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Abstract
For annotation tasks involving independent
judgments, probabilistic models have been
used to infer ground truth labels from data
where a crowd of many annotators labels the
same items. Such models have been shown to
produce results superior to taking the majority
vote, but have not been applied to sequential
data. We present two methods to infer ground
truth labels from sequential annotations where
we assume judgments are not independent,
based on the observation that an annotator’s
segments all tend to be several utterances long.
The data consists of crowd labels for anno-
tation of discourse segment boundaries. The
new methods extend Hidden Markov Models
to relax the independence assumption. The
two methods are distinct, so positive labels
proposed by both are taken to be ground truth.
In addition, results of the models are checked
using metrics that test whether an annotator’s
accuracy relative to a given model remains
consistent across different conversations.

1 Introduction
A single, spontaneous, spoken interaction can consist
of multiple activities, such as to plan a future event,
to complain about a past situation, or to carry out a
transaction that might consist of subtasks. Speakers
shift from one activity to the next with more or less
awareness and explicit demarcation. To treat such con-
versational activities as a sequence of discrete units is
a convenient oversimplification that is often resorted
to (Bokaei et al., 2015; Galley et al., 2003; Passon-
neau and Litman, 1997). Systems that provide auto-
mated access to spoken language data often rely on
segmentation of spoken discourse into sequential units
for summarization (Wang and Cardie, 2012; Dielmann
and Renals, 2005) or information retrieval (Ward et al.,
2015). Research on the organization of spoken dis-
course also relies directly or indirectly on identifica-
tion of such units to detect agreement among partici-
pants (Hillard et al., 2003; Somasundaran et al., 2007;
Germesin and Wilson, 2009), multiparty meeting ac-
tion items (Purver et al., 2007), decisions (Fernández
et al., 2008), or answers to questions (Sun and Chai,

2007; Bosma, 2005). To support such research, there
is a need for annotation methods to segment conversa-
tional interaction into sequential, multi-utterance units.
We present and compare two methods to derive such
data from crowdsourced annotations.

Crowdsourced annotation, where each item is la-
beled by a crowd of many independent annotators, is
becoming more common in natural language process-
ing. Examples include word sense (Bruce and Wiebe,
1999; Snow et al., 2008; Passonneau and Carpenter,
2014), named entities (Finin et al., 2010), and sev-
eral other tasks in (Snow et al., 2008), including tex-
tual entailment. Three advantages to corpus annotation
through application of a probabilistic model to crowd-
sourced labels, rather than reliance on interannotator
agreement computed for a small number of trained an-
notators, are higher quality, lower cost, and a poste-
rior probability for each ground truth label (Sheng et
al., 2008; Snow et al., 2008; Passonneau and Carpen-
ter, 2014). The latter serves as a confidence measure,
which contrasts with interannotator agreement mea-
sures and with majority-voted labels, neither of which
provides quality information for the ground truth la-
bels on individual items. Previous work has demon-
strated that model estimation of ground truth labels
from crowd labels produces results superior to the
crowd’s majority vote, due to differences among anno-
tators in the quality of their labels (Dawid and Skene,
1979; Snow et al., 2008; Passonneau and Carpenter,
2014). No previous work, however, provides model-
based estimation of labels for sequential annotation
from crowd labels.

For the discourse segmentation data presented here,
annotators were presented with audio files of conversa-
tions and corresponding transcriptions into utterances.
The annotation task was to identify each utterance that
completes a discourse segment spanning one or more
utterances, based on the speakers’ conversational ac-
tivities or intentions, as in (Passonneau and Litman,
1997). The annotations from y annotators for a conver-
sation with x utterances can be represented as a y × x
matrix, with cell values nij ∈ {0, 1} to represent the
binary segment boundary label assigned by annotator
yi at utterance xj . Figure 1 illustrates part of such a
matrix. The eight annotators for this conversation are
on the y-axis and utterances 80 through 180 are on the
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Figure 1: Annotation labels from eight annotators (A-G, I)
on utterances 80 through 180 of a sample conversation. Ver-
tical bars represent positive labels, with a different color for
each annotator. Annotator H did not do this conversation.

x-axis. Colored bars represent positive labels, and each
color represents a distinct annotator. The label distri-
bution shown here is typical of our dataset: an annota-
tor’s positive labels are typically separated by several
utterances, and annotators agree much more often on
non-boundaries than on boundaries. Full consensus on
a positive label is rare, but does occur. Here, all eight
annotators assigned a positive label at utterance 120,
six at utterance 178, and five at utterance 140.

Our work assumes that unobserved true labels con-
dition the annotators’ observed labels, and can be mod-
eled as hidden states in a Markov-type process. Be-
cause an annotator rarely assigns positive labels for ad-
jacent utterances, we assume that neither the true labels
nor the observations are conditionally independent, and
therefore are not generated by a simple Markov pro-
cess. Our first model adapts the Double Chain Markov
Model (Berchtold, 1999), designed to account for such
cases. We then propose a second model that assumes
that each annotator’s labels are drawn from a Bernoulli
distribution, that annotator performance is a parame-
ter of the model, and that the state transitions are con-
ditioned by an empirical distribution of discourse seg-
ment lengths. The two methods are quite distinct. Each
thus serves as an evaluation of the other. The seg-
ment boundaries proposed by both models include all
the majority vote cases, and in addition, cases voted
on by a minority of relatively accurate annotators. We
take segment boundaries proposed by both methods as
ground truth. To further assess the results of the mod-
els, we assume that an annotator’s accuracies should be
consistent across the conversations she annotates.

2 Related Work

Previous work on annotation of discourse into lin-
ear segments has used a variety of methods to de-
rive ground truth segment boundaries. In (Passonneau
and Litman, 1997), seven annotators annotated narra-
tive monologues for segments based on speaker inten-
tion. Agreement levels for ground truth boundaries
were based on statistical significance using Cochran’s
Q. In (Galley et al., 2003), three annotators segmented

the ICSI meeting corpus into topical units, and ma-
jority agreement was taken as ground truth. A func-
tional segmentation of meetings from the AMI mul-
tiparty meeting corpus based on involved participants
was segmented by one annotator and finalized by a sec-
ond annotator (Bokaei et al., 2015). Task-based seg-
mentation of patron-librarian interactions (Passonneau
et al., 2011) measured agreement among two annota-
tors using Krippendorff’s Alpha at an average of 0.77
(Krippendorff, 1980). The annotation task here mostly
closely resembles (Passonneau and Litman, 1997), and
uses a similar number of annotators. No prior work,
however, applies a probabilistic model to crowd labels
for discourse segmentation.

Estimation of ground truth from crowd labels has
been applied to many tasks, but is especially useful
where judgments are subjective, making ground truth
difficult to arrive at. Application areas include dis-
ease prevalence estimation (Albert and Dodd, 2008),
identification of craters in images of Venus (Smyth et
al., 1995), curation of biological data (Rzhetsky et al.,
2009), computer vision (Whitehill et al., 2009), pa-
tient history (Dawid and Skene, 1979), and clinical re-
ports (2010). Smyth et al. (1995), Rogers et al., and
(2010) and Raykar et al. (2010) discuss the advan-
tages of probabilistically annotated corpora over ma-
jority vote. Much of this work is motivated by the ob-
servation that annotators have different accuracies, and
the fact that when annotators have known accuracies
it can be shown that a majority of inaccurate annota-
tors can be wrong (Raykar et al., 2010; Passonneau and
Carpenter, 2014). Equally important, information from
inaccurate annotators informs the model inference. For
example, an inaccurate annotator might be biased to-
wards label m whenever the true label is z.

Dawid and Skene (1979) present a joint model of
true labels, observed labels, and annotator perfor-
mance. Perhaps its first application to NLP data was the
Bruce and Wiebe (1999) investigation of word sense.
It has also been applied to more fine-grained word
sense with a direct comparison to trained annotator la-
bels in (Passonneau and Carpenter, 2014). Snow et al.
(2008) showed that application of the same model to
noisy crowd annotations produced data of equal qual-
ity to five distinct published gold standards. Hovy et
al. (2013) apply a simple and effective model to iden-
tify untrustworthy annotators and test it on the same
datasets used in (Snow et al., 2008). As they point out,
when ties occur among an even number of annotators,
it’s necessary to resort to a tie-breaking procedure, e.g.,
for utterance 155 in Figure 1 where four annotators as-
sign a positive label and four do not.

In experiments on an existing dataset of word sense
annotation, Dligach et al. (2010) compare singly anno-
tated data with doubly annotated adjudicated data, us-
ing trained annotators. They find that with the same
amount of data, machine learning performance im-
proves with the doubly annotated adjudicated data by
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Figure 2: The annotation interface presented the audio control button on the upper left and the transcript below, with a scroll
bar (not shown). Utterances from the two speakers are on the right and left sides, respectively. Each utterance had a checkbox;
when selected, a textbox appeared to allow annotators to enter their segment descriptions.

a small amount, but that investing in more singly an-
notated labels leads to greater improvements. Their re-
sults on trained annotators, however, would not apply
to our use case involving untrained annotators. In pre-
vious work, we found the cost per ground truth label
of singly annotated data with trained annotators to be
more than twice that for multiply annotated data with
twenty untrained annotators (Passonneau and Carpen-
ter, 2014). Half that many would have been sufficient
for the Dawid & Skene model used there, which would
reduce the cost by half again as much.1

3 Data and Annotation Task
The data consists of digital recordings and transcripts
of fifty telephone calls between family members and
friends who were native speakers of Tagalog. These
were collected for the Babel program, sponsored by
the Intelligence Advanced Research Projects Activ-
ity (IARPA). The calls ranged in length from about
seven to ten minutes (µ = 9.67 minutes, σ=0.68 min-
utes). Transcripts provided by IARPA had an average
of 364.66 utterances (min=239; max=475; σ=60.80).

The annotations were collected using Amazon Me-
chanical Turk. The task name and instructions were
in English. The instructions were provided through a
short video and text. Proficiency in Tagalog was as-
sessed through a vocabulary test. Those who passed
the vocabulary test were paid to do an initial annotation
so we could ensure they understood the task. The ini-
tial task was based on a short Tagalog conversation that
had been translated, annotated by a bilingual speaker
of Tagalog and English, and verified by Passonneau.
Annotators who understood the task and whose labels
and descriptions seemed reasonable were admitted into
the pool of annotators. A pool of nine annotators com-
pleted the qualifications. Each conversation was anno-
tated by at least five annotators. Altogether, annotators
assigned 5,567 labels to 164,097 utterances. Annota-
tors’ segments had a mean length of 21.85 utterances
with a high standard deviation (σ = 19.32).

The interface designed for the annotation task is
shown in Figure 2. Through the interface, annotators

1Twenty labels per item were collected in order to provide
tight estimates for item difficulty. This, however, requires a
model with a parameter for item difficulty, which had not yet
been implemented for this data.

could read the transcript of a recorded conversation,
and could play, pause or stop the audio. Each utterance
had a checkbox for assigning a positive label if the an-
notator judged it to be the end of a segment. As shown,
selection of a checkbox opened a text box for the anno-
tator to enter a brief description of the segment. Table 1
in section 8 illustrates the descriptions assigned by six
annotators to several segments.

4 Assumptions

Given the many labels from annotators, our goal is to
estimate a ground truth label for each utterance posi-
tion, where the label values represent a binary classi-
fication of segment boundaries. Our two models each
assume there is a hidden true label that conditions an
annotator’s observed labels, and that can be estimated
from the observed labels. How well the estimated
ground truth fits the data thus depends on how well
the model assumptions accord with the phenomenon
of interest. The models do not account for annotator
differences in the level of granularity they apply; cf.
the contrast between lumpers and splitters in taxonomic
classification of the natural world (Branch, 2014). Fur-
ther, neither model takes linguistic features into ac-
count that annotators consider in deciding on segments,
such as speaker attitude towards utterance content or
speaker role in the conversational activity (Niekrasz
and Moore, 2009). We find, however, much agree-
ment between the two models on the proposed segment
boundaries, and leave for future work the question of
whether more complex models could accoount for dif-
ferences in granularity or utterance features.

As discussed in section 2, we assume that annotators
are not equally accurate, and that a probabilistic model
based on the distribution of observed labels can do bet-
ter than majority vote. Inspired by the type of prob-
abilistic model proposed in (Dawid and Skene, 1979)
and extended in (Bruce and Wiebe, 1999; Passonneau
and Carpenter, 2014), annotator accuracy is a parame-
ter of our second model. As described in detail in sub-
sequent sections, the two models proposed here rely on
distinct assumptions and inference methods. They nev-
ertheless propose many of the same labels. We take
each model to provide independent evidence for the
ground truth labels, thus the final labels are those voted
on by both models.
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Figure 3: Graphical model of Double Chain Dynamic Hid-
den Markov Model for a conversation with m annotators and
n utterances. The xt are the hidden states, and the yjl are the
observed labels from annotator l at utterance j.

In addition, we assume that annotators’ accuracies
should be relatively consistent across conversations,
and we measure how well each model’s results support
this assumption. We base the assumption on the obser-
vation that the annotation task is the same for all con-
versations, and an annotator’s relative ability to do the
task should not change significantly. The annotators all
had the same initial training, and did about the same
number of conversations. The conversations all had
similar conditions of collection, similar participants,
and similarly mundane topics and conversational activ-
ities that most annotators would be familiar with. The
subjects that were discussed included parties, watch-
ing tv, siblings, money, jobs, spouses, medical issues,
birthdays, and so on.

5 Double Chain Dynamic Hidden
Markov Model

The first model we propose combines the Double
Chain Markov Model (Berchtold, 1999) and dynamic
Bayesian networks (Martinez and Sucar, 2008). The
double chaining involves the dependence of observa-
tions on immediately prior observations. Figure 3
shows that for all ytl, t ≥ 2, observation ytl depends
on observation y(t−1)l. The emission matrix at the first
utterance x1 is thus a 2×2 matrix, while all subsequent
emission matrices are 2 × 2 × 2. As in (Martinez and
Sucar, 2008), the observed states can be regarded as a
composition of m independent chains, where m is the
number of annotators for the conversation. Also, the
lth annotator’s observation at the tth utterance depends
not only on the same hidden state xt, but also on the
last observation y(t−1)l.

Assume in a conversation, there are m annotators
and n utterances. The model Θ = {π, γ,A,B} can
be described as follows:

• a set of hidden states, i.e the true labels: xt ∈
{0, 1}, t ∈ {1, 2, . . . , n}. xt = 1 represents the
tth utterance is a true boundary and 0 otherwise;

• a set of observed variables: ytl ∈ {0, 1}, l ∈
{1, 2, . . . ,m} annotators, t ∈ {1, 2, . . . , n} utter-

ances. ytl = 1 represents that the lth annotator
annotates tth utterance to a true boundary and 0
otherwise;

• Θ is a vector of parameters. To be more specific,
the elements are:

– the probability of the initial hidden state:
πx1 , x1 ∈ {0, 1}. Note π0 + π1 = 1.

– the probabilities of the initial emission ma-
trix. Note that the initial emission matrix is
a 2 × 2 matrix: γl ∈ {cx1,y1l

}, x1, y1l ∈
{0, 1}, l ∈ {1, 2, . . . ,m}. For annotator l,
cx1,y1l

is the probability of emitting from x1

to y1l.
– the transition matrix between hidden states,
A ∈ {axt−1,xt

}, xt−1, xt ∈ {0, 1}, t ∈
{2, 3, . . . , n}. axt−1,xt is the probability of
transitioning from xt−1 to xt.

– the emission matrices, Bl ∈ {bxt,y(t−1)l,ytl
},

xt, y(t−1)l, ytl ∈ {0, 1}, l ∈ {1, 2, . . . ,m},
t ∈ {2, 3, . . . , n}. Note that the emis-
sion matrix is a 2 × 2 × 2 matrix as each
observed state depends on current hidden
state as well as the previous observation, i.e.,
bxt,y(t−1)l,ytl

is the probability of emitting
from xt to ytl and transitioning from y(t−1)l

to ytl.

A graphical sketch of the DCD HMM model is shown
in Figure 3. The target function F = P (x, y|Θ) is:

F = πx1

m∏
l=1

cx1,y1l

n∏
t=2

axt−1,xt

m∏
l=1

n∏
t=2

bxt,y(t−1)l,ytl

We can derive a marginal distribution over y and have
the likelihood as:

L(Θ) = P (y|Θ) =
∑
x

P (x, y|Θ)

Our goal is to find the parameters (Θ) that maximize
the above function. Bayes Net Toolbox for Matlab
(Murphy, 2001) is used for the inference. Expectation-
Maximization (EM) with Junction Tree inference for
the E-step is used for learning the parameters. The
Junction Tree Algorithm is a method to calculate
marginals by propagation on the graph. It runs as fol-
lows: 1) Initialize: Pick a proper root and initialize all
variables; 2) Collect: Pass message from each child of a
node through separators to the parent node and update
the node with collected evidence; 3) Distribute: Send
back message to each child of the node through separa-
tors and update the child with distributed evidence; 4)
Normalize: Normalize cliques connected by a separa-
tor so they agree with each other: e.g., for {AB} and
{BC}, if we have

∑
A{AB} =

∑
C{AB}, propaga-

tion is complete.
After convergence from EM, junction tree propaga-

tion is again used for inference, and the model produces
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a probability for each ground truth label. We take the
label to be positive if the posterior probability is greater
than 0.5; as shown in section 8, probabilities tend to be
very high or very low.

6 Interval-dependent HMM
The second model, Interval-dependent HMM, imposes
a constraint on the state transitions between two posi-
tive labels based on the empirical distribution of inter-
vals between observed labels. Initially, we examined
known distributions. The Poisson, for example, repre-
sents the probability of events in an interval as an av-
erage rate. The model based on the Poisson did not
perform particularly well. Histograms of interval sizes
from different conversations have similar shapes, how-
ever, as illustrated in Figure 4. Although more of the
probability is towards 20 to 40 utterances in Figure 4a,
and between 15 and 35 utterances in Figure 4b, we as-
sume these small differences in the two distributions
are mainly due to sampling variation. As discussed in
preceding sections, the model we present here assumes
that the probability of a true label at time ti is a func-
tion of the interval length ti − tj , where tj is the most
recent time of a true label. The observed data for all
annotators on all conversations provides a set of time
intervals to construct the empirical distribution.

(a) First sample conversation

(b) Second sample conversation

Figure 4: Histograms of interval lengths between all ob-
served labels for two conversations.

To assess whether we have sufficient data to reliably
construct the empirical distribution, we performed fifty
iterations of random divisions of the data into two sam-
ples. For each pair of samples, we measured the max-
imum distance between pairs of cumulative distribu-
tion function (CDF) curves, and used the two-sample
Kolmogorov-Smirnov test to measure the goodness of
fit of the two curves. Figure 5 shows an example com-
parison of two CDF curves which have a maximum gap

Figure 5: A plot of two CDF curves for a random split of
the data. The curves are almost identical; the maximum gap
is 0.0175. A two sample K-S test has a p-value of 0.79.

of 0.0175 and a K-S p-value of 0.7866. The mean max-
imum distance between pairs of curves was 0.014, with
a standard deviation of 0.009, both of which are quite
small. The p-values for the K-S test ranged from 0.4 to
0.96, which fail to reject the hypothesis that the pairs of
samples are from the same distribution. While the two
measures are not conclusive evidence that we have suf-
ficient data to construct the empirical distribution, they
are supportive. Further, reliance on estimates of the
empirical distribution are preferable to a known distri-
bution that does not fit the data, such as the Poisson.

The model can be described as follows:

• the observations Yij ∈ 0, 1, i ∈ 1, 2, · · · , N, j ∈
1, 2, · · · , J ;

• the true labels Zi ∈ 0, 1, i ∈ 1, 2, · · · , N ;

• the 2× 2 annotator performance matrices Bj ;

• the initial state probability π

GivenN utterances, J annotators, the initial state prob-
ability π and four cells in each annotator’s performance
matrix Bj , where Bj11 represents the true positives
(the probability that given a ground truth positive la-
bel, annotator aj assigns a positive label), Bj10 rep-
resents false negatives, Bj01 represents false positives,
and Bj00 represents true negatives. π = 1 is the proba-
bility that the first hidden state is a boundary and π = 2
means it is not. Our objective is to find the param-
eter vector θ = (π,B) that maximize the likelihood
P (Y |θ), and to use this θ to estimate the true labels Z.

To solve:

Argmax
θ

log [P (Y |θ)] = Argmax
θ

log

[∑
Z

P (Y,Z|θ)
]

we use expectation-maximization (EM).

E step First, we should find the lower bound of our

optimization object: Argmax
θ

log
[∑
Z

P (Y,Z|θ)
]

; by
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Jensen’s inequality, we have:

log

[∑
Z

P (Y,Z|θ)
]

= log

[∑
Z

P (Y,Z|θ)
Qθ(Z)

Qθ(Z)

]

≥
∑
Z

Qθ(Z) log
[
P (Y,Z|θ)
Qθ(Z)

]

Qθ(Z) is a function of θ which satisfies that∑
Z

Qθ(Z) = 1. The equality holds if and only if

P (Y,Z|θ)
Qθ(Z)

= c for all Z

Note that c is a constant. In the E step we need to
calculate the Q function to maintain the equality. By
straightforward algebra, we get Qθ = P (Z|Y, θ).

M step In this part, we should maximize our lower
bound:

Argmax
θ

∑
Z

Qθ(n)(Z) log
[
P (Y,Z|θ)
Qθ(n)(Z)

]
Since log [Qθ(Z)] is a term not related to θ,
P (Z|Y, θ) ∝ P (Z, Y |θ). Our problem becomes:

Argmax
θ

∑
Z

P (Y, Z|θ(n)) log [P (Y,Z|θ)]

θ(n) is the parameter we get from the last iteration, and
the Q function is fixed in this M step. We cannot use the
forward-backward algorithm to optimize, because the
first order Markov property does not hold: P (Zi = 1)
is a function of the last positive label Zj = 1 at time
j such that j < i, and for all k such that j < k <
i, Zk = 0. To make use of the Markov property, we
rely on a hidden variable Ui to save the interval length
between i and j. The hidden parameter space is then
expanded to Xt = (Zt, Ut), where Ut denotes the size
of the interval between the current position ti and the
most recent tj with a positive label. If the true label
Zti = 0, then Uti = ti − tj , and if Zti = 1, then
Uti = 0. This gives t+ 1 possible states for each t: the
t states for Zt = 0, and one state for Zt = 1.

In this problem, given a length N conversation, there
areN+1 hidden states at each moment. Xt = 1 means
(Zt = 1, Ut = 0), Xt = 2 means (Zt = 0, Ut = 1),
Xt = 3 means (Zt = 0, Ut = 2), and so on.

The transition matrix at each t for the cases repre-
sented by P (Xt = k|Xt−1 = l), which is with size
(t + 1) × (t + 2), will necessarily be very sparse. For
example, given an empirical function f(n) = P (x =
n|x ≥ n), the transition matrix from t = 4 to t = 5 can
be written:


f(1) 1− f(1) 0 0 0 0
f(2) 0 1− f(2) 0 0 0
f(3) 0 0 1− f(3) 0 0
f(4) 0 0 0 1− f(4) 0
f(5) 0 0 0 0 1− f(5)



After this transformation, Xt+1 is independent to all
Xk for any k < t provided that Xt is given. With
X as the new hidden state, we can estimate the HMM
parameter by adding some constraints. Replacing the Z
in the object function with X, we can rewrite the object
function as:∑

X

P (Y,X|θ(n)) log [P (Y,X|θ)]

=
∑
X

P (Y,X|θ(n))

[
LogP (X1) +

N−1∑
t=1

logP (Xt+1|Xt)+

N∑
t=1

logP (Yt|Xt)

]

=
∑
X

P (Y,X|θ(n))

[
log [πX1 ] +

N−1∑
t=1

log
[
AXt,Xt+1

]
+

N∑
t=1

log [BXt,Yt ]

]

The object is split into three independent parts: the first
part is for the initial state distribution π, the second for
the transition probability matrix A, and the third is the
emission matrix B. For the first term, because in the
moment t = 1, Xt can just be 1 or 2, we have the
optimization problem:

Argmax
π

2∑
i=1

P (Y,X1 = i|θ(n)) log [πi]

s.t π1 + π2 = 1
π3 = π4 = ... = πN+1 = 0

We can easily solve this optimization problem by the
Lagrange multiplier: we have the update formula:

π
(n+1)
1 = P (X1 = 1|Y, θ(n))

π
(n+1)
2 = P (X1 = 2|Y, θ(n))

π
(n+1)
i = 0 for i > 2

Both can be solved by the traditional forward-backward
algorithm after this transformation. θ(n) is the parame-
ter set we get from the last iteration.

The second term can be ignored, since we use the
known empirical distribution as the transition matrix; it
is therefore a constant term.

The third term can be rewritten as:

N∑
t=1

P (Y,X|θ(n)) log [BXt,Yt
]

=
N∑
t=1

N+1∑
i=1

J∑
j=1

1∑
k=0

I(Yt,j = k)P (Xt = i, Y |θ(n))

log [Bj,i,k]
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So our problem is:

Argmax
B

N∑
t=1

J∑
j=1

N+1∑
i=1

1∑
k=0

I(Yt,j = k)

P (Xt = i, Y |θ(n)) logBj,i,k

s.t
1∑
k=0

Bj,i,k = 1 For all i, j

Bj,i1,k = Bj,i2,k For all j, k and i1, i2 ≥ 2

The second constraint here means that, if this is not a
true boundary, a given annotator j will have the same
emission matrix no matter whatU is. This optimization
can also be solved by Lagrange multiplier, where the
update formula is as follows. For i = 1:

B
(n+1)
j,i=1,k =

∑N
t=1 P (Y, Zt = 1|θ(n))I(Yt,j = k)∑N

t=1 P (Y,Zt = 1|θ(n))

For any i 6= 1, the matrix B is the same given j:

B
(n+1)
j,i 6=1,k =

∑N
t=1 P (Y, Zt 6= 1|θ(n))I(Yt,j = k)∑N

t=1 P (Y,Zt 6= 1|θ(n))

Now we have the update function for θ. After con-
vergence, we will have π and B. It is straightforward
to transfer these parameters for the new space to our
original HMM problem. This completes the M step.

7 Model Checking
No ground truth labels are available to evaluate our
models. We check the model results, however, in three
ways. One, we consider labels proposed by both mod-
els to be stronger evidence than labels proposed only
by one. Two, we measure the consistency of annotators
on the assumption that the same annotator should have
relatively consistent performance across conversations,
relative to the same model. The third way we can check
the models is to examine the descriptive labels that an-
notators assign to segments to determine whether de-
scriptions for the same segment from different annota-
tors are consistent. In this section, we describe the two
consistency metrics.

We measure how consistently the label quality from
annotator ai surpasses that for aj , i 6= j, for all pairs
of annotators using a metric to measure inconsistency
and strength of inconsistency (I&SI) (de Vries, 1998).
We also apply a variant we refer to as Directional Con-
sistency (DC), which takes into account how often an-
notator ai surpasses annotator aj . To measure anno-
tators’ performance relative to the inferred true labels,
we use F-score, the harmonic mean of recall and preci-
sion. Recall is the ratio of true positives to the sum of
true positives and false negatives; precision is the ratio
of true positives to the sum of true positives and false
positives. A square matrix of annotator dominance is
first constructed to give a count of how many conver-
sations there are where ai has a higher F measure than

aj , i 6= j. A linear dominance ordering > of all anno-
tators has an inconsistency score I that is incremented
by 1 for each pair of annotators where ai > aj in the
linear ordering and (ai, aj) 6= (aj , ai) in the matrix. I
is minimal if no other ordering has fewer inconsisten-
cies. The strength of the inconsistency IS for a linear
ordering is incremented by the difference in rank be-
tween ai and aj for every inconsistent pair in the linear
ordering. The I&SI method finds an ordering that mini-
mizes I and SI . To check the results of our models, we
compare the I&SI value of the dominance matrix asso-
ciated with the model results against a simulated ran-
dom matrix. If the model results are significantly more
consistent than the simulation, the model produces a
consistent ranking of annotators.

We propose a Directional Consistency index (DC ∈
[0, 1]) which considers the number of times ai has a
higher F measure than aj (Leiva et al., 2008). Where
X is the dominance matrix:

DC =

∑n
i=1

∑n
j=i+1 |xij − xji|
N

N =
n∑
i=1

n∑
j=1,j 6=i

xij

DC values closer to zero indicate less consistency in
differences among annotators, and the converse for val-
ues closer to 1. High DC values for the results of our
models thus indicates better performance of the model
in predicting consistent annotator behavior.

8 Results and Model Checking
The results consist of the true labels assigned by each
model to each conversation, and estimates of the anno-
tators’ performance relative to the model’s ground truth
labels. Note that as the conversation is not a parame-
ter of either model, after estimation of the empirical
distribution of segment lengths, the data for each con-
versation is treated separately.

To provide a concrete illustration, we first review the
data for a typical conversation. Table 1 presents the
segments derived from both models for an extract from
conversation 945, which had six annotators, and the an-
notator’s segment descriptions. We selected a conver-
sation with an even number of annotators to illustrate
that an arbitrary choice must be made, given a 50/50
vote split. We take ties as true positives to provide a
more conservative baseline. We first discuss this exam-
ple conversation in detail to explain the kinds of cases
where the models differ from majority voting. Then we
present summary results on the fifty conversations for
majority voting compared with the two models.

In Table 1 a description at n gives the annotator’s in-
terpretation of the kind of conversational activity that
ends with n. When annotators agree on a positive la-
bel that ends a segment, they might not agree on the
utterance that starts the segment, so their descriptions
will not necessarily be about the same segments. From
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Utt Description
191 C: S1 and S2 are talking about the status of their

children’s studies
I: S1 and S2 are talking about their children’s

education
216 A: S1 and S2 spoke about their children’s studies

E: S2 then shared that he’s going to Laguna-
Muntinlupa tomorrow. S1 said that S2 has
many orders. S2 shared that he’s striving
hard in order for her kids to graduate
college. . . . The two laughed at each other
about S1’s children not getting traits from S1

I: S1 and S2 are talking about who their children
took after

217 C: S1 and S2 are joking about the traits their
children got from them

D: They are talking about S1s daughter that she is
good at academics and that she got her being
smart from her mom and nothing from S1. S1
said even if she got nothing from him as long
as she will just study hard its okay

241 A: S1 and S2 spoke about their time of sleeeping
C: S1 and S2 tell each other what time they

usually go to sleep
D: They are talking about the time that they

go to sleep. S2 said sometimes by ten,
eleven or twelve midnight. S1 said sometimes
he goes out one in the morning. Sometimes
he goes to sleep at ten or eleven
in the evening too

Table 1: Annotator descriptions for conversation 945 for a
sequence of four segment boundaries hypothesized by both
models. A description from annotator ai at utterance n indi-
cates ai assigned a positive label, and gives the annotator’s
interpretation of the kind of interaction that ended at utter-
ance n. Underlined utterance numbers indicate cases where
at least six annotators assigned a positive label.

the table, however, we see a a pattern that is consistent
for most of the data: abstracting over the descriptions
gives a good indication of what’s going on in the seg-
ments that are defined by the positive labels assigned
by both models. The descriptions from C and I at 191,
for example, describe the first segment as the speak-
ers talking about their children’s education. A’s similar
description at 216 indicates that A ended the segment
later than C and I. E and I describe the second segment
as being about the children, including who they take
after. C’s description about who the children take after
occurs at a later utterance. The third segment goes into
detail about the children’s traits, and the fourth is about
what time the speakers go to sleep.

Across all fifty conversations, ID HMM assigns
more positive labels than the majority, and DCD HMM
assigns more than ID HMM. Totals for each labeling

Method Total
Majority 683

ID HMM 991
DCD HMM 1324

Table 2: Total positive labels assigned by each method.

Utt Annotators DCD HMM ID HMM
11 2 (A,I) 1.00 0.99
42 3 (B,E,I) 1.00 1.00
43 3 (A,C,D) 1.00 1.00
67 6 (A,B,C,D,E,I) 1.00 1.00

114 2 (A,C) 1.00 0.98
126 2 (D,E) 1.00 1.00
127 1 (C) 0.63 0.02
144 2 (A,D) 1.00 0.98
147 2 (C,I) 0.90 0.65
191 2 (C,I) 0.90 0.73
216 3 (A,E,I) 1.00 1.00
217 2 (C,D) 1.00 0.66
241 3 (A,C,D) 1.00 1.00
276 3 (B,C,D) 1.00 1.00
282 1 (A) 1.00 0.29
300 5 (A,B,D,E,I) 1.00 1.00
356 2 (C,I) 0.98 0.27
357 4 (A,B,D,E) 1.00 1.00

Table 3: Comparison of positive predictions from majority
voting (N=8, underlined; ties are taken as positive), DDC
HMM (N=18), and the ID HMM (N=15) for conversation
945. Probabilities in bold are for boundaries proposed by
only one model; italics are for probabilities below the 0.5
threshold to be considered true boundaries.

method are in Table 2. Wherever the majority vote
predicts a true label, both models always do. If ID
HMM posits a boundary at an utterance, DCD HMM
also does, but DCD HMM predicts additional ones.
Because all the ID HMM labels are also identified by
DCD HMM, these are the final labels we propose.

Table 3 shows the positive labels predicted for con-
versation 945 by majority vote, and by our two models.
Column one is the utterance number, and again, under-
lining indicates cases where the voted baseline would
assign a positive label. Column two lists the annota-
tors who assigned a positive label, and columns three
and four show the posteriors assigned by the two mod-
els; for all utterances not listed in the table, the posteri-
ors are below 0.5. Low posteriors for ID HMM where
DCD HMM proposed a boundary are in italics.

Ann Maj DCD HMM ID HMM
A 0.68 0.71 0.68
B 0.57 0.36 0.38
C 0.40 0.63 0.46
D 0.59 0.56 0.55
E 0.73 0.50 0.52
I 0.43 0.55 0.49

Table 4: F-measure for annotators in conversation 945 for
majority vote labels and both models; recall that the true la-
bels for each model are different, and that DCD HMM hy-
pothesizes more true labels than ID HMM.

For each model, the annotator can be ranked by the
F-scores relative to the model predictions. When one
of the models agrees with a minority of annotators,
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Model I&SI DC
Majority I=1, SI=3, p=0.008 p=0.0600

DCD HMM I=2, SI=5, p=0.02 p=0.0014
ID HMM I=0, SI=0, p=0 p=0.0001

Table 5: Consistency of annotators

the minority consists of the annotators considered by
the model to have higher performance, as given by F-
measure. The three sets of F-scores for the six anno-
tators in 945 are shown in Table 4. Annotator perfor-
mance given the two models is very similar; the Pear-
son correlation is 0.80. F-scores based on the major-
ity baseline, however, do not correlate well with DCD
(ρ = −0.5) or ID (ρ = 0.49). In eight cases where
DCD posits a true label for conversation 945, and only
2 annotators voted positive, the pair never includes B,
the least accurate annotator by DCD (see Table 4),
and always includes one of the top three annotators
(A,C,D). In the two cases where only one annotator
voted positive, it was A or C, one of the two top DCD
HMM annotators. Both models consider A to be the
best annotator. C is relatively good in the DCD HMM
model and relatively poor in the ID HMM model.

I&SI tests whether there exists a linear ordering
of the annotators such that their relative performance
across conversations is consistent. DC tests whether an
ordering ai > aj is based on relatively more frequent
dominance of ai over aj . Table 5 shows that major-
ity vote and the two models produce results that lead
to high I&SI consistency, based on the statistically sig-
nificant p-values. The majority vote p-value for DC,
however, is not statistically significant. By the more
stringent DC measure, the labels from the two HMM
variants are superior to the majority vote labels.

The list of descriptions from annotators at utterance
n represents the semantics of the hypothesized segment
ending at n. Semantic consistency for a given segment
serves as another check on the output of the model, be-
cause the human descriptions of the activity within the
segment do not conflict. In general, this is the case for
both models, but less so for DCD HMM. For conversa-
tion 945 illustrated in Table 3, there are three positive
labels proposed by DCD HMM that are missing from
the ID HMM predictions. These are at 127 where only
annotator C had a positive label, 282 where only anno-
tator A had a positive label, and 356 where annotators
C and I had a positive label. Annotators B, C and D, for
example, describe a segment ending at utterance 276 as
the speakers discussing Facebook, whereas annotator
A locates the end of the Facebook segment at utterance
282. The DCD HMM model posits a true label at 276
but not at 282, in contast to ID HMM.

9 Discussion

The two models for estimating ground truth labels from
crowd labels advance previous work on probabilistic

models for annotation by handling sequential data. We
have argued that for our data, the Markov assumption
must be relaxed. The two models handle this in distinct
ways. The first model assumes that each state can be
decomposed into multiple aspects, and that states and
observations are conditionally dependent on the previ-
ous point in time. The second model builds in a pa-
rameter for annotator performance, as in previous work
that adopts the Dawid and Skene (1979) model. Both
assign more ground truth labels than majority voting,
and avoid the problem with the majority vote method
of ties where there are an even number of annotators.
The results of the two models are very similar, but
DCD HMM hypothesizes more boundaries, and there-
fore ranks some annotators differently.

Here we check the models by comparing them to
each other, through analysis of each annotator’s con-
sistency across multiple conversations, and through in-
spection of the semantics of annotators’ descriptions.
Our future work will use the models generatively to
predict a subset of the data for a given annotator, based
on a model fit to all but the held out data. To do so, we
would extend the models with an additional parameter
for the conversation, to account for the observation that
while all conversations seem to fit the same empirical
distribution, there are differences across conversations.

10 Conclusion

Annotation and machine learning of discourse segmen-
tation covers several types of units, including topical
segments (Galley et al., 2003), meeting units in which
action items are identified or decisions made (Purver et
al., 2007; Fernández et al., 2008), transaction subtasks
for ordering library books (Passonneau et al., 2014), or
speaker involvement (Bokaei et al., 2015). This work
relies on manual transcription, and draws on many
sources of knowledge for machine learned models, in-
cluding turn-taking, prosody, and linguistic features.
The segmentation annotation can be linear (Galley et
al., 2003; Bokaei et al., 2015; Passonneau and Litman,
1997; Passonneau et al., 2014) or hierarchical (Purver
et al., 2007; Fernández et al., 2008; Passonneau et al.,
2011). The differences in methods and results across
this body of work, points to a need for more datasets
for research on the organization of discourse into ac-
tivity units. The results presented here support this re-
search agenda by providing a reliable and cost-effective
method to estimate ground truth discourse segment la-
bels from crowd labels.
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