.,
2017). The extractive oracle summary is de-
fined as the set of consequential textual fragments
within a sentence obtained from the source docu-
ments that has the maximum automatic evaluation
score. Since we regard EDUs as SCUs and employ
ROUGE/BE as an automatic evaluation measure,
an extractive reference summary is a summary that
consists of EDUs in the source documents and has
maximum ROUGE/BE score.

For a given reference summary R , the extrac-
tive oracle summary is defined as follows:

O =argmax
E⊆E

f(R,S)

s.t. `(S) ≤ Lmax.
(7)

f() denotes an automatic evaluation measure
(ROUGE/BE) and is defined as follows:

f(R,S) =∑|U |
i=1min{N(ui, R), N(ui, S)}∑|U |

i=1N(ui, R)
.

(8)

S is a system summary and U is the set of
all atomic units in the reference summary. N-
grams are utilized as the units used in comput-
ing ROUGE and head-modifier-relation triples are
utilized in computing BE. N(ui, R); N(ui, S) re-
turns the number of occurrences of the units in the
reference and system summary, respectively.

Since the extractive oracle summaries in Hirao
et al. (2017) are based on sentences, we extend
the method to obtain EDU-based extractive oracle
summaries. The ILP formulation that returns an
extractive oracle summary is defined as follows:

maximize
|U |∑
i=1

zi −
|S|∑

m=1

sm (9)

s.t.
|E|∑
j=1

`(ej)xj ≤ Lmax (10)

N(ui, R) ≥ zi ∀i (11)∑
n∈Vi

dn ≥ zi ∀i (12)

xleft(n) ≥ dn ∀n (13)

xright(n) ≥ dn ∀n (14)

sc(j) ≥ xj ∀j (15)

dn ∈ {0, 1} ∀n (16)

xj ∈ {0, 1} ∀j (17)

zi ∈ Z+ ∀i. (18)

zi is the count of the i-th unit in the oracle sum-
mary. xj is a binary indicator, xj = 1 denotes
that the j-th EDU, ej , is included in the oracle
summary. sm is a binary indicator, sm = 1 de-
notes that EDU(s) in m-th sentence is included in
the oracle summary. The value of

∑|S|
m=1 sm is

equal to the number of sentence whose EDU(s) is
used in oracle summary. Thus, an oracle summary
that consist of fewer sentences tends to obtain a
higher objective value. Therefore, we can avoid
generating fragmented oracle summaries with low
readability. This objective function is inspired by
the work of compressive summarization method
(Morita et al., 2013). Vi is the set of indices in-
dicating the position of the i-th unit, and dn is a
binary indicator indicating whether the n-th unit
is contained in the oracle summary or not. Func-
tion left(·) and right(·) return the index of EDU
that contains a word on the left in the unit, and
the index of EDU that contains a word on the right
in the unit, respectively. Function c(·) returns the
index of sentence that contains j-th EDU.

Figure 2 shows examples. Suppose that the 10-
th triple in U is “<has,computer,rcmod>”. From
the figure, the indices of the triple corresponding
to “<has,computer,rcmod>” are 6 and 21. Thus,
V10 = {6, 21}. The word on the left in the triples
is “computer” and the word on the right is “has”.
For the first triple, the index of the EDU that con-
tains “computer” is 1 and the index of the EDU
that contains “has” is 2. For the second triple, the
index of the EDU that corresponds to “computer”
is 4, while that of “has” is 5. Thus, left(6) = 1 and
right(6) = 2, left(21) = 4, and right(21) = 5.

After solving the ILP problem, we construct the
extractive oracle summary by collecting EDUs ac-
cording to xj = 1.

3.3 Pyramid Construction: EDU Weighting

By deriving extractive references, we can easily
construct a pyramid. The weight of an EDU is
defined as the number of extractive references that
contain the EDU. Here, P is a complete set of all
EDUs in K extractive reference summaries, i.e.,
P=

⋃K
i=1Ei. Ei is the set of EDUs obtained from

the i-th extractive reference summary. The weight
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Figure 2: Examples of head-modifier-relation triples.

of the j-th EDU in P is defined as follows:

wj = C(pj). (19)

C() returns the number of extractive reference
summaries that contain pj , i.e., the maximum
score of C(pj) is K and its minimum score is 1.
Since all EDUs in the source documents are as-
signed an integer score in the range of 01 toK, the
scoring can be regard as a variant of relative utility
score (Radev and Tam, 2003).

3.4 Automatic Scoring of Summaries
Based on the pyramid, we compute a score for a
summary by aligning EDUs in the pyramid and
EDUs in the system summary. By following
PEAK, we find the optimal alignment by solv-
ing the Linear Assignment Problem. That is, we
compute all similarity scores between EDUs in the
summary and pyramid and then find the maximal
score so that each EDU in the system summary is
matched to at most one EDU in the pyramid. The
ILP formulation of the problem is as follows:

maximize
|C|∑
i=1

|P|∑
j=1

g(ci, pj)wjαi,j (20)

s.t.
|C|∑
i=1

αi,j ≤ 1 ∀i (21)

1The EDUs that are not included in pyramid have scores
of zero.

|P|∑
j=1

αi,j ≤ 1 ∀j (22)

αi,j ∈ {0, 1} ∀i, j.(23)

C is the set of EDUs in the system summary. Func-
tion g() indicates a binary function based on the
similarity score between EDUs as follows:

g(c, p) =

{
1 φ(c, p) ≥ t
0 otherwise.

(24)

We set t = 0.55 in our experiments (Section 4).
αi,j is a binary indicator, αi,j = 1 denotes that

the i-th EDU in the system summary is aligned to
j-th EDU in the pyramid.

The optimal solution of the objective function
in the ILP problem (19)-(22) is not normalized.
Since the unnormalized score is not suitable for
comparing systems, we propose a normalization
method. To normalize the score to satisfy the
range of 0 to 1, we divide the score by the max-
imum score of sum of the EDU weights. Since ev-
ery EDU in the pyramid has both length (the num-
ber of the word) and weight, the maximum score
is derived by solving the knapsack problem:

maximize
|P|∑
j=1

wjxj (25)

s.t.
|P|∑
j=1

`(pj) ≤ Lmax (26)
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2003 2004 2005 2006 2007
Manual evaluation Cov. Cov. Resp. Resp. Pyr. Resp. Pyr.
# of Topics 30 50 50 50 20 45 23
# of Systems 16 17 32 35 22 32 13
# of References 4 4 4,9 4 4
Summary length 100 100 250 250 250
Summary type Generic Generic Query-focused Query-focused Query-focused

Table 1: Statistics of the data sets (DUC-2003 to 2007).

2008 2009 2010 2011

Manual evaluation Resp. Resp. Resp. Resp
Pyr. Pyr. Pyr. Pyr.

# of Topics 48 44 46 44
# of Systems 58 55 43 50
# of References 4 4 4 4
Summary length 100 100 100 100

Update Update Guided Guided
Summary type Initial Initial Initial Initial

Update Update Update Update

Table 2: Statistics of the data sets (TAC-2008 to 2011).

xj ∈ {0, 1} ∀j (27)

xj is a binary indicator, and xj = 1 denotes that
the j-th EDU is included in the knapsack.

Finally, the score is defined as
Pyramid(P, S) = OTPLAP/OPTKP. OPTLAP
and OPTLAP denote maximum score of Equation
(20) and maximum score of Equation (25),
respectively.

4 Experiments

To investigate the effectiveness of our automatic
evaluation method, we compare the correlation co-
efficients yielded by our methods with those ob-
tained from strong baselines, ROUGE-2, ROUGE-
SU4 and BE. We employ ROUGE toolkit version
1.5.5 to compute ROUGE/BE scores and Stanford
Parser (de Marneffe et al., 2006) to obtain head-
modifier-relation triples. In addition, we exam-
ine two types of oracle summaries for our method.
One is ROUGE-2-based, the other is BE-based.

We evaluate automatic evaluation measures by
Pearson’s correlation r, Spearman’s rank correla-
tion ρ and Kendall’s rank correlation τ . Corre-
lation coefficients are computed by average auto-
matic score and average manual evaluation score
for all topics.

4.1 Data Sets
We conducted experiments on the data sets devel-
oped for multi document summarization tasks in
DUC-2003 to 2007 and TAC-2008 to 2011. Table
1 and Table 2 show the statistics of the data sets.

DUC-2003 and 2004 were used for a generic
summarization task with 100 word limit; mean
coverage was used in a manual evaluation. DUC-
2005 to 2007 were used for a query-focused sum-
marization task with 250 word limit; responsive-
ness was used in a manual evaluation. The number
of topics varied from 30 to 50 and the participat-
ing systems from 16 to 35. Note that the pyra-
mid method was applied to small sets of topics in
DUC-2006 and 2007.

TAC-2008 and 2009 were used for an update
summarization task while TAC-2010 and 2011
were employed for a guided summarization task.
For both tasks, the participating systems required
two types of summaries, initial summary and up-
date summary with 100 word limit. Both pyramid
method and responsiveness were used in manual
evaluations. In particular, TAC-2008 to 2011 have
large numbers of participating systems, from 44 to
48.

4.2 EDU Segmenter

We regard decomposing a sentence into EDUs as a
sequential tagging problem and implement a neu-
ral EDU segmenter that classifies each word in a
sentence as the boundary of EDU or not based on
3-layer bi-LSTM (Wang et al., 2015). The size of
word embeddings and hidden layers of the LSTM
were set to 100 and 256, respectively. To handle
low-frequency words, all words are encoded to 40
dimension hidden state by using character-based
bi-LSTM (Lample et al., 2016). To utilize entire
words in a corpus, we integrated word dropout
(Iyyer et al., 2015) into our models with smooth-
ing rate, 1.0. Moreover, to avoid overfitting the
training data, dropout layer was adopted to the in-
put of the LSTMs with the ratio 0.3.

The segmenter was trained by utilizing the
training data of RST Discourse Treebank corpus
(Carlson et al., 2001). The macro-averaged F-
measure of boundary detection on the test data of
the corpus is 0.917. The source documents, sys-
tem summaries and reference summaries utilized
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2003 2004 2005 2006 2007
Cov. Cov. Resp. Resp. Pyr. Resp. Pyr.

ROUGE-2 .906/.821/.617 .909/.838/.691 .932/.931/.792 .836/.767/.584 .905/.884/.740 .880/.873/.715 .979/.989/.949
ROUGE-SU4 .782/.774/.600 .854/.772/.559 .925/.893/.731 .849/.790/.601 .885/.850/.706 .835/.832/.650 .961/.973/.897
BE .927/.862/.617 .936/.868/.721 .897/.867/.714 .834/.757/.584 .883/.837/.680 .891/.890/.732 .982/.973/.897
PEAK − − − .617/.640/− .508/.538/− − −
Prop(BE) .936/.909/.750 .929/.892/.750 .845/.819/.657 .786/.716/.516 .877/.833/.687 .885/.881/.715 .936/.967/.897
Prop(ROUGE) .908/.874/.750 .938/.814/.676 .864/.809/.629 .740/.670/.465 .871/.818/.662 .853/.845/.679 .943/.951/.872
Prop(AL) .831/.841/.633 .904/.855/.735 .821/.757/.567 .762/.667/.465 .801/.772/.584 .814/.793/.610 .958/.962/.872

Table 3: Evaluation results from DUC-2003 to 2007.

Inital Update
Pyr. Resp. Pyr. Resp.

20
08

ROUGE-2 .908/.909/.757 .830/.868/.677 .943/.942/.800 .910/.888/.728
ROUGE-SU4 .888/.885/.733 .803/.834/.636 .926/.933/.783 .902/.895/.725
BE .913/.903/.732 .817/.818/.627 .944/.939/.799 .913/.880/.712
Prop(BE) .926/.905/.734 .867/.852/.663 .940/.918/.779 .922/.899/.736
Prop(ROUGE) .895/.891/.708 .851/.840/.648 .912/.871/.702 .901/.872/.699
Prop(AL) .833/.792/.598 .779/.794/.602 .929/.895/.746 .909/.905/.750

Pyr. Resp. Pyr. Resp.

20
09

ROUGE-2 .911/.950/.823 .757/.844/.674 .939/.896/.742 .717/.755/.600
ROUGE-SU4 .920/.925/.786 .767/.805/.631 .939/.857/.701 .729/.719/.568
BE .856/.931/.784 .692/.838/.670 .924/.929/.798 .695/.816/.670
Prop(BE) .867/.932/.782 .854/.848/.670 .855/.917/.782 .866/.810/.656
Prop(ROUGE) .886/.917/.770 .858/.819/.639 .864/.890/.741 .822/.735/.586
Prop(AL) .901/.872/.689 .881/.821/.666 .886/.857/.704 .830/.743/.594

Pyr. Resp. Pyr. Resp.

20
10

ROUGE-2 .978/.917/.787 .967/.924/.801 .963/.911/.758 .953/.890/.742
ROUGE-SU4 .968/.947/.830 .954/.952/.837 .910/.885/.727 .900/.878/.727
BE .965/.942/.817 .943/.907/.749 .953/.911/.775 .928/.872/.713
Prop(BE) .949/.872/.713 .953/.867/.720 .954/.912/.764 .957/.913/.774
Prop(ROUGE) .952/.854/.673 .959/.859/.702 .938/.873/.713 .936/.860/.711
Prop(AL) .928/.882/.697 .929/.891/.720 .898/.853/.676 .900/.845/.691

Pyr. Resp. Pyr. Resp.

20
11

ROUGE-2 .955/.888/.734 .930/.776/.592 .862/.789/.616 .879/.831/.665
ROUGE-SU4 .976/.888/.726 .943/.778/.585 .857/.824/.642 .892/.865/.689
BE .934/.900/.736 .903/.757/.554 .880/.828/.670 .842/.783/.610
Prop(BE) .905/.857/.690 .917/.832/.640 .891/.880/.693 .889/.868/.694
Prop(ROUGE) .925/.883/.708 .924/.847/.673 .864/.864/.689 .870/.862/.683
Prop(AL) .934/.891/.713 .920/.792/.618 .843/.787/.601 .865/.799/.607

Table 4: Evaluation results from TAC-2008 to 2011.

in our experiments were decomposed into EDUs
by the segmenter.

4.3 Results and Discussion

Table 3 and 4 list the correlation coefficients be-
tween manual evaluation and automatic evalua-
tion for DUC-2003 to 2007 and TAC-2008 to
2011, respectively. In the tables, the coeffi-
cients are written in the order “Pearson’s r/ Spear-
man’s ρ/ Kendall’s τ”. The rows of Prop(BE),
Prop(ROUGE) and Prop(AL) denote our method
with BE-based oracle summaries as extractive ref-
erence summaries, with ROUGE-2-based oracle
summaries, and with extractive reference sum-
maries based on alignment, respectively. “Cov.”,

“Resp.” and “Pyr.” denote mean coverage, respon-
siveness and manual pyramid, respectively.

With regard to mean coverage on DUC-2003
to 2004, Prop(BE) achieved the best correlation
coefficients. The correlation coefficients indicate
very strong correlation with the manual evalua-
tion. Prop(ROUGE) and Prop(AL) attained com-
parable correlation coefficients with the baseline
methods. The correlation coefficients still indicate
strong correlation.

With regard to responsiveness, our methods
achieved lower correlation coefficients on DUC-
2005 to 2007 than on DUC-2003 to 2004. Al-
though our methods are outperformed by the base-
line methods, both r and ρ of Prop(BE) still ex-
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ceed 0.8 except for responsiveness on DUC-2006.
Since our methods mimic manual pyramid evalua-
tion, correlation coefficients against manual pyra-
mid on DUC-2006 to 2007 are better than those
against responsiveness and the scores are compa-
rable to those of the baselines.

Moreover, we compare our methods with PEAK
on the DUC-2006 data set. For manual pyramid,
r and ρ are 0.508 and 0.538, respectively, while
for responsiveness they are 0.617 and 0.640, re-
spectively. These scores are significantly lower
than those attained by our methods and baselines.
Note that these results are obtained by running the
code from the author’s web page http://www.
larayang.com/peak/. The results demon-
strated that our methods are superior to PEAK.

For manual pyramid on TAC-2008 to 2011, all
methods attained quite strong correlation. The
scores achieved were around 0.9 and better than
those on DUC-2003 to 2007. In particular,
Prop(BE) achieved the best scores in some cases.
Although, responsiveness yielded lower correla-
tion coefficients than manual pyramid, Prop(BE)
still retains strong correlation , e.g., ρ are in the
range of 0.857 to 0.932 against manual pyramid,
0.810 to 0.913 against responsiveness. The aver-
age correlation coefficients across all data sets on
TAC are shown in Table 5. The average correlation
coefficients of Prop(BE) slightly lower than those
of ROUGE-2 and BE against manual pyramid. On
the ohter hand, Prop(BE) achieved the best cor-
relation coefficients against responsiveness. The
results imply that Prop(BE) achieves comparable
performance to baseline methods.

In a comparison of our methods, Prop(BE)
attained the best results while Prop(ROUGE)
showed better results than Prop(AL) in many
cases. These results imply that extractive oracle
summaries are helpful as extractive reference sum-
maries and BE is better objective function to gen-
erate them.

In addition, we show SCUs and correspond-
ing EDUs obtained from a human-made pyramid
and Prop(BE) in Figure 3. They are obtained
from topic “Earthquake Sichuan (ID:D1110B)”
from TAC-2011 Guided Summarization Task, the
topic type is categorized as “Accidents and Nat-
ural Disasters”. Summarizers are required to
generate a summary that includes following as-
pects: (1) WHAT: what happend, (2) WHEN:
date, time, other temporal placement makers,

Pyr. Resp.
ROUGE-2 .932/.900/.752 .868/.847/.685
ROUGE-SU4 .923/.893/.741 .861/.841/.675
BE .921/.910/.764 .842/.834/.663
Prop(BE) .911/.899/.742 .903/.861/.694
Prop(ROUGE) .905/.880/.713 .890/.837/.668
Prop(AL) .894/.856/.678 .877/.824/.656

Table 5: Average correlation coefficients across data
sets (TAC-2008 to TAC-2011)

(3) WHERE: physical location, (4) WHY: rea-
sons for accident/disaster, (5) WHO AFFECTED:
casualties (death, injury), or individuals other-
wise negatively affected by the accident/disaster,
(6) DAMAGES: damages caused by the acci-
dent/disaster, (7) COUNTERMEASURES: coun-
termeasures, rescue efforts, prevention efforts,
other reactions to the accident/disaster. From the
figure, we can see that the EDUs are not always
identical to human-generated SCUs at word-level
but are identical at concept-level.

In short, these results imply that our methods
have at least comparable performance to the base-
lines. Although our methods are outperformed by
the baselines in some cases, the correlation coeffi-
cients are high enough against manual evaluation.
Moreover, our methods have a significant advan-
tage over the baselines methods because our meth-
ods clearly indicate whether the output of the text
summarization system failed to include important
SCUs. Thus, our automatic pyramid method en-
hanced with extractive oracle summaries is help-
ful for further improvement of summarization sys-
tems.

5 Conclusion

This paper proposed an automatic pyramid evalu-
ation method that allows us to scrutinize the fail-
ure analysis of systems. To construct a pyramid,
we transform human-made reference summaries
into extractive reference summaries whose atomic
units are EDUs obtained from the source docu-
ments. Then, we weight every EDU by counting
the number of extractive reference summaries that
contain the EDU. When evaluating a summary, we
determine the correspondences between EDUs in
the pyramid to those in the summary by solving
Linear Assignment Problem and give a score to the
summary based on the correspondences. We also
proposed two types of extractive reference sum-
maries. The first is the alignment-based extractive
reference summary. The second is the extractive

http://www.larayang.com/peak/
http://www.larayang.com/peak/
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SCUs obtained from human-made pyramid

w = 4 The 7.8-magnitude earthquake struck
w = 4 Sichuan Province of China
w = 4 No warning signs detected
w = 4 Over 8,500 killed
w = 4 China allocated 200 million yuan ($29 Million)

disaster relief
w = 1 Rain is forecast, could hamper relief efforts
w = 1 Quake also affected Gansu, Shaanxi provinces, and

Chongqing municipality

EDUs obtained from pyramid of Prop(BE)

w = 1 The 7.8-magnitude earthquake struck Sichuan
province shortly before 2:30 pm

w = 2 in aid for earthquake victims in Sichuan Province of
China

w = 4 Chinese authorities did not detect any warning signs
ahead of Monday’s earthquake

w = 1 leaving at least 12,000 people died
w = 2 China has allocated 200 million yuan
w = 1 Rain in the coming days in Sichuan is expected to

hamper earthquake relief efforts, as well as increase
risks of landslides

w = 1 50 in the municipality of Chongqing, 61 in Shaanxi
province, and one in southwestern Yunnan

Figure 3: Examples of SCUs obtained from pyramids.

oracle summary.
To demonstrate the effectiveness of our meth-

ods, we conducted experiments on DUC-2003 to
2007 and TAC-2008 to 2011 data sets. The re-
sults demonstrated that our method yielded results
that well correlated with various manual evalua-
tions. The correlation coefficients are at least com-
parable to those obtained from strong baselines,
ROUGE-2, ROUGE-SU and BE and significantly
higher than those obtained from previous auto-
matic pyramid evaluation, PEAK.
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