
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2103–2108,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to refine text based recommendations

Youyang Gu and Tao Lei and Regina Barzilay and Tommi Jaakkola
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{yygu,taolei,regina,tommi}@csail.mit.edu

Abstract

We propose a text-based recommendation en-
gine that utilizes recurrent neural networks to
flexibly map textual input into continuous vec-
tor representations tailored to the recommen-
dation task. Here, the text objects are doc-
uments such as Wikipedia articles or ques-
tion and answer pairs. As neural models re-
quire substantial training time, we introduce
a sequential component so as to quickly ad-
just the learned metric over objects as addi-
tional evidence accrues. We evaluate the ap-
proach on recommending Wikipedia descrip-
tions of ingredients to their associated product
categories. We also exemplify the sequential
metric adjustment on retrieving similar Stack
Exchange AskUbuntu questions. 1

1 Introduction

Modern recommender problems involve complex
objects, often described in textual form. In order
to learn to predict how disparate objects may go to-
gether, it is helpful to first map them into a common
representation where they are easily compared, re-
gardless of their origin. Neural models are partic-
ularly well-suited for this task as continuous vec-
tor representations of objects can be tailored in a
flexible way to the desired task. While these mod-
els have been shown to be effective across NLP
tasks (Sutskever et al., 2014; Andreas et al., 2016;
Hermann et al., 2015), they take considerable time
to learn and are therefore ill-suited to be adjusted
rapidly as additional evidence accumulates.

1The code/data is available at https://github.com/
youyanggu/rcnn.

We cast our text-to-text recommendation problem
in two phases. In the first phase, flexible neural text-
to-vector mappings are learned from currently avail-
able data. Such mappings are optimized to function
well in a collaborative filtering setting. For exam-
ple, in the context of recommending food product
categories for ingredients based on their Wikipedia
pages, the continuous vectors are adjusted so that
their inner product directly reflects the degree of as-
sociation between the objects. Once learned, the
mapping can be applied to any previously unseen
text to yield the corresponding vector representation,
and therefore also used for predicting associations.
In the second phase, we no longer adjust text-to-
vector mappings but rather parameterize and learn
how the vectors are compared. For example, we can
optimize the metric separately for each new ingredi-
ent based on a few category observations for that in-
gredient. The goal of this second phase is to specif-
ically boost the accuracy when the neural baseline
(unaware of the new evidence) would otherwise not
perform well.

Our approach builds on the recent work on recur-
rent convolutional models to obtain text-to-vector
mappings (Lei et al., 2015; Lei et al., 2016). This
architecture is particularly well suited for noisy
Wikipedia pages as it can learn to omit and high-
light different parts of the text, as needed. The ad-
ditional sequential component is a regularized logis-
tic regression model (for ingredient-product predic-
tion) or a ranking model (for question retrieval). We
demonstrate the accuracy of the baseline neural rec-
ommender and the gains from the second sequential
phase in both of these tasks.

2103



2 Related Work

A great deal of recent effort has gone into devel-
oping flexible neural models for text and their use
across variety of NLP tasks. This includes build-
ing vector representations for sentences and docu-
ments (Le and Mikolov, 2014), convolutional neu-
ral network models of text (Collobert and Weston,
2008; Zhang and LeCun, 2015), non-consecutive
variants of CNNs (Lei et al., 2015), and compo-
sitional architectures (Socher et al., 2013), among
many others. Our work is most closely related to
the use of such models for question retrieval (Lei et
al., 2016) but differs, in particular, in terms of our
two-phase collaborative filtering formulation and
the ingredient mapping task from Wikipedia pages
(cf.(Sutskever et al., 2011; Song and Roth, 2015)).

3 Recommender Problems

We explore two recommender problems in this
work. In the first problem, we are given a food in-
gredient, and our goal is to predict which product
categories it could appear in. Both ingredients and
product categories are provided in terms of natural
language descriptions via their associated Wikipedia
pages. For example, if given “tomato”, we would
predict “canned foods” as one likely category for the
ingredient. A small number of categories appear as
targets for each ingredient.

We also consider the task of predicting questions
that are similar to the one provided as a query. The
purpose is to facilitate effective question answer-
ing by retrieving related past questions (and the as-
sociated answers that are available). For this we
use Stack Exchange’s AskUbuntu question retrieval
dataset used in recent work (dos Santos et al., 2015;
Lei et al., 2016)

4 Approach

We explain our approach in terms of the first task:
predicting product categories from ingredients. Col-
laborative predictions are made by mapping each in-
gredient into a vector representation and comparing
that representation with an analogous one for prod-
uct categories. We train these vectors in an end-to-
end manner to function well as part of the collab-
orative task. The vector representations are based

on Wikipedia pages that are available for most in-
gredients and categories in our problem. Rather
than derive the vector from the entire article (which
can be long), we only use the top summary section.
For the AskUbuntu question-answering dataset, we
make use of both the title and the question body.

We use a recurrent neural network (RNN) model
to map each text description into a vector represen-
tation. Our model builds on the recurrent convo-
lutional neural network model of (Lei et al., 2016)
used to train the AskUbuntu question representa-
tions. We describe below a modified version used
for ingredient-product category prediction.

Let v✓(x) 2 Rd be the parameterized RNN map-
ping of text x into a vector representation, where d
is the dimension of the hidden representation. Let xi

and zp be the Wikipedia pages for ingredient i 2 I
and product category p 2 P , respectively. We use
the same parameters ✓ to generate the representa-
tions for both ingredients and product categories due
to their overall similarity. Thus v✓(xi) is the vector
representation for ingredient i and v✓(zp) is the vec-
tor representation for product category p for an RNN
model with parameters ✓. We train the RNN model
to predict each association Yip = 1 as a binary pre-
diction task, i.e.,

P (Yip = 1|✓) = �(v✓(zp) · v✓(xi)), (1)

where � is the sigmoid function �(t) = (1 +
exp(�t))�1. The formulation is akin to a binary
collaborative filtering task where user/item feature
vectors are produced by the RNN. The parameters
✓ can be learned by back-propagating log-likelihood
of the binary 0/1 predictions back to ✓.

4.1 Sequential learning

Our RNN model, once trained, will be able to map
any new ingredient and product category (their text
descriptions) into vectors, and make a binary predic-
tion of whether the two go together. However, train-
ing the model takes considerable time and cannot be
easily adjusted in the face of new evidence, e.g., a
few positive and negative categories for a previously
unseen ingredient. Since RNN features are global
(affecting the mapping from text to features for all
ingredients/products), it is not clear how the adjust-
ments made in light of additional information about

2104



a specific new ingredient will impact predictions for
other ingredients. We propose a sequential approach
that is instead local, tailored to the new ingredient.

In order to sequentially adjust the model predic-
tions with new evidence, we introduce parameters
w = [w1, . . . , wd], wj 2 R+ that modify the com-
parison of ingredient and category vectors. Specifi-
cally, the association is predicted by

P (Yip = 1|✓, w) = �{v✓(zp)
T diag(w)v✓(xi)},

(2)
where diag(w) is a diagonal matrix with the entries
specified by w. We assume that, at this stage, the
RNN parameters ✓ and therefore the vector repre-
sentations v✓(zp) and v✓(xi) are nonadjustable. We
will only update weights w in response to each new
observation, separately for each ingredient. The ob-
servations can both be positive (Y = 1) and negative
(Y = 0).

Because we expect a new input may only have
a small number of observations, it is important to
properly regularize the weights as to avoid over-
fitting. We append the log-likelihood objective with
a regularizer

reg(w) =
�

2

dX

j=1

(wj � 1)2 (3)

where � is the overall regularization parameter. Note
that for large values of �, the regularizer keeps the
parameters at the default values wj = 1 correspond-
ing to the baseline RNN collaborative predictions,
unmodified by the new evidence.

In the context of predicting similar questions, we
use a modified binary formulation where the goal
is to classify each triplet of questions (x, z1, z2) in
terms of whether z1 is closer to the query than z2. In
this ranking model, the probability that z1 is closer
is given by

�
⇣
(v✓(z1) � v✓(z2))

T diag(w)v✓(x)
⌘
, (4)

The parameters w are again trained from ob-
served additional triplet relations in the AskUbuntu
dataset. The parameters w are regularized as in the
ingredient-product category setup.

The sequential part can therefore be viewed as a
content recommendation task which is tailored to

the specific query (e.g., ingredient) using features
from previously trained RNNs. It assumes addi-
tional feedback in order to adjust the feature com-
parison using the introduced weights w.

5 Experimental Setup and Results

Ingredients: We use the FoodEssentials LabelAPI2

and Rapid Alert System for Food and Feed (RASFF)3

databases to extract 5439 ingredients and the prod-
uct categories they appear in. On average, each in-
gredient appears in 16.3 product categories (out of
131 categories). We leverage Mechanical Turk to
link each ingredient to the appropriate Wikipedia ar-
ticle. From the 5439 ingredients, there are 1680
unique Wikipedia articles. Each ingredient sum-
mary description has a median of 169 tokens.
AskUbuntu: The dataset consists of 167k questions
and 16k user-marked similar question pairs taking
from a 2014 dump of AskUbuntu website.

5.1 Training, development, and test sets

Ingredients: We take the set of unique Wikipedia
articles and randomly split them into training, de-
velopment, and test sets (60/20/20). We then assign
the ingredients to the appropriate data set based on
their Wikipedia articles. This is to ensure that the ar-
ticles of the ingredients used in the development and
test sets are not seen in training.
AskUbuntu: We take 8000 human annotated ques-
tion pairs as our development and test sets. There are
200 query questions in each set. Each query ques-
tion is paired with 20 candidate questions which are
annotated as similar or non-similar. We evaluate by
ranking these candidate questions.

5.2 Sequential scenario

Ingredients: Let n be the total number of labeled
positive categories for the ingredient. We provide
min(20, n/2) positive categories for the sequential
model to train. We also include k negative cat-
egories, where k is selected using the validation
set. We evaluate the performance on the remaining
n � min(20, n/2) positive categories as well as on
the negative categories not included in training.

2http://developer.foodessentials.com/
3http://ec.europa.eu/food/safety/rasff/index en.htm

2105



Ingredient Wikipedia article Prediction 1 Prediction 2 Prediction 3
oatmeal Oatmeal cereal (0.564) snack, energy & granola bars (0.196) breads & buns (0.039)
watermelon juice Watermelon fruit & vegetable juice (0.352) ice cream & frozen yogurt (0.205) yogurt (0.064)
jasmine rice Jasmine rice flavored rice dishes (0.294) rice (0.237) herbs & spices (0.062)
shrimp extract Shrimp (food) fish & seafood (0.491) frozen dinners (0.128) frozen appetizers (0.113)
meatball Meatball pizza (0.180) breakfast sandwiches (0.128) frozen dinners (0.120)
polysorbate 80 Polysorbate 80 chewing gum & mints (0.531) candy (0.092) baking decorations (0.049)
ketchup Ketchup ketchup (0.461) salad dressing & mayonnaise (0.049) other cooking sauces (0.044)
benzoic acid Benzoic acid powdered drinks (0.062) fruit & vegetable juice (0.051) candy (0.045)

Table 1: The three most likely food product category predictions generated by the baseline RNN model on eight unseen ingredients.

The number in parenthesis represents the probability provided by the model.

AskUbuntu: We use the difference vectors in Equa-
tion 4 to compute the loss and sequentially update
the feature weights w. Let n be the total number of
labeled positive examples (similar questions). We
select up to n/2 positive and negative examples.
From the n2/4 possible pairs, we select the 20 most
informative pairs for training.

While we use the loss function commonly used
for binary classification during training, we ulti-
mately want to frame our question as a ranking prob-
lem. Therefore, after iterating through the initial
observations, we compute the mean average preci-
sion (MAP) over the remaining (unseen) ingredi-
ents/questions and compare it to the MAP of the
baseline RNN model on the same unseen examples.

5.3 Hyperparameters

RNN: We use Adam (Kingma and Ba, 2015) as the
optimization method with the default setting sug-
gested by the authors. We use a hidden dimension
of d = 50 for the ingredients and d = 400 for the
AskUbuntu questions. Additional parameters such
as dropout (Hinton et al., 2012), hidden layers, regu-
larization, stopping criteria, batch size, and learning
rate is tuned on the development set.
Word Vectors: For the ingredient/product pre-
diction task, we used the GloVe pre-trained vec-
tors (Common Crawl, 42 billion tokens, 300-
dimensional) (Pennington et al., 2014). The word
vectors for the AskUbuntu vectors are pre-trained
using the AskUbuntu and Wikipedia corpora.
Sequential: We utilize the bounded limited-
memory BFGS algorithm (L-BFGS-B) (Byrd et al.,
1995) to solve for the optimal feature weights with
bounds wj 2 [0.01, 2]. We tuned the the constraint
bounds and the regularization parameter � on the de-
velopment set.

Figure 1: Box plot of the mean absolute mean average preci-

sion (MAP) improvement of the sequential model on the ingre-

dients dataset (top) and AskUbuntu questions (bottom). They

are divided into five quintiles based on the baseline RNN MAP

score. The model shows gains in cases where the baseline RNN

model’s performance is poor or mediocre. The number of data

points in each of the five quintiles of the ingredients dataset

are, respectively: 131, 210, 240, 135, 191. For the AskUbuntu

dataset, they are: 15, 26, 32, 40, 41.

2106



Ing / Dev Ing / Test AskUbuntu / Dev AskUbuntu / Test
Mean MAP gain (percent) 0.0525 (30.9%) 0.0492 (26.5%) 0.0246 (8.2%) 0.0224 (7.5%)
Mean # positive observations 8.6 9.1 3.2 2.9

Table 2: We show the mean absolute improvement in the mean average precision (MAP) over the unobserved data points for each

ingredient/question. The percent improvement shown is an average percent improvement across the ingredients/questions. They

are the average of 100 runs per ingredient and 20 runs per AskUbuntu question.

Model Validation set Test set
Random 0.150 / 0.120 0.158 / 0.129
Baseline 0.320 / 0.291 0.331 / 0.300
MLP 0.432 / 0.390 0.459 / 0.416
RNN 0.476 / 0.422 0.478 / 0.426

Table 3: Results of the RNN model on the ingredient dataset,

averaged across 5 runs. The two metrics shown are the mean

average precision (MAP) and precision at N (P@N), where N

is the total number of positive examples. The random model

generates a random ranking of food categories for each ingredi-

ent. The baseline model uses the mean occurrence distribution

of the food categories for all ingredients to rank the predictions.

The multilayer perceptron model (MLP) is a three-layer neural

network trained on the hierarchical properties of the input in-

gredients (extracted from the UMLS Metathesaurus). The RNN

model outperforms all other baselines.

5.4 Results
Table 1 and 3 shows our results from using RNN
to predict likely food product categories from
Wikipedia text descriptions of ingredients.

We show the gains of the sequential update model
in Table 2. We are able to generate consistent im-
provements in the MAP after seeing half of the ob-
servations. Box plots of the test set MAP improve-
ments can be seen in Figure 1. For the ingredi-
ents prediction task, the sequential model offers the
greatest improvements when the baseline RNN has
low MAP. In the AskUbuntu questions, on the other
hand, the positive effect is greatest when the base-
line MAP is around 0.5.

There are three possible reasons for the difference
in performance between the two tasks:

• The mean number of positive observations in
the AskUbuntu task is 2.9, compared to 9.1
observations in the ingredients task (Table 2).
This is a key factor in determining the sequen-
tial model’s ability to tune for the optimal pa-

rameters. Having access to more annotated
data would likely result in an increase in per-
formance.

• Owing to the complexity of information en-
coded, the vectors for the AskUbuntu task are
of dimension of 400 as opposed to 50 in the in-
gredients task. As a result, the sequential model
would require more feedback to find near opti-
mal weights w.

• We hypothesize that the sequential model leads
to the most increased performance when the
baseline model is mediocre. This is espe-
cially highlighted in the AskUbuntu task, as ex-
tremely poor performance indicate a complete
mismatch of questions, while an exceptional
performance leaves little room for additional
improvement.

6 Conclusion

We demonstrated a text-based neural recommender
approach to predict likely food products from a
given ingredient as well as other similar questions
from a given AskUbuntu question. We then ex-
tended this model to an online stream of new data,
which improves over the off-line trained version for
both of the two tasks tested. This sequential process
improves model performance while requiring mini-
mal additional training time and resources.

7 Acknowledgments

We thank the MIT NLP group and the reviewers for
their helpful comments. The work was partially sup-
ported by the U.S. Food & Drug Administration, and
by Google Faculty Award (Barzilay and Jaakkola).
Any opinions, findings, conclusions, or recommen-
dations expressed in the paper are those of the au-
thors alone, and do not necessarily reflect the views
of the funding organizations.

2107



References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2016. Learning to compose neural net-
works for question answering. Proceedings of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL 2016).

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou
Zhu. 1995. A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific
and Statistical Computing, 16(5):1190–1208.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. International
Conference on Machine Learning (ICML 2008).

Cicero dos Santos, Luciano Barbosa, Dasha Bogdanova,
and Bianca Zadrozny. 2015. Learning hybrid rep-
resentations to retrieve semantically equivalent ques-
tions. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
694–699, Beijing, China, July. Association for Com-
putational Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward Gren-
fenstette, Lasse Espeholt, Will Kay, Mustafa Suley-
man, and Phil Blunsom. 2015. Teaching machines
to read and comprehend. Advances in Neural Infor-
mation Processing Systems (NIPS 2015).

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R. Salakhutdinov.
2012. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. International
Conference on Learning Representation (ICLR 2015).

Quoc V. Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. International
Conference on Machine Learning (ICML 2014).

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. Proceedings of the Empiricial Methods
in Natural Language Processing (EMNLP 2015).

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi
Jaakkola, Katerina Tymoshenko, Alessandro Mos-
chitti, and Lluis Marquez. 2016. Semi-supervised
question retrieval with recurrent convolutions. Pro-
ceedings of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL 2016).

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of the Empiricial Methods in
Natural Language Processing (EMNLP 2014).

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
Empirical Methods in Natural Language Processing
(EMNLP 2013).

Yangqiu Song and Dan Roth. 2015. Unsupervised sparse
vector densification for short text similarity. Proceed-
ings of the North American Chapter of the Association
for Computational Linguistics (NAACL 2015).

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural network.
Proceedings of the International Conference on Ma-
chine Learning (ICML 2011).

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems
(NIPS 2014).

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. arXiv preprint arXiv:1502.01710.

2108


