
The translation of constitutent structure

into connectionist networks

Helmut SCHNELLE and Rol l WILKENS
Sprachwissenschaftliches Institut

Ruhr Universitat
D-4630 Bochum 1

Germany

grammars

Abstract: Description of a connectionist implementation of an
Earley parser.

1. Introduction

We are going to describe a connectivity structure which is a
quasi neuronal representation of the computational knowledge
usually presented in terms of rules and algorithms. Our system
provide.,; the proof that connectionist networks can represent
cognitive knowledge of high complexity a fact that has
recently been questioned by critics of connectionism (cp.
FODOR and PYLYSHYN 1988). However, our system is of
the variety of an implementational connectionism imple-
menting systems, whose computational knowledge is already
defined by rules - it is not a system which generates new
knowledge structures through learning.

More specifically, our system implements parsers for
constituent structure grammars according to Earley's rules in
terms of networks of Boolean operators. The implementation
is automatic, i.e. executed by a compi-ler which automatically
translates a grammar into a set of Boolean equations. Our
connectionist net is thus like a special purpose parser network
defined by the Boolean equations in the same way as any
costums specific circuit definition. We shall now explain the
essential ideas which characterize the parallel (connectionist)
networks compiled from constituent structure rule systems
through parallelizing Earley's algorithm. The formal
def'mifions of the compilation algorittun and of the definition
of the resulting connectionist network can be found in
SCHNELLE and DOUST (1989).

In the following paragraphs our essential ideas will be
presented by means of a simple example, the system of
constituent structure rules S °-> aA, S --> Ab, A --> aa, A --
> a to be applied in a parsing process on the string aab.

2. Earley's Representation

Let us first summarize the essentials of Earley's algo-rithm.
It operates in two stages: In the first stage, a parse list is
computed and in the second stage the correct parse is filtered
out from the parse list. For the string aab the information
contained in the parse list can be represented as in figure 1 by a
superposition of possible sub-trees found applicable in going
through the string from left to fight. The correct parse "filtered
out" is represented in figure 2.

Earley uses another way of representing parse lists and
correct parses. He represents them by means of dotted rule
symbols and dominance scope numbers entered in ists, one for
each input interval. The parse list containing the same
information given in the superposifion of the trees is as in
figure 3. The meaning of such a list should be clear: The

S S

a a b

S

A

a a b

Figure 1: Figure 2:
Parse list tree Correct parse tree

symbols of the input string represented at the bottom exist in
the intervals <0,1>, <1,2>,<2,3>. At each completed inter-
val, the rules which have found application so far are entered in
the corresponding list.s, together with a number indicating the
number of intervals dominated by the head symbol of the rule.

List 0 List 1 List 2 List 3

<S->aA., 2>
<A->aa. , 2>

<A->a., 1> <A->a. ,1> <S->Ab., 3>
a a b

Figure 3. Parse list information with completed dotted rule
symbols according to Earley

Let us indicate a feature which is essential in view of our
connectionist implementation: Each piece of information in
Earley's system is in fact a triple

< list number, dotted symbol, length of dominance >.
The representation in figure 3 is, however, not yet complete as
a representation of the parse list. In fact, the parsing process as
def'med by Earley makes use of further dotted symbols derived
from the rules of the underlying constituent struture, namely
all dotted rule symbols which can be obtained by placing
exactly one dot between symbols to the right of the arrow. The
system of dotted rule symbols for our grammar is presented in
figure 4. All dotted rule symbols are needed for controlling the
parse process.

S - > a A . , S - > a . A , S - > . a A ,
S->Ab. , S - > A . b , S - > . A b
A - > a a . , A - > a . a , A - > . a a ,
A - > . a , A - > . a
.a . , .b . , . S .

Figure 4 The set of dotted rule symbols derived from the
example grammar

1 53

The cornplete parse is computed list by list from left to right
as the input string is read in. In principle many dotted rule
symbols in the hst could be placed simulta-nously but only in
a parallel system like the one we shall present, not in Earley's
completely sequential implementation on a yon Neumann
machine.

3.Our representation

How are we going to implement Earley's algorithm in a
cormectionist net? We follow the localist principle of
connectionist implementation: One concept - one unit, but we
apply it to the triples in Earley's represen-tation: One triple -
one unit. This principle applied to our example of three
intervals and, correspondingly, to 3 as the longest possible
dominance and to 14 dotted rules (as eninnerated in figure 4)
yields 3"14"3 = 126 units. In general, a system with n dotted
rules and length of input string 1 would have n*l 2 units. The
connectivities between the units must be defined in such a way
that they generate activity patterns over the three-dimensional
system of units (each member of a triple indi- eating a
dimension), such that a unit becomes active (1) exactly when
the corresponding triple is specified in the Earley algorithm.
All other units not specified in the algorithm must remain
inactive (0). The parse list given in figure 3 would be
represented by the activity pattern over the units in a three
dimensional space indicated in figure 5.

/ ' ~ -¢ Ab.

.i-~ aa.

3 2

/
/!S * A b .

1

./

/)S -~ Ab.

/ b.

Figure 5. Terminal stage of parse list generation (for
terminal dotted rules only). The arrows show how a pattern of
activity in this system can be used to represent the correct
parse tree given in figure 2.

The repr(mentation outlined so far seems to have an essential
disadvantage: The space built by the units which represent the
parse hst structures seems to be unlimited, since it depends on
the length of the input string. This is indeed the case.
However, the structurally essential feature is not the space used
for representing the complete parse list structure but only the
space in wlfich the process of generating the parse list structure
is executed. Our system can indeed be subdivided archi-
tectonically into the representation spaces - one for the parse
list, one for the correct parse, and a limited space containing
the units which generate the representations. It is only this
latter space - comprising grammar units (0,Y,0),(-1,Y,0) and
control units (0,Y,-1).(-I,Y,-1) for all dotted rules Y - which
has an inhomogenous connectivity structure whose specificity
is determined by the constituent structure rule system from
which it is compiled. Obvviously, this space of inhomogenous
connectivity is limited in our implementation and is 2"2"n
(where n is the number of dotted rules).

In this space 2*n units are control bit units whereas 2*n
units correspond directly to dotted rule symbols of the original
grammar such that their connectivities represent the logical and
procedural interdependencies between these symbols in Earley's
algorithm. The extension of this space is thus independent of
the length of the input string to be parsed.

-Q

r ",' / o

i ,*~?~:" ..'.L-/?' <" :,:i~' ~'] :'."::'~
Z '~" ~ii": :." .."5 ." :- ".'.i~)..::.:':':' 2

, ~ :: :: . : .: :. ::::::::::::::::::::: 4
, ~: :::: :. :~)~:.:.:.:.:.:.
,)): :. :: ::: :: :: :::::::::::::::::::: 5

m ', ':: ::':'::'i
I / i : : : :::: : :Ii!!!i:i:!:i:!:!. / 7

,, ::iili :: :: ::: :: :: ===================== 8

I , i:: ::i ! ii
i! :: :. : : : . : ::::::::::::::::::::: ,o

:,-,iiii i i::ii iiiii:i:i i -

1 wH' ii::i:: i ,3

" - P 1

Figure 6. The architecture of the connectionist parser
system. (Parse list representation corresponding to figures 1 in
space HI and correct parse representation corresponding to
figure 2 in space 4. Input representations in spaces I arid II)

In contrast to this, the units in the representation space have
a homogenous connectivity among them, which is completely
independent of the gramrnar implemented. Instead, this
connectivity corresponds to the circuit connectivity of a shift
register implemented as an integrated circuit.

The overall architecture which derives from our automatic
compilation process applied to a given constituent structure is
now given as in figure 6. Space I and H contain the
representations of the input string, the units in space HI
represent the parse list under construction and after completion,

I
[

1

b-

.A A.

i

'

,-~I 2

J i

J

- - 12 a

-~-- 13 b

.5.

$->nA.

5-~a.A

S->.=A

S->Ab:

S -> A.b

S->.Ab

7 A ->o o.

8 A->o.a

9 A->.oa

I 0 A -> a.

11 A->.a

Figure 7 The internal connectivity of the units in the
processing space derived from our simple grammar

54 2

space IV represents the same for the correct parse. Space IX
(resp. X) is the inhomogenous processing space whose
connectivity corresponds strictly to the structure of the
grammar from which it is compiled.

The inhomogenous internal connectivity within space IX is
represented in figure 7. The units represented are also connected
to the neighbouring units in the representation space 1II and to
control bits which determine the shifting processes in the
representation space.

8 -1
~ 3

~ / x 7

/ X -
~'~" L J ; ; zk -

_ , / / u _ /

8 -t -2

-2 -~1

/1 I~.,M /

/ - I / i t

/
X - ~ / /

/
/

/

-4

-~ ,A
S-.~q

~ ~ S-~.b

A-~ .~
A-.li
A-~I.
A-.I

-3 -4

Figure 8 The initial stage of processing. The activity of a
control bit unit (0, .S. ,-1) forces the parser to shift the input
string in the next step

4. An outline of the cormectionist parsing process

The computational process is as follows: Initially the input
string is in space I (or is transferred to this space from a word
recognizer array analysing acoustic or graphic input). The first
input symbol is read into the processing space - more correctly
into a connected buffer place of space VII, i.e. the unit (-2, .a.,
1) is activated and simultanously the unit (0, .S., O) - i. e. the
initializer unit. (Cp. figure 8)

.S.

~-~q.

~-¢~.

S-A.b
S-,¢~
~lmo

ff-l.

1 8

7/ ! ".

/

V
V
V
V
V
V ,
V
v:
,

-1 -2 -3

i ~ - / t l . ~ .
~-~.A

5-.aft

A -a ,~1

-2 -3

Figure 9 An intermediate stage occurring after reading in the
first symbol

Due to the connectivities in position 0 (i.e. in space IX) the
units (0, S -> .aA , 0) and (0, S -> .Ab, 0) become
simuhanously active, and then, depending on them,
simultanously the units (0, A-> .aa, 0) and (0, A-> .a, 0).
To scan-in the the first terminal the complete pattern of
activity has to be shifted one step to the left with the exception
of the activation of unit (-2..t. ,1). The activity of this unit ist
transferred to the unit (0, .t. , 1). (This is done because the
units located at X=-I are used as a temporary buffer by the
parser.) Figure 9 shows the state after this shifting process has
been carried out. But simultanously the parser has to perform
the computation of the parse list for the terminal just read.
Since the units (O, A ->.a,0), (0,A ->.aa,0) and (0,S->.aA,0)
were active while the terminal "a" was read, the parser must
activate the units (0,A->a.,1), (0,A->a.a,1) and (0,S->a.A,1).
And the activity of the unit (0,A->a.,1) forces the unit (0,
S->A.b,1) to become active. These actions take place according
to the cormectivifies in space IX of figure 6 represented in
figure 7.

It should be clear by now how, in principle, the parsing
process develops over the connectionist space until the final
stage represented schematically in figure 5 is reached. It should
also be clear, in principle, how the process of generating the
complete parse is produced in space IV through the operation
of the units in space X. They determine the "filtering out" of
certain unconfirmed parse tree information in the parse list in a
process of stepwise information shift from III to IV. We shall
not discuss tiffs process here.

5. Perspectives for further research

From a linguistic point of view, it is important to be able to
generate connectionist networks for more complicated
grammars, in particular for tmification based grammars and for
principles and parameters based approaches such as those
recently developed by Chomsky. So far we have been able to
define the appropriate representation space - i.e. the extension
of our spaces HI and IV - and to develop first ideas about the
connectivities derived from symbolic definitions of
grammatical properties, i.e. the structures in our spaces IX and
X. We are optimistic about the possibilities of translating any
unification based formalism working with feature structures
into a corresponding cormectionist network.

References

Feldman, J.A.(1988) Structured neural networks in nature
and in computer science. In: Eckmiller, R. v.d. Maisburg, Chr.
Neural Computers, Berlin etc.: Springer

Fodor, J.A., Py|yshyn, Z.W. (1988) Cormectionism and
cognitive architecture, A critical analysis, Cognition 28:3 - 71

Schnelle, H., Doust, R, (1990)) A net-linguistic chart
parser, In: Reilly, N., Sharkey, N.E. Connectionist
Approaches to Languages, Vol.I, Amsterdam: North-Holland

3 55

