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Abstract

A common model for question answering
(QA) is that a good answer is one that is
closely related to the question, where re-
latedness is often determined using general-
purpose lexical models such as word embed-
dings. We argue that a better approach is to
look for answers that are related to the ques-
tion in a relevant way, according to the infor-
mation need of the question, which may be
determined through task-specific embeddings.
With causality as a use case, we implement
this insight in three steps. First, we generate
causal embeddings cost-effectively by boot-
strapping cause-effect pairs extracted from
free text using a small set of seed patterns.
Second, we train dedicated embeddings over
this data, by using task-specific contexts, i.e.,
the context of a cause is its effect. Finally, we
extend a state-of-the-art reranking approach
for QA to incorporate these causal embed-
dings. We evaluate the causal embedding
models both directly with a casual implication
task, and indirectly, in a downstream causal
QA task using data from Yahoo! Answers. We
show that explicitly modeling causality im-
proves performance in both tasks. In the QA
task our best model achieves 37.3% P@1, sig-
nificantly outperforming a strong baseline by
7.7% (relative).

1 Introduction

Question answering (QA), i.e., finding short answers
to natural language questions, is one of the most im-
portant but challenging tasks on the road towards
natural language understanding (Etzioni, 2011). A

common approach for QA is to prefer answers that
are closely related to the question, where relatedness
is often determined using lexical semantic models
such as word embeddings (Yih et al., 2013; Jansen
et al., 2014; Fried et al., 2015). While appealing for
its robustness to natural language variation, this one-
size-fits-all approach does not take into account the
wide range of distinct question types that can appear
in any given question set, and that are best addressed
individually (Chu-Carroll et al., 2004; Ferrucci et
al., 2010; Clark et al., 2013).

Given the variety of question types, we suggest
that a better approach is to look for answers that are
related to the question through the appropriate re-
lation, e.g., a causal question should have a cause-
effect relation with its answer. If we adopt this
view, and continue to work with embeddings as a
mechanism for assessing relationship, this raises a
key question: how do we train and use task-specific
embeddings cost-effectively? Using causality as a
use case, we answer this question with a framework
for producing causal word embeddings with mini-
mal supervision, and a demonstration that such task-
specific embeddings significantly benefit causal QA.

In particular, the contributions of this work are:

(1) A methodology for generating causal embed-
dings cost-effectively by bootstrapping cause-effect
pairs extracted from free text using a small set of
seed patterns, e.g., X causes Y. We then train dedi-
cated embedding (as well as two other distributional
similarity) models over this data. Levy and Gold-
berg (2014) have modified the algorithm of Mikolov
et al. (2013) to use an arbitrary, rather than linear,
context. Here we make this context task-specific,
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i.e., the context of a cause is its effect. Further, to
mitigate sparsity and noise, our models are bidirec-
tional, and noise aware (by incorporating the likeli-
hood of noise in the training process).

(2) The insight that QA benefits from task-specific
embeddings. We implement a QA system that uses
the above causal embeddings to answer questions
and demonstrate that they significantly improve per-
formance over a strong baseline. Further, we show
that causal embeddings encode complementary in-
formation to vanilla embeddings, even when trained
from the same knowledge resources.

(3) An analysis of direct vs. indirect evaluations
for task-specific word embeddings. We evaluate our
causal models both directly, in terms of measuring
their capacity to rank causally-related word pairs
over word pairs of other relations, as well as indi-
rectly in the downstream causal QA task. In both
tasks, our analysis indicates that including causal
models significantly improves performance. How-
ever, from the direct evaluation, it is difficult to
estimate which models will perform best in real-
world tasks. Our analysis re-enforces recent obser-
vations about the limitations of word similarity eval-
uations (Faruqui et al., 2016): we show that they
have limited coverage and may align poorly with
real-world tasks.

2 Related Work

Addressing the need for specialized solving meth-
ods in QA, Oh et. al (2013) incorporate a dedicated
causal component into their system, and note that it
improves the overall performance. However, their
model is limited by the need for lexical overlap be-
tween a causal construction found in their knowl-
edge base and the question itself. Here, we develop a
causal QA component that exploits specialized word
embeddings to gain robustness to lexical variation.

There has been a vast body of work which
demonstrates that word embeddings derived
from distributional similarity are useful in many
tasks, including question answering – see inter
alia (Fried et al., 2015; Yih et al., 2013). However,
Levy and Goldberg (2015) note that there are lim-
itations on the type of semantic knowledge which
is encoded in these general-purpose similarity

embeddings. Therefore, here we build customized
task-specific embeddings for causal QA.

Customized embeddings have been created for
a variety of tasks, including semantic role la-
beling (FitzGerald et al., 2015; Woodsend and
Lapata, 2015), and binary relation extraction
(Riedel et al., 2013). Similar to Riedel et al., we
train embeddings customized for specific relations,
but we bootstrap training data using minimal super-
vision (i.e., a small set of patterns) rather than rely-
ing on distant supervision and large existing knowl-
edge bases. Additionally, while Riedel et al. repre-
sent all relations in a general embedding space, here
we train a dedicated embedding space for just the
causal relations.

In QA, embeddings have been customized to have
question words that are close to either their answer
words (Bordes et al., 2014), or to structured knowl-
edge base entries (Yang et al., 2014). While these
methods are useful for QA, they do not distinguish
between different types of questions, and as such
their embeddings are not specific to a given question
type.

Additionally, embeddings have been customized
to distinguish functional similarity from relatedness
(Levy and Goldberg, 2014; Kiela et al., 2015). In
particular, Levy and Goldberg train their embed-
dings by replacing the standard linear context of the
target word with context derived from the syntac-
tic dependency graph of the sentence. In this work,
we make use of this extension to arbitrary context in
order to train our embeddings with contexts derived
from binary causal relations. We extract cause-effect
text pairs such that the cause text becomes the target
text and the effect text serves as the context.

Recently, Faruqui et al.(2016) discussed issues
surrounding the evaluation of similarity word em-
beddings, including the lack of correlation be-
tween their performance on word-similarity tasks
and “downstream” or real-world tasks like QA, text
classification, etc. As they advocate, in addition to a
direct evaluation of our causal embeddings, we also
evaluate them independently in a downstream QA
task. We provide the same comparison for two alter-
native approaches (an alignment model and a con-
volutional neural network model), confirming that
the direct evaluation performance can be misleading
without the task-specific, downstream evaluation.
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With respect to extracting causal relations from
text, Girju et al. (2002) use modified Hearst pat-
terns (Hearst, 1992) to extract a large number of
potential cause-effect tuples, where both causes and
effects must be nouns. However, Cole et al. (2005)
show that these nominal-based causal relations ac-
count for a relatively small percentage of all causal
relations, and for this reason, (Yang and Mao, 2014)
allow for more elaborate argument structures in their
causal extraction by identifying verbs, and then fol-
lowing the syntactic subtree of the verbal arguments
to construct their candidate causes and effects. Ad-
ditionally, Do et al. (2011) observe that nouns as
well as verbs can signal causality. We follow these
intuitions in developing our causal patterns by using
both nouns and verbs to signal potential participants
in causal relations, and then allowing for the entire
dominated structures to serve as the cause and/or ef-
fect arguments.

3 Approach

Our focus is on reranking answers to causal ques-
tions using using task-specific distributional similar-
ity methods. Our approach operates in three steps:

(1) We start by bootstrapping a large number of
cause-effect pairs from free text using a small num-
ber of syntactic and surface patterns (Section 4).

(2) We then use these bootstrapped pairs to build
several task-specific embedding (and other distribu-
tional similarity) models (Section 5). We evaluate
these models directly on a causal-relation identifica-
tion task (Section 6).

(3) Finally, we incorporate these models into a
reranking framework for causal QA and demonstrate
that the resulting approach performs better than the
reranker without these task-specific models, even if
trained on the same data (Section 7).

4 Extracting Cause-Effect Tuples

Because the success of embedding models depends
on large training datasets (Sharp et al., 2015), and
such datasets do not exist for open-domain causality,
we opted to bootstrap a large number of cause-effect
pairs from a small set of patterns. We wrote these
patterns using Odin (Valenzuela-Escárcega et al.,

2016), a rule-based information extraction frame-
work which has the distinct advantage of being able
to operate over multiple representations of content
(i.e., surface and syntax). For this work, we make
use of rules that operate over both surface sequences
as well as dependency syntax in the grammars intro-
duced in steps (2) and (3) below.

Odin operates as a cascade, allowing us to imple-
ment a two-stage approach. First, we identify poten-
tial participants in causal relations, i.e., the poten-
tial causes and effects, which we term causal men-
tions (CM). A second grammar then identifies ac-
tual causal relations that take these CMs as argu-
ments.

We consider both noun phrases (NP) as well as
entire clauses to be potential CMs, since causal pat-
terns form around participants that are syntactically
more complex than flat NPs. For example, in the
sentence The collapse of the housing bubble caused
stock prices to fall, both the cause (the collapse of
the housing bubble) and effect (stock prices to fall)
are more complicated nested structures. Reducing
these arguments to non-recursive NPs (e.g., The col-
lapse and stock prices) is clearly insufficient to cap-
ture the relevant context.

Formally, we extract our causal relations using the
following algorithm:

(1) Pre-processing: Much of the text we use to ex-
tract causal relation tuples comes from the Anno-
tated Gigaword (Napoles et al., 2012). This text
is already fully annotated and no further process-
ing is necessary. We additionally use text from the
Simple English Wikipedia1, which we processed us-
ing the Stanford CoreNLP toolkit (Manning et al.,
2014) and the dependency parser of Chen and Man-
ning (2014).

(2) CM identification: We extract causal mentions
(which are able to serve as arguments in our causal
patterns) using a set of rules designed to be robust to
the variety that exists in natural language. Namely,
to find CMs that are noun phrases, we first find
words that are tagged as nouns, then follow outgoing
dependency links for modifiers and attached prepo-

1https://simple.wikipedia.org/wiki/Main_Page.
The Simple English version was preferred over the full version
due to its simpler sentence structures, which make extracting
cause-effect tuples more straightforward.
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Corpus Extracted Tuples
Annotated Gigaword 798,808
Simple English Wikipedia 16,425
Total 815,233

Table 1: Number of causal tuples extracted from each corpus.

sitional phrases2, to a maximum depth of two links.
To find CMs that are clauses, we first find words that
are tagged as verbs (excluding verbs which them-
selves were considered to signal causation3), then
again follow outgoing dependency links for modi-
fiers and arguments. We used a total of four rules to
label CMs.

(3) Causal tuple extraction: After CMs are iden-
tified, a grammar scans the text for causal relations
that have CMs as arguments. Different patterns have
varying probabilities of signaling causation (Khoo et
al., 1998). To minimize the noise in the extracted
pairs, we restrict ourselves to a set of 13 rules de-
signed to find unambiguously causal patterns, such
as CAUSE led to EFFECT, where CAUSE and EF-
FECT are CMs. The rules operate by looking for a
trigger phrase, e.g., led, and then following the de-
pendency paths to and/or from the trigger phrase to
see if all required CM arguments exist.

Applying this causal grammar over Gigaword and
Simple English Wikipedia produced 815,233 causal
tuples, as summarized in Table 1. As bootstrapping
methods are typically noisy, we manually evaluated
the quality of approximately 250 of these pairs se-
lected at random. Of the tuples evaluated, approxi-
mately 44% contained some amount of noise. For
example, from the sentence Except for Springer’s
show, which still relies heavily on confrontational
topics that lead to fistfights virtually every day...,
while ideally we would only extract (confrontational
topics → fistfights), instead we extract the tuple
(show which still relies heavily on confrontational
topics → fistfights virtually every day), which con-
tains a large amount of noise: show, relies, heavily,
etc. This finding prompted our noise-aware model
described at the end of Section 5.

2The outgoing dependency links from the nouns which we
followed were: nn, amod, advmod, ccmod, dobj,
prep of, prep with, prep for, prep into,
prep on, prep to, and prep in.

3The verbs we excluded were: cause, result, lead, create.

5 Models

We use the extracted causal tuples to train three dis-
tinct distributional similarity models that explicitly
capture causality.

Causal Embedding Model (cEmbed): The first
distributional similarity model we use is based
on the skip-gram word-embedding algorithm of
Mikolov et al. (2013), which has been shown to im-
prove a variety of language processing tasks includ-
ing QA (Yih et al., 2013; Fried et al., 2015). In par-
ticular, we use the variant implemented by Levy and
Goldberg (2014) which modifies the original algo-
rithm to use an arbitrary, rather than linear, context.
Our novel contribution is to make this context task-
specific: intuitively, the context of a cause is its ef-
fect. Further, these contexts are generated from tu-
ples that are themselves bootstrapped, which mini-
mizes the amount of supervision necessary.

The Levy and Goldberg model trains using single-
word pairs, while our CMs could be composed of
multiple words. For this reason, we decompose
each cause–effect tuple, (CMc, CMe), such that
each word wc ∈ CMc is paired with each word
we ∈ CMe.

After filtering the extracted cause-effect tuples for
stop words and retaining only nouns, verbs, and ad-
jectives, we generated over 3.6M (wc, we) word-
pairs4 from the approximately 800K causal tuples.

The model learns two embedding vectors for each
word, one for when the word serves as a target word
and another for when the word serves as a context
word. Here, since the relation of interest is inher-
ently directional, both sets of embeddings are mean-
ingful, and so we make use of both – the target vec-
tors encode the effects of given causes, whereas the
context vectors capture the causes of the correspond-
ing effects.

Causal Alignment Model (cAlign): Monolingual
alignment (or translation) models have been shown
to be successful in QA (Berger et al., 2000; Echi-
habi and Marcu, 2003; Soricut and Brill, 2006; Rie-
zler et al., 2007; Surdeanu et al., 2011; Yao et al.,
2013), and recent work has shown that they can be
successfully trained with less data than embedding
models (Sharp et al., 2015).

4For all models proposed in this section we used lemmas
rather than words.
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Figure 1: Architecture of the causal convolutional network.

To verify these observations in our context, we
train an alignment model that “translates” causes
(i.e., the “source language”) into effects (i.e., the
“destination language”), using our cause–effect tu-
ples. This is done using IBM Model 1 (Brown et al.,
1993) and GIZA++ (Och and Ney, 2003).

Causal Convolutional Neural Network Model
(cCNN): Each of the previous models have at their
root a bag-of-words representation, which is a sim-
plification of the causality task. To address this po-
tential limitation, we additionally trained a convo-
lutional neural network (CNN) which operates over
variable-length texts, and maintains distinct embed-
dings for causes and effects. The architecture of
this approach is shown in Figure 1, and consists
of two sub-networks (one for cause text and one
for effect text), each of which begins by converting
the corresponding text into 50-dimensional embed-
dings. These are then fed to a convolutional layer,5

which is followed by a max-pooling layer of equal
length. Then, these top sub-network layers, which
can be thought of as a type of phrasal embedding,
are merged by taking their cosine similarity. Finally,
this cosine similarity is normalized by feeding it into
a dense layer with a single node which has a soft-
plus activation. In designing our CNN, we attempted
to minimize architectural and hyperparameter tun-
ing by taking inspiration from Iyyer et al. (2015),
preferring simpler architectures. We train the net-
work using a binary cross entropy objective function
and the Adam optimizer (Kingma and Ba, 2014), us-
ing the Keras library (Chollet, 2015) operating over
Theano (Theano Development Team, 2016), a pop-
ular deep-learning framework.6

5The convolutional layer contained 100 filters, had a filter
length of 2 (i.e., capturing bigram information), and an inner
ReLU activation.

6We also experimented with an equivalent architecture
where the sub-networks are implemented using long short-

Noise-aware Causal Embedding Model (cEm-
bedNoise): We designed a variant of our cEmbed
approach to address the potential impact of the noise
introduced by our bootstrapping method. While
training, we weigh the causal tuples by the likeli-
hood that they are truly causal, which we approxi-
mate with pointwise mutual information (PMI). For
this, we first score the tuples by their causal PMI
and then scale these scores by the overall frequency
of the tuple (Riloff, 1996), to account for the PMI
bias toward low-frequency items. That is, the score
S of a tuple, t, is computed as:

S(t) = log
p(t|causal)

p(t)
∗ log(freq(t)) (1)

We then discretize these scores into five quantiles,
ascribing a linearly decreasing weight during train-
ing to datums in lower scoring quantiles.

6 Direct Evaluation: Ranking Word Pairs

We begin the assessment of our models with a direct
evaluation to determine whether or not the proposed
approaches capture causality better than general-
purpose word embeddings and whether their robust-
ness improves upon a simple database look-up. For
this evaluation, we follow the protocol of Levy and
Goldberg (2014). In particular, we create a collec-
tion of word pairs, half of which are causally re-
lated, with the other half consisting of other rela-
tions. These pairs are then ranked by our models and
several baselines, with the goal of ranking the causal
pairs above the others. The embedding models rank
the pairs using the cosine similarity between the tar-
get vector for the causal word and the context vector
of the effect word. The alignment model ranks pairs
using the probability P (Effect|Cause) given by IBM
Model 1, and the CNN ranks pairs by the value of the
output returned by the network.

6.1 Data
In order to avoid bias towards our extraction meth-
ods, we evaluate our models on an external set of

term memory (LSTM) networks (Hochreiter and Schmidhuber,
1997), and found that they consistently under-perform this CNN
architecture. Our conjecture is that CNNs perform better be-
cause LSTMs are more sensitive to overall word order than
CNNs, which capture only local contexts, and we have rela-
tively little training data, which prevents the LSTMs from gen-
eralizing well.
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Figure 2: Precision-recall curve showing the ability of each model to rank causal pairs above non-causal pairs. For clarity, we do

not plot cEmbedNoise, which performs worse than cEmbedBiNoise. The Look-up model has no data points beyond the 35% recall

point.

word pairs drawn from the SemEval 2010 Task 8
(Hendrickx et al., 2009), originally a multi-way clas-
sification of semantic relations between nominals.
We used a total of 1730 nominal pairs, 865 of which
were from the Cause-Effect relation (e.g., (dancing
→ happiness)) and an equal number which were
randomly selected from the other eight relations
(e.g., (juice → grapefruit), from the Entity-Origin
relation). This set was then randomly divided into
equally-sized development and test partitions.

6.2 Baselines

We compared our distributional similarity models
against three baselines:

Vanilla Embeddings Model (vEmbed): a standard
word2vec model trained with the skip-gram algo-
rithm and a sliding window of 5, using the original
texts from which our causal pairs were extracted.7

As with the cEmbed model, SemEval pairs were
ranked using the cosine similarity between the vec-
tor representations of their arguments.

Look-up Baseline: a given SemEval pair was
ranked by the number of times it appeared in our
extracted cause-effect tuples.

Random: pairs were randomly shuffled.

6.3 Results

Figure 2 shows the precision-recall (PR) curve for
each of the models and baselines. As expected,
the causal models are better able to rank causal

7All embedding models analyzed here, including this base-
line and our causal variants, produced embedding vectors of 200
dimensions.

pairs than the vanilla embedding baseline (vEmbed),
which, in turn, outperforms the random baseline.
Our look-up baseline, which ranks pairs by their fre-
quency in our causal database, shows a high preci-
sion for this task, but has coverage for only 35% of
the causal SemEval pairs.

Some models perform better on the low-recall
portion of the curve (e.g., the look-up baseline and
cCNN), while the embedding and alignment mod-
els have a higher and more consistent performance
across the PR curve. We hypothesize that models
that better balance precision and recall will perform
better in a real-world QA task, which may need to
access a given causal relation through a variety of
lexical patterns or variations. We empirically vali-
date this observation in Section 7.

The PR curve for the causal embeddings shows
an atypical dip at low-recall. To examine this, we
analyzed its top-ranked 15% of SemEval pairs, and
found that incorrectly ranked pairs were not found
in the database of causal tuples. Instead, these incor-
rect rankings were largely driven by low frequency
words whose embeddings could not be robustly es-
timated due to lack of direct evidence. Because this
sparsity is partially driven by directionality, we im-
plemented a bidirectional embedding model (cEm-
bedBi) that (a) trains a second embedding model
by reversing the input (effects as targets, causes as
contexts), and (b) ranks pairs by the average of the
scores returned by these two unidirectional causal
embedding models. Specifically, the final bidirec-
tional score of the pair, (e1, e2), where e1 is the can-
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didate cause and e2 is the candidate effect, is:

sbi(e1, e2) =
1
2(sc→e(e1, e2) + se→c(e2, e1)) (2)

where sc→e is the score given by the original causal
embeddings, i.e., from cause to effect, and se→c is
the score given by the reversed-input causal embed-
dings, i.e., from effect to cause.

As Figure 2 shows, the bidirectional embedding
variants consistently outperform their unidirectional
counterparts. All in all, the best overall model is
cEmbedBiNoise, which is both bidirectional and in-
corporates the noise handling approach from Sec-
tion 5. This model substantially improves perfor-
mance in the low-recall portion of the curve, while
also showing strong performance across the curve.

7 Indirect Evaluation: QA Task
The main objective of our work is to investigate the
impact of a customized causal embedding model for
QA. Following our direct evaluation, which solely
evaluated the degree to which our models directly
encode causality, here we evaluate each of our pro-
posed causal models in terms of their contribution to
a downstream real-world QA task.

Our QA system uses a standard reranking ap-
proach (Jansen et al., 2014). In this architecture, the
candidate answers are initially extracted and ranked
using a shallow candidate retrieval (CR) component
that uses solely information retrieval techniques,
then they are re-ranked using a “learning to rank”
approach. In particular, we used SVM rank8, a Sup-
port Vector Machines classifier adapted for ranking,
and re-ranked the candidate answers with a set of
features derived from both the initial CR score and
the models we have introduced. For our model com-
binations (see Table 2), the feature set includes the
CR score and the features from each of the models
in the combination.

7.1 Data

We evaluate on a set of causal questions extracted
from the Yahoo! Answers corpus9 with simple sur-
face patterns such as What causes ... and What

8 http://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html

9Freely available through Yahoo!’s Webscope program
(research-data-requests@yahoo-inc.com)

is the result of ...10. We extracted a total of 3031
questions, each with at least four candidate answers,
and we evaluated performance using five-fold cross-
validation, with three folds for training, one for de-
velopment, and one for testing.

7.2 Models and Features

We evaluate the contribution of the bidirectional and
noise-aware causal embedding models (cEmbedBi,
and cEmbedBiNoise) as well as the causal alignment
model (cAlign) and the causal CNN (cCNN). These
models are compared against three baselines: the
vanilla embeddings (vEmbed), the lookup baseline
(LU), and additionally a vanilla alignment model
(vAlign) which is trained over 65k question-answer
pairs from Yahoo! Answers.

The features11 we use for the various models are:

Embedding model features: For both our vanilla
and causal embedding models, we use the same set
of features as Fried et al. (2015): the maximum,
minimum, and average pairwise cosine similarity
between question and answer words, as well as the
overall similarity between the composite question
and answer vectors. When using the causal embed-
dings, since the relation is directed, we first deter-
mine whether the question text is the cause or the ef-
fect12, which in turn determines which embeddings
to use for the question text and which to use for the
candidate answer texts. For example, in a question
such as ”What causes X?”, since X is the effect, all
cosine similarities would be found using the effect
vectors for the question words and the cause vectors
for the answer candidate words.

Alignment model features: We use the same
global alignment probability, p(Q|A) of Surdeanu
et al. (2011). In our causal alignment model, we
adapt this to causality as p(Effect|Cause), and again
we first determine the direction of the causal re-
lation implied in the question. We include the
additional undirected alignment features based on

10We lightly filtered these with stop words to remove non-
causal questions, such as those based on math problems and the
results of sporting events. Our dataset will be freely available,
conditioned on users having obtained the Webscope license.

11Due to the variety of features used, each feature described
here is independently normalized to lie between 0.0 and 1.0.

12We do this through the use of simple regular expressions,
e.g., ”ˆ [Ww]hat ([a-z]+ ){0,3}cause.+”
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# Model P@1
Baselines

1 Random 16.43
2 CR 24.31
3 CR + vEmbed 34.61
4 CR + vAlign 19.24
5 CR + Look-up (LU) 29.56

Single Causal Models
6 CR + cEmbedBi 31.32
7 CR + cEmbedBiNoise 30.15
8 CR + cAlign 23.49
9 CR + cCNN 24.66

Model Combinations
10 CR + vEmbed + cEmbedBi 37.08∗

11 CR + vEmbed + cEmbedBiNoise 35.50∗

12 CR + vEmbed + cEmbedBi + LU 36.75∗

13 CR + vEmbed + cAlign 34.31
14 CR + vEmbed + cCNN 33.45

Model Stacking
15 CR + vEmbed + cEmbedBi + cEmbedBiNoise 37.28∗

Table 2: Performance in the QA evaluation, measured by

precision-at-one (P@1). The “Bi” suffix indicates a bidirec-

tional model; the “Noise” suffix indicates a model that is noise

aware. ∗ indicates that the difference between the correspond-

ing model and the CR + vEmbed baseline is statistically sig-

nificant (p < 0.05), determined through a one-tailed bootstrap

resampling test with 10,000 iterations.

Jensen-Shannon distance, proposed more recently
by Fried et al. (2015), in our vanilla alignment
model. However, due to the directionality inherent
in causality, they do not apply to our causal model
so there we omit them.

Look-up feature: For the look-up baseline we
count the number of times words from the question
and answer appear together in our database of ex-
tracted causal pairs, once again after determining the
directionality of the questions. If the total number of
matches is over a threshold13, we consider the causal
relation to be established and give the candidate an-
swer a score of 1; or a score of 0, otherwise.

7.3 Results

The overall results are summarized in Table 2. Lines
1–5 in the table show that each of our baselines per-
formed better than CR by itself, except for vAlign,
suggesting that the vanilla alignment model does not
generate accurate predictions for causal questions.

13Empirically determined to be 100 matches. Note that us-
ing this threshold performed better than simply using the total
number of matches.

The strongest baseline was CR + vEmbed (line 3),
the vanilla embeddings trained over Gigaword, at
34.6% P@1. For this reason, we consider this to
be the baseline to “beat”, and perform statistical sig-
nificance of all proposed models with respect to it.

Individually, the cEmbedBi model is the best per-
forming of the causal models. While the perfor-
mance of cAlign in the direct evaluation was com-
parable to that of cEmbedBi, here it performs far
worse (line 6 vs 8), suggesting that the robustness of
embeddings is helpful in QA. Notably, despite the
strong performance of the cCNN in the low-recall
portion of the PR curve in the direct evaluation, here
the model performs poorly (line 9).

No individual causal model outperforms the
strong vanilla embedding baseline (line 3), likely
owing to the reduction in generality inherent to
building task-specific QA models. However, com-
paring lines 6–9 vs. 10–14 shows that the vanilla and
causal models are capturing different and comple-
mentary kinds of knowledge (i.e., causality vs. as-
sociation through distributional similarity), and are
able to be combined to increase overall task perfor-
mance (lines 10–12). These results highlight that
QA is a complex task, where solving methods need
to address the many distinct information needs in
question sets, including both causal and direct as-
sociation relations. This contrasts with the direct
evaluation, which focuses strictly on causality, and
where the vanilla embedding baseline performs near
chance. This observation highlights one weakness
of word similarity tasks: their narrow focus may not
directly translate to estimating their utility in real-
world NLP applications.

Adding in the lookup baseline (LU) to the best-
performing causal model does not improve perfor-
mance (compare lines 10 and 12), suggesting that
the bidirectional causal embeddings subsume the
contribution of the LU model. cEmbedBi (line 10)
also performs better than cEmbedBiNoise (line 11).
We conjecture that the “noise” filtered out by cEm-
bedBiNoise contains distributional similarity infor-
mation, which is useful for the QA task. cEmbedBi
vastly outperforms cCNN (line 14), suggesting that
strong overall performance across the precision-
recall curve better translates to the QA task. We hy-
pothesize that the low cCNN performance is caused
by insufficient training data, preventing the CNN ar-

145



Error/observation % Q
Both chosen and gold are equally good answers 45%
Causal max similarity of chosen is higher 35%
Vanilla overall similarity of chosen is higher 35%
Chosen answer is better than the gold answer 25%
The question is very short / lacks content words 15%
Other 10%

Table 3: Results of an error analysis performed on a random

sample of 20 incorrectly answered questions showing the source

of the error and the percentage of questions that were affected.

Note that questions can belong to multiple categories.

chitecture from generalizing well.
Our best performing overall model combines both

variants of the causal embedding model (cEmbedBi
and cEmbedBiNoise), reaching a P@1 of 37.3%,
which shows a 7.7% relative improvement over the
strong CR + vEmbed baseline.

7.4 Error Analysis

We performed an error analysis to gain more insight
into our model as well as the source of the remain-
ing errors. For simplicity, we used the combina-
tion model CR + vEmbed + cEmbedBi. Examining
the model’s learned feature weights, we found that
the vanilla overall similarity feature had the high-
est weight, followed by the causal overall similarity
and causal maximum similarity features. This in-
dicates that even in causal question answering, the
overall topical similarity between question and an-
swer is still useful and complementary to the causal
similarity features.

To determine sources of error, we randomly se-
lected 20 questions that were incorrectly answered
and analyzed them according to the categories
shown in Table 3. We found that for 70% of the
questions, the answer chosen by our system was as
good as or better than the gold answer, often the case
with community question answering datasets.

Additionally, while the maximum causal similar-
ity feature is useful, it can be misleading due to em-
bedding noise, low-frequency words, and even the
bag-of-words nature of the model (35% of the incor-
rect questions). For example, in the question What
are the effects of growing up with an older sibling
who is better than you at everything?, the model
chose the answer ...You are you and they are them
- you will be better and different at other things...
largely because of the high causal similarity between
(grow→ better). While this could arguably be help-

ful in another context, here it is irrelevant, suggest-
ing that in the future improvement could come from
models that better incorporate textual dependencies.

8 Conclusion
We presented a framework for creating customized
embeddings tailored to the information need of
causal questions. We trained three popular mod-
els (embedding, alignment, and CNN) using causal
tuples extracted with minimal supervision by boot-
strapping cause-effect pairs from free text, and eval-
uated their performance both directly (i.e., the de-
gree to which they capture causality), and indirectly
(i.e., their real-world utility on a high-level question
answering task).

We showed that models that incorporate a knowl-
edge of causality perform best for both tasks. Our
analysis suggests that the models that perform best
in the real-world QA task are those that have consis-
tent performance across the precision-recall curve in
the direct evaluation. In QA, where the vocabulary is
much larger, precision must be balanced with high-
recall, and this is best achieved by our causal embed-
ding model. Additionally, we showed that vanilla
and causal embedding models address different in-
formation needs of questions, and can be combined
to improve performance.

Extending this work beyond causality, we hypoth-
esize that additional embedding spaces customized
to the different information needs of questions
would allow for robust performance over a larger
variety of questions, and that these customized em-
bedding models should be evaluated both directly
and indirectly to accurately characterize their per-
formance.

Resources

All code and resources needed to reproduce this
work are available at http://clulab.cs.
arizona.edu/data/emnlp2016-causal/.
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