
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 534–539
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Refining Word Embeddings for Sentiment Analysis

Liang-Chih Yu1,3, Jin Wang2,3,4, K. Robert Lai2,3 and Xuejie Zhang4

1Department of Information Management, Yuan Ze University, Taiwan
2Department of Computer Science & Engineering, Yuan Ze University, Taiwan

3Innovation Center for Big Data and Digital Convergence Yuan Ze University, Taiwan
4School of Information Science and Engineering, Yunnan University, Yunnan, P.R. China

Contact: lcyu@saturn.yzu.edu.tw

Abstract

Word embeddings that can capture seman-
tic and syntactic information from contexts
have been extensively used for various
natural language processing tasks. Howev-
er, existing methods for learning context-
based word embeddings typically fail to
capture sufficient sentiment information.
This may result in words with similar vec-
tor representations having an opposite sen-
timent polarity (e.g., good and bad), thus
degrading sentiment analysis performance.
Therefore, this study proposes a word vec-
tor refinement model that can be applied to
any pre-trained word vectors (e.g.,
Word2vec and GloVe). The refinement
model is based on adjusting the vector rep-
resentations of words such that they can be
closer to both semantically and sentimen-
tally similar words and further away from
sentimentally dissimilar words. Experi-
mental results show that the proposed
method can improve conventional word
embeddings and outperform previously
proposed sentiment embeddings for both
binary and fine-grained classification on
Stanford Sentiment Treebank (SST).

1 Introduction

Word embeddings are a technique to learn con-
tinuous low-dimensional vector space representa-
tions of words by leveraging the contextual in-
formation from large corpora. Examples include
C&W (Collobert and Weston, 2008; Collobert et
al., 2011), Word2vec (Mikolov et al., 2013a;
2013b) and GloVe (Pennington et al., 2014). In
addition to the contextual information, character-
level subwords (Bojanowski et al., 2016) and se-
mantic knowledge resources (Faruqui et al., 2015;
Kiela et al., 2015) such as WordNet (Miller,

1995) are also useful information for learning
word embeddings. These embeddings have been
successfully used for various natural language
processing tasks.

In general, existing word embeddings are se-
mantically oriented. They can capture semantic
and syntactic information from unlabeled data in
an unsupervised manner but fail to capture suffi-
cient sentiment information. This makes it diffi-
cult to directly apply existing word embeddings to
sentiment analysis. Prior studies have reported
that words with similar vector representations
(similar contexts) may have opposite sentiment
polarities, as in the example of happy-sad men-
tioned in (Mohammad et al., 2013) and good-bad
in (Tang et al., 2016). Composing these word vec-
tors may produce sentence vectors with similar
vector representations but opposite sentiment po-
larities (e.g., a sentence containing happy and a
sentence containing sad may have similar vector
representations). Building on such ambiguous
vectors will affect sentiment classification per-
formance.

To enhance the performance of distinguishing
words with similar vector representations but op-
posite sentiment polarities, recent studies have
suggested learning sentiment embeddings from
labeled data in a supervised manner (Maas et al.,
2011; Labutov and Lipson, 2013; Lan et al., 2016;
Ren et al., 2016; Tang et al., 2016). The common
goal of these methods is to capture both seman-
tic/syntactic and sentiment information such that
sentimentally similar words have similar vector
representations. They typically apply an objective
function to optimize word vectors based on the
sentiment polarity labels (e.g., positive and nega-
tive) given by the training instances. The use of
such sentiment embeddings has improved the per-
formance of binary sentiment classification.

534

great (7.50)
bad (3.24)

terrific (7.12)
decent (6.27)
nice (6.95)

solid (5.65)

Target word: good (7.89)

excellent (7.56)
great (7.50)

terrific (7.12)
wonderful (7.41)

nice (6.95)
decent (6.27)
solid (5.65)
bad (3.24)

Ranked by
sentiment score

lousy (3.14)

Re-ranking

wonderful (7.41)

fantastic (8.36)

fantastic (8.36)
excellent (7.56)

lousy (3.14)

Ranked by
cosine similarity

Figure 1: Example of nearest neighbor rank-
ing.

This study adopts another strategy to obtain
both semantic and sentiment word vectors. Instead
of building a new word embedding model from
labeled data, we propose a word vector refinement
model to refine existing semantically oriented
word vectors using sentiment lexicons. That is, the
proposed model can be applied to the pre-trained
vectors obtained by any word representation
learning models (e.g., Word2vec and GloVe) as a
post-processing step to adapt the pre-trained vec-
tors to sentiment applications. The refinement
model is based on adjusting the pre-trained vector
of each affective word in a given sentiment lexi-
con such that it can be closer to a set of both se-
mantically and sentimentally similar nearest
neighbors (i.e., those with the same polarity) and
further away from sentimentally dissimilar neigh-
bors (i.e., those with an opposite polarity).

The proposed refinement model is evaluated by
examining whether our refined embeddings can
improve conventional word embeddings and out-
perform previously proposed sentiment embed-
dings. To this end, several deep neural network
classifiers that performed well on the Stanford
Sentiment Treebank (SST) (Socher et al., 2013)
are selected, including convolutional neural net-
works (CNN) (Kim, 2014), deep averaging net-
work (DAN) (Iyyer et al., 2015) and long-short
term memory (LSTM) (Tai et al., 2015; Looks et
al., 2017). The conventional word embeddings
used in these classifiers are then replaced by our
refined versions and previously proposed senti-
ment embeddings to re-run the classification for
performance comparison. The SST is chosen be-
cause it can show the effect of using different
word embeddings on fine-grained sentiment clas-
sification, whereas prior studies only reported bi-
nary classification results.

The rest of this paper is organized as follows.
Section 2 describes the proposed word vector re-
finement model. Section 3 presents the evaluation
results. Conclusions are drawn in Section 4.

2 Word Vector Refinement

The refinement procedure begins by giving a set
of pre-trained word vectors and a sentiment lexi-
con annotated with real-valued sentiment scores.
Our goal is to refine the pre-trained vectors of the
affective words in the lexicon such that they can
capture both semantic and sentiment information.
To accomplish this goal, we first calculate the se-
mantic similarity between each affective word

(target word) and the other words in the lexicon
based on the cosine distance of their pre-trained
vectors, and then select top-k most similar words
as the nearest neighbors. These semantically simi-
lar nearest neighbors are then re-ranked according
to their sentiment scores provided by the lexicon
such that the sentimentally similar neighbors can
be ranked higher and dissimilar neighbors lower.
Finally, the pre-trained vector of the target word is
refined to be closer to its semantically and senti-
mentally similar nearest neighbors and further
away from sentimentally dissimilar neighbors.
The following subsections provide a detailed de-
scription of the nearest neighbor ranking and re-
finement model.

2.1 Nearest Neighbor Ranking
The sentiment lexicon used in this study is the ex-
tended version of Affective Norms of English
Words (E-ANEW) (Warriner et al., 2013). It con-
tains 13,915 words and each word is associated
with a real-valued score in [1, 9] for the dimen-
sions of valence, arousal and dominance. The va-
lence represents the degree of positive and nega-
tive sentiment, where values of 1, 5 and 9 respec-
tively denote most negative, neutral and most pos-
itive sentiment. In Fig. 1, good has a valence score
of 7.89, which is greater than 5, and thus can be
considered positive. Conversely, bad has a va-
lence score of 3.24 and is thus negative. In addi-
tion to the E-ANEW, other lexicons such as Sen-
tiWordNet (Esuli and Fabrizio, 2006), SoCal
(Taboada et al., 2011), SentiStrength (Thelwall et
al., 2012), Vader (Hutto et al., 2014), ANTUSD
(Wang and Ku, 2016) and SCL-NMA
(Kiritchenko and Mohammad, 2016) also provide

535

real-valued sentiment intensity or strength scores
like the valence scores.

For each target word to be refined, the top-k
semantically similar nearest neighbors are first se-
lected and ranked in descending order of their co-
sine similarities. In Fig. 1, the left ranked list
shows the top 10 nearest neighbors for the target
word good. The semantically ranked list is then
sentimentally re-ranked based on the absolute dif-
ference of the valence scores between the target
word and the words in the list. A smaller differ-
ence indicates that the word is more sentimentally
similar to the target word, and thus will be ranked
higher. As shown in the right ranked list in Fig. 1,
the re-ranking step can rank the sentimentally
similar neighbors higher and the dissimilar neigh-
bors lower. In the refinement model, the higher
ranked sentimentally similar neighbors will re-
ceive a higher weight to refine the pre-trained vec-
tor of the target word.

2.2 Refinement Model
Once the word list ranked by both cosine similari-
ty and valence scores for each target word is ob-
tained, its pre-trained vector will be refined to be
(1) closer to its sentimentally similar neighbors,
(2) further away from its dissimilar neighbors, and
(3) not too far away from the original vector.

Let V = {v1, v2, …, vn} be a set of the pre-
trained vectors corresponding to the affective
words in the sentiment lexicon. For each target to
be refined, the refinement model iteratively mini-
mizes the distance between the target word and its
top-k nearest neighbors. The objective function
Φ(V) can thus be defined as

1 1

() (,)
n k

ij i j
i j

V w dist v v
= =

Φ =∑∑ (1)

where n denotes the total number of vectors in V
to be refined, vi denotes the vector of a target
word, vj denotes the vector of one of its nearest
neighbors in the ranked list, dist(vi, vj) denotes the
distance between vi and vj, and wij denotes the
weight of the target word’s nearest neighbor, de-
fined as the reciprocal rank of a ranked list. For
example, excellent in Fig. 1 will receive a weight
of 1, great will receive a weight of 1/2, and so on.
A word ranked higher will receive a higher
weight. This weight is used to control the move-
ment direction of the target word towards to its
nearest neighbors. That is, the target word will be
moved closer to the higher-ranked sentimentally

similar neighbors and further away from lower-
ranked dissimilar neighbors, as shown in Fig. 2.

To prevent too many words being moved to
the same location and thereby producing too
many similar vectors, we add a constraint to keep
each pre-trained vector within a certain range
from its original vector. The objective function is
thus divided as two parts:

1 1

1 1

arg min ()=

arg min (,) (,)
n k

t t t t
i i ij i j

i j

V

dist v v w dist v vα β+ +

= =

Φ

+

∑ ∑

 (2)

where 1(,)t t
i idist v v+ denotes the distance between

the vector of the target word in step t and t+1, i.e.,
the distance between the refined vector and its
original vector. The later one represents the dis-
tance between the vector of the target word and
that of its neighbors (similar to Eq. (1)). The pa-
rameters α and β together are used as a ratio to
control how far the refined vector can be moved
away from its original vector and toward its near-
est neighbors. A greater ratio indicates a stronger
constraint on keeping the refined vector closer to
its original vector. For the extreme case of α=1
and β=0, the target word will not be moved (re-
fined). As the ratio decreases, the constraint de-
creases accordingly and the refined vector can be
moved closer to its nearest neighbors. The setting
of α=0 and β=1 means that the constraint is disa-
bled.

To facilitate the calculation of the partial de-
rivative of Φ(V), dist(vi, vj) in the above equa-
tions is measured by the squared Euclidean dis-
tance, defined as

Figure 2: Conceptual diagram of word vector
refinement.

536

2

1
(,) ()

D
d d

i j i j
d

dist v v v v
=

= −∑ (3)

where D is the dimensionality of the word vectors.
The global optimal solution of Φ(V) can be found
by using an iterative update method. To do so, we
solve the partial derivation of Eq. (2) in step t with
respect to word vector t

iv , and by setting
() 0∂Φ

=
∂ t

i

V
v

 to obtain a new vector +1t
iv in step

t+1. The iterative update procedure is defined as

11

1

k
t t
i ij j

jt
i k

ij
j

v w v
v

w

γ β

γ β

=+

=

+
=

+

∑

∑
 (4)

Through the iterative procedure, the vector
representation of each target word will be
iteratively updated until the change of the location
of the target word’s vector is converged. The
refinement process will be terminated when all
target words are refined.

3 Experimental Results

This section evaluates the proposed refinement
model, conventional word embeddings and previ-
ously proposed sentiment embeddings using sev-
eral deep neural network models for binary and
fine-grained sentiment classification.
Dataset. SST was adopted as the evaluation cor-
pus (Socher et al., 2013). The binary classification
subtask (positive and negative) contains
6920/872/1821 samples for the train/dev/test sets,
while the fine-grained ordinal classification sub-
task (very negative, negative, neutral, positive,
and very positive) contains 8544/1101/2210 sam-
ples of the train/dev/test sets.
 Word Embeddings. The word embeddings used
for comparison included two conventional word
embeddings (GloVe and Word2vec), our refined
versions (Re(GloVe) and Re(Word2vec)), and
previously proposed sentiment embeddings (Hy-
Rank) (Tang et al., 2016). We used the same di-
mensionality of 300 for all word embeddings.

 GloVe and Word2vec: The respective GloVe
and Word2vec (skip-gram) were pre-trained
on Common Crawl 840B 1 and Google-
News2.

1 http://nlp.stanford.edu/projects/glove/
2 https://code.google.com/archive/p/word2vec/

 Re(Glove) and Re(Word2vec): Both the pre-
trained GloVe and Word2vec were refined
using E-ANEW (Warriner et al., 2013). Each
affective word was refined by its top k=10
nearest neighbors with parameters of α:β=0.1
(1:10) (see Eq. (2)).

 HyRank: It was trained using SST, NRC
Sentiment140 and IMDB datasets. We com-
pared this method because its code is public-
ly accessible3.

Classifiers. The above word embeddings were
used by CNN (Kim, 2014) 4, DAN (Iyyer et al.,
2015)5, , bi-directional LSTM (Bi-LSTM) (Tai et
al., 2015)6 and Tree-LSTM (Looks et al., 2017)7
with default parameter values.

Comparative Results. Table 1 presents the eval-
uation results of using different word embeddings
for different classifiers. For the pre-trained word
embeddings, GloVe outperformed Word2vec for
DAN, Bi-LSTM and Tree-LSTM, whereas
Word2vec yielded better performance for CNN.
After the proposed refinement model was applied,
both the pre-trained Word2vec and GloVe were
improved. The Re(Word2vec) and Re(GloVe) re-
spectively improved Word2vec and GloVe by
1.7% and 1.5% averaged over all classifiers for
binary classification, and both 1.6% for fine-
grained classification. In addition, both Re(GloVe)
and Re(Word2vec) outperformed the sentiment
embeddings HyRank for all classifiers on both bi-
nary and fine-grained classification, indicating
that the real-valued intensity scores used by the
proposed refinement model are more effective
than the binary polarity labels used by the previ-
ously proposed sentiment embedings.

The proposed method yielded better perfor-
mance because it can remove semantically similar
but sentimentally dissimilar nearest neighbors for
the target words by refining their vector represen-
tations. To demonstrate the effect, we define a
measure noise@k to calculate the percentage of
top k nearest neighbors with an opposite polarity
(i.e., noise) to each word in E-ANEW. For in-
stance, in Fig. 1, the noise@10 for good is 20%
because there are two words with an opposite po-
larity to good among its top 10 nearest neighbors.
Table 2 shows the average noise@10 for different

3 http://ir.hit.edu.cn/~dytang/
4 https://github.com/yoonkim/CNN_sentence
5 https://github.com/miyyer/dan
6 https://github.com/stanfordnlp/treelstm
7 https://github.com/tensorflow/fold

537

word embeddings. For the two semantic-oriented
word vectors, GloVe and Word2vec, on average
around 24% of the top 10 nearest neighbors for
each word are noisy words. After refinement, both
Re(GloVe) and Re(Word2vec) can reduce
noise@10 to around 14%. The HyRank also
yielded better performance than both GloVe and
Word2vec.

4 Conclusion

This study presents a word vector refinement
model that requires no labeled corpus and can be
applied to any pre-trained word vectors. The pro-
posed method selects a set of semantically similar
nearest neighbors and then ranks the sentimentally
similar neighbors higher and dissimilar neighbors
lower based on a sentiment lexicon. This ranked
list can guide the refinement procedure to itera-
tively improve the word vector representations.

Experiments on SST show that the proposed
method yielded better performance than both con-
ventional word embeddings and sentiment em-
beddings for both binary and fine-grained senti-
ment classification. In addition, the performances
of various deep neural network models have also
been improved. Future work will evaluate the
proposed method on another datasets. More ex-
periments will also be conducted to provide more
in-depth analysis.

Acknowledgments
This work was supported by the Ministry of Sci-
ence and Technology, Taiwan, ROC, under Grant
No. MOST 105-2221-E-155-059-MY2 and
MOST 105-2218-E-006-028. The authors would
like to thank the anonymous reviewers and the ar-
ea chairs for their constructive comments.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2016. Enriching word vectors
with subword information. arXiv preprint arXiv:
1607.04606.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In
Proceedings of the 25th International Conference
on Machine Learning (ICML-08), pages 160–167.

Ronan Collobert, Jason Weston, L´eon Bottou,
Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. 2011. Natural language processing (almost)
from scratch. Journal of Machine Learning
Research, 12:2493–2537.

Andrea Esuli, and Fabrizio Sebastiani. 2006. Senti-
WordNet: A publicly available lexical resource for
opinion mining. In Proceedings of the 5th Interna-
tional Conference on Language Resources and
Evaluation (LREC-06), pages 417-422.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard H. Hovy and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In

Method Fine-grained Binary
DAN

- Word2vec 46.2 84.5
- GloVe 46.9 85.7
- Re(Word2vec) 48.1 87.0
- Re(GloVe) 48.3 87.3
- HyRank 47.2 86.6

CNN
- Word2vec 48.0 87.2
- GloVe 46.4 85.7
- Re(Word2vec) 48.8 87.9
- Re(GloVe) 47.7 87.5
- HyRank 47.3 87.6

Bi-LSTM
- Word2vec 48.8 86.3
- GloVe 49.1 87.5
- Re(Word2vec) 49.6 88.2
- Re(GloVe) 49.7 88.6
- HyRank 49.0 87.3

Tree-LSTM
- Word2vec 48.8 86.7
- GloVe 51.8 89.1
- Re(Word2vec) 50.1 88.3
- Re(GloVe) 54.0 90.3
- HyRank 49.2 88.2

Table 1: Accuracy of different classifiers with
different word embeddings for binary and fine-
grained classification.

Word Embeddings Noise@10 (%)
Word2vec 24.3

GloVe 24.0
HyRank 18.5

Re(Word2vec) 14.4
Re(GloVe) 13.8

Table 2: Average percentages of noisy words
in the top 10 nearest neighbors for different
word embeddings.

538

Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics – Human Language Technolo-
gies (NAACL/HLT-15), pages 1606-1615.

Clayton J. Hutto and Eric Gilbert. 2014. VADER: A
parsimonious rule-based model for sentiment anal-
ysis of social media text. In Proceedings of 8th In-
ternational AAAI Conference on Weblogs and So-
cial Media, pages 216-225.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered
composition rivals syntactic methods for text
classification. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics (ACL-15), pages 1681-1691.

Douwe Kiela, Felix Hill and Stephen Clark. 2015.
Specializing word embeddings for similarity or
relatedness. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language
Processing (EMNLP-15), pages 2044-2048.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP-14), pages 1746-
1751.

Svetlana Kiritchenko and Saif M. Mohammad. 2016.
The effect of negators, modals, and degree adverbs
on sentiment composition. In Proceedings of the
7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis
at NAACL-HLT 2016, pages 43-52.

Igor Labutov and Hod Lipson. 2013. Re-embedding
words. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics
(ACL-13), pages 489-493.

Man Lan, Zhihua Zhang, Yue Lu, and Ju Wu. 2016.
Three convolutional neural network-based models
for learning sentiment word vectors towards
sentiment analysis. In Proceedings of the 2016
International Joint Conference on Neural
Networks (IJCNN-16), pages 3172-3179.

Moshe Looks, Marcello Herreshoff, DeLesley
Hutchins, and Peter Norvig. 2017. Deep learning
with dynamic computation graphs. In Proceedings
of the 5th International Conference on Learning
Representations (ICLR-17).

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics (ACL-
11), pages 142-150.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Distributed representations of words
and phrases and their compositionality. In
Proceedings of the Annual Conference on

Advances in Neural Information Processing
Systems (NIPS-13), pages 1-9.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013b. Efficient estimation of word
representations in vector space. In Proceedings of
the International Conference on Learning
Representations (ICLR-2013), pages 1-12.

George A. Miller. 1995. WordNet: A lexical database
for English. Communications of the ACM,
38(11):39-41.

Saif M. Mohammad, Bonnie J. Dorr, Graeme Hirst,
and Peter D. Turney. 2013. Computing lexical
contrast. Computational Linguistics, 39(3):555-590.

Jeffrey Pennington, Richard Socher, and Christopher
D. Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing (EMNLP-14), pages 1532-1543.

Yafeng Ren, Yue Zhang, Meishan Zhang, and
Donghong Ji. 2016. Improving twitter sentiment
classification using topic-enriched multi-prototype
word embeddings. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI-
16), pages 3038-3044.

Richard Socher, Alex Perelygin, and Jy Wu. 2013.
Recursive deep models for semantic
compositionality over a sentiment treebank. In
Proceedings of the Conference on Empirical
Methods in Natural Language Processing
(EMNLP-13), pages 1631-1642.

Maite Taboada, Julian Brooke, and Kimberly Voll.
2011. Lexicon-based methods for sentiment
analysis. Computational linguistics, 37(2):267–307.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics (ACL-15), pages 1556–1566.

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting Liu,
and Ming Zhou. 2016. Sentiment embeddings with
applications to sentiment analysis. IEEE Trans.
Knowledge abd Data Engineering, 28(2):496-509.

Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. 2012. Sentiment strength detection for the
social web. Journal of the Association for Infor-
mation Science and Technology, 63(1):163-173.

Shih-Ming Wang and Lun-Wei Ku. 2016. ANTUSD:
A large Chinese sentiment dictionary. In Proc. of
the 10th International Conference on Language
Resources and Evaluation (LREC-16), pages 2697-
2702.

 Amy Beth Warriner, Victor Kuperman, and Marc
Brysbaert. 2013. Norms of valence, arousal, and
dominance for 13,915 English lemmas. Behavior
Research Methods, 45(4):1191-1207.

539

