
CLG (n): Constraint Logic Grammars

Sergio BALARI
E u r o t r a Espana , 25 Avda. de VaUvidrera

E-08017 Barce lona
Giovanni B. VARILE

CEC, Jean M o n n e t Bldg., L-2920 Luxembourg

Luis DAMAS
Nelma MOREIRA

Univers idade do P o r t o , C a m p o Alegre 823
P-4000 Po r to

A b s t r a c t : CLG(2) is the latest member of a family of
grammar formalisms centered around the notion of
complex constraint expression for describing phrasal and
iexical information and principles of language. Complex
constrains can be expressed in a slightly restriced form of
first order predicate logic, which makes CLG(2) well suited
for expressing, amongst others, HPSG-style of grammars. A
sound implementation of the formal semantics of CLG(2) is
achieved 'by resorting to delayed evaluation of non
equational constraints.

I n t r o d u c t i o n

Recently a number of formalisms for grammatical
description have been proposed with the aim of overcoming
the expressive deficiencies of simple unification based
formalisms like PATR-II. Except for the more simple,
although not unproblematic, extensions to PATR-II like
the ones proposed by Karttunen (1984), most of these
efforts have their root in the work by Rounds, Kasper and
Moshier (Rounds & Kasper, 1986; Moshier & Rounds
1987), who give the proof of the existence of a sound,
although non classical, logical interPretation for disjunctive
and negative feature specifications.

Although Kasper (1987) has proposed an algorithm
for handling grammars with disjunctive feature
specifications, the computational tractability of complex
constraints in unification based formalism remains an open
problem (Pereira 1987).

Furthermore since the introduction of Head Phrase
Structure Grammar (HPSG) (Pollard & Sag, 1987) the
desirability of complex constraint expression has become
clear. The attractiveness of HPSG-style grammatical
description has made classical first order logic the candidate
par excellence for constraint expression, modulo the
problem of computationa! tractability.

Since 1988 we have ~ been engaged in the design and
implementation~ Of a number of prototype formalisms
sharing essentially the same constraint language, a slightly
restricted f o r m o f first order predicate logic including
explicit quantification (Damas& Varile 1989). In trying to
achieve a logically sound and practical implementation, our
work has been influenced by the CLP paradigm in logic
programming (Jaffar & Lassez, 1988) especially our delayed
evaluation Scheme which amongst Other things avoids
systematic ~mputat ions of normal forms of constraints. All
CLG(n) prototypes have been implemented in Prolog using

the YAP compiler developed at the University of Porto
The results to date have been encouraging. Two of the
CLG(n) prototypes have undergone extensive testing with
non-trivial grammars of several European languages as
reported in (Damas & VaNe 1989).

In this paper we present CLG(2), the latest prototype
of the CLG(n) family, a formalism which was influenced by
the HPSG grammar model. Although different members of
the family differ with respect to a number of characteristics
like the structure of grammatical description and the data
structures defined by the formalism, they all share the same
complex constraint language.

1. S y s t e m O v e r v i e w

In CLG(2) the data types defined are variables,
constants, typed feature structures, list and sets of typed
feature structures. Typed feature structure can be seen as
directed graphs with labelled arcs, every node being indexcd
with its type name.

The main novel feature of CLG(2), and of the other
members of the CLG(n) family, is its constraint language I.,
a slightly constrained form of first order predicate logic,
including explicit quantification. Unification remains tlle
sole building operation, under the control of complex
constraints.

The logical symbols of the complex constraint language
consist of variables, constants, the logical connectives &
(conjunction), I (disjunction), " (negation),-> (material
implication), < -> (logical equivalence), the binary predicatc
symbol "=" and non-logical function and predicate symbols.

The terms of the constraint language are variables,
constants and path expressions. The atomic formulae are
either equational constraints, i.e. formulae of the form
t l= t2 for terms tl,t2, or r(tl,t2,...) for terms ti and relation
symbols r. The complex constraints of CLG(2) are the non
atomic well formed formulae of L, defined in the usual way:
for well formed formulae (constraints) C1, C2 and variable
X:

C 1
- C1 -> C2
- c 1 & C2
~C1 I C2
- forall(X,S) C1
- exist(X,S) C1

1 7

8

are also well formed formulae (constraints). The S in the
quantified constraints are used to restrict the domain of the
quantification and can be omitted. The interpretation of the
constraint language L is the standard interpretation of first
order predicate logic. In other words, we do not resort to
intuitionistie or other non-standard interpretations, like for
instance Moshier & Rounds (1987). Examples of
constraints are:

S.syn.local.head "= n
forall(C:compl dtrs) C.syn.local.head.maj = n.

In order to facilitate the statement of constraints, a
macro facility is available in all members of the CLG(n)
family, which is a generalization of PATR-II templates in
that it can take a list of formal parameters. In CLG(2) this
facility has been extended in a fashion akin to UD (Johnson
& Rosner, 1989) to include reeursive user defined relations.
An example of such a relation is:

discharge(E,E:L,L);
diseharge(E,X:Ll,X:L2) <- diseharge(E,L1,L2);

In section 3 it will be shown how such definitions
contribute to the statement of linguistic principles. We turn
now to describe the components of a CLG(2) grammar.

Global type declara t ions: CLG(2) relies on a strong
typing scheme similar to the concept of abstract data type.
The following is a detail of the syntactic feature hierarchy
used for one type of linguistic sign in one of the grammars
implemented in CLG(2):

Sign = (phon, syn, sem,dtrs);
phon = word list;
syn = (local, bind);

local = (head, compls, funhead, select, lex);
head = (vform, inv, agr, tense);

vform = {fin, bse, psp, prp, pas, inf, ger };
inv= { - , + };
agr = (num, prs);

n u m = { sg, pl };
prs = { fst, snd, thrd };

tense = { past, pre};
compls = Sign list;
lex = (+,-};

bind = (slash, subj, wh);
slash = Sign list;
subj = Sign list;
wh = {rei, que};

dtrs = (head._dtr,compl_dtrs)
head._dtr = Sign ;
compl..dtrs = Sign list;

Other systems require typing information, including
HPSG (Pollard & Sag 1987) and UCG (Moens et al. 1989).
Type information is used in CLG(2) both to structure the
grammatical information and to achieve a more efficient
implementation.

Global cons t ra in t s : these encode HPSG-type of linguistic
principles. A principle is of the form: partial-object-

2

specification -> constraints. For instance, HPSG's Head
Feature Principle could be expressed as:

[head_.dtr=[_]] ->
syn.local.head = head_dtr.syn.local.head

Par t ia l descript ions of lexical signs. Lexical and
phrasal descriptions have both the same format consisting of
a pair <DAG,CS> whose first element is a DAG specified
by a set of equations and whose second element is a set of
complex constraints. Both lexical and phrasal constraints
have a number of alternative shorthand formats to suit user
requirements.

Par t ia l descr ipt ions of phrasa l signs: these ;ire the
CLG(2) rules. A number of different equivalent rule
formats are supported. For instance:

[comp= < >] -> head_dtr,coml_dtrs

M -> H,C+ where M.syn.local.comp= < >

are equivalent formulations.

2. Formal Semantics

We define in this section a denotational semantics 'for
CLG(2) grammars in a similar way to what was done for
CLG(0) grammars (Damas & Varile, 1989). For reasons of
space, we present a slightly simplified version.

Starting from primitive sets Labels and Atoms of
attribute names and atomic values we would like to define
the domain of objects and the domain of values as follows

Objects = Labels --> Vals
Vals = [Atoms + Objects]*

Note that to simplify the semantics we are assuming
that every label can have as value a list of sub-objects.

Given a set Vats of variable symbols and a set Preds of
predicate symbols we define the following syntactic domains:

Path ::= Label I Path.Label

Exp ::= Var I Atom I Path I Var.Path
I Exp+Exp (list concatenation)
I Exp:Exp (list cons)

Constraint : := Exp = Exp
I p(Exp,...,Exp)
] "Constraint

. I Constraint & Constraint
.... I Constraint I ~ns t ra in t

Definition ::=q(xl,x2,...,xn) < -> Constraint

where we assume that every path which occurs m a
definition is associated with a formal argument.

Grammar ::= Constraintsx:Path* x Definition* ~:
: ,~ , ~ •

The Constraints comlxment in a Grammar denotes
the conjunction of all principles with the disjunction of the
descriptions of all lexical and phrasal signs. The Path*
component specifies which paths are involved in the
dominance relation for the grammar.

Given an object o and a path p we will extend o to
paths by

o(p.l) = o(p)O)

if o(p) has only one element and that element is not an
atom, error otherwise

In what follows we will omit the handling of error
values, which should produce error if any partial result leads
tO error.

To define our semantic functions we still need the
following domains:

VEnv = Vars o-> Objects*
PEnv = Preds--> U(n)Va l s - -> {T,F}

Now we define the following semantic functions

V: Exps--> VEnv- -> Objects-> Vals
C: Constraint --> PEnv-o> VEnv - > Objects

- > {T,F}
D: Definition*--> PEnv
G: Grammar -> Objects--> {T,F}

V, which assigns a value to every expression, is defined
by

V [v] r o = r [v]
V [p] r o = o(p)
V[v.p] r o = cardinality(r[v])=1 -> r[v](p)

else bottom
V[e + e '] r o = concatenate(V[e] r o, V[e ']r o)
V[e:e '] r o = cons(V[e]r o, V[e']r o)

C, which assigns a truth value to every constraint, is
defined by

C [e = e '] d r o = V [e] r o = V [e '] r o
C[p(el,...,en)] d r o =

d [p] (V [e l] r o V [e n] r o)
C [c & e '] = C [c] & C [c ']

D is defined by taking, for each sequence of definitions
pi(xl,.. ,xn)<-> Di, the least fixed point of the function H:
PEnv --> PEnv defined by:

H[pi] d (vl, ..., vn) = C[Di] d [vi/xi] o_nil

where o_nil is the empty object.We can now define G as
follows:

G[< c, <p l , ...,pk>, Ds >] o = T

iff there is an environment r such that C[c] d r o= T and
for every path pi such that o(pi) = <o l , ..., o1>:

G[< c, < p l pk>, <C1,...,Cn> >] oj = T

for j = 1,...,I, where d = D[Ds].

3, C o m p l e m e n t i z e r - T r a c e Effects in CLG(2)

We will illustrate the expressive power of CLG(2) with
an analysis of those phenomena traditionally known ,~s
complementizer-trace effects (Perlmutter, 1971; Chomsky
& Lasnik, 1977). It is inspired by the HPSG framework
(Pollard & Sag, 1987), but it departs from it in some
respects.

The most recent account of these phenomena within
HPSG is that of Pollard (1985). There, he aims at showing
that most of the GPSG insights (Gazdar, Klein, Pullum &
Sag, 1985) can be preserved within a framework which does
not express subcategorization directly in PS rules, and which
does not make use of meta-rules.

In our revision of the analysis we will follow Pollard
(1989) in separating subjects selection from complement
selection. Our grammar incorporates, however, some
radical differences, most of them concerned with the typing
of features structures, and the typology of lexical and
phrasal categories it induces.

In essence, our approach incorporates a much more
articulated theory of minor categories which attributes them
a more privileged role than it is generally assumed in PSG
frameworks. We assume, then, that minor categories have n
certain head-like status and, consequently, seleetion,~l
properties (Chomsky, 1986; Warner, 1989).

Thus, the top of our hierarchy of signs is as follows:

Sign: Minor: Afftxes

Clitics

Major: Words

Phrases

The main difference between major and minor signs is
that the latter contain information of type syntactic category
and semantics only, while major signs may contain also
binding information.

Now consider, the following, schematic lexical entries
for the English complementizers that and for, which are
minor signs of type clitic:

that =
[syn.iocal.select <v[subj < >,compl < >,fin] bse] >]

for = [syn.local.select <v[subj < >,compl < > ,inf] >]

Where subj and compl abbreviate subject
complements.

And the schematic entries for the following verbs:

think =
[syn.local.compl <v[compl< >,fin]>,

~lld

9 3

syn.bind.subj <np>]

wantl = [syn.local.compl <v[compl< >,comp.for] I
v[sb < np 1 >,cp < >,int'] >,

syn.bind.subj < n p l >]

want2 = [syn.local.compl<npl,v[sb<npl>,cp< >,infl>,
syn.bind.subj < rip>]

complain = [syn.local.compl<v[comp.that]>,
syn.bind.subj <np>]

Tlaus, subject extraction from a clausal complement of
think or want is impossible if the complement has a
complementizer, because it violates its seleetional
restrictions.

We predict then that, "in English, subject extraction is
only possible with bridge verbs (e.g. think), and that it is
always impossible with non-bridge verbs (e.g. wantl,
complain), while complement extraction is always possible
(e.g. object extraction in object control verbs like want2).

Note that the different syntactic properties of verbal
complements (clauses, VPs) seems to have a direct semantic
correlation in the property/proposition distinction which has
been advocated in some recent analyses of control, e.g. Sag
& Pollard (1988).

The CLG(2) grammar which accounts for the above
facts contains four rules and four principles. Two rules are
the well known Complementation and TopicaUzation rules
of standard HPSG.

The other two are original: one, lhe Clitie Placement
rule, licenees those stuetures in which a minor head is
attached to a major head; it requires that the selectional
restrictions of the minor head be satisfied and marks the
mother node with whatever features come from the minor
head (e.g., comp=that, when the complementizer is
attached to a clause). The other rule is like Topicalization,
but for subject binding. As for the principles, we have a
Head Feature Principle, a Complementation Principle, a
Binding Principle, and a Control Principle.

As an example, we provide the CLG version of the
Complementation Principle, which given its formulation has
the direct consequence of performing gap introduction
when some complement is not found:

Complementation Principle

[head._dtr = [_],compl dtrs= [_ 1]- >
merge(dtrs'head-dtr'syn'l°c'c°mpis'
dtrs.compl_dtrs,
syn.bind.slash)

where merge is a user relation defined as follows:

merge(Z,[l,Z);
merge(X:L1,X:L2,X.syn.bind.slash + R 1)

< - merge(L 1 ,L2,R 1);
merge(X:L1,Y:L2,Y:R) <_ merge(L1,Y:L2,R);

The slash is computed by merge by concatenating thc
slashes of each of the complement daughters with thosc
elements of the compls list for which there is no matching
daughter.

4. Implementation

The CLG(2) parser has been implemented in Prolog.
A CLG(2) grammar is compiled by successively compiling
type declarations, partial descriptions of phrasal signs,
principles, user defined relations and lexical information.

This implementation, uses a simple bottom-up parser
with backtracking and handles constraints using ~ln
extension of the ideas described in Damas &.Varile (1989).
The parser is implemented as a predicate of the form

derive(Tree,[Head I Input],Output) :-
complete(Head,Input,Output,Tree).

complete(Tree,Input,Input,Tree).

complete(FirstDaughter,Input,Output,Tree) :.
apply_rules(FirstDaughter,Input,Output 1,Tree 1),

complete(Treel,Output 1,Output,Tree).

where the apply_rules predicate is produced by
compiling each grammar rule into a clause for this
predicate, which attempts to apply the rule. These clauses
also apply all the principles, which are partially evaluated at
compile time. This technique usually results in verifying only
those principles which are relevant for the particular rule. In
the actual implementation the amount of backtracking
involved is reduced by introducing other clauses for the
complete predicate which handle rules known to have ~
fLxed number of daughters.

Constraints are handled in a way similar to the one
described in Damas & Varile (1989) by adding two extr~
arguments to each of the predicates mentioned above.
These arguments contain a list of constraints at clause entry
and exit, respectively. From time to time a rewriting process
is applied to the list of constraints which may result into
failure or new set of simpler constraints. Note that this
rewriting process may also cause variable instantiation as ~
side effect.

Constraints imposed by principles are implemented by
a call to a predicate addconstraint which first attempts to
decide if the constraint holds or not. If not enough
information is available at that time for that purpose the
constraint is added to the list of unresolved constraints for
latter re-evaluation.

However, the recursively defined constraints (e.g. the
user defined relations) have a special treatment.
Backtracking is allowed in its application, but some
restrictions are imposed, namely they are applied only when
sufficiently instantiated to insure that they finitely fail. In
particular, for each recursively defined constraint, we must

4 10

specify which are the minimum conditions of application
(for instance which arguments may not be undefined).

Constraints on complex objects require some care on
their interpretation and implementation. Consider, for
instance, an object description such as

[syn.loeal.subj <NP1 >
syn.loeal.compls <v[compls < >,comp for] I

v[subj < NP 1 >,compls < >,inf] >]].

which is represented internally as a complex term
containing only variables plus a constraint on those
variables. Note that, if a variable that refers to a atomic
value is envolved in a simple equality constraint (or
conjunction o f) that can be evaluated in compile time.

For the above example we could have (here in the user
language, for simplicity) objeet(Spec,Const), and if in Spec
we identify

syn.local.subj = NP1
syn.local.compls = CP1
CP 1.syn.loeal.head.maj =CM
CP 1.syn.local.compls = CP2
CPl.syn.loeal.subj = NP2
CPl.syn.loeal.head.form = F1
CP 1.syn.loeal.head.comp = CO

then

Const =(CM = v & CP2 = [] &
((NP2 = NP1 & F1 = int') I CO = for)).

Final Remarks

It is clear that the highly structured nature of CLG(2)
grammatical descriptions has a number of advantages with
respect to more classical approaches, amongst which not
least the possibility to express powerful generalization about
languages in a highly structured way while maintaining the
necessaiy capability for expressing exceptions.

A drawback of this approach is however that while it is
possible to give a clean and simple formal semantics to each
individual component, the formalization of the complete
grammatical system is certainly more complex than
desirable and, as a consequence, the possibility to achieve an
efficient implementation is unnecessarily complicated.

We are currently investigating the possibility of making
the type theory underlying the Global Declarations a first
class citizen, namely being the unifying formal framework
for all the grammar components (at least for all non iexical
information).

By this we mean that a type declaration system in the
form of an algebra of sorts can cover essentially the
expressive requirements of our current formalism while
providing a simple and uniform formal framework for the
whole.

Acknowledgement

This work has been carried out within the framework
of the Eurotra R&D programme for machine translation
financed by the European Communities. We are especially
grateful to a number of colleagues for their useful
comments on earlier versions of CLG(n).

Bibliographical References

Chomsky, N. (1986). Barriers, MIT Press, Cambridge.

Chomsky, N. & H. Lasnik (1977). "Filters and control",
Linguistic Inquiry, 8, 425-504.

Damas, L. & G.B. Varile (1989). CLG: A grammar
formalism based on constraint resolution, in
Proceedings of EPIA 1989, E.M. Morgado & J.P.
Martins (eds.), Lecture Notes in Artificial Intelligence
390, Springer Verlag.

Gazdar, G., E. Klein, G.K. PuUum & I.A. Sag (1985).
Generalized Phrase Structure Grammar, Basil
Blaekwell, Oxford.

Jaffar, J., J-L. Lassez (1988). From unification to
constraints, in Logic Programming 1987, G. Gods & J.
Hartmanis (eds.) Lecture Notes in Computer Sciencc
315, Springer Verlag, 1-18.

Johnson, R. & M. Rosner (1989). A rich environment
for experimentation with unification grammars, in
Proceedings of the fourth conference of the European
Chapter of the ACL, ACL, 182-189.

Karttunen L. (1984). Features and values in Proceeding
of COLING-84, 28-33.

Kasper, R. (1987). A unification method for disjunctive
feature description, in ACL Proceedings, 24th annual
meeting, ACL, 235-242.

Moens, M. J. Calder, E. Klein, M. Reape, H. Zeevat
(1989). Expressing generalizations in unification-based
formalisms, in Proceedings of the fourth ex)nference of
the European Chapter of the ACL, ACL, 174-181.

Moshier M.D. & W.C. Rounds (1987). A logic for
partially specified data structures in ACM symposium
on the principles of programming languagcs,
Association for Computing Machinery.

Pereira, F.C.N. (1987). Grammars and logics of partial
information,. Technical Note 420, SRI International,
Menlo Park.

Perlmutter, D. (1971). Deep and Surface Cxmstraints, in
Syntax, Holt, Rinehart & Winston, New York.

Pollard, CJ. (1985). "Phrase structure grammar without
metarules", in J. Goldberg, S . MacKaye & M.T.
Wescoat, eds., Proceedings of the West Coast
Conference on Formal Linguistics, 4, Stanford
Linguistics Association, Stanford, 246-261.

11 5

Pollard, C..I. (1989). "The syntax-semantics interface in a
unification-based phrase structure grammar", in S.
Busemann, Ch. Hauensehild & C.Umbach, eds., Views
of the Syntax/Semantics Interface, KIT Report 74,
Technische Universitaet Berlin, Berlin.

Pollard, CJ. & I.A. Sag (1987). Information-Based
Syntax and Semantics, CSLI Lecture Notes Series,
CSLI, Stanford.

Rounds, W.C. & R. Kasper (1986). A complete logical
calculus for record structures representing linguistic
information, in Symposium on logic in computer
science, IEEE Computer Society.

Sag, I. & C. Pollard (1988). A semantic theory of
obligatory control. MS.

Warner, A.R. (1989). "Multiple heads and minor
categories in generalized phrase structure grammar",
Linguistics, 27, 179-205.

6 12

