
SIMPLE PARSER FOR AN HPSG-STYLE GRAMMAR IMPLEMENTED IN PROLOG

Karel oliva*

Lingustic Modelling Laboratory,

Coordination Centre

for Computer Science and Computer Technology,

Bulgarian Academy of Sciences,

acad. G. Bonchev st. bl. 25A,

BG - 1113 Sofia,

Bulgaria

Abstract:

This paper describes basic ideas of a parser for

HPSG style grammars without LP component. The parser

works bottom-up using the left corner method and a

chart for improving efficiency. Attention is paid to

the format of grammar ru~es as required by the parser,

to the possibilities of direct implementation of prin-

ciples of the grammar as well as to solutions of prob-

lems connected with storing partly specified catego-

ries in the chart.

i. Kapremmntation of Grammar Rulam for the Parser

The Head-driven Phrase Structure Grammar (HPSG)

blurrs the distinction between rules of the grammar

and the structures they generate. Put shortly, the

matter is that "structures" and "rules" in HPSG differ

solely in the level of abstraction over the llnguistJc

material they describe. A "structure" describes some

very concrete piece of this material (e.g., a sen-

tence) and, hence, embodies no abstraction; a "rule",

on the other hand, presents by itself a prototype of a

set of structures. Since in HPSG categories are under-

stood as bundles of features ("attribute"="value"

pairs) , the "structure"/"rule" dichotomy is reflected

by the fact that the rules can contain variables as

values of attributes of some features while the struc-

tures must be always fully specified or that the rules

can miss some (otherwise possibly obligatory) features

altogether. Constraints restricting or binding to-

gether permitted values of the attributes can be asso-

ciated with the rules. Naturally, different levels of

abstraction can be introduced among the rules as well,

which allows for capturing different levels of genera-

lization over the linguistic data described.

On the highest level of abstraction, the parser

can deal with two types of rules: in the first type,

the values of variables occurring in the rules are

bound by constraints, in the second type no con-

straints occur. In order to support simultaneously an

easily legible notation and a reasonable computer

implementation of these two types of rules, two Prolog

operators are defined, each describing one rule type.

:- op(1200,xfx, is a rule if) .

:- op(1200,xf, is a rule)

The first of the two is an infix operator describing

the rules containing additional constraints; the rule

itself should stand in front of the operator, the con-

straints should follow it, separated from each other

by commas ",". The second one is a postfix operator

describing the rules without any constraints.

The inventory of types of rules may be arbitra-

rily broadened. All that is necessary for this purpose

is just adding operator declarations and, possibly,

also implementing feature inheritance principles cor-

responding to the newly introduced rule type(s). This

is important because it provides for bounding the ap-

plication of the principles to the whole rule types

and makes thus obsolete the explicit stipulation of

feature sharing among respective categories in each

rule, which is still the case in many current parsers.

TWO examples of the rule format for the parser

are shown in the following: it is to be remembered

that in HPSG, as well as in all other theories accept-

ing the X-bar convention, a central role among the

daughters in a rule is played by the head-daughter -

because of this, the head-daughter is specially mark-

ed, which provides, e.g., for application of the Head

Feature Principle.

Ex.l: - the standard "S ---> NP VP" rule can appear

in the following form (with obvious meanings of the

predicates "concatenation" and "agreement"):

[phonology=SPhonology,

d trs=[dtr=[cat=n,

bar=two,

phonology=NP_Phenology,

morphology=NP_Morphology],

head_d_tr=[cat=v,

bar=two~

phonology=VPPhcnology,

morphology=VPMorphology]i]

is a rule if

coneatenation(NPPhonology,VPPhonology, S Phonology),

agreement(NPMorphology,VPMorphology)

Ex.2: - the rule "NP ---> Dot NP": note the fact that

the phonology of the mother can be expressed without

invocation of the "concatenation" predicate (since

determiners eonsist of one word only) and the agree-

ment is expressed directly in the rule by coinde×ing

the features "number" in both daughters

[bar=two,

phonology=[Det_Phonology!NP_Phonology],

d trs=[dtr=[cat=det,

bar=zero,

phonology=[DetPhono!ogy],

morphology=[number=Number]i,

head d_tr=[cat:n,

bar=one,

phonology=NPPhonoloqy,

morphology=[hum bar=Number I]]

is a rule .

2. Repreeantation of Categories in the Parser

AS follows from the examples, the notation adopt Z

ed for categories in rules is the one describing them

as (Prolog) lists of features. Keeping such kind of

representation also in the underlying mechanism of the

parser would be, however, quite unfelicitous a deci-

sion. The main problem consists in the fact that the

parser working bottom-up may discover certain features

of already parsed (sub)structures only later in the

parsing process (so to say, only when it gets "higher

in the tree", with regard to the way the parsing pro-

ceeds). These features are to be, then, incorporated

into the already parsed structures. An elegant solu-

tion of this problem was proposed in (Eisele and

D~rre,1986) and adopted in the parser described.

Syntactic categories are represented in the parser in-

ternally in a way slightly different from their repre-

sentation in the grammar: all categories (including

434 1

those used as values of features of other categories)

are represented as "open-ended lists": each internal

representation of a category is a list having a cer-

tain number of instantiated elements at its beginning.

and an uninstantiated "tail". The main idea standing

behind this kind of representation is that any feature

to be dlscovered (and added to the category) only la-

ter in the parsing process can be now added as the

"first member" of the uninstantiated "tail", which

task is easy to perform provided that the "tail" is

still accessible (e.g., if the free "tails" of catego-

ries subject to feature inheritance principles are

shared logical variables). Converting categories from

one kind of representation to the other one is

performed by a two-argument predicate "perestroika"

(used below).

The representation described also supports a

simple implementation of unification of categories

(see Eisele and D~rre, op. cit. for more detail); in

the folowing, unification of two categories is presup-

posed to be performed by a two-argument predicate

"unify".

3. The ParsQr

The main idea of the parsing method used in the

BUP par~er (Matsumoto et ai,1983) being the starting

point of the system described is that a rule is to be

triggered only after its left corner has been found

(i.e. it has been supplied by lexical scan, in the

case of iexical categories, or it has been properly

parsed). The left corner of a rewriting rule is the

leftmost symbol on its rlght-hand side - the name

stems from depicting the rule as a local tree it gene-

rates. After a category is parsed or supplied by lexi-

cal scan, one of the grammar rules having this ca-

tegory as its left-corner is s@lected, the sisters of

the left corner in this rule are tried, and if all of

them are succesfuly parsed, the mother category of the

rule is declared to be parsed and the whole process,

using the mother as a left corner, is repeated "on a

higher level". If any failure occurs, backtracking is

invoked. Thus, the parsing process is data-driven -

the rules of the grammar are selected in accordance

with the symbols scanned in the input. From the view-

point of efficiency, this is important mainly for the

so-called "free-word-order" languages. Mentioning

this, it should be further recalled that the perfor-
mance of BUP is further improved by storing all the

information about all subtasks that have been already

tried (successfully or unsuccessfully), which avofds

repetitive computations of the parses that have been

performed or that have been proved impossible to per-

form in the preceding steps of the analysis.

For the purposes of the implementation of the

parsing process, it is necessary to extend the notion

of the "left corner" to its reflexive and transitive

closure. The transitive closure inductively states

that for all triples of categories X,Y,Z such that X

is a left corner of Y and Y is a left corner of Z , X

is also a left corner of Zo The reflexive closure fi-

nishes the picture by saying that any category is a

left corner of itself.

Given the previously described basic philosophy

of parsing, the process can be implemented in Prolog

by means of two predicates performing the two tasks

informally mentioned in the preceding paragraphs:

- the predicate "parse", parsing a given (expected)

category from (a prefix of) the input string

- the predicate "isaleft_corner", linking the left

corner category with the goal (expected) category in

the parsing process.

However, before these predicates can be explained

in more detail, it is necessary to make several re-

marks explaining the way the processing of complex ca-

tegories has been built into the system.

First, the usual equality ("=") of two categories

was replaced by their unification, i.e. on all spots

where equality of two categories - expressed either

directly, in the form of an equation, or indirectly,

by variable sharing or otherwise - occured in the ori-

ginal BUP, it had to be replaced by a call of the pre-

dicate "unify".

Second, in the predicates storing or retrieving

the information about the (un)successfully performed

parsing subtasks, the categories must be "frozen"

exactly in the state when this subtask was started:

problems would occur if the "stored" categories

include free variables ("]n[ormation holes") as values

of some features, which variables might be matched by

any real values in the moment of search for the infor-

mation about previously performed parsing tasks - such

a matching, however, would be incorrect, since what is

required is a real identity of the subtasks. (The same

holds also the other way round, i.e. problems of

exactly the same nature would occur also if the stored

value were instant!ated and the current one were a

free variable.)

The aforementioned identity of subtasks, however,

requires the identity of (some of) the stored catego-

ries only, not the identity of the lists representing

them, i.e. what really matters is the identity of fea-

tures, but not of their order. This identity of

"frozen" categories (represented as "usual" Prolog

lists) is checked by the predicate "identical_catego-

ries".

Now at last, the definitions of the predicates

"parse" and "is a left corner" cao be given; the sup-
porting predicates are either elucidated in ti~e pre-

ceding text or are given (hepefully) self-expla!ni:Ig

names, which should hold also for the arguments. The

difference between the "frozen" categories represented

as usual Prolog lists and those represented as "open-

ended" lists is reflected in the variable names stand-

ing for the respective types: the "open-ended" ca-

tegories are always marked as "ReaL" categories, the

other ones never bear such marking.

% PARSE(

% "Frozen"_Goa l_Cat,

% [Real_Goal Cat,Structure],

% Input_String,Rest String)

/* Checking whether parsing the current Real Goal Ca-

tegory from some prefix of the Input String has been

tried (either successfully or not) in the preceding

steps of the parsing process. */

parse(GoalCategory,[RealGoal_Category,Structtlre],
Input_String, Rest_String)

(already_parsed(Asserted_Goal Category,,

Input Str]ng,),

identical_categories(GoaiCategory,

AssertedGoaiCategory) ;

cannot_beparsed(AssertedGeaiCategory,

Input String),

identical_categories{GoaICategory,

Asserted_Goal_Category)

!, fail),

I
, i

already_parsed(AssertedGoal_Category,

[Real_Goal Category, Structure],

InputStrlng,Rest_String

identical categorles(Goal Category,

Asserted_Goal Category) .

),

2 435

/* The following clause describes parsing of a cate-

gory with no daughters (category immediately dominat-

ing an empty string) */

parse(Goal_Category,[Real_Goal_Category,dtrs=[]],

String,String)

/* rule having no daughters is to be found in the

grammar */

find_rule to be used(Realgoal_Category,
Constraints Of Rule),

call(Constralnts Of Rule),

assertz(already_parsed(

Goal_Category,

[Real_Goal_Category,d_trs=[]],
String, String)) .

/* The following clause describes parsing of a cate-

gory dominating a non-empty terminal string */

parse(Goal_Category,[Real_GoalCategory,Structure],

[Word_FormIRest Input_Strlng],Rest_String)

lexicon(WordForm,WordFormCategory),

perestroika(Word_Form_Category,

Real Word_Form_Category),

is a left corner(
[Real_WordFormCategory, d trs=[]],
[Real_Goal Category,Structure},

Rest_Input_String, Rest_String),

assertz(already_parsed(

Goal Category,

[Real_Goal Category,Structure],

[Word_FormlRest_Input_String],

Rest_String)) .

/* Asserting information about the impossibility of

parsing certain categories from certain strings */
parse(Goal_Category,,InputStrlng,)

(already_parsed(GoalCategory,,Input_String,_) ;

assertz(cannot_be_parsed(

Goal Category,Input String)) },

! , fail .

IS_A_LEFT_CORNER(

[Real_Left Corner Cat,Structure],
[Real GoalCat,Structurel,

Input String,RestString

/* reflexive closure of the relation "being a left
corne r" * /

is_a_leftcorner(

[ReaiLeftCornerCategory,

RealLeftCornerCategory_Structure],

[Real GoalCategory,RealGoal_Category_Structure],

String,String)

unify(RealLeftCorner_Category,

Real_Goal_Category) .

/* transitive closure of the relation "being a left

corner" */

is_a_left_corner(

[Real Lef~_Corner_Category,
RealLeft_CornerCategory_Structure],

[Real Goal_Category,RealGoal_Category_Structure],

InputString, RestString)
:-

/* a rule having the current left corner category

as its left corner is to be found */

findruletobeused(

Real_Left_Corner_Category],

Left_Daughter._Marking,

Right_Sisters_ListFromCurrent_Rule,

Mother_Category_From_Current Rule,

Constraints Of Rule,

Type Of Rule),

/* all the right sisters have to be parsed */

parse_right_sisters(

Right Sisters_ListFromCurrentRule,

Real_RightSisters_List,

InputString, IntermediaryString,

Type Of Rule),

call(Constraints Of Rule),

/* the mother category from the rule must comply

with the feature inheritance principles relevant for

the Type Of Rule */

featureinheritanceprinclplesconcerning_mother(

[RealLeftCornerCategory

IReal_RightSistersList],

Mother Category_From_CurrentRule,

Real Mother_Category,

Type Of Rule),

/* the mother itself (?herself?) is used as a left

corner, which repeats the process on a higher level */

is alert corner(

[RealMother_Category,

d trs={LeftDaughter__Marking =

[Real Left Corner Category,

Real LeftCorner_Category_Structure],

IReal_Right_Slsters List]],
[Real GoalCategory,RealGoalCategory_Structure},

Intermediary String,RestStrlng).

The whole parsing process is started by asking the

conjunction of goals

?- parse(TOPMOSTCATEGORY, Intermediary Result,

INPUT,[]),

perestroika(RESULT, Intermediary Result) .

where the "RESULT" is the only output argument, na-

mely, the resulting structure of the parse, the

TOPMOST CATEGORY Is a skeleton category (represented

as a "usual" Prolog llst) of the expected result (most

often, something like "[cat=sentence] " or

"[cat=v,bar=two]" etc.), i.e. a category which is ex-

pected to unify with any result of the parse, the

INPUT STRING is the input string represented as a Pro-

log list of wordforms and the empty string "[]" is the

expected rest of the input string after the parsing

process finished.

Eilele A. and J. D6rre: A Lexical Functional Grammar

System in Prolog, in: Proceedings of Coling ~86, Bonn

M~tlumQto ¥. et al.: BUP - A Bottom-Up Parser Embedded

in Prolog, in: New Generation Computing vol.l, 1983

Pollard C. and I.Sag: Information Based Syntax and Se-

mantics, vol.l: Fundamentals, CSLI Lecture Notes No.

13, CSLI, Stanford, California 1987

Wsince Ist April 1990:

Lehrstuhl fur Computerlinguistlk

Universit~t des Saarlandes
Im Stadtwald

D-6600 Saarbr~cken

(West) Germany

436 3

