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Abstract

In this paper we propose an instance based
method for lexical entailment and apply
it to automatic ontology population from
text. The approach is fully unsupervised and
based on kernel methods. We demonstrate
the effectiveness of our technique largely
surpassing both the random and most fre-
quent baselines and outperforming current
state-of-the-art unsupervised approaches on
a benchmark ontology available in the liter-
ature.

1 Introduction

Textual entailment is formally defined as a relation-
ship between a coherent text T and a language ex-
pression, the hypothesis H . T is said to entail H ,
denoted by T → H , if the meaning of H can be in-
ferred from the meaning of T (Dagan et al., 2005;
Dagan and Glickman., 2004). Even though this no-
tion has been recently proposed in the computational
linguistics literature, it has already attracted a great
attention due to the very high generality of its set-
tings and to the indubitable usefulness of its (poten-
tial) applications.

In this paper, we concentrate on the problem of
lexical entailment, a textual entailment subtask in
which the system is asked to decide whether the sub-
stitution of a particular word w with the word e in a
coherent text Hw = H lwHr generates a sentence
He = H leHr such that Hw → He, where H l and
Hr denote the left and the right context of w, re-
spectively. For example, given the word ‘weapon’ a

system may substitute it with the synonym ‘arm’, in
order to identify relevant texts that denote the sought
concept using the latter term. A particular case of
lexical entailment is recognizing synonymy, where
both Hw → He and He → Hw hold.

In the literature, slight variations of this problem
are also referred to as sense matching (Dagan et al.,
2006), lexical reference (Glickman et al., 2006a)
and lexical substitution (Glickman et al., 2006b).
They have been applied to a wide variety of tasks,
such as semantic matching, subtitle generation and
Word Sense Disambiguation (WSD). Modeling lex-
ical entailment is also a prerequisite to approach the
SemEval-2007 lexical substitution task1, consisting
of finding alternative words that can occur in given
context.

In this paper, we propose to apply an approach for
lexical entailment to the ontology population task.
The basic idea is that if a word entails another one
in a given context then the former is an instance or
a subclass of the latter. This approach is intuitively
appealing because lexical entailment is intrinsically
an unsupervised task, therefore it does not require
lexical resources, seed examples or manually anno-
tated data sets. Unsupervised approaches are partic-
ularly suited for ontology population, whose goal is
to find instances of concepts from corpora, because
both corpus and the ontology sizes can scale up to
millions of documents and thousands of concepts,
preventing us from applying supervised learning. In
addition, the top level part of the ontology (i.e., the
Tbox in the Description Logics terminology) is very

1http://nlp.cs.swarthmore.edu/semeval/
tasks/task10/description.shtml
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often modified during the ontology engineering life-
cycle, for example by introducing new concepts and
restructuring the subclass of hierarchy according to
the renewed application needs required by the evo-
lution of the application domain. It is evident that
to preserve the consistency between the Tbox and
the Abox (i.e., the set of instances and their rela-
tions) in such a dynamic ontology engineering pro-
cess, supervised approaches are clearly inadequate,
as small changes in the TBox will be reflected into
dramatic annotation effort to keep instances in the
Abox aligned.

The problem of populating a predefined ontol-
ogy of concepts with novel instances implies a WSD
task, as the entities in texts are ambiguous with re-
spect to the domain ontology. For example, the en-
tity Washington is both the name of a state and the
name of a city. In the ontology population settings
traditional WSD approaches cannot be directly ap-
plied since entities are not reported into dictionar-
ies, making the lexical entailment alternative more
viable. In particular, we model the problem of on-
tology population as the problem of recognizing for
each mention of an entity of a particular coarse-
grained type (e.g., location) the fine-grained con-
cept (e.g., lake or mountain) that can be substi-
tuted in texts preserving the meaning. For example,
in the sentence “the first man to climb the Everest
without oxygen”, “Everest” can be substituted with
the word mountain preserving the meaning, while
the sentence is meaningless when “Everest” is re-
placed with the word lake. Following the lexical
entailment approach, the ontology population task
is transformed into the problem of recognizing the
term from a fine-grained set of categories (e.g., city,
country, river, lake and mountain) that can be substi-
tuted in the contexts where the entity is mentioned
(e.g., Everest in the example above).

The main contributions of this paper are summa-
rized as follows. First, we propose a novel approach
to lexical entailment, called Instance Based Lexi-
cal Entailment (IBLE), that allows approaching the
problem as a classification task, in which a given
target word (i.e., the entailing word) in a particu-
lar context is judged to entail a different word taken
from a (pre-defined) set of (possible) candidate en-
tailed words (see Section 3). Second, we exploit the
IBLE approach to model the ontology population

task as follows. Given a set of candidate concepts
belonging to generic ontological types (e.g., peo-
ple or locations), and a set of pre-recognized men-
tions of entities of these types in the corpus (e.g.,
Newton, Ontario), we assign the entity to the class
whose lexicalization is more frequently entailed in
the corpus. In particular, as training set to learn
the fine-grained category models, we use all the oc-
currences of their corresponding expressions in the
same corpus (e.g., we collected all occurrences in
context of the word scientist to describe the concept
scientist). Then, we apply the trained model
to classify the pre-recognized coarse-grained entities
into the fine-grained categories.

Our approach is fully unsupervised as for training
it only requires occurrences of the candidate entailed
words taken in their contexts. Restricted to the on-
tology population task, for each coarse-grained en-
tity (e.g., location), the candidate entailed words are
the terms corresponding to the fine-grained classes
(e.g., lake or mountain) and the entailing words are
mentions of entities (e.g., New York, Ontario) be-
longing to the coarse-grained class, recognized by
an entity tagger.

Experiments show that our method for recog-
nizing lexical entailment is effective for the on-
tology population task, reporting improvements
over a state-of-the-art unsupervised technique based
on contextual similarity measures (Cimiano and
Völker, 2005). In addition, we also compared it to
a supervised approach (Tanev and Magnini, 2006),
that we regarded as an upper bound, obtaining com-
parable results.

2 The Ontology Population Task

Populating concepts of a predefined ontology with
instances found in a corpus is a primary goal of
knowledge management systems. As concepts in
the ontology are generally structured into hierar-
chies belonging to a common ontological type (e.g.,
people or locations), the problem of populating on-
tologies can be solved hierarchically, firstly identi-
fying instances in texts as belonging to the topmost
concepts, and then assigning them to a fine-grained
class. Supervised named entity recognition (NER)
systems can be used for accomplishing the first step.
State-of-the-art NER systems are characterized by
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high accuracy, but they require a large amount of
training data. However, domain specific ontologies
generally contains many “fine-grained” categories
(e.g., particular categories of people, such as writ-
ers, scientists, and so on) and, as a consequence, su-
pervised methods cannot be used because the anno-
tation costs would become prohibitive.

Therefore, in the literature, the fine-grained clas-
sification task has been approached by adopting
weakly supervised (Tanev and Magnini, 2006; Fleis-
chman and Hovy, 2002) or unsupervised methods
(Cimiano and Völker, 2005). Tanev and Magnini
(2006) proposed a weakly supervised method that
requires as training data a list of terms without con-
text for each class under consideration. Such list can
be automatically acquired from existing ontologies
or other sources (i.e., database fields, web sites like
Wikipedia, etc.) since the approach imposes virtu-
ally no restrictions on them. Given a generic syntac-
tically parsed corpus containing at least each train-
ing entity twice, the algorithm learns, for each class,
a feature vector describing the contexts where those
entities occur. Then it compares the new (unknown)
entity with the so obtained feature vectors, assigning
it to the most similar class. Fleischman and Hovy
(2002) approached the ontology population problem
as a classification task, providing examples of in-
stances in their context as training examples for their
respective fine-grained categories.

The aforementioned approaches are clearly inad-
equate to recognize such fine-grained distinctions,
as they would require a time consuming and costly
annotation process for each particular class, that
is clearly infeasible when the number of concepts
in the ontology scales up. Therefore, most of the
present research in ontology population is focus-
ing on either unsupervised approaches (Cimiano
and Völker, 2005) or weakly supervised approaches
(Tanev and Magnini, 2006).

Unsupervised approaches are mostly based on
term similarity metrics. Cimiano and Völker (2005)
assign a particular entity to the fine-grained class
such that the contextual similarity is maximal among
the set of fine-grained subclasses of a coarse-grained
category. Contextual similarity has been measured
by adopting lexico-syntactic features provided by a
dependency parser, as proposed in (Lin, 1998).

3 Instance Based Lexical Entailment

Dagan et al. (2006) adapted the classical supervised
WSD setting to approach the sense matching prob-
lem (i.e., the binary lexical entailment problem of
deciding whether a word, such as position, entails
a different word, such as job, in a given context)
by defining a one-class learning algorithm based on
support vector machines (SVM). They train a one-
class model for each entailed word (e.g., all the oc-
currences of the word job in the corpus) and, then,
apply it to classify all the occurrences of the entail-
ing words (e.g., the word position), providing a bi-
nary decision criterion2. Similarly to the WSD case,
examples are represented by feature vectors describ-
ing their contexts, and then compared to the feature
vectors describing the context of the target word.

In this paper, we adopt a similar strategy to ap-
proach a multi-class lexical entailment problem.
The basic hypothesis is that if a word w entails
e in a particular context (Hw → He), then some
of the contexts T j

e in which e occurs in the train-
ing corpus are similar to Hw. Given a word w
and an (exhaustive) set of candidate entailed words
E = {e1, e2, . . . , en}, to which we refer hereafter
with the expression “substitution lexica”, our goal is
to select the word ei ∈ E that can be substituted to
w in the context Hw generating a sentence He such
that Hw → He. In the multi-class setting, super-
vised learning approaches can be used. In particular,
we can apply a one-versus-all learning methodology,
in which each class ei is trained from both positive
(i.e., all the occurrences of ei in the corpus) and neg-
ative examples (i.e., all the occurrences of the words
in the set {ej |j 6= i}).

Our approach is clearly a simplification of the
more general lexical entailment settings, where
given two generic words w and e, and a context
H = H lwHr, the system is asked to decide whether
w entails e or not. In fact, the latter is a binary
classification problem, while the former is easier as
the system is required to select “the best” option
among the substitution lexicon. Of course providing
such set could be problematic in many cases (e.g.,
it could be incomplete or simply not available for

2This approach resembles the pseudo-words technique pro-
posed to evaluate WSD algorithms at the earlier stages of the
WSD studies (Gale et al., 1992), when large scale sense tagged
corpora were not available for training supervised algorithms.
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many languages or rare words). On the other hand,
such a simplification is practically effective. First of
all, it allows us to provide both positive and nega-
tive examples, avoiding the use of one-class classi-
fication algorithms that in practice perform poorly
(Dagan et al., 2006). Second, the large availabil-
ity of manually constructed substitution lexica, such
as WordNet (Fellbaum, 1998), or the use of reposi-
tories based on statistical word similarities, such as
the database constructed by Lin (1998), allows us to
find an adequate substitution lexicon for each target
word in most of the cases.

For example, as shown in Table 1, the word job
has different senses depending on its context, some
of them entailing its direct hyponym position (e.g.,
“looking for permanent job”), others entailing the
word task (e.g., “the job of repairing”). The prob-
lem of deciding whether a particular instance of job
can be replaced by position, and not by the word
place, can be solved by looking for the most simi-
lar contexts where either position or place occur in
the training data, and then selecting the class (i.e.,
the entailed word) characterized by the most similar
ones, in an instance based style. In the first example
(see row 1), the word job is strongly associated to
the word position, because the contexts of the latter
in the examples 1 and 2 are similar to the context
of the former, and not to the word task, whose con-
texts (4, 5 and 6) are radically different. On the other
hand, the second example (see row 2) of the word
job is similar to the occurrences 4 and 5 of the word
task, allowing its correct substitution.

It is worthwhile to remark that, due to the ambi-
guity of the entailed words (e.g., position could also
entail either perspective or place), not every occur-
rence of them should be taken into account, in order
to avoid misleading predictions caused by the irrele-
vant senses. Therefore, approaches based on a more
classical contextual similarity technique (Lin, 1998;
Dagan, 2000), where words are described “globally”
by context vectors, are doomed to fail. We will pro-
vide empirical evidence of this in the evaluation sec-
tion.

Choosing an appropriate similarity function for
the contexts of the words to be substituted is a pri-
mary issue. In this work, we exploited similar-
ity functions already defined in the WSD literature,
relying on the analogy between the lexical entail-

ment and the WSD task. The state-of-the-art super-
vised WSD methodology, reporting the best results
in most of the Senseval-3 lexical sample tasks in dif-
ferent languages, is based on a combination of syn-
tagmatic and domain kernels (Gliozzo et al., 2005)
in a SVM classification framework. Therefore, we
adopted exactly the same strategy for our purposes.

A great advantage of this methodology is that it
is totally corpus based, as it does not require nei-
ther the availability of lexical databases, nor the use
of complex preprocessing steps such as parsing or
anaphora resolution, allowing us to apply it on dif-
ferent languages and domains once large corpora are
available for training. Therefore, we exploited ex-
actly the same strategy to implement the IBLE clas-
sifier required for our purposes, defining a kernel
composed by n simple kernels, each representing
a different aspect to be considered when estimating
contextual similarity among word occurrences. In
fact, by using the closure properties of the kernel
functions, it is possible to define the kernel combi-
nation schema as follows3:

KC(xi, xj) =
n∑

l=1

Kl(xi, xj)√
Kl(xj , xj)Kl(xi, xi)

, (1)

where Kl are valid kernel functions, measuring sim-
ilarity between the objects xi and xj from different
perspectives4.

One means to satisfy both the WSD and the lex-
ical entailment requirements is to consider two dif-
ferent aspects of similarity: domain aspects, mainly
related to the topic (i.e., the global context) of the
texts in which the word occurs, and syntagmatic as-
pects, concerning the lexico-syntactic pattern in the
local context. Domain aspects are captured by the
domain kernel, described in Section 3.1, while syn-
tagmatic aspects are taken into account by the syn-
tagmatic kernel, presented in Section 3.2.

3Some recent works (Zhao and Grishman, 2005; Gliozzo
et al., 2005) empirically demostrate the effectiveness of com-
bining kernels in this way, showing that the combined kernel
always improves the performance of the individual ones. In ad-
dition, this formulation allows evaluating the individual contri-
bution of each information source.

4An exhaustive discussion about kernel methods for NLP
can be found in (Shawe-Taylor and Cristianini, 2004).
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Entailed job Training
position ... looking for permanent academic job in ... 1 ... from entry-level through permanent positions.

2 My academic position ...
3 ... put the lamp in the left position ...

task The job of repairing 4 The task of setting up ...
5 Repairing the engine is an hard task.
6 ... task based evaluation.

Table 1: IBLE example.

3.1 The Domain Kernel

(Magnini et al., 2002) claim that knowing the do-
main of the text in which the word is located is a cru-
cial information for WSD. For example the (domain)
polysemy among the Computer Science and
the Medicine senses of the word virus can be
solved by simply considering the domain of the con-
text in which it is located. Domain aspects are also
crucial in recognizing lexical entailment. For exam-
ple, the term virus entails software agent in
the Computer Science domain (e.g., “The lap-
top has been infected by a virus”), while it entails
bacterium when located in the Medicine domain
(e.g., “HIV is a virus”). As argued in (Magnini et
al., 2002), domain aspects can be considered by an-
alyzing the lexicon in a large context of the word
to be disambiguated, regardless of the actual word
order. We refer to (Gliozzo et al., 2005) for a de-
tailed description of the domain kernel. The sim-
plest methodology to estimate the domain similar-
ity among two texts is to represent them by means
of vectors in the Vector Space Model (VSM), and
to exploit the cosine similarity. The VSM is a k-
dimensional space Rk, in which the text tj is rep-
resented by means of the vector ~tj such that the ith

component of ~tj is the term frequency of the term
wi in it. The similarity between two texts in the
VSM is estimated by computing the cosine between
them, providing the kernel function KV SM that can
be used as a basic tool to estimate domain similarity
between texts5.

5In (Gliozzo et al., 2005), in addition to the standard VSM,
a domain kernel, exploiting external information acquired from
unlabeled data, has been also used to reduce the amount of (la-
beled) training data. Here, given that our approach is fully un-
supervised, i.e., we can obtain as many examples as we need,
we do not use the domain kernel.

3.2 The Syntagmatic Kernel

Syntagmatic aspects are probably the most impor-
tant evidence for recognizing lexical entailment. In
general, the strategy adopted to model syntagmatic
relations in WSD is to provide bigrams and trigrams
of collocated words as features to describe local con-
texts (Yarowsky, 1994). The main drawback of this
approach is that non contiguous or shifted colloca-
tions cannot be identified, decreasing the general-
ization power of the learning algorithm. For ex-
ample, suppose that the word job has to be disam-
biguated into the sentence “. . . permanent academic
job in. . . ”, and that the occurrence “We offer per-
manent positions. . . ” is provided for training. A
traditional feature mapping would extract the con-
text words w−1:academic, w−2:permanent
to represent the former, and w−1:permanent,
w−2:offer to index the latter. Evidently such fea-
tures will not match, leading the algorithm to a mis-
classification.

The syntagmatic kernel, proposed by Gliozzo et
al. (2005), is an attempt to solve this problem. It
is based on a gap-weighted subsequences kernel
(Shawe-Taylor and Cristianini, 2004). In the spirit
of kernel methods, this kernel is able to compare
sequences directly in the input space, avoiding any
explicit feature mapping. To perform this opera-
tion, it counts how many times a (non-contiguous)
subsequence of symbols u of length n occurs in
the input string s, and penalizes non-contiguous oc-
currences according to the number of the contained
gaps. To define our syntagmatic kernel, we adapted
the generic definition of the sequence kernels to the
problem of recognizing collocations in local word
contexts. We refer to (Giuliano et al., 2006) for a
detailed description of the syntagmatic kernel.
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4 Lexical Entailment for Ontology
Population

In this section, we apply the IBLE technique, de-
scribed in Section 3, to recognize lexical entailment
for ontology population. To this aim, we cast ontol-
ogy population as a lexical entailment task, where
the fine-grained categories are the candidate entailed
words, and the named entities to be subcategorized
are the entailing words. Below, we present the main
steps of our algorithm in details.

Step 1 By using a state-of-the-art supervised NER
system, we recognize the named entities belonging
to a set of coarse-grained categories (e.g., location
and people) of interest for the domain.

Step 2 For all fine-grained categories belonging to
the same coarse-grained type, we extract from a do-
main corpus all the occurrences of their lexicaliza-
tions in context (e.g., for the category actor, we
extract all contexts where the term actor occurs),
and use them as input to train the IBLE classifier. In
this way, we obtain a multi-class classifier for each
ontological type. Then, we classify all the occur-
rences of the named entities recognized in the first
step. The output of this process is a list of tagged
named entities; where the elements of the list could
have been classified into different fine-grained cat-
egories even though they refer to the same phrase
(e.g., the occurrences of the entity “Jack London”
could have been classified both as writer and
actor, depending on the contexts where they oc-
cur).

Step 3 A distinct category is finally assigned to the
entities referring to the same phrase in the list. This
is done on the basis of the tags that have been as-
signed to all its occurrences during the previous step.
To this purpose, we implemented a voting mecha-
nism. The basic idea is that an entity belongs to a
specific category if its occurrences entail a particu-
lar superclass “more often than expected by chance”,
where the expectation is modeled on the basis of the
overall distribution of fine-grained category labels,
assigned during the second step, in the corpus. This
intuition is formalized by applying a statistical reli-
ability measure, that depends on the distribution of
positive assignments for each class, defined by the

following formula:

R(e, c) =
P (c|e)− µc

σc
, (2)

where P (c|e) is estimated by the relative frequency
of the fine-grained class c among the different oc-
currences of the entity e, µc and σc measure the
mean and the standard deviation of the distribution
P (c|E), and E is an (unlabeled) training set of in-
stances of the coarse-grained type classified by the
IBLE algorithm. Finally, each entity is assigned to
the category c∗ such that

c∗ = argmax
c

R(e, c). (3)

5 Evaluation

Evaluating a lexical entailment algorithm in itself
is rather complex. Therefore, we performed a task
driven evaluation of our system, measuring its use-
fulness in an ontology population task, for which
evaluation benchmarks are available, allowing us to
compare our technique to existing state-of-the-art
approaches.

As introduced in Section 4, the ontology popu-
lation task can be modeled as a lexical entailment
problem, in which the fine-grained classes are the
entailed words and the named entities belonging to
the coarse-grained ontological type are the entailing
words.

In the following, we first introduce the experimen-
tal settings (Section 5.1). Then we evaluate our tech-
nique by comparing it to state-of-the-art unsuper-
vised approaches for ontology population (Section
5.2).

5.1 Experimental Settings
For all experiments, we adopted the evaluation
benchmark proposed in (Tanev and Magnini, 2006).
It considers two high-level named entity cate-
gories both having five fine-grained sub-classes (i.e.,
mountain, lake, river, city, and country
as subtypes of LOCATION; statesman, writer,
athlete, actor, and inventor are subtypes of
PERSON). The authors used WordNet and Wikipedia
as primary data sources for populating the evaluation
ontology. In total, the ontology is populated with
280 instances which were not ambiguous (with re-
spect to the ontology) and appeared at least twice in
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the English CLEF corpus6. Even the evaluation task
is rather small and can be perceived as an artificial
experimental setting, it is the best available bench-
mark we can use to compare our system to existing
approaches in the literature, as we are not aware of
other available resources.

To perform NER we used CRFs (Lafferty et al.,
2001). We trained a first-order CRF on the MUC
data set to annotate locations and people. In our
experiments, we used the implementation provided
in MALLET (McCallum, 2002). We used a stan-
dard feature set inspired by the literature on text
chunking and NER (Tjong Kim Sang and Buch-
holz, 2000; Tjong Kim Sang and De Meulder, 2003;
Tjong Kim Sang, 2002) to train a first-order CRFs.
Each instance is represented by encoding all the
following families of features, all time-shifted by -
2,-1,0,1,2: (a) the word itself, (b) the PoS tag of
the token, (c) orthographic predicates, such as cap-
italization, upper-case, numeric, single character,
and punctuation, (d) gazetteers of locations, people
names and organizations, (e) character-n-gram pred-
icates for 2 6 n 6 3.

As an (unsupervised) training set for the fine-
grained categories, we exploited all occurrences in
context of their corresponding terms we found in
the CLEF corpus (e.g., for the category actor we
used all the occurrences of the term actor). We did
not use any prior estimation of the class frequency,
adopting a pure unsupervised approach. Table 2
lists the fine-grained concepts and the number of
the training examples found for each of them in the
CLEF corpus.

As a reference for a comparison of the outcomes
of this study, we used the results presented in (Tanev
and Magnini, 2006) for the Class-Word and Class-
Example approaches. The Class-Word approach ex-
ploits a similarity metric between terms and con-
cepts based on the comparison of the contexts where
they appear. Details of this technique can be found
in (Cimiano and Völker, 2005). Tanev and Magnini
(2006) proposed a variant of the Class-Word algo-
rithm, called Class-Example, that relies on syntactic
features extracted from corpus and uses as an addi-
tional input a set of training examples for each class.
Overall, it required 1, 194 examples to accomplish

6http://www.clef-campaign.org

this task.
All experiments were performed using the SVM

package LIBSVM7 customized to embed our own
kernel. In all the experiments, we used the default
parameter setting.

location person
mountain 1681 statesman 119

lake 730 writer 3436
river 1411 athlete 642
city 35000 actor 2356

country 15037 inventor 105

Table 2: Number of training examples for each class.

5.2 Results

Table 4 shows our results compared with two base-
lines (i.e., random and most frequent, estimated
from the test data) and the two alternative ap-
proaches for ontology population described in the
previous section. Our system outperforms both
baselines and largely surpasses the Class-Word un-
supervised method.

It is worthwhile to remark here that, being the
IBLE algorithm fully unsupervised, improving the
most frequent baseline is an excellent result, rarely
achieved in the literature on unsupervised methods
for WSD (McCarthy et al., 2004). In addition, our
system is also competitive when compared to super-
vised approaches, being it only 5 points lower than
the Class-Example method, while it does not require
seed examples and syntactic parsing. This charac-
teristic makes our system flexible and adaptable to
different languages and domains.

System Micro F1 Macro F1
RND Baseline 0.20 0.20
Class-Word 0.42 0.33
MF baseline 0.52 NA
IBLE 0.57 0.47
Class-Example 0.62 0.68

Table 3: Comparison of different ontology popula-
tion techniques.

7http://www.csie.ntu.edu.tw/∼cjlin/
libsvm/
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Finally, we performed a disaggregated evaluation
of our system, assessing the performance for differ-
ent ontological types and different concepts. Re-
sults show that our method performs better on larger
fine-grained classes (i.e., writer and country),
while the results on smaller categories are affected
by low recall, even if the predictions provided by
the system tends to be highly accurate. Taking into
consideration that our system is fully unsupervised,
this behavior is highly desirable because it implies
that it is somehow able to identify the predominant
class. In addition the high precision on the smaller
classes can be explained by our instance based ap-
proach.

Person N Prec Rec F1
Inventor 11 1 0.18 0.31
Statesman 20 1.0 0.05 0.10
Writer 88 0.61 0.89 0.72
Actor 25 0.57 0.68 0.62
Athlete 20 1 0.1 0.18
Micro 164 0.61 0.61 0.61
Macro 5 0.83 0.38 0.52

Table 4: Performance of the IBLE approach on peo-
ple.

Location N Prec Rec F1
City 23 0.35 0.26 0.30
Country 40 0.61 0.70 0.65
River 10 0.8 0.4 0.53
Mountain 5 0.25 0.2 0.22
Lake 4 0.2 0.5 0.29
Micro 82 0.50 0.50 0.50
Macro 5 0.44 0.41 0.42

Table 5: Performance of the IBLE approach on lo-
cations.

6 Conclusions and Future Work

In this paper, we presented a novel unsupervised
technique for recognizing lexical entailment in texts,
namely instance based lexical entailment, and we
exploited it to approach an ontology population task.
The basic assumption is that if a word is entailed
by another in a given context, then some of the

contexts of the entailed word should be similar to
that of the word to be disambiguated. Our tech-
nique is effective, as it largely surpasses both the
random and most frequent baselines. In addition, it
improves over the state-of-the-art for unsupervised
approaches, achieving performances close to the su-
pervised rivaling techniques requiring hundreds of
examples for each class.

Ontology population is only one of the possible
applications of lexical entailment. For the future,
we plan to apply our instance based approach to a
wide variety of tasks, e.g., lexical substitution, word
sense disambiguation and information retrieval. In
addition, we plan to exploit our lexical entailment as
a subcomponent of a more complex system to rec-
ognize textual entailment. Finally, we are going to
explore more elaborated kernel functions to recog-
nize lexical entailment and more efficient learning
strategies to apply our method to web-size corpora.
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