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Abstract

This paper investigates two strategies for im-
proving coreference resolution: (1) training
separate models that specialize in particu-
lar types of mentions (e.g., pronouns versus
proper nouns) and (2) using a ranking loss
function rather than a classification function.
In addition to being conceptually simple, these
modifications of the standard single-model,
classification-based approach also deliver sig-
nificant performance improvements. Specifi-
cally, we show that on the ACE corpus both
strategies produce f -score gains of more than
3% across the three coreference evaluation
metrics (MUC, B3, and CEAF).

1 Introduction

Coreference resolution is the task of partitioning a
set of entity mentions in a text, where each par-
tition corresponds to some entity in an underlying
discourse model. While early machine learning ap-
proaches for the task relied on local, discriminative
classifiers (Soon et al., 2001; Ng and Cardie, 2002b;
Morton, 2000; Kehler et al., 2004), more recent ap-
proaches use joint and/or global models (McCallum
and Wellner, 2004; Ng, 2004; Daumé III and Marcu,
2005; Denis and Baldridge, 2007a). This shift im-
proves performance, but the systems are consider-
ably more complex and often less efficient. Here,
we explore two simple modifications of the first type
of approach that yield performance gains which are
comparable, and sometimes better, to those obtained
with these more complex systems. These modifica-
tions involve: (i) the use of rankers instead of clas-

sifiers, and (ii) the use of linguistically motivated,
specialized models for different types of mentions.

Ranking models provide a theoretically more ad-
equate and empirically better alternative approach
to pronoun resolution than standard classification-
based approaches (Denis and Baldridge, 2007b).
In essence, ranking models directly capture during
training the competition among potential antecedent
candidates, instead of considering them indepen-
dently. This gives the ranker additional discrimina-
tive power and in turn better antecedent selection ac-
curacy. Here, we show that ranking is also effective
for the wider task of coreference resolution.

Coreference resolution involves several different
types of anaphoric expressions: third-person pro-
nouns, speech pronouns (i.e., first and second person
pronouns), proper names, definite descriptions and
other types of nominals (e.g., anaphoric uses of in-
definite, quantified, and bare noun phrases). Differ-
ent anaphoric expressions exhibit different patterns
of resolution and are sensitive to different factors
(Ariel, 1988; van der Sandt, 1992; Gundel et al.,
1993), yet most machine learning approaches have
ignored these differences and handle these different
phenomena with a single, monolithic model. A few
exceptions are worth noting. Morton (2000) and Ng
(2005b) propose different classifiers models for dif-
ferent NPs for coreference resolution and pronoun
resolution, respectively. Other partially capture the
differential preferences between different anaphors
via different sample selection strategies during train-
ing (Ng and Cardie, 2002b; Uryupina, 2004). More
recently, Haghighi and Klein (2007) use the distinc-
tion between pronouns, nominals and proper nouns
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in their unsupervised, generative model for corefer-
ence resolution; for their model, this is absolutely
critical for achieving better accuracy. Here, we show
that using specialized models for different types
of referential expressions improves performance for
supervised models (both classifiers and rankers).

Both these strategies lead to improvements for
all three standard coreference metrics: MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAF (Luo, 2005). In particular, our specialized
ranker system provides absolute f -score improve-
ments against an otherwise identical standard clas-
sifier system by 3.2%, 3.1%, and 3.6% for MUC, B3,
and CEAF, respectively.

2 Ranking

Numerous approaches to anaphora and coreference
resolution reduce these tasks to a binary classifica-
tion task, whereby pairs of mentions are classified as
coreferential or not (McCarthy and Lehnert, 1995;
Soon et al., 2001; Ng and Cardie, 2002b). Usually
used in combination with a greedy right-to-left clus-
tering, these approaches make very strong indepen-
dence assumptions. Not only do they model each
coreference decision separately, they actually model
each pair of mentions as a separate event. Recast-
ing these tasks as ranking tasks partly addresses this
problem by directly making the comparison between
different candidate antecedents for an anaphor part
of the training criterion. Each candidate is assigned
a conditional probability with respect to the entire
candidate set. (Re)rankers have been successfully
applied to numerous NLP tasks, such as parse se-
lection (Osborne and Baldridge, 2004; Toutanova et
al., 2004), parse reranking (Collins and Duffy, 2002;
Charniak and Johnson, 2005), question-answering
(Ravichandran et al., 2003).

The twin-candidate classification approach pro-
posed by (Yang et al., 2003) shares some similarities
with the ranker in making the comparison between
candidate antecedents part of training. An important
difference however is that under the twin-candidate
approach, candidates are compared in pairwise fash-
ion (and the best overall candidate is the one that has
won the most round robin contests), while the ranker
considers the entire candidate set at once. Another
advantage of the ranking approach is that its com-

plexity is only square in the number of mentions,
while that of the twin-candidate model is cubic (see
Denis and Baldridge (2007b) for a more detailed
comparison in the context of pronoun resolution).

Our ranking models for coreference take the fol-
lowing log-linear form:

Prk(αi|π) =

exp
m∑
j=1

wjfj(π, αi)

∑
k

exp
m∑
j=1

wjfj(π, αk)
(1)

where π stands for the anaphoric expression, αi for
an antecedent candidate, fj the weighted features of
the model. The denominator consists of a normal-
ization factor over the k candidate mentions. Model
parameters were estimated with the limited memory
variable metric algorithm and Gaussian smoothing
(σ2=1000), using TADM (Malouf, 2002).

For the training of the different ranking models,
we use the following procedure. For each model, in-
stances are created by pairing each anaphor of the
proper type (e.g., definite description) with a set of
candidates which contains: (i) a true antecedent, and
(ii) a set of non-antecedents. The selection of the
true antecedent varies depending on the model we
are training: for pronominal forms, the antecedent
is selected as the closest preceding mention in the
chain; for non-pronominal forms, we used the clos-
est preceding non-pronominal mention in the chain
as the antecedent. For the creation of the non-
antecedent set, we collect all the non-antecedents
that appear in a window of two sentences around the
antecedent.1 At test time, we consider all preceding
mentions as potential antecedents.

Not all referential expressions in a given docu-
ment are anaphors: some expressions introduce a
discourse entity, rather than accessing an existing
one. Thus, coreference resolvers must have a way of
identifying such “discourse-new” expressions. This
is easily handled in the standard classification ap-
proach: a mention will not be resolved if none of its
candidates is classified positively (i.e., as coreferen-
tial). The problem is more troublesome for rankers,
which always pick an antecedent from the candidate

1We suspect that different varying windows might be more
appropriate for different types of expressions, but leaves this for
further investigations.
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set. A natural solution is to use a model that specifi-
cally predicts the discourse status (discourse-new vs.
discourse-old) of each expression: only expressions
that are classified as “discourse-old” by this model
are considered by rankers.

Ng and Cardie (Ng and Cardie, 2002a) introduced
the use of an “anaphoricity” classifier to act as a fil-
ter for coreference resolution in order to correct er-
rors where antecedents are mistakenly identified for
non-anaphoric mentions or antecedents are not de-
termined for mentions which are indeed anaphoric.
Their approach produced significant improvements
in precision, but with consequent larger losses in re-
call. Ng (2004) improves recall by optimizing the
anaphoricity threshold. By using joint inference for
anaphoricity and coreference, Denis and Baldridge
(2007a) avoid cascade-induced errors without the
need to separately optimize the threshold.

We use a similar discourse status classifier to Ng
and Cardie’s as a filter on mentions for our rankers.
We rely on three main types of information sources:
(i) the form of mention (e.g., type of linguistic ex-
pression, number of tokens), (ii) positional features
in the text, (iii) comparisons of the given mention to
the mentions that precede it in the text. Evaluated on
the ACE datasets, training the model on the train
texts, and applying the classifier to the devtest
texts, the model achieves an overall accuracy score
of 80.8%, compared to a baseline of 59.7% when
predicting the majority class (“discourse-old”).

3 Specialized models

Our second strategy is to use different, specialized
models for different referential expressions, simi-
larly to Elwell and Baldridge’s (2008) use of connec-
tive specific models for identifying the arguments of
discourse connectives. For this, one must determine
along which dimension to split such expressions.
For example, Ng (2005b) learns models for each set
of anaphors that are lexically identical (e.g., I, he,
they, etc.). This option is possible for closed sets
like pronouns, but not for other types of anaphors
like proper names and definite descriptions. Another
option is to rely on the particular linguistic form of
the different expressions, as signaled by the head
word category and the determiner (if any). More
concretely, we use separate models for the follow-

ing types: (i) third person pronouns, (ii) speech pro-
nouns, (iii) proper names, (iv) definite descriptions,
and (v) others (i.e., all expressions that don’t fall into
the previous categories).

The correlation between the form of a referen-
tial expression and its anaphoric behavior is actually
central to various linguistic accounts (Prince, 1981;
Ariel, 1988; Gundel et al., 1993). Basically, the idea
is that linguistic form is an indicator of the status of
the corresponding referent in the discourse model.
That is, the use by the speaker of a particular lin-
guistic form corresponds to a particular level of acti-
vation (or familiarity or salience or accessibility) in
(what she thinks is) the addressee’s discourse model.
For many authors, the relation takes the form of a
continuum and is often represented in the form of a
referential hierarchy, such as:

Accessibility Hierarchy (Ariel, 1988)
Zero pronouns >> Pronouns >> Demonstra-
tive pronouns >> Demonstrative NPs >>
Short PNs >> Definite descriptions >> Full
PNs >> Full PNs + appositive

The higher up, the more accessible (or salient) the
entity is. At the extremes are pronouns (these forms
typically require a previous mention in the local con-
text) and proper names (these forms are often used
without previous mentions of the entity). This type
of hierarchy is validated by corpus studies of the
distribution of different types of expressions. For
instance, pronouns find their antecedents very lo-
cally (in a window of 1-2 sentences), while proper
names predominantly find theirs at longer distances
(Ariel, 1988).2 Using discourse structure, Asher et
al. (2006) show that while anaphoric pronouns sys-
tematically obey the right-frontier constraint (i.e.,
their antecedents have to appear on the right edge
of the discourse graph), this is less so for definites,
and even less so for proper names.

From a machine learning perspective, these find-
ings suggest that features encoding some aspect of
salience (e.g., distance, syntactic context) are likely
to receive different sets of parameters depending on
the form of the anaphor. This therefore suggests
that better parameters are likely to be learned in the

2Haghighi and Klein’s (2007) generative coreference model
mirrors this in the posterior distribution which it assigns to men-
tion types given their salience (see their Table 1).
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Type/Count train test
3rd pron. 4, 389 1, 093
speech pron. 2, 178 610
proper names 7, 868 1, 532
def. NPs 3, 124 796
others 1, 763 568
Total 19, 322 4, 599

Table 1: Distribution of the different anaphors in ACE

context of different models.3 While the above stud-
ies focus primarily on salience, there are of course
other dimensions according to which anaphors differ
in their resolution preferences. Thus, the resolution
of lexical expressions like definite descriptions and
proper names is likely to benefit from the inclusion
of features that compare the strings of the anaphor
and the candidate antecedent (e.g., string matching)
and features that identify particular syntactic config-
urations like appositive structures. This type of in-
formation is however much less likely to help in the
resolution of pronominal forms. The problem is that,
within a single model, such features are likely to re-
ceive strong parameters (due to the fact that they are
good predictors for lexical anaphors) in a way that
might eventually hurt pronominal resolutions.

Note that our split of referential types only
partially cover the referential hierarchies of Ariel
(1988) or Gundel et al. (1993). Thus, there is no sep-
arate model for demonstrative noun phrases and pro-
nouns: these are very rare in the corpus we used (i.e.,
the ACE corpus).4 These expressions were therefore
handled through the “others” model. There is how-
ever a model for first and second person pronouns
(i.e., speech pronouns): this is justified by the fact
that these pronouns behave differently from their
third person counterparts. These forms indeed of-
ten behave like deictics (i.e., they refer to discourse
participants) or they appear within a quote.

The total number of anaphors (i.e., of mentions
that are not chain heads) in the data is 19, 322 and
4, 599 for training and testing, respectively. The dis-
tribution of each anaphoric type is presented in Ta-
ble 1. Roughly, third person pronouns account for

3Another possible approach would consist in introducing
different salience-based features encoding the form of the
anaphor.

4There are only 114 demonstrative NPs and 12 demonstra-
tive pronouns in the entire ACE training.

Linguistic Form
pn α is a proper name {1,0}
def np α is a definite description {1,0}
indef np α is an indefinite description {1,0}
pro α is a pronoun {1,0}
Context
left pos POS of the token preceding α
right pos POS of the token following α
surr pos pair of POS for the tokens surrounding α
Distance
s dist Binned values for sentence distance between π and α
np dist Binned values for mention distance between π and α
Morphosyntactic Agreement
gender pairs of attributes {masc, fem, neut, unk} for π and α
number pairs of attributes {sg, pl} for π and α
person pairs of attributes {1, 2, 3, 4, 5, 6} for π and α
Semantic compatibility
wn sense pairs of Wordnet senses for π and α
String similarity
str match π and α have identical strings {1,0}
left substr one mention is a left substring of the other {1,0}
right substr one mention is a right substring of the other {1,0}
hd match π and α have the same head word {1,0}
Apposition
apposition π and α are in an appositive structure {1,0}
Acronym
acronym π is an acronym of α or vice versa {1,0}

Table 2: Features used by coreference models.

22-24% of all anaphors in the entire corpus, speech
pronouns for 11-13%, proper names for 33-40%,
and definite descriptions for 16-17%. The distribu-
tion is slightly different from one dataset to another,
probably reflecting genre differences. For instance,
BNEWS shows a larger proportion of pronouns in
general (pronominal forms account for 40-44% of
all the anaphoric forms).

We use five broad types of features for all mention
types, plus three others used by specific types, sum-
marized in Table 3. Our feature extraction relies on
limited linguistic processing: we only made use of a
sentence detector, a tokenizer, a POS tagger (as pro-
vided by the OpenNLP Toolkit5) and the WordNet6

database. Since we did not use parser, lexical heads
for the NP mentions were computed using simple
heuristics relying solely on POS sequences. Table 2
describes in detail the entire feature set, and Table 3
shows which features were used for which models.

Linguistic form: the referential form of the an-
tecedent candidate: a proper name, a definite de-

5http://opennlp.sf.net.
6http://wordnet.princeton.edu/
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Features/Types 3P SP PN Def-NP Oth
Ling. form

√ √ √ √ √

Context
√ √ √ √ √

Distance
√ √ √ √ √

Agreement.
√ √ √ √ √

Sem. compat.
√ √ √ √ √

Str. sim.
√ √ √

Apposition
√ √

Acronym
√

Table 3: Features for each type of referential expression.

scription, an indefinite NP, or a pronoun.

Context: the context of the antecedent candidate:
these features can be seen as approximations of the
grammatical roles, as indicators of the salience of
the potential candidate (Grosz et al., 1995). For
instance, this includes the part of speech tags sur-
rounding the candidate, as well as a feature that
indicates whether the potential antecedent is the
first mention in a sentence (approximating subject-
hood), and a feature indicating whether the candi-
date is embedded inside another mention.

Distance: the distance between the anaphor and
the candidate, measured by the number of sentences
and mentions between them.

Morphosyntactic agreement: indicators of the
gender, number, and person of the two mentions.
These are determined for non-pronominal NPs with
heuristics based on POS tags (e.g., NN vs. NNS for
number) and actual mention strings (e.g., whether
the mention contains a male/female first name or
honorific for gender). These features consist of pairs
of attributes, ensuring that not only strict agreement
(e.g., singular-singular) but also mere compatibility
(e.g., masculine-unknown) is captured.

Semantic compatibility: features designed to as-
sess whether the two mentions are semantically
compatible. For these features, we use the Word-
Net database: in particular, we collected the syn-
onym set (or synset) as well as the synset of their
direct hypernyms associated with each mention. In
the case of common nouns, we used the synset asso-
ciated with the first sense associated with the men-
tion’s head word. In the case of proper names, we

used the synset associated with the name if avail-
able, and the string itself otherwise. For pronouns
(which are not part of Wordnet), we simply used the
pronominal form.

All these features were used in all five models.
While one may question the use of distance for non-
pronominal anaphors,7 their inclusion can be justi-
fied in that they might predict some “obviation” ef-
fects. Definite descriptions and proper names are
sensitive to distance too, although not in the same
way as pronouns are: they show a preference for an-
tecedents that appear outside a window of one or two
sentences (Ariel, 1988).

Several features are used only for particular men-
tion types:

String similarity: similarity of the anaphor and
the candidate strings. Examples are perfect string
match, substring matches, and head match (i.e., the
two mentions share the same head word).

Appositive: whether the anaphor is an appositive
of the antecedent candidate. Since we do not have
access to syntactic structure, we use heuristics (e.g.,
the presence of a comma between the two mentions)
to extract this feature.

Acronym: whether the anaphor string is an
acronym of the candidate string (or vice versa): e.g.,
NSF and National Science Foundation.

4 Coreference systems

We evaluate several systems to explore the effect of
ranking versus classification and specialized versus
monolithic models. The different systems follow a
generic architecture. Let M be the set of mentions
present in a document. For all models, each mention
m ∈ M is associated at test time with a set of an-
tecedent candidates Cm, which includes all the men-
tions that linearly precede m. The best candidate is
determined by the model in use. The final output of
each system consists in a list of mention pairs (i.e.,
the coreference links) which in turn defines (through
reflexive, transitive closure) a partition over the set
M. Our models are summarized in Table 4.

The use of the discourse status filter is straightfor-
ward. For each mention m∈M, the discourse status

7In fact, Morton (2000) does not use distance in this case.
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Model Disc.
Model Name Type Specialized? Status
CLASS class No No
CLASS+DS class No Yes
CLASS+SP class Yes No
CLASS+DS+SP class Yes Yes
RANK+DS+SP rank Yes Yes

Table 4: Model names and their properties.

model is first applied to determine whether m intro-
duces a new discourse entity (i.e., it is classified as
“new”) or refers back to an existing entity (i.e., it
is classified as “old”). If m is classified as “new”,
the process terminates and goes to the next mention.
If m is classified as “old”, m along with its set of
antecedent candidates Cm is sent to the model.

For classifiers, we replicate the procedures of Ng
and Cardie (2002b). During training, instances are
formed by pairing each anaphor with each of its pre-
ceding candidates, until the antecedent is reached:
the closest preceding antecedent in the case of a
pronominal anaphor, or the closest non-pronominal
antecedent for other anaphor types. For classifiers,
the use of a discourse status filter at test time is op-
tional. When a filter is not used, then a mention
is left unresolved if none of the pairs created for a
given mention is classified positively. If several pairs
for a given mention are classified positively, then the
pair with the highest score is selected (i.e., “Best-
First” link selection). If a filter is used, then the can-
didate with the highest score is selected, even if the
probability of coreference is less than one-half.8

The use of specialized models is simple, for both
classifiers and rankers. Specialized models are cre-
ated for: (i) third person pronouns, (ii) speech pro-
nouns, (iii) proper names, (iv) definite descriptions,
(v) other types of phrases. The mention type is de-

8This is very similar to the approach of Ng and Cardie
(2002a). An important difference is that their system does not
necessarily yield an antecedent for each of the anaphors pro-
posed by the discourse status model. In their system, if the
coreference classifier finds that none of the candidates for a
“new” mention are coreferential, it leaves it unresolved. In this
case, the coreference model acts as an additional filter. Not sur-
prisingly, these authors report gains in precision but compar-
atively larger losses in recall. Our development experiments
revealed that forcing a decision on items identified as new pro-
vided performed better across all metrics.

System Accuracy
3rd pron. 82.2
speech pron. 66.9
proper names 83.5
def. NPs 66.5
others 63.6

Table 5: Accuracy of the different ranker models.

termined and the best candidate is chosen by the
appropriate model Following Elwell and Baldridge
(2008), these models could be interpolated with a
monolithic model, or even word specific models, but
we have not explored that option here.

The feature sets for the classifiers in the base-
line systems includes all the features that were used
for the described in Section 3. For the classi-
fiers that do not use specialized models (CLASS and
CLASS+DS), we have also added extra features de-
scribing the linguistic form of the potential anaphor
(whether it is a pronoun, a proper name, and so
on). This is in accordance with standard feature sets
in the pairwise approach. It gives these models a
chance to learn weights more appropriately for the
different types within a single, monolithic model.

5 Experiments

We use the ACE corpus (Phase 2). The corpus has
three parts, each corresponding to a different genre:
newspaper texts (NPAPER), newswire texts (NWIRE),
and broadcast news (BNEWS). Each set is split into
a train part and a devtest part. In our experi-
ments, we consider only true ACE mentions.

5.1 Antecedent selection results

We first evaluate the specialized ranker models
individually on the task of anaphora resolution:
their ability to select a correct antecedent for each
anaphor. Following common practice in this task,
we report results in terms of accuracy, which is sim-
ply the ratio of correctly resolved anaphors. The
candidate set during testing was formed by taking
all the mentions that appear before the anaphor.
Also, we assume that correctly resolving an anaphor
amounts to selecting any of the previous mentions in
the entity as the antecedent. The accuracy scores for
the different models are presented in Table 5.
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The best accuracy results on the entire ACE cor-
pus are found first for the proper name resolver with
a score of 83.5%, then for the third person pronoun
resolver with 82.2%, then for the definite descrip-
tion and speech pronoun resolvers with 66.9% and
66.5% respectively. The worst scores are obtained
for the “others” category. The high scores for the
third person pronoun and the proper name rankers
most likely follow from the fact that the resolution
of these expressions relies on simple, reliable pre-
dictors, such as distance and morphosyntactic agree-
ment for pronouns, and string similarity features for
proper names. The resolution of definite descrip-
tions and other types of lexical NPs (which are han-
dled through the “others” model) are much more
challenging: they rely on lexical semantic and world
knowledge, which is only partially encoded via our
WordNet-based features. Finally, note that the reso-
lution of speech pronouns is also much harder than
that of the other pronominal forms: these expres-
sions are much less (if at all) constrained by re-
cency and agreement. Furthermore, these expres-
sions show a lot of cataphoric uses, which are not
considered by our models. The low scores for the
“others” category is likely due to the fact that it en-
compasses very different referential expressions.

5.2 Coreference Results

For evaluating the coreference performance, we rely
on three primary metrics: (i) the link based MUC

metric (Vilain et al., 1995), the mention based B3

metric (Bagga and Baldwin, 1998), and the entity
based CEAF metric (Luo, 2005). Common to these
metrics is: (i) they operate by comparing the set of
chains S produced by the system against the true
chains T , and (ii) they report performance in terms
of recall and precision. There are however impor-
tant differences in how each metric computes these
scores, each producing a different bias.

MUC scores are based on the number of links
(pairs of mentions) common to S and T . Recall
is the number of common links divided by the to-
tal number of links in T ; precision is the number of
common links divided by the total number of links
in S. This focus gives MUC two main biases. First,
it favors systems that create large chains (and thus
fewer entities). For instance, a system that produces
a single chain achieves 100% recall without severe

degradation in precision. Second, it ignores single
mention entities, which are involved in no links.9

The B3 metric was designed to address the MUC

metric’s shortcomings. It is mention-based: it com-
putes both recall and precision scores for each men-
tion i. Let S be the system chain containing m, T
be the true chain containing m. The set of correct
elements in S is thus |S ∩ T |. The recall score for
a mention i is |S∩T |

|T | , while the precision score for i

is |S∩T |
|S| . Overall recall/precision is obtained by av-

eraging over the individual mention scores. The fact
that this metric is mention-based by definition solves
the problem of single mention entities. Also solved
is the bias favoring larger chains, since this will be
penalized in the precision score of each mention.

The Constrained Entity Aligned F-Measure
(CEAF) (Luo, 2005). aligns each system chain S
with at most one true chain T . It finds the best one-
to-one mapping between the set of chains S and T ,
which is equivalent to finding the optimal alignment
in a bipartite graph. The best mapping maximizes
the similarity over pairs of chains (Si, Ti), where
the similarity between two chains is the number of
common mentions to the two chains. With CEAF,
recall is computed as the total similarity divided by
the number of mentions in all the T (i.e., the self-
similarity), while precision is the total similarity di-
vided by the number of mentions in S.

Table 6 gives scores for all three metrics
for the different models on the entire ACE

corpus. Two main patterns emerge: sig-
nificant improvements are obtained by using
specialized models (CLASS vs CLASS+SP and
CLASS+DS vs CLASS+DS+SP) and by using a
ranker (CLASS+DS+SP vs RANK+DS+SP). Overall,
the RANK+DS+SP system significantly outperforms
the other systems on the three different metrics.10

The f -scores for RANK+DS+SP are 71.6% with
the MUC metric, 72.7% with the B3, and 67.0%
with the CEAF metric. These scores place the
RANK+DS+SP among the best coreference resolu-
tion systems, since most existing systems are typi-
cally under the bar of the 70% in f -score with the

9It is worth noting that the MUC corpus does not annotate
single mention entities.

10Statistical significance was determined with t-tests for both
recall and precision scores, with p < 0.05.
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System MUC B3 CEAF

R P F R P F F
CLASS 60.8 72.6 66.2 62.4 77.7 69.2 62.3
CLASS+DS 64.9 72.3 68.4 65.6 74.1 69.6 63.4
CLASS+SP 64.8 74.5 69.3 65.3 79.1 71.5 65.0
CLASS+DS+SP 66.8 74.4 70.4 66.4 77.0 71.3 65.3
RANK+DS+SP 67.9 75.7 71.6 66.8 79.8 72.7 67.0

Table 6: Recall (R), Precision (P), and f -score (F) results on the entire ACE corpus using the MUC, B3, and CEAF
metrics. Note that R=P=F for CEAF when using true mentions, as we do here.

MUC and B3 metrics (Ng, 2005a). An interesting
point of comparison is provided by Ng (2007), who
also relies on true mentions and reports MUC f -
scores only slightly superior to ours (73.8%) while
relying on perfect semantic class information. His
best results otherwise are 64.6%. The fact that
our improvements are consistent across the different
evaluation metrics is remarkable, especially given
that these three metrics are quite different in the
way they compute their scores. The gains in f -
score range from 1.2 to 5.4% on the MUC metric
(i.e., error reductions of 4 to 15.9%), from 1.4 to
3.5% on the B3 metric (i.e., error reductions of 4.8
to 11.4%), and from 1.7 to 4.7% on the CEAF met-
ric (i.e., error reductions of 6.9 to 17%). The larger
improvements come from recall, with improvements
ranging from 1.9 to 7.1% with MUC, from 2.4 to
5.6% with B3.11 This suggests that RANK+DS+SP
predicts many more valid coreference links than the
other systems. Smaller but still significant gains are
made in precision: RANK+DS+SP is also able to re-
duce the proportion of invalid links.

The overall improvements found with
RANK+DS+SP suggest that it is able to capi-
talize on the better antecedent selection capabilities
offered by the ranking approach. This is supported
by the error analysis on the development data.
Errors made by a coreference system can be con-
ceptualized as falling into three main classes: (i)
“missed anaphors” (i.e., an anaphoric mention that
fails to be linked to a previous mention), (ii) “spuri-
ous anaphors” (i.e., an non-anaphoric mention that
is linked to a previous mention), and (iii) “invalid
resolutions” (i.e., a true anaphor that is linked to a

11Recall that recall and precision scores are identical with
CEAF, due to the fact that we are using true mention boundaries.

incorrect antecedent). The two first types of error
pertain to the determination of the discourse status
of the mention, while the third regards the selection
of an antecedent (i.e., anaphora resolution). Con-
sidering the systems’ invalid resolutions, we found
that the RANK+DS+SP had a much lower error rate:
only 17.9% of all true anaphors were incorrectly
resolved by this system, against 23.1% for CLASS,
24.9% for CLASS+DS, 20.4% for CLASS+SP, and
22.1% for CLASS+DS+SP.

Denis (2007) provides multi-metric scores for the
JOINT-ILP model of Denis and Baldridge (2007a),
which uses integer linear programming for joint in-
ference over coreference resolution and discourse
status: f -scores of 73.3%, 68.0%, and 58.9% for
MUC, B3, and CEAF, respectively. Despite the fact
that this MUC score beats RANK+DS+SP’s, it is ac-
tually worse than even the basic model CLASS for
B3 and CEAF. This difference fact that MUC gives
more recall credit for large chains without a conse-
quent precision reduction, and shows the importance
of using B3 and CEAF scores in addition to MUC.

Denis (2007) also extends the JOINT-ILP system
by adding named entity resolution and constraints
on transitivity with respect to coreference links. The
best model reported there (JOINT-DS-NE-AE-ILP)
obtains f -scores of 70.1%, 72.7%, and 66.2% for
MUC, B3, and CEAF, respectively. Interestingly,
RANK+DS+SP actually performs better across all
metrics despite being a simpler model with fewer
sources of information.

5.3 Oracle results

Using specialized rankers with a discourse status
classifier yields coreference performance superior to
that given by various classification-based baseline
systems. Crucially, these improvements have been
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System MUC B3 CEAF

R P F R P F F
RANK+DS+SP 67.9 75.7 71.6 66.8 79.8 72.7 67.0
RANK+DS-ORACLE+SP 79.1 79.1 79.1 75.4 76.0 75.7 76.9
LINK-ORACLE 78.8 100.0 88.1 74.3 100.0 85.2 79.7

Table 7: Recall (R), Precision (P), and f -score (F) results for RANK+DS-ORACLE+SP and LINK-ORACLE on the
entire ACE corpus.

possible using a discourse status model that has an
accuracy of just 80.8%. Clearly, the performance
of the discourse status module has a direct impact
on the performance of the entire coreference sys-
tem. On the one hand, misclassified anaphors are
simply not resolved by the rankers: this limits the
recall of the coreference system. On the other hand,
misclassified non-anaphors are linked to a previous
mention: this limits precision.

In order to further assess the impact of the er-
rors made by the discourse status classifier, we build
two different oracle systems. The first oracle sys-
tem, RANK+DS-ORACLE+SP, uses the specialized
rankers in combination with a perfect discourse sta-
tus classifier. That is, this system knows for each
mention whether it is anaphoric or not: the only er-
rors made by such a system are invalid resolutions.
RANK+DS-ORACLE+SP thus provides an upper-
bound for the RANK+DS+SP model. The results for
this oracle are given in Table 7: they show substan-
tial improvements over RANK+DS+SP, which sug-
gests that the RANK+DS+SP has also the potential
to be further improved if used in combination with a
more accurate discourse status classifier.

The second oracle system, LINK-ORACLE, uses
the discourse status classifier with a perfect corefer-
ence resolver. That is, this system has perfect knowl-
edge regarding the antecedents of anaphors: the er-
rors made by such a system are only errors in the
discourse status of mentions. The results for LINK-
ORACLE are also reported in Table 7. These figures
show that however accurate our models are at pick-
ing a correct antecedent for a true anaphor, the best
they can achieve in terms of f -scores is 88.1% with
MUC, 85.2% with B3, and 79.7% with CEAF.

6 Conclusion

We present and evaluate two straight-forward tac-
tics for improving coreference resolution: (i) rank-

ing models, and (ii) separate, specialized models
for different types of referring expressions. The
specialized rankers are used in combination with
a discourse status classifier which determines the
mentions that are sent to the rankers. This simple
pipeline architecture produces significant improve-
ments over various implementations of the standard,
classifier-based coreference system. In turn, these
strategies could be integrated with the joint infer-
ence models we have explored elsewhere (Denis and
Baldridge, 2007a; Denis, 2007) and which have ob-
tained performance improvements that are orthogo-
nal to those obtained here.

This paper’s improvements are consistent across
the three main coreference evaluation metrics: MUC,
B3, and CEAF.12 We attribute improvements to: (i)
the better antecedent selection capabilities offered
by the ranking approach, and (ii) the division of la-
bor between specialized models, allowing each one
to better model the corresponding distribution.
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