
A LARGE RUSSIAN MORPHOLOGICAL VOCABULARY
FOR IBM COMPATIBLE~,

AND METHODS OF ITS COMPRESSION

Igor A. BOLSHAKOV
VINZTI, Academy' of S c i e n c e s of USSR

Moscow 125219, Bal-t;iyskayE~ u].. 14, USSR

There are only few Russian vocabularies in
computerized form in the USSR new, so development of a
new Russian vocabulary large enough for spell checking
is s t i l l topical.

The requirements for such a vocabulary are at
least as follows : l} sore than iO0,O00 lexemes
included; 2) modern and diversified lexicon well
covering the sciences, many technological fields, the
humanities, and may be the everyday life; 3) mapping
the most of numerous lexeme forms implied by the
~lectional nature of Russian, and at the same time
acceptance of well-formed words only; 4) orientation
to IBM-compatible PCs most commonly used in the USSR
~owaday.

Such a w)oabulary has been recently built by the
a~thor. Its parameters are as follows: 67,400 stems
covering more than 104,700 Russian lexemes and their
~.425 million word-forms (i,e. 21.2 forms/stem); the
~isimal, the mean, and the maximal stem lengths
amounting to 1, 7.8, and 32 letters accordingly; the
textual form size being about 865 KB,

Our morphologic~l ciassific~tlo~ of stems is quite
original and deals not only with ~ord formation, but
also with word derivation. The scheme includes i18
classes and 1901 various fieetions (variable suffixal
chains). Separate classes were introduced among
mentioned ones for invariant words, irregular forms,
and abbreviations, The first 38 classes cover more
than 83X of all stems.

The split borders of stems were freely moved to
the left while classifying, if morphological
alternations or identical final letters in a whole
stem class have been encountered. The shortest
flection is an empty one, the longest flections
include up to 12 letters (e.g. HPOMB~WHC~), so the
m~an fleetion length grew up to 6 letters, which is
comparable to the mean stem length.

The textual form of vocabularies is not convenient
for applications and has to be transformed into binary
working form. The wellknown arehivization packages
such as PKA~q/PKXARC are not acceptable for this
perpose because of low squeeze ratio and uselessness

of the arehivized form as a working one for spellers
or any other application, So several other methods of
compression were analyzed,

Basically the Huffman method has been selected for
coding morphological class numbers, and the Cooper
method has been picked up for the stems, Additionally
the RADIX-50 method was applied to both of the
components of a vocabulary entry.

Several other techniques are turned out to be
useful for additional stem compression in large
vocabularies. They are based on l} frequent
recurrences of differently classified, but literally
identical stess; 2) coamoness of events in nearly
saturated vocabularies, when the first letter in the
deflecting part of a stem is alphabetically adjacent
to the letter in the same position within previous
stem; 3) availability of several free positions in
RADIX-50 code table (only 33 of gO are grasped by
Eussian letters and a delimiter). These unoccupied
values night be used for re-coding final stem letters,
digrams, and trigrams most frequent in different stem
classe~, This technique squeezes the letter part of a
vocabulary entry and make the delimiter preceding the
next entry unnecessary.

All methods mentioned were investigated,
separately and in combinations. The Huffman's + the
Cooper's + RADIX-50 combination has given us a sqeeze
ratio about 3.4, whereas addition of the rest
techniques has incremented the ratio up to 4.2 - 4.5.
So only about l~O KB in memory is needed for this
working form, which is easy allocatable as a resident
part of a modern text processor, As compared te
vocabularies in available English language spellers,
the size achieved seems to be highly competitive in
our more complex inflectional case.

The vocabulary is available beth in the textual
and in binary forms, Several utilities concerned with
its compiling, debugging, and squeezing are ready too.
The ut i l i t ies were written using Turbo Pascal 5.0 and
Turbo Professional packages and are wholly applicable
for processing any other natural language vocabulary,

1 317

