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A b s t r a c t  

This paper describes a method to parse and understand a 
"noisy" sentence that  possibly includes errors caused by a 
speech recognition device. Our parser  is connected to a 
speech recognition device which takes  a cont inuous ly  
spoken sentence in Japanese and produces a sequence of 
phonemes. The output sequence of phonemes can quite 
possibly include errors: altered phonemes, extra phonemes 
and missing phonemes. T h e  task is to parse the noisy 
phoneme sequence and unders tand the meaning  of the 
original input  sentence, given an augmented context-free 
grammar whose terminal  symbols are phonemes. A very 
efficient parsing method is required, as the task's search 
space is much l a rge r  than  tha t  of pa rs ing  un-no i sy  
sentences. We adopt the generalized LR parsing algorithm, 
and a certain scoring scheme to select the most l ike ly  
sentence o~t of multiple sentence candidates. The use of a 
confusion matrix, which is created in advance by analyzing 
a large set of input/output pairs, is discussed to improve the 
scoring accuracy. The system has been in tegra ted  into 
CMU's knowledge-based machine translation system. 

1. I n t roduc t i on  

There have~ been a few at tempts to in tegrate  a speech 
recognition device with a natural  language understanding 
system. Ita~,es et. al /Hayes86/ adopted the technique of 
caseframe instantiation to parse a continuously spoken 
English sentence in the form of a word lattice (a set of word 
candidates hypothesized by a speech recognition module) 
and produce a frame representation of the utterance. Poesio 
and  Rul lemt  /Poes io  1987/ s u g g e s t e d  a m o d i f i e d  
implementation of the caseframe parsing to parse a word 
lat t ice in :italian. Lee et. al /Lee 1987/ developed a 
prototype Chinese (Mandarin) dictat ion machine which 
takes a syllable lattice (a set of syllables, such as [guo-2] 
and [tieng-:l], hypothesized by a speech recognition module) 
and produces a Chinese character sequence which is both 
syntactically and semantically sound. 

In this paper, we try to parse a Japanese utterance in the 
form of a sequence of phonemes.1 Our speech recognition 
device, which is a high-speed speaker-independent system 
developed by Matsushita Research Ins t i tu te /Mori i  1985/, 
/Hiraoka 1986/ takes a continuous speech utterance,  for 

1. Phonemes (e.g./g],/ed, Is/, etc.) are even lower level units than 
syllables. 
2. We distinguish noisy from ill-formed. The former is due to 
recognition device errors, while the latter is due to human users. 

example "megaitai" ("I have a pain in my eye."), from a 
microphone and produces a noisy phoneme sequence such 
as "ebaitaai."2 

The speech recognition device does not have any syntactic 
or semantic knowledge. More input/output examples of the 
speech device are presented in Figure 1-1. 

< correct sequence > <recognition output> 

igarnukamukasuru ---> igangukamukusjuru 

igamukamonkasjuru 

kubigakowabaqteiru ---> kurigakoogateiru 

azubigakoabaqciiru 

atamagaitai ---:> otomogaitai 

atamogeitain 

Figure l -1 :  Input and Output of Recognition Device 

Note tha t  the speech recognit ion device produces  a 
phoneme sequence, not a phoneme lattice; there are no 
other phoneme candidates avai lable  as al ternates .  We 
must make the best guess based solely on the phoneme 
sequence generated by the speech device. Errors caused by 
the speech device can be classified into three groups: 

• A l t e r ed  Phonemes  -- Phonemes recognized incorrectly. 
The second phoneme /b/ in "eba i t aa i "  is an a l t e r ed  
phoneme, for example. 

• Miss ing  P h o n e m e s  -- Phonemes which are actual ly  
spoken but  not recognized by the device. The first phoneme 
/nd in "megaitai", for example, is a missing phoneme. 

• E x t r a  P h o n e m e s  -- Phonemes recognized by the device 
which are not actually spoken. The penultimate phoneme 
/a/ in  "ebaitaai", for example, is an extra phoneme. 

To cope with these problems, we need: 

• A very efficient parsing algorithm, as our task requires 
much more search than  convent ional  typed sentence 
parsing. And 

• A good scoring scheme, to select the most likely sentence 
out of multiple candidates. 

In sections 2 and 3, we describe the parsing algorithm and 
the scoring schelhe, respectively. 

2. The  P a r s i n g  A lgo r i t hm 

The grammar we are using is an Augmented Context-Free 
Grammar whose terminal symbols are phonemes ra ther  
than words. That is, the grammar includes rules like 
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N o u n - - > w a t a s i  

instead of 

Noun -- > 'watas i '  

The grammar has •been developed pr imar i ly  for CMU's 
knowledge-based machine t r ans l a t ion  sys tem /Tomita  
1987/and consists of more than 2000 rules including lexical 
rules like One above.3 

2.1. Genera l i zed  LR P a r s i n g  

Tomita /Tomita 1985/, /Tomita  1987b/ in t roduced the 
Generalized LR Parsing Algor i thm for A u g m e n t e d  
Context-Free Grammars, which• can ingeniously handle 
nondeterminism and ambiguity with a graph-structured 

• stack. Tomita also showed that  i t  can be used for a word 
lattice parsing f romita  1986/. Our algorithm here is based 
on Tomita's parsing algorithm. 

A very simple example grammar is shown in Figure 2-1, 
and its LR parsing table, compiled automatically from the 
grammar, is shown in Figure 2-2. 

(1) S - - >  NP PD 
(2) S - - >  N 
(3) S - - >  PD 
(4) N P - - >  N P 
(5) N - - >  m e 
(6) N - - >  i 
(7) P - - >  g a 
(8) PD - - >  i t a i 

F i g u r e  2-1: An Example Grammar 

State a e m g t $ N NP P PD S 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 s4 s5 2 3 1 6 
1 r3 
2 s7,r2 8 
3 s9 10 
4 r6 s11,r6 
5 s12 
6 acc 
7 s13 
8 r4 
9 

10 
11 s14 
12 
13 r7 
14 s15 
15 

s l l  
r l  

r5 r5 

r8 

Figu re  2-2: LR Parsing Table with Multiple Entries 

Grammar symbols of lower case characters are terminals. 
The Generalized LR parsing algorithm is a table driven 
shift-reduce parsing algorithm that can handle arbitrary 
context-free grammars in polynomial time. Entries "s n" in 
the action table (the left part of the table) indicate the 

3. The run-time grammar, which contains both syntax and 
semantics, is compiled automatically from more abstract 
formalisms: the Functional Grammar formalism for syntax and 
frame representation for semantics. For more discussions on this 
UniversaIParser Architecture, see fromita 1987a]. 

action "shift one word f rominput  buffer onto the stack and 
go to state n". Entries "r n" indicate the action "reduce 
constituents on the stack using rule n". The entry "acc" 
stands for the action "accept", and blank spaces represent 
"error". The goto table (the right part  of the table) decides 
to which state the parser should go after a reduce action. 
While the encountered entry has only one action, parsing 
proceeds exactly the same way as LR parsers, which are 
often used in compilers of programming languages. When 
there are multiple actions in one entry called conflicts, all  
the actions are executed in para l le l  with the graph-  
structured stack. We do not describe the Generalized LR 
parsing algorithm in greater detail, referring the reader to 
/Tomita 1985/,/Tomita 1986/, f romita  1987b/. 

2.2. Hand l ing  a l te red ,  ex t ra ,  and  miss ing  p h o n e m e s  

To cope with altered, extra and missing phonemes, the 
parser must  consider these errors as i t  parses an input  from 
left to right. While the algorithm described in the previous 
subsectio n cannot handle these noisy phenomena, i t  is well 
suited to consider many possibilities at  the same time, and 
therefore, i t  can be relatively easily modified to handle  
such noisy phenomena as the following. 

• Al tered  p h o n e m e s  -- Each phoneme in a phoneme 
sequence may have been altered and thus may be incorrect. 
The parser has to consider all these possibilities. We can 
create a phoneme lattice dynamically by placing alternate 
phoneme candidates in the same location a s  the original 
phoneme. Each possibility is then explored by each branch 
of the parser, Not all phonemes can be altered to any other 
phoneme~ For example, whi le /o /can  be mis-recognized as 
/ u / , / i / c a n  never be mis-recognized as /o / .  This kind of 
information can be obtained from a confusion ma t r ix ,  
which we shal l  discuss in the next  section. Wi th  the 
confusion matrix,  the parser does not have to exhaustively 
create al ternate phoneme candidates.  

• E x t r a  p h o n e m e s  -- Each phoneme in a phoneme 
sequence may be an extra, and the parser has to consider 
these possibilities. We have one branch of the parser  
consider  an extra  phoneme by s imply  i g n o r i n g  the 
phoneme. The parser assumes at  most one extra phoneme 
can exist between two real phonemes, and we have found 
the assumption quite reasonable and safe. 

• Miss ing  p h o n e m e s  -- Missing phonemes can be handled 
by inserting possible missing phonemes between two real  
phonemes. The parser assumes that  at  most one phoneme 
can be missing between two real phonemes. 

2.3. A n  E x a m p l e  

In this subsection, we present a sample trace of the parser. 
Here we use the grammar in Figure 2-1 and the LR table in 
Figure 2-2 to try to parse the phoneme sequence "ebaitaai" 
r e p r e s e n t e d  in F i g u r e  2-3. (The r i g h t  sequence  is  
"megaitai" which means "I have a pain in my eye.") 

T.i r I,l ,, : J, 
Figure 2-3: An input  sequence ofphonemes 
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In this example we make the following asumptions for 
altered and Z aissing phonemes. 

• / i /may possibly be mis-recognized as/e/. 

• /e/may posvibly be mis-recognized as/a/.  

. /g /may possibly be mis-recognized as/b/. 

• / m / m a y  be missed in the output sequence with a higher 
probability. 

Now we begin parsing: first an initial  state 0 is created. 
The action table indicates that  the initial  state is expecting 
"m" and 'T'  (Figure 2-4). Since the parsing proceeds strictly 
from left to right, the parser looks for the missing phoneme 
candidates between the first time frame 1 - 2. (We will use 
the term T1, T2 .... for representing the time 1, time 2 .... in 
Figure 2-3.) Only the missing phoneme "m" in this group is 
appl icable  to s t a t e  0. The new s ta te  n u m b e r  5 is  
determined from the action table(Figure 2-5). 

The next group of phonemes between T2 and T3 consists of 
the %" phoneme in the phoneme sequence and the altered 
candidate phonemes of "e". In  this group %" is expected by 
state 5 and 'T' is expected by state 0(Figure 2-6). After "e" 
is taken, the new state is 12, which is ready for the action 
"reduce 5". Thus, using the rule 5(N -- > m e), we reduce 
the phonemes "m e" into N. From s ta t e  0 wi th  the  
nonterminal N, state 2 is determined from the goto table. 
The action table, then, indicates that  state 2 has a multiple 
entry, i.e., state 2 is expecting "g" and ready for the reduce 
action(Figure 2-7). Thus, we reduce the nonterminal N into 
S by rule 2(S - ->  N), and the new state number  6 is 
determined fl'om the goto table(Figure  2-8). The action 
table indicates that  state 6 is an accept state, which means 

that  "m e" is a successful parse. But only the first phoneme 
"e" of the input sequence "ebaitaai" is consumed at  this 
point.  Thus we discard  th is  pa r se  by the fo l lowing 
constraint• 

[Cons t ra in t  1] The successful parse should consume the 
phonemes at  least  unti l  the phoneme just  before the end of 
the input  sequence. 

Note that  only the parse S in Figure 2-8 is ignored and that 
the nonterminal N in Figure 2-7 is alive. 

Now we return to the Figure 2-6 and continue the shift 
action of 'T' .  After  "i" is t aken ,  the new s ta t e  4 is 
determined from the action table. This state has a multiple 
entry, i.e. state 4 is expecting "t" and ready for the reduce 
action. Thus we reduce "i" into N by rule 6. Here we use the 
local a m b i g u i t y  p a c k i n g  technique, because the reduced 
nonterminal is the same, the start ing state is 0 for both, 
and the new state is 2 for both. Thus we do not create the 
new nonterminal N. 

Now we go on to the next group of phonemes between T3 
and T4. Only "m" is applied to the init ial  state(Figure 2-9). 

The next group of phonemes between T4 and T5 has one 
applicable phoneme, i.e. an altered phoneme candidate "g" 
to state 2. After "g" is taken, the new state 7 is determined 
from the action table (Figure 2-10). 

The next group of phonemes between T5 and T6 has only 
one applicable phoneme; a missing phoneme candidate "m" 
to stateO. Here we can introduce another constraint which 
discards this partial-parse. 

[Cons t ra in t  2] After consuming two phonemes of the input 
sequence, no phonemes can be applied to the initial  state 0. 
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This constraint is natura l  because i t  is unlikely tha t  more 
than  two phonemes  are  recorded  before the  a c t u a l  
beginning phoneme for our speech recognition device. 

The next group of phonemes between T6 and T7 has two 
applicable phonemes, i.e. the output phoneme "a" to state 7 
and the altered phoneme candidate "e" to state 5. After "a" 
is taken, the new state 7 is  ready for the reduce action. 
Thus, we reduce "g a" into P by rule 7 (Figure 2-11). The 
new state 8 is determined by the goto table, and is also 
ready for the reduce action. Thus we reduce "N P" into N P  
by rule 4 (Figure 2-12). The new state is 3. In applying "e", 
there are two "state 2"s: one is "m" between T1 and T2; the 
other one is "m" between T3 and T4.'Here we can introduce 
a third constraint which discards the former partial-parse. 

[Cons t r a in t  3] A shift  action is not applied when ,the 
d i s t a n c e  b e t w e e n  the  p h o n e m e  a n d  the  a p p l i e d  
(non)terminal is more than 4. (This distance contains at  
least one real phoneme.) 

Figure 2-13 shows the situation after "e" is applied. 

The parsing continues in this way, and the final situation 
is shown in Figure 2-14. As a result, the parser finds two 
successful parses; "megaitai" and "igaitai"(which means "I 
have a stomachache.") 

3. Scor ing  and  the Confus ion  Mat r ix  

There are two main reasons why we want  to score each 
parse: first, to prune the search space by d i scard ing  
branches of the parse whose score is hopelessly low; second, 
to select  the best sentence out of multiple candidates by 
comparing their  scores. Branches  of the  parse  which 
consider fewer altered/extra/missing phonemes should be 
given higher  scores• Wheneve r  a b ranch  of the parse  
handles  an a l te red /ex t ra /miss ing  phoneme, a specific 
penal ty  is given to the branch. Scoring accuracy can 
improve with the confusion matrix.  

Figure 3-1 shows a part  of the confusion matr ix  made by 
the manufacturer of the recognition device from the large 
word data. This matr ix tells us, for example, that  if  the 
phoneme /a/ is inputed,  then the device recognizes i t  
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327 176 564 512 290 864 212 

rate of missing phonemes 

(ii') number of extra phonemes 
total number of samples 

Figure 3. I: A Confusion Matrix (portion) 

correctly 93,8% of the time; mls-recognizes i t  as/o/1.1% of 
the time, as /u /1 .3% of the time, and so on. The column (I) 
says that  the input  is missed 0.9% of the time. 

Conversely, if  the phoneme/o/is  generated from the device, 
there is a slight chance that  the original input  was /a / , /u /  
and/w/, respectively, but  no chance that  the original input  
was/ i / , /e /or / j / .  The probability of the original input  being 
/a/ is much higher  than being /w/. Thus,  an a l te red  
phoneme/w/should  be given a more severe penalty than 
/a/. A score for altered phonemes can be obtained in this 
way, missing phonemes should be Even  a negative score, 
and extra phonemes should be given a zero or a negative 
score. With this scoring a score of a partial parse is 
calculated by summing up the score of each constituent. 
Therefore, themore likely parse has a higher score. 

Two methods have been adopted to prune partial parses by 
a score: 

• Discarding the low-score shift-waiting branches when a 
phoneme is applied. 

• Discarding the low-score branches in a local ambiguity 
packing. 

The former method is very effective when strictly applied. 



The confasion matrix only shows us the phoneme-to- 
phoneme f;ransition, therefore a broader unit transition 
should also be considered, such as a tendency for the/w/: 
phoneme ia 'owa' or 'owo' to be missed or for the very first 
/h/ sound of an input to be missed, and the frequent 
transformation to 'h@' of the 'su' sound in 'desuka.' 

4. Conclu,,dons 

The parser has been implemented in Common Lisp on a 
Symbolics Lisp Machine and is being integrated into 
CMU's knowledge-based machine translation system to 
accept a spoken Japanese sentence in the domain of doctor- 
patient conversation and generate sentences in English, 
German and Japanese. 

The parser has been tested against five persons. Each 
person pronounced 27 sentences in which long sentences 
are not included due to the limits of the speech recognition 
device. 84 % of the inputs are parsed correctly and the right 
sentence appears as the best-score candidate in 88 % out of 
the correct~ly parsed inputs. The average parsing time for 
one sentence is 82 seconds. 
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Appendix. Sample Runs 

Two actual outputs of the parser are shown on the next 
page. The first input phoneme sequence is "ebaitaai" and 
the correct sequence is "megaitai"(which is the same 
sentence as in the example in Section 2.), which is 
produced as the top-score sentence of all parses. The second 
input sequence is "kurigakoogateiru =" and the correct 
sequence is "kubigakowabaqteiru" which means "I have a 
stiff neck." The frame-structure output after each parse is 
the meaning of the sentence. This meaning is extracted in 
the same way the CMU's machine translation system does. 
Namely, ~;ach rule of the context free grammar has a 
function which is executed each time the rule is applied (i.e. 
when the reduce action occurs.) If tale function returns nil, 
this partial parse is discarded because the parse is not 
correct semantically. If the function returns a non-nil 
value, the value becomes the semantic of the right-hand- 
side of the rule and is forwarded to the left-hand-side 
nonterminal symbol. The details are described in fromita 
19870/. 
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Command: input 
=ebaitaa~' 
Co~nand: (parse-s) 
Evaluation of (PRRSE) took 31o522721 seconds of elapsed t i ns  
inoludin9 7.183 seconds ua i t in9 fo r  the disk fo r  39 fau l t s .  
245,861 li~t. 51,644 structure, 22,287 stack uorda oonaed in HORKIMG-BTORRGE-RRER. 
204 structure words consad in *MRMESPRCE-OOJECT-RRER*. 

7 parsee Found. 

1: (185) M<l-2#-lO> E<2-3#38> G<4-5#1O) R<6-7#32> I<B-9#OO> T<IO-11#31> R<12-13#32> I<16-17#3g> 

((MOOD ((ROOT DEC))) (SEM *HRVE-R-PRIM1802) (OBJ ((:NH -)  (ORSE OR) (SEM *EYE) (ROOT ME))) (CRUBRTIUE - )  (OBJ-CRBE OR) 
(SUBJ-CRSE OR) (SUBCRT 2RRG-GR) (COT RDJ) (TIME ((ROOT PRESEMT))) (ROOT ITRI)) 

2: (172) 1<2-3#7> O(4-5#10> R<6-?#32> I<8-9U39> T<1@-11#31> R<12-13#32> I<16-1?#50> 

((MOOD ((ROOT DEC))) (SEM *HRUE-R-PRIM810) (OBJ ((:NH -)  (CRSE OR) (SEM *STOMROH) (ROOT I ) ) )  (ORUSRTIUE -)  (OBJ-CROE OR) 
(SUBJ-ORSE OR) (SUBCRT 2RRG-fiR) (COT RDJ) (TIME ((ROOT PRESENT))) (ROOT ITRI)) 

3: (115) I<2-3#?> T<4-5#1> R<6mT#32> I<8-9#30> K<IO-11#13> R<12-13#32> 

((SEM *HRVE-R-PRIM930) (TIME ((ROOT (*OR~ PRESEMT FUTURE)))) (MOOD ((ROOT gUE8))) (OBJ-CRBE SR) (8UBJ-OROE OR) (SUBCRT 2RRG-GR) 
(CRT RDJ) (ROOT ITRI)) 

4: (119) H<4-5#S> R<6-7#32> I<O-g#38> K<IO-11#10> R<12-18#32> 

((SEM *HRUE-R-FEUER46) (TIME ((ROOT (*OR* PRESEMT FUTURE)))) (MOOD ((ROOT QUES))) (0OJ-CRBE OR) (EUBJ-CRSE OR) (CRUSRTIVE -)  
(PRBSIUE -) (SUBCRT STRT) (MESRTIOM ((ROOT HITEI))) (CRT U) (ROOT RRU)) 

5: (70) I<2-3#7> T<4-5#1> R<6-?#92> I<D-g#SS> 

((MOOD ((ROOT DEC))) (OBJ-CRSE OR) (6UBJ-CREE OR) (SUBCOT 2RRG-GR) (ORT ROJ) (BEM *HRUE-R-PRIM9@) (TIME ((ROOT PRESEMT))) 
(ROOT ITRI)) 

6: (65) M<4-5#3> R<6-?#32> I<Bm9#SO> 

((MOOD ((ROOT DEC))) (OBJ-CRSE OR) (SUBJ-CRSE OR) (CRUSRTIUE -)  (PRBSIUE - )  (SUBORT STRT) (BEM *HRUE-R-FEUER1B) 
(TIME ((ROOT PRESEMT))) (MEGRTIOM ((ROOT HITEI))) (CRT U) (ROOT RRU)) 

?: (43) R<2-3#6> R<4-5#3> R<6-?#32> U<B-9#2> 

((MOOD ((ROOT DEC))) (OBJ-CRSE O) (SUBJ-CRSE GR) (CRUS@TIUE -)  (PRSBIUE m) (SUBCRT TRRMO) (SEM *MRKE--CLERM248) 
(TIME ((ROOT (*OR* PRESEMT FUTURE)))) (CRT U) (ROOT RI~FIU)) 

T 
Command : 

I ~ - ~ - ; ; , , - w ~ : - - - - - ~ ,  I I I I I I I I  
Dynamic Lisp Listener 12 

Sample Run 1 

25: "KURI*RKOOIRTEIRU=' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Evaluation of (PRRSE) took 95.719693 seconds of elapsed time 
includin9 10,550 seconds waltln9 for the disk for 142 faults. 
The 9arbage co l lec tor  has f l ippedj  so oonstn9 wma not neaaurad. 

8 parsee found 

1: (393) K<2-3#2B> U(4-5#29> B<6-?we> I<B-9#B@> O<18-11#33> R<12-18#62> K<lq-15#28> 0<16-17#24> N<1?-18#O> R<18-19#2> B<2@-21#9> 
R<22-23#32> 0<23-24#-10> T<24-25#31> E<26-27#30> I<28-29#36> R<30-31#31> U<32-33#29> 

((MOOD ((ROOT DEC))) (SEM *HRUE-R-BTIFFMESE1268) (OBJ ((:HH - )  (OROE OR) (SEM *MECK) (ROOT KUBI))) (CRUSRTIUE -)  (OBJ-ORBE OR) 
(SUBJ-CRSE OR) (PRSSIVE -)  (BUBORT STRT) (TIME ((ROOT (*ORs PREOEMT FUTURE)))) (PROOREGBIUE *) (ORT U) (ROOT KOMRBRRU)) 

2: (372) K<2-3#28> 0<4-5#10> R<6-?#31> E<8-9#2> O<1@-11#33> R<12-13flO2> K<14-15#28> 0(16-17fl24> N<17-18#O> R<18-19#2> B<2g-21#9> 
R<22-23#32> 0<23-24#-10> T<24-25f191> E<26-27#3O> I(28-29#30> R<86-31#91> U<32-33#29> 

((MOO0 ((ROOT DEC))) (OBJ ((:WH -)  (CRSE OR) (ROOT KORE))) (CRUSRTIVE - )  (OBJ-ORBE OR) (6UBJ-CRSE OR) (PRSBIUE -7 (BUOORT ST?T) 
(BEM *HRUE-R-BTIFFMESS214) (TIME ((ROOT (*OR* PRESEHT FUTURE)))) (PROGRESSIVE ÷) (CRI U) (ROOT KOHRBRRU)) 

2: (372) K<2-9#28> 0<4-5fllO> R<6-7#31> E(B-9#2> G(18-11#33> R(12-19#32> K(14-15#28> 0<16-17424> M<l~-lB#@> R<18-19#2> B(28-21~9> 
R<22-23f102) Q<23-24#-18> T<24-25#31> E<2G-27#OO> I<28-29#3@> R<30-31#31> U<32-OO#~> 

((MOOD ((ROOT DEC))) (OUBJ ((:NH -)  (CRBE OR) (ROOT KORE))) (BUBJ-CRSE OR) (OBJ-CRBE OR) (CRUBRTIUE - )  (PRBBIUE -)  (SUBCRT ETRT) 
(SEM *HRUE-R-BTIFFMERB214) (TIME ((ROOT (*OR* PREBEHT FUTURE)))) (PROgREBSIYE ÷) (CRT U) (ROOT KO~RBRRU)) 

4: (279) K<2-3#28> U(4-5#29> B<6-7#5> I<B-O#Og> G<1@-11#33> R¢12-18M32> K<14-15#28> 0(16-17#24> N<17-18#g> R<18-19#2> B<28-21#9>' 
R<22-23#32> Q<23-24#-19> T<24-25#31> R<26-27#G> 

((MOOD ((ROOT DEC))) (SEM *HRUE-R-BTIFFMEBB1264) (OBJ ((:HH - )  (SRSE OR) (SEN ~HEOK) (ROOT KUBI))) (CRUORTIUE -)  (OBJ-CROE GO) 
(SUBJ-CRSE DR) (PRBBIVE - )  (BUBCRT STRT) (TIME ((ROOT PRST))) (ORT V) (ROOT KOWRBRRU)) 

5: (256) K<2-3#28> 0<4-5#1D> R<6-7#31> E<8-9#2> g<18-11#33> R(12-13#32> K<14-15#28> 0<16-17#24> M<1~-18#8> R<10-19#2> B<20-21#9> 
R<22-23#32> O<23-24#-10> T<24-25#31> R<26-2?#G> 

((HOOD ((ROOT DEC))) (OBJ ((:WH -)  (CRBE GR) (ROOT KORE))) (CRUBRTIVE -)  (OBJ-ORBE OR) (OUBJ-CRBE OR) (PRSSIVE -)  (BUBORT BTRT) 
(SEM *HRUE-R-BTIFFMEBSOB) (TIME ((ROOT PRST))) (CRT V) (ROOT KOMRBRRU)) 

5: (258) K<2-3#20> 0<4-5#10> R<S-7#51> E<B-9#2> O<10-11#33> R(12-13#32> K<14-15#28> 0<16-17#24> M<17-16#O) R<lB-19#2> B<28-21#9> 
R<22-23#32> O<23-24#-18> T(24-25#51> R<26-2?#fi> 

((MOOD ((ROOT DEC))) (BUBJ ((:HH -)  (CROE SO) (ROOT ~DRE))) (BUBJ-CRBE OR) (OBJ-CRBE OR) (CRUORTIVE - )  (PRBBIVE -)  (BUBCRT OTRT) 
(SEM *HRVE-R-BTIFFMESBOB) (TIME ((ROOT PRST))) (CRTrf~/) (ROOT KOWRBRRU)) 

7: (232) K<2-3#2B> 0<4-5#10> R<6-7~31) E<B-9#2> G<lS-11#33> R<12-13#B2> K<14-15#28> 0<16-17#24> N<26-21#5> R<22-23#32> 1<26-27#7> 

((MOOD ((ROOT DEC))) (BUBJ ((:NH -)  (ORSE OR) (ROOT KORE))) (SUBJ-CRGE OR) (CAUSATIVE - )  (PROBIVE -)  (OUBCRT INTRRNB) 
(SEM *PTRRHSBBO) (TIME ((ROOT PRESENT))) (MEORTION ((ROOT HITEI))) (CRT V) (ROOT KURU)) 

**MORE**I 

I ! 
Dynamic Lisp Listener 12 

566 

Sample Run 


