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Abstract 

Word embeddings that can capture seman-
tic and syntactic information from contexts 
have been extensively used for various 
natural language processing tasks. Howev-
er, existing methods for learning context-
based word embeddings typically fail to 
capture sufficient sentiment information. 
This may result in words with similar vec-
tor representations having an opposite sen-
timent polarity (e.g., good and bad), thus 
degrading sentiment analysis performance. 
Therefore, this study proposes a word vec-
tor refinement model that can be applied to 
any pre-trained word vectors (e.g., 
Word2vec and GloVe). The refinement 
model is based on adjusting the vector rep-
resentations of words such that they can be 
closer to both semantically and sentimen-
tally similar words and further away from 
sentimentally dissimilar words. Experi-
mental results show that the proposed 
method can improve conventional word 
embeddings and outperform previously 
proposed sentiment embeddings for both 
binary and fine-grained classification on 
Stanford Sentiment Treebank (SST). 

1 Introduction 

Word embeddings are a technique to learn con-
tinuous low-dimensional vector space representa-
tions of words by leveraging the contextual in-
formation from large corpora. Examples include 
C&W (Collobert and Weston, 2008; Collobert et 
al., 2011), Word2vec (Mikolov et al., 2013a; 
2013b) and GloVe (Pennington et al., 2014). In 
addition to the contextual information, character-
level subwords (Bojanowski et al., 2016) and se-
mantic knowledge resources (Faruqui et al., 2015; 
Kiela et al., 2015) such as WordNet (Miller, 

1995) are also useful information for learning 
word embeddings. These embeddings have been 
successfully used for various natural language 
processing tasks. 

In general, existing word embeddings are se-
mantically oriented. They can capture semantic 
and syntactic information from unlabeled data in 
an unsupervised manner but fail to capture suffi-
cient sentiment information. This makes it diffi-
cult to directly apply existing word embeddings to 
sentiment analysis. Prior studies have reported 
that words with similar vector representations 
(similar contexts) may have opposite sentiment 
polarities, as in the example of happy-sad men-
tioned in (Mohammad et al., 2013) and good-bad 
in (Tang et al., 2016). Composing these word vec-
tors may produce sentence vectors with similar 
vector representations but opposite sentiment po-
larities (e.g., a sentence containing happy and a 
sentence containing sad may have similar vector 
representations). Building on such ambiguous 
vectors will affect sentiment classification per-
formance. 

To enhance the performance of distinguishing 
words with similar vector representations but op-
posite sentiment polarities, recent studies have 
suggested learning sentiment embeddings from 
labeled data in a supervised manner (Maas et al., 
2011; Labutov and Lipson, 2013; Lan et al., 2016; 
Ren et al., 2016; Tang et al., 2016). The common 
goal of these methods is to capture both seman-
tic/syntactic and sentiment information such that 
sentimentally similar words have similar vector 
representations. They typically apply an objective 
function to optimize word vectors based on the 
sentiment polarity labels (e.g., positive and nega-
tive) given by the training instances. The use of 
such sentiment embeddings has improved the per-
formance of binary sentiment classification. 
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great (7.50)
bad (3.24)

terrific (7.12)
decent (6.27)
nice (6.95)

solid (5.65)

Target word: good (7.89)

excellent (7.56)
great (7.50)

terrific (7.12)
wonderful (7.41)

nice (6.95)
decent (6.27)
solid (5.65)
bad (3.24)

Ranked by 
sentiment score

lousy (3.14)

Re-ranking

wonderful (7.41)

fantastic (8.36)

fantastic (8.36)
excellent (7.56)

lousy (3.14)

Ranked by 
cosine similarity

 
Figure 1: Example of nearest neighbor rank-
ing.  

This study adopts another strategy to obtain 
both semantic and sentiment word vectors. Instead 
of building a new word embedding model from 
labeled data, we propose a word vector refinement 
model to refine existing semantically oriented 
word vectors using sentiment lexicons. That is, the 
proposed model can be applied to the pre-trained 
vectors obtained by any word representation 
learning models (e.g., Word2vec and GloVe) as a 
post-processing step to adapt the pre-trained vec-
tors to sentiment applications. The refinement 
model is based on adjusting the pre-trained vector 
of each affective word in a given sentiment lexi-
con such that it can be closer to a set of both se-
mantically and sentimentally similar nearest 
neighbors (i.e., those with the same polarity) and 
further away from sentimentally dissimilar neigh-
bors (i.e., those with an opposite polarity). 

The proposed refinement model is evaluated by 
examining whether our refined embeddings can 
improve conventional word embeddings and out-
perform previously proposed sentiment embed-
dings. To this end, several deep neural network 
classifiers that performed well on the Stanford 
Sentiment Treebank (SST) (Socher et al., 2013) 
are selected, including convolutional neural net-
works (CNN) (Kim, 2014), deep averaging net-
work (DAN) (Iyyer et al., 2015) and long-short 
term memory (LSTM) (Tai et al., 2015; Looks et 
al., 2017). The conventional word embeddings 
used in these classifiers are then replaced by our 
refined versions and previously proposed senti-
ment embeddings to re-run the classification for 
performance comparison. The SST is chosen be-
cause it can show the effect of using different 
word embeddings on fine-grained sentiment clas-
sification, whereas prior studies only reported bi-
nary classification results. 

The rest of this paper is organized as follows. 
Section 2 describes the proposed word vector re-
finement model. Section 3 presents the evaluation 
results. Conclusions are drawn in Section 4.  

2 Word Vector Refinement 

The refinement procedure begins by giving a set 
of pre-trained word vectors and a sentiment lexi-
con annotated with real-valued sentiment scores. 
Our goal is to refine the pre-trained vectors of the 
affective words in the lexicon such that they can 
capture both semantic and sentiment information. 
To accomplish this goal, we first calculate the se-
mantic similarity between each affective word  

(target word) and the other words in the lexicon 
based on the cosine distance of their pre-trained 
vectors, and then select top-k most similar words 
as the nearest neighbors. These semantically simi-
lar nearest neighbors are then re-ranked according 
to their sentiment scores provided by the lexicon 
such that the sentimentally similar neighbors can 
be ranked higher and dissimilar neighbors lower. 
Finally, the pre-trained vector of the target word is 
refined to be closer to its semantically and senti-
mentally similar nearest neighbors and further 
away from sentimentally dissimilar neighbors. 
The following subsections provide a detailed de-
scription of the nearest neighbor ranking and re-
finement model. 

2.1 Nearest Neighbor Ranking 
The sentiment lexicon used in this study is the ex-
tended version of Affective Norms of English 
Words (E-ANEW) (Warriner et al., 2013). It con-
tains 13,915 words and each word is associated 
with a real-valued score in [1, 9] for the dimen-
sions of valence, arousal and dominance. The va-
lence represents the degree of positive and nega-
tive sentiment, where values of 1, 5 and 9 respec-
tively denote most negative, neutral and most pos-
itive sentiment. In Fig. 1, good has a valence score 
of 7.89, which is greater than 5, and thus can be 
considered positive. Conversely, bad has a va-
lence score of 3.24 and is thus negative. In addi-
tion to the E-ANEW, other lexicons such as Sen-
tiWordNet (Esuli and Fabrizio, 2006), SoCal 
(Taboada et al., 2011), SentiStrength (Thelwall et 
al., 2012), Vader (Hutto et al., 2014), ANTUSD 
(Wang and Ku, 2016) and SCL-NMA 
(Kiritchenko and Mohammad, 2016) also provide 
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real-valued sentiment intensity or strength scores 
like the valence scores. 

For each target word to be refined, the top-k 
semantically similar nearest neighbors are first se-
lected and ranked in descending order of their co-
sine similarities. In Fig. 1, the left ranked list 
shows the top 10 nearest neighbors for the target 
word good. The semantically ranked list is then 
sentimentally re-ranked based on the absolute dif-
ference of the valence scores between the target 
word and the words in the list. A smaller differ-
ence indicates that the word is more sentimentally 
similar to the target word, and thus will be ranked 
higher. As shown in the right ranked list in Fig. 1, 
the re-ranking step can rank the sentimentally 
similar neighbors higher and the dissimilar neigh-
bors lower. In the refinement model, the higher 
ranked sentimentally similar neighbors will re-
ceive a higher weight to refine the pre-trained vec-
tor of the target word. 

2.2 Refinement Model  
Once the word list ranked by both cosine similari-
ty and valence scores for each target word is ob-
tained, its pre-trained vector will be refined to be  
(1) closer to its sentimentally similar neighbors, 
(2) further away from its dissimilar neighbors, and 
(3) not too far away from the original vector. 

Let V = {v1, v2, …, vn} be a set of the pre-
trained vectors corresponding to the affective 
words in the sentiment lexicon. For each target to 
be refined, the refinement model iteratively mini-
mizes the distance between the target word and its 
top-k nearest neighbors. The objective function 
Φ(V) can thus be defined as 

 
1 1

( ) ( , )
n k

ij i j
i j

V w dist v v
= =

Φ =∑∑   (1) 

where n denotes the total number of vectors in V 
to be refined, vi denotes the vector of a target 
word, vj denotes the vector of one of its nearest 
neighbors in the ranked list, dist(vi, vj) denotes the 
distance between vi and vj, and wij denotes the 
weight of the target word’s nearest neighbor, de-
fined as the reciprocal rank of a ranked list. For 
example, excellent in Fig. 1 will receive a weight 
of 1, great will receive a weight of 1/2, and so on. 
A word ranked higher will receive a higher 
weight. This weight is used to control the move-
ment direction of the target word towards to its 
nearest neighbors. That is, the target word will be 
moved closer to the higher-ranked sentimentally 

similar neighbors and further away from lower-
ranked dissimilar neighbors, as shown in Fig. 2. 

To prevent too many words being moved to 
the same location and thereby producing too 
many similar vectors, we add a constraint to keep 
each pre-trained vector within a certain range 
from its original vector. The objective function is 
thus divided as two parts: 

1 1

1 1

arg min ( )=

arg min ( , ) ( , )
n k

t t t t
i i ij i j

i j

V

dist v v w dist v vα β+ +

= =

Φ

 
+ 

 
∑ ∑

  (2) 

where 1( , )t t
i idist v v+  denotes the distance between 

the vector of the target word in step t and t+1, i.e., 
the distance between the refined vector and its 
original vector. The later one represents the dis-
tance between the vector of the target word and 
that of its neighbors (similar to Eq. (1)). The pa-
rameters α and β together are used as a ratio to 
control how far the refined vector can be moved 
away from its original vector and toward its near-
est neighbors. A greater ratio indicates a stronger 
constraint on keeping the refined vector closer to 
its original vector. For the extreme case of α=1 
and β=0, the target word will not be moved (re-
fined). As the ratio decreases, the constraint de-
creases accordingly and the refined vector can be 
moved closer to its nearest neighbors. The setting 
of α=0 and β=1 means that the constraint is disa-
bled. 

To facilitate the calculation of the partial de-
rivative of Φ(V), dist(vi, vj) in the above equa-
tions is measured by the squared Euclidean dis-
tance, defined as 

 

Figure 2:  Conceptual diagram of word vector 
refinement. 

536



 

2

1
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D
d d

i j i j
d

dist v v v v
=

= −∑   (3) 

where D is the dimensionality of the word vectors. 
The global optimal solution of Φ(V) can be found 
by using an iterative update method. To do so, we 
solve the partial derivation of Eq. (2) in step t with 
respect to word vector t

iv , and by setting 
( ) 0∂Φ

=
∂ t

i

V
v

  to obtain a new vector +1t
iv  in step 

t+1. The iterative update procedure is defined as 

11
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γ β
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=
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∑

∑
  (4) 

Through the iterative procedure, the vector 
representation of each target word will be 
iteratively updated until the change of the location 
of the target word’s vector is converged. The 
refinement process will be terminated when all 
target words are refined. 

3 Experimental Results 

This section evaluates the proposed refinement 
model, conventional word embeddings and previ-
ously proposed sentiment embeddings using sev-
eral deep neural network models for binary and 
fine-grained sentiment classification. 
Dataset.  SST was adopted as the evaluation cor-
pus (Socher et al., 2013). The binary classification 
subtask (positive and negative) contains 
6920/872/1821 samples for the train/dev/test sets, 
while the fine-grained ordinal classification sub-
task (very negative, negative, neutral, positive, 
and very positive) contains 8544/1101/2210 sam-
ples of the train/dev/test sets.  
 Word Embeddings. The word embeddings used 
for comparison included two conventional word 
embeddings (GloVe and Word2vec), our refined 
versions (Re(GloVe) and Re(Word2vec)), and 
previously proposed sentiment embeddings (Hy-
Rank) (Tang et al., 2016). We used the same di-
mensionality of 300 for all word embeddings. 

 GloVe and Word2vec: The respective GloVe 
and Word2vec (skip-gram) were pre-trained 
on Common Crawl 840B 1  and Google-
News2. 

                                                      
1 http://nlp.stanford.edu/projects/glove/ 
2 https://code.google.com/archive/p/word2vec/ 

 Re(Glove) and Re(Word2vec): Both the pre-
trained GloVe and Word2vec were refined 
using E-ANEW (Warriner et al., 2013). Each 
affective word was refined by its top k=10 
nearest neighbors with parameters of α:β=0.1 
(1:10) (see Eq. (2)). 

 HyRank: It was trained using SST, NRC 
Sentiment140 and IMDB datasets. We com-
pared this method because its code is public-
ly accessible3.  

Classifiers. The above word embeddings were 
used by CNN (Kim, 2014) 4, DAN (Iyyer et al., 
2015)5, , bi-directional LSTM (Bi-LSTM) (Tai et 
al., 2015)6 and Tree-LSTM (Looks et al., 2017)7 
with default parameter values. 

Comparative Results. Table 1 presents the eval-
uation results of using different word embeddings 
for different classifiers. For the pre-trained word 
embeddings, GloVe outperformed Word2vec for 
DAN, Bi-LSTM and Tree-LSTM, whereas 
Word2vec yielded better performance for CNN. 
After the proposed refinement model was applied, 
both the pre-trained Word2vec and GloVe were 
improved. The Re(Word2vec) and Re(GloVe) re-
spectively improved Word2vec and GloVe by 
1.7% and 1.5% averaged over all classifiers for 
binary classification, and both 1.6% for fine-
grained classification. In addition, both Re(GloVe) 
and Re(Word2vec) outperformed the sentiment 
embeddings HyRank for all classifiers on both bi-
nary and fine-grained classification, indicating 
that the real-valued intensity scores used by the 
proposed refinement model are more effective 
than the binary polarity labels used by the previ-
ously proposed sentiment embedings. 

The proposed method yielded better perfor-
mance because it can remove semantically similar 
but sentimentally dissimilar nearest neighbors for 
the target words by refining their vector represen-
tations. To demonstrate the effect, we define a 
measure noise@k to calculate the percentage of 
top k nearest neighbors with an opposite polarity  
(i.e., noise) to each word in E-ANEW. For in-
stance, in Fig. 1, the noise@10 for good is 20% 
because there are two words with an opposite po-
larity to good among its top 10 nearest neighbors. 
Table 2 shows the average noise@10 for different 
                                                      
3 http://ir.hit.edu.cn/~dytang/ 
4 https://github.com/yoonkim/CNN_sentence 
5 https://github.com/miyyer/dan 
6 https://github.com/stanfordnlp/treelstm 
7 https://github.com/tensorflow/fold 
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word embeddings. For the two semantic-oriented 
word vectors, GloVe and Word2vec, on average 
around 24% of the top 10 nearest neighbors for 
each word are noisy words. After refinement, both 
Re(GloVe) and Re(Word2vec) can reduce 
noise@10 to around 14%. The HyRank also 
yielded better performance than both GloVe and 
Word2vec. 

4 Conclusion 

This study presents a word vector refinement 
model that requires no labeled corpus and can be 
applied to any pre-trained word vectors. The pro-
posed method selects a set of semantically similar 
nearest neighbors and then ranks the sentimentally 
similar neighbors higher and dissimilar neighbors 
lower based on a sentiment lexicon. This ranked 
list can guide the refinement procedure to itera-
tively improve the word vector representations. 

Experiments on SST show that the proposed  
method yielded better performance than both con-
ventional word embeddings and sentiment em-
beddings for both binary and fine-grained senti-
ment classification. In addition, the performances 
of various deep neural network models have also 
been improved. Future work will evaluate the 
proposed method on another datasets. More ex-
periments will also be conducted to provide more 
in-depth analysis.  
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