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Abstract

In hierarchical phrase-based machine
translation, a rule table is automatically
learned by heuristically extracting syn-
chronous rules from a parallel corpus.
As a result, spuriously many rules are
extracted which may be composed of
various incorrect rules. The larger rule
table incurs more run time for decoding
and may result in lower translation quality.
To resolve the problems, we propose a
hierarchical back-off model for Hiero
grammar, an instance of a synchronous
context free grammar (SCFG), on the
basis of the hierarchical Pitman-Yor
process. The model can extract a compact
rule and phrase table without resorting to
any heuristics by hierarchically backing
off to smaller phrases under SCFG.
Inference is efficiently carried out using
two-step synchronous parsing of Xiao et
al., (2012) combined with slice sampling.
In our experiments, the proposed model
achieved higher or at least comparable
translation quality against a previous
Bayesian model on various language
pairs; German/French/Spanish/Japanese-
English. When compared against heuristic
models, our model achieved comparable
translation quality on a full size German-
English language pair in Europarl v7
corpus with significantly smaller grammar
size; less than 10% of that for heuristic
model.

1 Introduction

Hierarchical phrase-based statistical machine
translation (HPBSMT) (Chiang, 2007) is a popu-
lar alternative to phrase-based SMT (PBSMT), in
which synchronous context free grammar (SCFG)

is used as the basis of the machine translation
model. With HPBSMT, a restricted form of an
SCFG, i.e., Hiero grammar, is usually used and is
especially suited for linguistically divergent lan-
guage pairs, such as Japanese and English. How-
ever, a rule table, i.e., a synchronous grammar,
may be composed of spuriously many rules with
potential errors especially when it was automati-
cally acquired from a parallel corpus. As a result,
the increase in the rule table incurs a large amount
of time for decoding and may result in lower trans-
lation quality.

Pruning a rule table either on the basis of signif-
icance test (Johnson et al., 2007) or entropy (Ling
et al., 2012; Zens et al., 2012) used in PBSMT can
be easily applied for HPBSMT. However, these
methods still rely on a heuristically determined
threshold parameter. Bayesian SCFG methods
(Blunsom et al., 2009) solve the spurious rule
extraction problem by directly inducing a com-
pact rule table from a parallel corpus on the basis
of a non-parametric Bayesian model without any
heuristics. Training for Bayesian SCFG models
infers a derivation tree for each training instance,
which demands the time complexity of O(|f |3|e|3)
when we use dynamic programming SCFG bi-
parsing (Wu, 1997). Gibbs sampling without bi-
parsing (Levenberg et al., 2012) can avoid this
problem, though the induced derivation trees may
strongly depend on initial derivation trees. Even
though we may learn a statistically sound model
on the basis of non-parametric Bayesian methods,
current approaches for an SCFG still rely on ex-
haustive heuristic rule extraction from the word-
alignment decided by derivation trees since the
learned models cannot handle rules and phrases of
various granularities.

We propose a model on the basis of the previ-
ous work on the non-parametric Inversion Trans-
duction Grammar (ITG) model (Neubig et al.,
2011) wherein phrases of various granularities are
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learned in a hierarchical back-off process. We
extend it by incorporating arbitrary Hiero rules
when backing off to smaller spans. For efficient
inference, we use a fast two-step bi-parsing ap-
proach (Xiao et al., 2012) which basically runs in a
time complexity of O(|f |3). Slice sampling for an
SCFG (Blunsom and Cohn, 2010) is used for effi-
ciently sampling a derivation tree from a reduced
space of possible derivations.

Our model achieved higher or at least com-
parable BLEU scores against the previous
Bayesian SCFG model on language pairs;
German/French/Spanish-English in the News-
Commentary corpus, and Japanese-English in
the NTCIR10 corpus. When compared against
heuristically extracted model through the GIZA++
pipeline, our model achieved comparable score on
a full size Germany-English language pair in Eu-
roparl v7 corpus with significantly less grammar
size.

2 Related Work

Various criteria have been proposed to prune a
phrase table without decreasing translation qual-
ity, e.g., Fisher’s exact test (Johnson et al., 2007)
or relative entropy (Ling et al., 2012; Zens et al.,
2012). Although those methods are easily ap-
plied for pruning a rule table, they heavily rely
on the heuristically determined threshold parame-
ter to trade off the translation quality and decoding
speed of an MT system.

Previously, EM-algorithm based generative
models were exploited for generating compact
phrase and rule tables. Joint phrase alignment
model (Marcu and Wong, 2002) can directly
express many-to-many word aligments without
heuristic phrase extraction. DeNero et al. (2006)
proposed IBM Model 3 based many-to-many
alignment model. Rule arithmetic method (Cme-
jrek and Zhou, 2010) can generate SCFG rules
by combining other rule pairs through an inside-
outside algorithm. However, those previous at-
tempts were restricted in that the rules and phrases
were induced by heuristic combination.

Bayesian SCFG models can induce a com-
pact model by incorporating sophisticated non-
parametric Bayesian models for an SCFG, such as
a dirichlet process (DeNero et al., 2008; Blunsom
et al., 2009; Chung et al., 2014) or Pitman-Yor
process (Levenberg et al., 2012; Peng and Gildea,
2014). A model is learned by sampling derivation

trees in a parallel corpus and by accumulating the
rules in the sampled trees into the model. Due to
the O(|f |3|e|3) time complexity for bi-parsing a
bilingual sentence, previous studies relied on bi-
parsing at the initialization step, and conducted
Gibbs sampling by local operators (Blunsom et al.,
2009; Levenberg et al., 2012) or sampling on fixed
word alignments (Chung et al., 2014; Peng and
Gildea, 2014). As a result, the inference can easily
result in local optimum, wherein induced deriva-
tion trees may strongly depend on the initial trees.

Xiao et al. (2012) proposed a two-step approach
for bi-parsing a bilingual sentence in O(|f |3) in the
context of inducing SCFG rules discriminatively;
however, their approach violates the detailed bal-
ance due to its heuristic k-best pruning. Blun-
som and Cohn (2010) proposed a slice sampling
for an SCFG, in the same manner as that for Infi-
nite Hiden Markov Model (iHMM) (Van Gael et
al., 2008), which can efficiently prune a space of
possible derivations on the basis of dynamic pro-
gramming. Although slice sampling can prune
spans without violating the detailed balance, its
time complexity of O(|f |3|e|3) is still impractical
for a large-scale experiment. We efficiently car-
ried out large-scale experiments on the basis of the
two-step bi-parsing of Xiao et al. combined with
slice sampling of Blunsom and Cohn.

After learning a Bayesian model, it is not di-
rectly used in a decoder since it is composed of
only minimum rules without considering phrases
of various granularities. As a consequence, it is
a standard practice to obtain word alignment from
derivation trees and to extract SCFG rules heuris-
tically from the word-aligned data (Cohn and Haf-
fari, 2013). The work by Neubig et al. (2011) was
the first attempt to directly use the learned model
on the basis of a Bayesian ITG in which phrases
of many granularities were encoded in the model
by employing a hierarchical back-off procedure.
Our work is strongly motivated by their work, but
greatly differs in that our model can incorporate
many arbitrary Hiero rules, not limited to ITG-
style binary branching rules.

3 Model

We use Hiero grammar (Chiang, 2007), an in-
stance of an SCFG, which is defined as a context-
free grammar for two languages. Let Σ denote a
set of terminal symbols in the source language, ∆
a set of terminal symbols in the target language,
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Figure 1: Derivation tree generated from Bayesian
SCFG model

V a set of non-terminal symbols, S a start symbol
and R a set of rewrite rules. An SCFG is denoted
as a tuple of ⟨Σ,∆, V, S, R⟩. Each rewrite rule
in R is represented as X → ⟨α/β⟩ in which α
is a string of non-terminals and source side termi-
nals (V ∪ Σ)∗ and β is a string of non-terminals
and target side terminals (V ∪ ∆)∗. An example
derivation in an SCFG for the sentence pair “ni-
hongo wo eigo ni honyaku suru koto wa muzukasii
。 / Japanese is difficult to translate into English .”
is represented as follows:
S → X1 eigo X2 muzukasii 。 / X1 difficult X2

English .
X1 → X3 wo / X3 is
X2 → X4 honyaku suru X5 wa / X4 translate X5

X3 → nihongo / Japanese
X4 → ni / into
X5 → koto / to .

A Hiero grammar has additional constraints
over a general SCFG; the number of terminal sym-
bols in each rule for both source and target sides
is limited to 5. Each rule may contain at most
two non-terminal symbols; adjacent non-terminal
symbols in the source side are prohibited. For de-
tails, refer to (Chiang, 2007).

3.1 Bayesian SCFG Models

Previous Bayesian SCFG Models, for instance a
model proposed by Levenberg et al. (2012), are
based on the Pitman-Yor process (Pitman and Yor,
1997) and learn SCFG rules by sampling a deriva-
tion tree for each bilingual sentence. Figure 1
shows an example derivation tree for our running
example sentence pair under the model. The gen-

erative process is represented as follows:

GX ∼ Prule(dr, θr, Gr0),
X → ⟨α/β⟩ ∼ GX , (1)

where GX is a derivation tree and
Prule(dr, θr, Gr0) is a Pitman-Yor process
(Pitman and Yor, 1997), which is a generalization
of a Dirichlet process parametrized by a discount
parameter dr, a strength parameter θr and a base
measure Gr0 . The output probability of a Pitman-
Yor process obeys the power-law distribution with
the discount parameter, which is very common in
standard NLP tasks.

The probability that a rule rk is drawn from a
model Prule(dr, θr, Gr0) is determined by a Chi-
nese restaurant process which is decomposed into
two probability distributions. If rk already exists
in a table, we draw rk with probability

ck − dr · |φrk
|

θr + nr
, (2)

where ck is the number of customers of rk, nr is
the number of all customers and φrk

is a number
of rk’s tables. On the other hand, if rk is a new
rule, we draw rk with probability

θr + dr · |φr|
θr + nr

·Gr0 , (3)

where |φr| is the number of tables in the model.

3.2 Hierarchical Back-off Model
In the previous models, the generative process is
represented as a rewrite process starting from the
symbol S, which can incorporate only minimal
rules. Following Neubig et al. (2011), our model
reverses the process by recursively backing off to
smaller phrase pairs as shown in Figure 2. First,
our model attempts to generate a phrase pair, i.e.,
a sentence pair, as a derivation tree. If the model
successfully generates the phrase pair, we will fin-
ish the generation process. Otherwise, a Hiero
rule is generated to fallback to smaller spans rep-
resented in each non-terminal symbol X in the
rule. Then, each phrase pair corresponding to each
smaller span is recursively generated through our
model. In Figure 2, a phrase pair with “nil” indi-
cates those not in our model; therefore the phrase
pair is forced to back-off either by generating a
new phrase pair from a base measure (base) or by
falling back to smaller phrases using a Hiero rule
(back-off). The recursive procedure is done until
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Figure 2: Derivation tree generated from the hier-
archical back-off model

we reach phrase pairs which are generated without
any back-offs. Let a discount parameter be dp, a
strength parameter be θp, and a base measure be
Gp0 . More formally, the generative process is rep-
resented as follows:

GX ∼ Prule(dr, θr, Gphrase),
Gphrase ∼ Pphrase(dp, θp, GX),

X → ⟨s/t⟩ ∼ Gphrase,

X → ⟨α/β⟩ ∼ GX , (4)

where s is source side terminals and t is target side
terminals in phrase pair ⟨s/t⟩. Pphrase is com-
posed of three states, i.e., model, back-off, and
base, and follows a hierarchical Pitman-Yor pro-
cess (Teh, 2006).

model: We draw a phrase pair ⟨s/t⟩ with the
probability similar to Equation (2):

ck − dp · |φpk
|

θp + np
, (5)

where ck is the numbers of customers of a phrase
pair pk and np is the number of all customers Note
that this state is reachable when the phrase pair
⟨s/t⟩ exists in the model in the same manner as
Equation (2).

back-off: We will back off to smaller phrases
using a rule generated by Prule as follows:

θp + dp · |φp|
θp + np

· cback + γb ·Gb

cback + cbase + γb

·Prule(dr, θr, Gphrase)

·
∏

X∈⟨α/β⟩
Pphrase(dp, θp, GX), (6)

where cback and cbase are the number of customers
sampled from the back-off and base phrases, re-
spectively, with a base measure Gb and hyper-
parameter γb. We use a uniform distribution for
Gb = 0.5 since we consider only two states, back-
off and base. Unlike the model state, Pphrase

may reach this state even when a phrase pair is
not in the model. The phrase pair is backed-off
to smaller phrase pairs using Pphrase through the
non-terminals in the generated rule X ∈ ⟨α/β⟩.
base: As an alternative to the back-off state, we
may reach the base state which follows the proba-
bility distribution on the basis of the base measure
Gp0 ,

θp + dp · |φp|
θp + np

· cbase + γb ·Gb

cback + cbase + γb
·Gp0 . (7)

In summary, Pphrase(dp, θp, GX) is defined as a
joint probability of Equations (5) through (7).

3.3 Base Measure
Similar to Levenberg et al. (2012), the base mea-
sure for rule probability Gr0 is composed of
four generative processes. First, a number of
symbols in a source side of a rule |α| is gen-
erated from a Poisson distribution, i.e., |α| ∼
Poisson(0.1). Let t(x) denote a function that re-
turns terminals from a string x. The number of
target side terminal symbols |t(β)| is also gener-
ated from a Poisson distribution and represented
as |t(β)| ∼ Poisson(α + λ0)1. The type of
symbol αi in the source side, typei, either ter-
minal or non-terminal symbol, is determined by
typei ∼ Bernoulli(ϕ|α|) where ϕ is a hyper-
parameter taking 0 < ϕ < 1. ϕ|α| is based
on an intuition that shorter rules should be rela-
tively more likely to contain terminal symbols than
longer rules. Source and target terminal symbol
pair ⟨t(α), t(β)⟩ are generated from the geomet-
ric means of two directional IBM Model 1 word
alignment probabilities and monolingual unigram
probabilities for two languages, and represented
as:

⟨t(α), t(β)⟩ ∼ (Puni(t(α))P−−→
M1

(t(α), t(β)) ·
Puni(t(β))P←−−

M1
(t(α), t(β)))

1
2 . (8)

When the t(α) or t(β) is empty, we use the con-
stant 0.01 instead of the Model1 probabilities.

1Note that λ0 is a small constant for the input distribution
greater than zero.
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The base measure for phrases Gp0 is composed
of three generative processes, in a similar man-
ner as Levenberg et al. (2012), the number of
terminal symbols in a phrase pair in the source
side, |s|, is generated from a Poisson distribution
|s| ∼ Poisson(0.1). The length for the target side
|t| is generated in the same manner as the source
side of the phrase pair. The alignments between
s and t are also generated in the same manner as
those for the base measure in a rule.

4 Inference

In inference, we use a sentence-wise block sam-
pling of Blunsom and Cohn (2010), which has a
better convergence property when compared with
a step-wise Gibbs sampling. We repeat the follow-
ing steps given a sentence pair.

1. Decrement customers of the rules and phrase
pairs used in the current derivation for the
sentence pair.

2. Bi-parse the sentence pair in a bottom up
manner.

3. Sample a new derivation tree in a top-down
manner.

4. Increment customers of the rules and phrase
pairs in the sampled derivation tree.

The most time-consuming step during the infer-
ence procedure is bi-parsing of a sentence pair
which essentially takes O(|f |3|e|3) time using a
bottom up dynamic programming algorithm (Wu,
1997). When a span is very large, it can easily suf-
fer combinatorial explosion. To avoid this prob-
lem, we use a two-step slice sampling by perform-
ing the two-step bi-parsing of Xiao et al. (2012)
and by pruning possible derivation space (Blun-
som and Cohn, 2010) in each step (Algorithm 1).
From lines 1 to 7, a set of word alignment is enu-
merated and put into cubea. In addition to the ar-
bitrary word alignment of sourcei to targetj , null
word alignment is also merged into cubea (line
5). Note that word alignment considered in the
algorithm is restricted to one-to-many. The set of
word alignments in cubea is pruned and added to
the charta by SliceSampling. From lines 8 to 15,
all possible phrases and rules for each span con-
strained by the pruned word alignment are enu-
merated and temporally stored into cube. The
phrases and rules in cube are pruned by SliceSam-
pling and the remainders are added to chart. The

Algorithm 1 Two-step slice sampling
1: for i← 1, · · · , |source| do
2: for j ← 1, · · · , |target| do
3: cubea← {soucei, targetj}
4: end for
5: cubea← {soucei, null}
6: charta← SliceSampling(cubea)
7: clear cubea

8: end for
9: for h← 1, · · · , |source| do

10: for all the i, j s.t j − i = h do
11: for inferable rule, phrase from the sub-

spans of [i, j] of all charts do
12: cube← rule, phrase
13: end for
14: chart← SliceSampling(cube)
15: clear cube
16: end for
17: end for

time complexity for the word alignment enumera-
tion from lines 1 to 7 is O(|f ||e|) and that for the
phrase and rule enumeration from lines 8 to 15 is
O(|f |3).

The key difference to the slice sampling of
Blunsom and Cohn (2010) lies in lines 6 and 3 of
Algorithm 1. Let d denote a set of derivation trees
d and u be a set of slice variables u. In slice sam-
pling, we prune the rules rsp in each source span
sp based on a slice variable usp corresponding to
that sp. After pruning, we sample trees from the
pruned space of r. The above process is formally
represented as:

u ∼ P (u|d),
d ∼ P (d|u), (9)

where P (d|u) is computed through sampling in
a top-down manner after parsing in a bottom-
up manner with Algorithm 1, and is equal to∏

d P (d|u). The probability P (u|d) is equal to∏
sp P (usp|d). Let r∗sp denote a currently adopted

rule in the span sp and P (usp|d) be defined using
a pruning score Score(r∗sp) as follows:

Score(rspi) = Inside(rspi) · Future(rspi), (10)

where Inside(rsp) and Future(rsp) are inside
and outside probabilities for sp, respectively. Let
srsp denote a set of source side words in rsp, trsp

a set of target side words in rsp, ssp a set of words
in a source sentence without srsp and tsp, a set of
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words in a target sentence without trsp . By us-
ing IBM Model 1 probabilities in two directions,
Inside(rsp) is calculated by

(P−−→
M1

(ssp, tsp) · P←−−M1
(ssp, tsp))

1
2 . (11)

We use IBM Model1 outside probability for future
score Future(rsp). Similarly, the future score
Future(rsp) is computed using the two direc-
tional models:

(P−−→
M1

(ssp, tsp) · P←−−M1
(ssp.tsp))

1
2 . (12)

When sp is used in the current derivation d, slice
variable usp is sampled from a uniform distribu-
tion2:

P (usp|d) =
I(usp < Score(r∗sp))

Score(r∗sp)
, (13)

otherwise, usp is sampled from a beta distribution
if sp is not in the current derivation d:

P (usp|d) = Beta(usp; a, 1.0), (14)

where a < 1 is a parameter for the beta distribu-
tion. If the Score(rspi) is less than usp, we prune
the rspi from cube. Similar to Blunsom and Cohn
(2010), if the span sp is not in the current deriva-
tion, the rules with low probability are pruned ac-
cording to Equation (14). Let rd

sp denotes a rule in
d with span sp, P (d|u) is calculated by:

∏
sp∈d

P (rd
sp)∑

rj∈rsp
P (rj)I(usp < Score(rj))

. (15)

In our experiments discussed in Section 6, slice
sampling parameter a was set to 0.02 when in-
corporating the future score of Equation (12). In
contrast, we used a = 0.1 when performing slice
sampling without the future score. We empirically
found that setting a lower value for a led to slower
progress in learning due to a combinatorial explo-
sion when inferencing a derivation for each sen-
tence pair.

In the beginning of training, we do not have
any derivation trees for given training data, al-
though the derivation trees are required for esti-
mating parameters for Bayesian models. We use
the two-step parsing for generating initial deriva-
tion trees from only base measures. The k-best

2I(·) is a function returns 1 if the condition is satisfied and
0 otherwise

pruning is conducted against the score denoted by
the equation 10 , which is very similar to Xiao et
al. (2012).3

For faster bi-parsing, we run sampling in paral-
lel in the same way as Zhao and Huang (2013), in
which bi-parsing is performed in parallel among
the bilingual sentences in a mini-batch. The up-
dates to the model are synchronized by increment-
ing and decrementing customers for the bilingual
sentences in the mini-batch. Note that the bi-
parsing for each mini-batch is conducted on the
fixed model parameters after the synchronised pa-
rameter updates.

In addition to the model parameters, hyperpa-
rameters are re-sampled after each training itera-
tion following the discount and strength hyperpa-
rameter resampling in a hierarchical Pitman-Yor
process (Teh, 2006). In particular, we resample
⟨dp, θp⟩, the pair of discount and strength parame-
ters for phrases from a distribution:

[θp]
|φp|
dp

[θp]
np

1

∏
⟨s,t⟩

|φp|∏
k=1

[1− dp]
(c⟨s,t⟩−1)

1 (16)

where [ ] denotes a generalized Pochhammer sym-
bol, and c⟨s,t⟩ the number of customers of phrase
pair ⟨s, t⟩. We resample the pair ⟨dr, θr⟩ in the
same way as ⟨dp, θp⟩. The hyperparameter γb is
resampled from distribution:

(cback + γb ·Gb)(cbase + γb ·Gb)
(cback + cbase + γb)2

, (17)

where ϕ, used in the generative process for ei-
ther terminal or non-terminal symbol typei ∼
Bernoulli(ϕα), is resampled from a distribution:∏

⟨α/β⟩∈Base

Bernoulli(ϕ|α|)c⟨α/β⟩ , (18)

where c⟨α/β⟩ denotes the number of customers of
rule ⟨α/β⟩, and Base denotes a set of rules gener-
ated from the base measure. All the hyperparame-
ters are inferred by slice sampling (Neal, 2003).

5 Extraction of Translation Model

In the previous work on Bayesian approaches
(Blunsom and Cohn, 2010; Levenberg et al.,
2012), it is a standard practice to heuristically ex-
tract rules and phrase pairs from the word align-
ment derived from the derivation trees sampled

3Note that we use k = 30 for k-best pruning.
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from the Bayesian models. Instead of the heuris-
tic method, we directly extract rules and phrase
pairs from the learned models which are repre-
sented as Chinese restaurant tables. To limit gram-
mar size, we include only phrase pairs that are se-
lected at least once in the sample. During this ex-
traction process, we limit the source or target ter-
minal symbol size of phrase pairs to 5.

For each extracted rule or phase pair, we com-
pute a set of feature scores used for a HPBSMT
decoder; a weighted combination of multiple fea-
tures is necessary in SMT since the model learned
from training data may not fit well to translate an
unseen test data (Och, 2003). We use the follow-
ing six features; the joint model probability Pmodel

is calculated by Equation (2) for rules and by
Equation (5) for phrase pairs. The joint posterior
probability Pposterior(f, e) is estimated from the
posterior probabilities for every rule and phrase
pair in derivation trees through relative count es-
timation, motivated by Neubig et al. (2011) 4.
The joint posterior probability is considered as
an approximation for those back-off scores. The
conditional model probabilities in two directions,
Pmodel(f |e) and Pmodel(e|f), are estimated by
marginalizing the joint probability Pmodel(f, e):

Pmodel(f |e) =
Pmodel(f, e)∑
f ′ Pmodel(f ′, e)

. (19)

The inverse direction Pmodel(e|f) is estimated,
similarly. The lexical probabilities in two direc-
tions, Plex(f |e) and Plex(e|f), are scored by IBM
Model probabilities between the source and target
terminal symbols in rules and phrase pairs. In ad-
dition to the above features, we use Word penalty
for each rule and phrase pair used in the cdec de-
coder (Dyer et al., 2010).

As indicated in previous studies (Koehn et al.,
2003; DeNero et al., 2006), the translation quality
of generative models is lower than that of mod-
els with heuristically extracted rules and phrase
pairs. DeNero et al. (2006) reported that con-
sidering multiple phrase boundaries is important
for improving translation quality. The generative
models, in particular Bayesian models, are strict in
determining phrase boundaries since their models
are usually estimated from sampled derivations.
As a result, translation quality is poorer when

4Note that the correct way to decode from our model is to
score every phrase pair created during decoding with back-off
states, which is computationally intractable

compared with a model estimated using a heuristic
method. The Hiero grammar severely suffers from
the phrase granularity problem and can overfit to
the training data due to the flexibility of the rules.

To alleviate this problem, Neubig et al. (2011)
combined the derivation trees across training it-
erations by averaging the features for each rule
and phrase pair. During the sampling process,
each training iteration draws a different deriva-
tion tree for each sentence pair, and the combi-
nation of those different derivation trees can pro-
vide multiple possible phrase boundaries to the
model. Inspired by the averaging over the mod-
els from different iterations, we combine them as a
part of a sampling process; we treat the derivation
trees acquired from different iterations as addi-
tional training data, and increment the correspond-
ing customers into our model. Hyperparameters
are resampled after the merging process. The new
features are directly computed from the merged
model.

6 Experiments

6.1 Comparison with Previous Bayesian
Model

First, we compared the previous Bayesian model
(Gen) with our hierarchical back-off model
(Back). We used the first 100K sentence
pairs of the WMT10 News-Commentary cor-
pus for German/Spanish/French-to-English pairs
(Callison-Burch et al., 2010) and NTCIR10 cor-
pus for Japanese-English (Goto et al., 2013) for
the translation model. All sentences are lower-
cased and filtered to preserve at most 40 words on
both source and target sides. We sampled 20 it-
erations for Gen and Back and combined the last
10 iterations for extracting the translation model.5

The batch size was set to 64. The language mod-
els were estimated from the all-English side of
the WMT News-Commentary and europarl-v7. In
NTCIR10, we simply used the all-English side of
the training data. All the 5-gram language mod-
els were estimated using SRILM (Stolcke and oth-
ers, 2002) with interpolated Kneser-Ney smooth-
ing. The details of the corpus are presented in Ta-
ble 2. For detailed analysis, we also evaluate Hiero
grammars extracted from GIZA++ (Och and Ney,
2003) grow-diag-final bidirectional alignments us-
ing Moses (Koehn et al., 2007) with Hiero options.

5Gen and Back took 1 day, Back+future took 1.5 days for
inference.
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News-Commentary NTCIR10
de-en es-en fr-en ja-en

Model Sample BLEU SIZE BLEU SIZE BLEU SIZE BLEU SIZE
∗GIZA++ - 16.66 7.07M 23.16 6.07M 20.79 6.25M 26.08 3.45M

Gen 1 15.36 397.63k 21.10 295.69k 19.45 311.76k 25.73 262.45k
10 15.39 529.46k 20.83 384.55k 19.24 419.33k 25.79 344.67k

Back 1 15.30 410.92k 21.43 314.95k 19.74 362.22k 25.69 294.90k
10 15.42 563.80k 21.53 420.15k 19.51 497.51k 25.63 388.87k

Back + future 1 15.49 384.69k 21.63 296.30k 19.97 340.70k 25.82 268.38k
10 15.55 579.12k 21.74 429.33k 19.97 513.41k 25.41 390.23k

Table 1: Results of translation evaluation in 100k corpus

de-en es-en fr-en ja-en
TM(en) 1.85M 1.67M 1.54M 1.80M

TM(other) 1.86M 1.86M 1.83M 2.03M
LM(en) 55.6M 55.6M 55.6M 27.8M
Dev(en) 65.5k 65.5k 65.5k 67.3k

Dev(other) 62.7k 68.1k 72.5k 73.0k
Test(en) 61.9k 61.9k 61.9k 310k

Test(other) 61.3k 65.5k 70.5k 333k

Table 2: The number of words in training data

TM LM Dev Test
de 31.3M - 55.1k 59.4k
en 32.8M 50.5M 58.8k 55.5k

Table 3: The number of words in training data

We use GIZA++ and Moses default parameters for
training. Decoding was carried out using the cdec
decoder (?). Feature weights were tuned on the de-
velopment data by running MIRA (Chiang, 2012)
for 20 iterations with 16 parallel. For other param-
eters, we used cdec’s default values. The numbers
reported here are the average of three tuning runs
(Hopkins and May, 2011).

Table 1 lists the results measured using BLEU
(Papineni et al., 2002).The term Sample denotes
the combination size for each model. The term
SIZE in the table denotes the number of the ex-
tracted grammar types composed of Hiero rules
and phrase pairs. The numbers in italic denotes
the score of Back, significantly improved from
the score of 1 sampled combinated Gen. The
numbers in bold denotes the score of Back +
future, significantly improved from the score of
1 sampled combinated Back. All significance
test are performed using Clark et al. (2011) un-
der p-value of 0.05. Back performed better than
Gen on Spanish-English and French-English lan-
guage pairs. Note that the gains were achieved
with the comparable grammar size. When com-
paring German-English and Japanese-English lan-
guage pairs, there are no significant differences
between Back and Gen. The combination of our

Back with future score during slice sampling (+fu-
ture) achieved further gains over the slice sam-
pling without future scores, and slightly decrese
the grammar size, compared to Back. However,
there are still no significant difference between
Back+future and Gen on German-English and
Japanese-English language pairs. Sample combi-
nation has no or slight gain on BLEU score, in
spite of the increase in grammar size. From the
results, using last one sample as a grammar is suf-
ficient for translation quality. The performance of
the Bayesian model did not match with that for the
GIZA++ pipeline heuristic approach. In general,
complex model, such as Gen and Back, demands
larger corpus size for training, and the evaluation
on such smaller corpus may not be a fair com-
parison, since the sampling approach can rely on
only sampled derivations. Thus, we evaluate these
methods on large size corpus in the next section.

6.2 Comparison with Heuristic Extraction

As reported in (Koehn et al., 2003; DeNero et
al., 2006), the comparison against heuristic ex-
traction is a challenging task. We compare the
Back+future and a baseline extracted from grow-
diag-final alignments of GIZA++ using Moses
with Hiero options. We use GIZA++ and Moses
default parameters for training. In addition, we
present heuristic extraction from the last 1 sample
of Back+future in +Exhaustive.

We used the full europarl-v7 German-English
corpus as presented in Table 3. The experimen-
tal set up was similar to that in Section 6.1 with
the following exceptions; Slice sampling parame-
ter a was set to 0.05. Mini-batch size was set to
1024 and sampling was performed 5 iterations.6

The translation model was extracted by last 1 iter-
ations.

Table 4 lists the results7. Our Back+future can
6Inference took 5 days.
7The row mark up with ∗ indicate the model using word
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Model BLEU SIZE
∗ GIZA++ Model 4 27.21 73.24M (×14.0)
GIZA++ Model 3 26.78 59.26M (×11.3)
Back + future 26.83 5.25M (×1.0)
Back + future + exhasustive 26.73 90.42M (×17.2)

Table 4: Results of translation evaluation in de-en
full size corpus.

Gen gin X kamera / silver X camera
en / salt

Back + future gin en kamera / silver salt camera

Table 5: Example of a grammar

decrease the grammar size against GIZA++ with
comparable BLEU score. Surprisingly, exhaustive
extraction had no gains, probably because of the
word alignment in each Hiero rules relied on the
IBM Model 1.

7 Analysis

Intuitively, the use of the hierarchical back-off in-
creases the Hiero grammar size, since the phrases
of all the granularities in the derivation trees are
incorporated in the grammar. In contrast, our hier-
archical back-off model achieved gains in transla-
tion quality without increasing the size of the ex-
tracted grammar when compared to the previous
generative model. The major differences were the
use of the minimal phrase pairs used in the previ-
ous work in which only minimal phrase pairs in
the leaves of derivation trees were included in the
model. As a result, larger phrase pairs were forced
to be constructed from those minimal rules. On the
other hand, our back-off model could directly ex-
press phrase pairs of multiple granularities. In par-
ticular, a complex noun may be composed of sev-
eral Hiero rules in the previous model, but it can
be directly expressed by a single phrase pair in our
model. Table 5 gives an example of a Japanese-
English phrase pair which is represented by two
Hiero rules in the previous model; it is directly ex-
pressed by a single phrase pair in our model.

The BLEU score of Back+future was higher
than the generative baseline with comparable
grammar size. We observed that a very different
word alignment was sampled in every training it-
eration; the tendency was very frequent for func-
tion words. Our future score for inferring the slice
variables may take into account the context in a
sentence better than those without the future score.
class informations. Model 3 and our Back-off model dose not
use any word class informations.

As a result, Back+future infers better models by
avoiding over pruning spans.

The BLEU score of our back-off model did not
achieve gains over the heuristic baselines. The de-
tail analysis of the learned Hiero grammar’s CRP
tables reveals that the grammar is very sparse and
may have little generalization capacity. The ex-
pansion of back-off process and the use of word
classes will solve the sparsity and increase the
translation quality.

8 Conclusion

We proposed a hierarchical back-off model for
Hiero grammar. Our back-off model achieved
higher or equal translation quality against a previ-
ous Bayesian model under BLEU score on various
language pairs;German/French/Spanish/Japanese-
English. In addition to the hierarchical back-off
model, we also proposed a two-step slice sampling
approach. We showed that the two-step slice sam-
pling approach can avoid over-pruning by incor-
porating a future score for estimating slice vari-
ables, which led to increase in translation quality
through the experiments. The joint use of hierar-
chical back-off model and two step slice sampling
approach achieved comparable translation quality
on a full size Germany-English language pair in
Europarl v7 corpus with with significantly smaller
grammar size; 10% less than that for he heuristic
baseline.

For future work, we plan to embed a back-off
feature to decoder which is computed for all the
phrase pairs constructed in a derivation during the
decoding process. We will reflect the change of a
probability as a statefull feature for decoding step.
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