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Abstract

Standard word embedding algorithms learn vector representations from large corpora of text doc-
uments in an unsupervised fashion. However, the quality of word embeddings learned from these
algorithms is affected by the size of training data sets. Thus, applications of these algorithms in
domains with only moderate amounts of available data is limited. In this paper we introduce an
algorithm that learns word embeddings jointly with a classifier. Our algorithm is called SWESA
(Supervised Word Embeddings for Sentiment Analysis). SWESA leverages document label in-
formation to learn vector representations of words from a modest corpus of text documents by
solving an optimization problem that minimizes a cost function with respect to both word em-
beddings and the weight vector used for classification. Experiments on several real world data
sets show that SWESA has superior performance on domains with limited data, when compared
to previously suggested approaches to word embeddings and sentiment analysis tasks.

1 Introduction

Word embedding algorithms learn vector representations for words that are useful to quantify semantic
relationships between words in a given text. Additionally, word embeddings are used to initialize several
algorithms for sentiment analysis, sentence encoding etc. Currently popular embedding algorithms such
as word2vec (Mikolov et al., 2013b; Le and Mikolov, 2014), GloVe (Pennington et al., 2014), are based
off neural network methods and have achieved tremendous success in various word, sentence/document
level evaluation tasks. These algorithms thrive on the large volumes of training data sets when learning
high quality word embeddings. However, there is an increase in application domains where getting large
amounts of data is not always possible. Furthermore, in some of these domains, representing words
from off-the-shelf word embeddings such as ones obtained from training word2vec, GloVe on Wikipedia
or common-crawl may not be efficient. This is because the sentiment expressed by a word in such
datasets could be somewhat different from the sentiment expressed by the same word when it appears in
Wikipedia, common-crawl. A concrete example of such domains is given in the next paragraph. In such
cases off-the-shelf word embeddings are not very useful and better techniques are required to learn word
embeddings and classifiers for sentiment analysis.

The goal of this paper is to build classification algorithms for sentiment analysis on small, domain
specific data sets that are sentiment rich. Such an algorithm is not limited to sentiment classification
and easily generalizes to other text classification problems as well. An example of a small sized and
sentiment rich data set is the Substance Use Disorder (SUD) data set (Mohr et al., 2013), (Moore et
al., 2011) obtained from digital health intervention treatments. These treatments aim to predict relapse
risk by analyzing the content of participants’ text messages. Though forum moderators can monitor
and provide support when participants are struggling, considerable labor is involved in reviewing and
deciding the risk level of each text message. Text data obtained from these discussion forums is rich in
sentiments such as ‘determination,’ ‘pleasure,’ ‘anger,’ ‘fear’ and by analyzing discussion messages for
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sentiments such as ‘anger’, ‘fear’ it is possible to develop efficient algorithms that can automatically tag
if a message is positive (i.e. benign) or negative (indicative of relapse).

One approach to this problem would be to use off-the-shelf word embeddings to learn document em-
beddings and then run a classification algorithm on the obtained embeddings. While this approach does
decently well it fails to capture and exploit the semantics of within domain words. For example, consider
words such as ‘alcohol,’ ‘holiday,’ ‘party.’ Such words are typically neutral or positive sentiment in the
Wikipedia corpus. However, with data sets such as SUD, these words are indicative of a moderate/strong
negative sentiment. As a result using off-the-shelf word embeddings from GloVe, word2vec embeddings
trained on Wikipedia corpus for building a sentiment analyzer will result in a sentiment analyzer that per-
forms poorly. An alternative is to obtain word embeddings by training word2vec or GloVe on the target
dataset, and then using the resultant embeddings for sentiment analysis. Unsurprisingly this approach
succeeds only when one has the luxury of large datasets. However, in the SUD application, as mentioned
above, the amount of data that is available is limited and hence this approach is not a successful alterna-
tive. In fact we argue that in the presence of limited, but sentiment rich data, it is better to learn word
embeddings in a supervised manner. This way the resulting embeddings tend to be polarity-aware and
are better suitable for downstream tasks such as sentiment analysis. Our contributions are as follows,

1. We introduce an algorithm (Section 3) that jointly learns word embeddings as well as a sentiment an-
alyzer (classifier) by solving a bi-convex optimization problem. Our algorithm is called Supervised
Word Embedding for Sentiment Analysis (SWESA) . This is an iterative algorithm that minimizes
a cost function for both a classifier and word embeddings under unit norm constraint on the word
vectors.

2. SWESA uses document labels for learning word embeddings. Using document labels within
SWESA helps us overcomes the problem of small-size training data and allows learning of polarity-
aware word embeddings. Via a thorough empirical evaluation (Section (4)) we show that our algo-
rithm outperforms classifiers built by re-training off-the-shelf word embeddings such as word2vec,
GloVe. We also compare SWESA against an algorithm that uses convolutional neural networks to
represent sentences (Kim, 2014) for sentiment analysis, and a sentiment analysis algorithm based
on recurrent neural networks (Socher et al., 2013). On the A-CHESS dataset where data is limited
but rich in sentiment, SWESA outperforms all algorithms by at least 12% on the precision.

3. To demonstrate the fact that the word embeddings learned by SWESA are better than embeddings
learned from unsupervised learning algorithms we investigate the polarity of various word embed-
dings. We show that the embeddings learned from SWESA perform well on antonym task. For
example, ‘Awful/Good’ is the antonym pair returned via SWESA as opposed to ‘Awful/Could’
obtained via word2vec. SWESA learns such antonym pairs, using document polarities, and as a
byproduct of our optimization based formulations, independent of an antonym pairs training data
set.

2 Related Work

Modern embedding algorithms such as word2vec (Mikolov et al., 2013a) and GloVe (Pennington et
al., 2014) are neural network based algorithms that learn word embeddings in an unsupervised fashion.
These algorithms exploit word co-occurrence statistics in order to learn word embeddings. Due to this,
typically these algorithms thrive on large training data sets in order to learn generic word embeddings.
Also these models learn word embeddings in an unsupervised fashion. However, using labeled data can
often help with learning sentiment-aware word embeddings more appropriate to the corpus at hand In
their work (Maas et al., 2011) propose a probabilistic model that captures semantic similarities among
words across documents. This model leverages document label information to improve word vectors to
better capture sentiment of the contexts in which these words occur. While it may seem that this model
is similar to SWESA, it is not so because in their model (Maas et al., 2011) first learn word embeddings
and then fit a classifier in two different objective functions. On the other hand SWESA is a single bi-
convex objective. The probabilistic model used by (Maas et al., 2011) is similar to that in Latent Dirichlet
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Allocation (LDA) (Blei et al., 2003) in which each document is modeled as a mixture of latent topics.
In (Maas et al., 2011), word probabilities in a document are modeled directly assuming a given topic. Yet
another model that makes use of word co-occurence features in a supervised learning task is that of (Aga
et al., 2016). In this model word co-occurences and context are used to learn word embeddings through
matrix factorization algorithms. However, the classification task is independent of the process used to
learn word embeddings.

(Tang et al., 2014) propose a supervised neural network based model to classify Twitter data. The
proposed algorithm learns sentiment specific word vectors, from tweets making use of emoticons in text
to guide sentiment of words used in the text instead of annotated sentiment labels. The Recursive Neural
Tensor Network (RNTN) proposed by (Socher et al., 2013) classifies sentiment of text of varying length.
To learn sentiment from long text, this model exploits compositionality in text by converting input text
into the Sentiment Treebank format with annotated sentiment labels. The Sentiment Treebank is based
on a data set introduced by Pang and Lee (Pang and Lee, 2005). This model performs particularly well on
longer texts by exploiting compositionality as opposed to a regular bag of features approach. A popular
algorithm for sentiment analysis is the CNN based approach proposed by (Kim, 2014). This algorithm
takes as input word embedding and learns a CNN based sentence composition on which sentiment anal-
ysis is performed. Finally we would like to mention that in some domains, the vocabulary in the domain
is manually labeled. For example, SentiStrength (Thelwall et al., 2010), LIWC (Pennebaker et al., 2001)
projects provide manually labeled data. However, such efforts are not scalable and need considerable
human expertise.

Notation: Throughout this paper we shall denote word vectors as wj ∈ Rk, for j = 1, . . . , V , where V
indicates the size of the vocabulary. The matrix of word vectors is W where W = [w1,w2, . . . ,wV ] ∈
Rk×V . The classifier to be learned is represented by θ ∈ Rk, weights of word vectors wj in document
i are contained in the vector φi ∈ RV , and the document label of the ith document is indicated by yi,
document i is represented as di = Wφi. Let Φ = [φ1,φ2, . . . ,φN ] ∈ RV×N be the matrix containing
weight vectors φi and vector y = [y1, y2, ...yN ] be the vector containing document labels.

3 Supervised Word Vectors for Sentiment Analysis

Given a collection of documents d1, d2, . . . dN with binary sentiments y1, y2, . . . , yN respectively, the
aim is to learn a classifier that when given a new, previously unseen document d can accurately estimate
the sentiment of the document. There could be class imbalance in the training data and so the algorithm
should explicitly account for such a class imbalance. We approach this problem by introducing a new
algorithm called SWESA. SWESA simultaneously learns word vector embeddings and a classifier, by
making use of document polarity/sentiment labels. Representation of documents within SWESA is mo-
tivated by the fact that in short texts like “I am sad”, “I am happy”, polarity of the sentence hinges on
the words “sad” and “happy”. As a result, by learning polarity aware word embeddings, good vector
representations for documents can be achieved. For instance, in the above example, the distance between
the vectors (wI +wam +wsad) and (wI +wam +whappy) would capture dissimilarities in sentiment
of these two documents while at the same time reflecting similarities in sentence structure.

Text documents in this framework are represented as a weighted linear combination of words in a
given vocabulary. Weights can be either the term frequencies (tf) of words within each document or term
frequency-inverse document frequency (tf-idf). Weights provided as input to SWESA for experiments
described in Section (4) are term frequencies. We choose this weighting scheme to mimic the concept
of local context used in the word2vec family of algorithms. Global co-occurrence information can be
leveraged by using tf-idf for weighting words in documents. Such an approach in not entirely unheard
off in sentiment analysis tasks, where word embeddings are considered as features for a classification
algorithm (Labutov and Lipson, 2013).

SWESA aims to find vector representations for words, which when combined using weights, in a bag-
of-words framework provide us with embeddings for text documents. These embeddings should be such
that applying a nonlinear transformation f to the product (θ>Wφ) results in a binary label y indicating
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the polarity of document. Mathematically we assume that,

P[Y = 1|d = Wφ,θ] = f(θ>Wφ) (1)

for some function f . In order to solve for θ andW, a regularized negative likelihood minimization
problem is solved. This optimization problem is as (1) and can be solved as a minimization problem
with objective function,

J(θ,W)
def
=
−1

N

[
C+

∑
yi=+1

logP(Y = yi|Wφi,θ) + C−
∑
yi=−1

logP(Y = yi|Wφi,θ)
]

+ λθ||θ ||22.

(2)

This optimization problem can now be written as

min
θ∈Rk,

W∈Rk×V

J(θ,W) (3)

s.t. ||wj ||2 = 1 ∀j = 1, . . . V.

The vector φi is a vector of weights, corresponding to the different words, for document di. As mentioned
previously, for testing SWESA term frequencies of different words in a certain document i are used in φi.
λθ > 0 is the regularization parameter for the classifier θ, C+ is the cost associated with misclassifying a
document from the positive class and C− is the cost associated with misclassifying a document from the
negative class. Following the heuristic suggested by (Lin et al., 2002), C+ = N−

N and C− = N+

N , where
N+ is the number of positive documents in the corpus and N− is the number of negative documents
in the corpus. This scheme is particularly useful when dealing with data sets with imbalanced classes.
When using a balanced data set C+ = C−. Sentiment in a given document is captured by the document
label yi, which in this framework is a binary label that capture sentiments such as ‘positive/negative’ or
‘threatening/benign’ depending on the data set.

The unit norm constraint in the optimization problem shown in (3) is enforced on word embeddings to
discourage degenerate solutions of wj . For example in the absence of this constraint, the optimal w∗j is
typically a vector of zeros. Note that this optimization problem is bi-convex, but it is not jointly convex
in the optimization variables. Algorithm 1 shows the algorithm that we use to solve the optimization
problem in (3). This algorithm is an alternating minimization procedure that initializes the word embed-
ding matrix W with W0 and then alternates between minimizing the objective function w.r.t. the weight
vector θ and the word embeddings W.

Algorithm 1 Supervised Word Embeddings for Sentiment Analysis (SWESA)
Require: W0, Φ, C+, C−, λθ, 0 < k < V , Labels: y = [y1, . . . , yN ], Iterations: T > 0,

1: Initialize W = W0.
2: for t = 1, . . . , T do
3: Solve θt ← arg minθ J(θ,Wt−1).
4: Solve Wt ← arg minW J(θt,W).
5: end for
6: Return θT ,WT

3.1 Logistic regression model

The optimization problem in (2) assumes a certain probability model and minimizes the negative log-
likelihood under norm constraints. While, the specific goal of the user might dictate an appropriate
choice of probabilistic model, for a large class of classification tasks such as sentiment analysis, the
logistic regression model is widely used. In this section we assume that the probability model of interest
is the logistic model. Under this assumption the minimization problem in Step 3 of Algorithm 1 is a



3428

standard logistic regression problem 1. Many specialized solvers have been devised for this problem and
in this implementation of SWESA, a standard off-the-shelf solver available in the scikit-learn package in
Python is used. In order to solve the optimization problem in line 4 of Algorithm 1 a projected stochastic
gradient descent (SGD) with suffix averaging (Rakhlin et al., 2011) is used. In suffix averaging the last
few iterates obtained during stochastic gradient descent are averaged. Suffix averaging guarantees that
the noise in the iterates is reduced and has been shown to achieve almost optimal rates of convergence
for minimization of strongly convex functions. For experiments in Section 4 we set τ = 50.

Gradient updates for W given θ are of the form

∇J(θ,W) =
1

N

[ ∑
yi=+1

−C+ yi θ φ>i

1 + eyi(θ
>Wφi)

+
∑
yi=−1

−C− yi θ φ>i

1 + eyi(θ
>Wφi)

]
. (4)

Algorithm 2 implements the SGD algorithm (with stochastic gradients instead of full gradients) for
solving the optimization problem in step 4 of Algorithm 1.

Algorithm 2 Stochastic Gradient Descent for W
Require: θ, γ,W0, Labels: y = [y1, . . . , yN ], Iterations: N, step size: η > 0, and suffix parameter:

0 < τ ≤ N .
1: Randomly shuffle the dataset.
2: for t = 1, . . . , N do
3: Set Ct = C+ if yt = +1, Ct = C− if yt = −1.
4: W̃t+1 = Wt− ηCt

1+eyi(θ
>Wφi)

× (−yi θ φ>i )

5: Wt+1,j = Wt+1,j /||Wt+1,j ||2 ∀j = 1, 2, . . . , V
6: η ← η

t
7: end for
8: Return W = 1

τ

∑N
t=N−τ Wt

Convergence of SWESA: At a high level, SWESA can be seen as a variation of the super-
vised dictionary learning problem (SDL). Within SDL (Mairal et al., 2009) given labeled data
(x1, y1), (x2, y2), . . . , (xn, yn), and unlabeled part of the data that lies in a d dimensional space, the
goal is to learn a dictionary D of size d × k, (k >> d) such that each xi = Dzi where zi is a sparse
encoding of xi w.r.t. dictionary D. Further, the label is generated by a linear classifier w.r.t zi, i.e.
yi = W> zi. The learning problem is to estimate the dictionary, the codes of each data point and the
classifier. SWESA can be roughly mapped to the SDL by considering dictionary D of size k × V ,
where each column corresponds to a word embedding. However, there are significant differences be-
tween SWESA and SDL. Despite these differences, with suitable modifications convergence analysis
for SWESA can be performed. Extensive literature on alternative minimization and their convergence
guarantees for SDL and related problems such as matrix completion (Jain et al., 2013) exist. A full theo-
retical analysis is out of scope of this paper and is left for future work. A brief description of differences
between SWESA and SDL can be found in Appendix A.

3.2 Initialization of W

Two different initialization procedures are used to obtain W0. The first method uses the Latent Semantic
Analysis (Dumais, 2004) (LSA) procedure to form the matrix of word vectors W0 from the given corpus
of text documents. The second method uses the word2vec (w2v) algorithm to form word vector matrix
W0 from the corpus. Since word2vec is ideally trained on a dataset that is much larger in size than the
test datasets in Section 4, it is expected that the initialization vectors obtained by retraining word2vec on
the test data sets will not be as suitable as the LSA intialization. However, as expected SWESA improves
the performance of any initial guess parameters.

1A bias term, γ can be trivially introduced in the logistic regression model.
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4 Experimental Evaluation and Results

We now describe in brief the data sets and the algorithms that we use to evaluate SWESA.

4.1 Data Sets

We conduct our experiments on four small sized data sets out of which 3 are balanced and 1 is imbal-
anced. All four data sets are drawn from different domains and hence have different vocabularies and
contexts. The four data sets are:

• Yelp: This data set consists of 1000 restaurant reviews labeled ‘positive’ or ‘negative’. There are a
total of 2049 distinct word tokens in this data set.

• IMDB: This data set consists of 1000 reviews of movies with labels ‘positive’ or ‘negative’. There
are a total of 3075 distinct word tokens.

• Amazon: This data set contains 1000 product reviews with labels ‘positive’ or ‘negative’. This data
set has 1865 distinct word tokens.

• A-CHESS: This is a proprietary data set2 and is obtained from an intervention treatment aimed at
alcohol disorder. Text is obtained via the discussion forums part of the A-CHESS mobile app. There
are a total of 2500 messages with 8% of the messages indicating relapse risk or ‘threat’. Typical
messages from this data set are of the form, “I’ve been clean for 7 months now, but I still feel I may
not make it”. Such a message is marked as ‘threat’. Positive or ‘benign’ messages are of the form,
“30 days and sober! I feel great!!”. This labeling is human moderated. The goal is to automate this
process. After removing special characters, this data set consists of 3400 distinct word tokens.

The first three data sets are obtained from (Kotzias et al., 2015).

4.2 Baselines

We choose two types of baselines that cover both neural and non-neural network style algorithms.
Standard baselines:

1. Two-Step (TS): The TS algorithm is a family of algorithms where we perform two steps (i) First,
word embeddings are trained in an unsupervised manner on the target dataset. These word embed-
dings are combined together with appropriate weights (as is done in SWESA) to obtain document
embeddings. (ii) In the second step the document embeddings obtained from the first step are used
in a logistic regression classifier to obtain a classification model. To implement our first step we
use two types of word embeddings, namely LSA word embeddings, and word2vec (re-w2v) ob-
tained by re-training LSA, and word2vec algorithms on our target datasets. We use an open source
implementation in gensim3 to get word2vec embeddings.

2. Naive Bayes classifier: The classic Naive Bayes classifier for sentiment classification based on the
Bag-of-words features, optimized in NLTK toolkit in Python is used.

Neural network based baselines:

1. Recursive Neural Tensor Network (RNTN): RNTN is an RNN proposed by (Socher et al., 2013)
that learns compositionality from text of varying length and performs classification in a supervised
fashion with fine grained sentiment labels. Since SWESA is aimed at binary classification, RNTN
is also used in a binary classification framework. RNTN has been shown to perform better than the
previously proposed Recursive Auto Encoder (RAE) by (Socher et al., 2011) and hence we limit
our comparisons to RNTN only.

2Center for Health Enhancement System Services at UW-Madison.
3https://radimrehurek.com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html
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2. CNN based sentence classification: (Kim, 2014) propose a Convolutional Neural Network (CNN)
based architecture that takes as input word embeddings and uses a CNN based architecture to learn
sentence embeddings. These sentence embeddings are then used for classification. This algorithm
belongs to a large class of algorithms that take as input word embedding and learn sentence em-
beddings for other tasks. While it seems that SWESA is similar to these algorithms, the significant
difference between the two lies in the application domain of SWESA. SWESA is geared towards
small sized datasets, whereas neural network based algorithms are data intensive and can extract
useful relationships from very large amounts of data.

Note that neural network based baselines are used in two modes,

• Pre-trained (Pr-tr): In this framework both RNTN and CNN-static (CNN-S), CNN-non static
(CNN-NS) are initialized with word2vec embeddings (w2v) and are trained on the Pang and Lee
data set (Pang and Lee, 2005). This data set consists of roughly 10k text documents and is roughly
10 times the size of the data sets considered in experiments in Section 4.4. Note that in these
experiments, word embeddings used are obtained from word2vec trained on the Google news data
set and do not make use of any labels from the test data sets considered.

• Re-trained (Re-tr): In this framework, RNTN is retrained on the data sets described in subsec-
tion 4.1. Further, CNN-static and non static are used in the following ways,

1. CNN-static and CNN-non static are initialized with re-trained w2v (re-w2v) embeddings. The
training set is still the Pang and Lee data set used by the authors (Kim, 2014). We expect the
performance of this baseline to be poorer when compared to CNN-static and non static initial-
ized with pre-trained word embeddings. This baseline is used to investigate the sensitivity of
CNNs to initial input word embeddings.

2. CNN-static and CNN-non static are initialized with pre-trained word2vec embeddings but
trained on train/dev sets obtained from the data sets described in subsection 4.1. We expect
this data set to be the least well performing data set due to the size of the training data. This
baseline is used to illustrate the limitations of small sized training data sets on neural network
algorithms.

4.3 Dimensionality of word embeddings and hyperparameters
Dimensions of word embeddings and other hyperparameters such as regularization on the logistic re-
gression classifier are determined via 10 fold cross validation. Pre-trained RNTN4 and CNN-static/non
static5 are used with the training sets and parameters as described by the authors of both works. Proce-
dure for retraining RNTN as well as for fine tuning word embeddings for use in CNN-non static follow
the methods described in (Socher et al., 2013) and (Kim, 2014) respectively.

4.4 Results from classification tasks
Performance metrics reported are average Precision and average AUC. AUC is only reported for model
that provide prediction probabilities in addition to predicted label. For the A-CHESS data set the minor
class, i.e ‘threat’ owing to the large imbalance is of more importance. This is because, the system can
accept few false positives, but the risk of misclassifying a ‘threat’ message as ‘benign’ has a larger
impact. Owing to this, on this data set, the best performing classifier will be one that achieves maximum
precision. Note that the objective of these results is to show how well SWESA performs in applications
with small sized data sets as compared to i) completely re-training a neural network with a smaller
training set, ii) or initializing a neural network with word embeddings learned on small data sets and iii)
against a neural network that uses pre-trained word embeddings and larger training sets.

SWESA against pre-trained neural nets initialized with pre-trained word embeddings: On the
balanced Yelp, Amazon and IMDB data sets, pre-trained RNTN, CNN-static and non static perform the

4https://nlp.stanford.edu/sentiment/code.html
5https://github.com/yoonkim/CNN_sentence

https://nlp.stanford.edu/sentiment/code.html
https://github.com/yoonkim/CNN_sentence
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best. From table 1, observe that the best performing baseline CNN-NS achieves an average precision of
87.98, 87.15 and 87.77 respectively on the three balanced data sets. This result is not surprising, given
that the pre-trained RNTN and CNNS are i)initialized with pre-trained word embeddings and ii)trained
on a data set with roughly 10 times more training data points than within SWESA. However, note that
on the imbalanced A-CHESS data set RNTN fails to perform any classification. This can be attributed
to the fact that RNTN is a dependency parser and on varying length text like within SWESA, it is very
hard to capture dependencies. CNN-static and CNN-non static achieve poor precision owing to the class
imbalance which is not accounted for when training them.

SWESA against re-trained neural nets: CNN-static (re-w2v) and CNN-non static (re-w2v) per-
form comparably well to SWESA on the balanced data sets. From table 1 notice that on the balanced
Yelp, Amazon and IMDB data sets, SWESA achieves an average precision of 78.35, 80.36 and 77.27
respectively while CNN-non static (re-w2v) achieves an average precision of 78.10, 80.40 and 75.85
respectively. These results suggest that SWESA is a suitable alternative to neural network architectures
that are sensitive to initializing word embeddings. This result is particularly useful for data sets that are
not large enough to enable learning of high quality word embeddings. Note that on the A-CHESS data
set CNN-static and non static perform poorly.

SWESA against neural nets initialized with re-trained word embeddings: re-trained RNTN per-
forms very poorly on the three balanced data sets and fails to classify the A-CHESS test set. On the other
hand while CNN-static (re-w2v) and CNN-non static (re-w2v) perform comparably well to SWESA on
the balanced data sets, both algorithms perform poorly on the A-CHESS data set. CNN-static and non
static achiever average precision of 15.62 and 18.98 respectively on the A-CHESS data set while SWESA
achieves an average precision of 35.80. This is not a surprising result because the training data to RNTN
and CNNs is much smaller than the Pang and Lee Data set.

Polarity of word embeddings. The objective of SWESA is to perform effective sentiment analysis
by learning embeddings from text documents with sentiment labels. Since, word embeddings are learned
via a joint optimization framework one can expect that the resulting word embeddings are polarity aware.
To test our hypothesis, we investigate if one can predict the antonym of a word. That is, given a word v
whose word embedding is wv we determine the antonym to be that word awith word embedding wa such
that the cosine similarity between wa,wv is minimized over all possible choices of a. Figure 1 shows
a small sample of word embeddings learned on the Amazon data set by SWESA and word2vec. The
cosine similarity (angle) between the most dissimilar words is calculated and owing to the assumptions
on word embeddings, words are depicted as points on the unit circle.

From figure 1 it is evident that a supervised algorithm like SWESA projects document level polarity
onto word level embeddings while an unsupervised algorithm like word2vec that learns embeddings of
words via virtue of word co-occurrences will fail to embed polarity. It is important to notice that SWESA
learns word polarities by using document polarities, and these word polarities are useful for antonym
tasks. Unlike classical antonym tasks where examples of known antonym pairs are provided, in our
setup no such pairs are provided, and yet SWESA was able to do a good job discovering antonym pairs.
For example the most dissimilar word to given word ‘Excellent’ is ‘Poor’ when learned via SWESA as
opposed to ‘Work’ when learned via word2vec. From these examples, the advantage of SWESA is par-
ticularly towards exploiting strong polarity differences in words such as ‘Excellent’ and ‘Poor’, however
not much success is noted towards less polarized synonyms such as ‘Wet’ and ‘Dry’. However, with finer
grained sentiment labels we would expect subtler antonym pairs to be distinguished by SWESA. This
will be actively pursed in future extensions of SWESA, particularly when used to perform multi-class
classification tasks.

Thus, word antonym pairs (wa, w) can be obtained by calculating cosine similarities. Since the aim of
experiments in section 4 was to perform document level sentiment analysis and observations on word dis-
similarities is a consequence of this task, extensive experiments validating word antonym pairs have not
been performed. This is left for future work and only a qualitative analysis of learned word embeddings
is discussed here.
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Data Set Method
Avg

Precision
Avg AUC

Yelp

SWESA (LSA)
SWESA (re-w2v)

TS (LSA)
TS (re-w2v)
Naive Bayes

RNTN (Pre-tr)
RNTN (retrained)
CNN-S (Pre-tr)

CNN-NS (Pre-tr)
CNN-S (re-w2v)

CNN-NS (re-w2v)
CNN-S (Re-tr)

CNN-NS (Re-tr)

78.09±2.8
78.35±4.6
76.27±3.0
65.22±4.4
57.07±3.3
83.31±1.1
51.15±4.3
86.45±0.8
87.98±0.5
76.89±2.5
78.10±1.5
68.55±1.2
72.80±0.5

86.06±2.4
86.93±3.5
83.05±5.0
69.08±3.5
61.16±4.5

-
-
-
-
-
-
-
-

Amazon

SWESA (LSA)
SWESA (re-w2v)

TS (LSA)
TS (re-w2v)
Naive Bayes

RNTN (Pre-tr)
RNTN (retrained)
CNN-S (Pre-tr)

CNN-NS (Pre-tr)
CNN-S (re-w2v)

CNN-NS (re-w2v)
CNN-S (Re-tr)

CNN-NS (Re-tr)

80.31±3.3
80.36±2.8
77.32±4.6
71.09±6.2
72.54±6.4
82.84±0.6
49.15±2.1
87.08±1.0
87.15±0.8
78.85±1.2
80.40±1.0
70.15±1.8
72.86±2.5

87.54±4.2
87.19±3.3
85.00±6.2
77.09±5.3
61.16±4.5

-
-
-
-
-
-
-
-

IMDB

SWESA (LSA)
SWESA (re-w2v)

TS (LSA)
TS (re-w2v)
Naive Bayes

RNTN (Pre-tr)
RNTN (retrained)
CNN-S (Pre-tr)

CNN-NS (Pre-tr)
CNN-S (re-w2v)

CNN-NS (re-w2v)
CNN-S (Re-tr)

CNN-NS (Re-tr)

76.40±5.2
77.27±5.4
70.36±5.5
56.87±7.6
73.31±5.6
80.88±0.7
53.95±1.9
85.54±0.6
87.77±0.5
72.46±2.0
75.85±2.1
62.07±1.5
70.16±1.2

81.08±7.6
81.04±6.8
77.54±6.8
59.34±8.9
48.40±2.9

-
-
-
-
-
-
-
-

A-CHESS

SWESA (LSA)
SWESA (re-w2v)

TS (LSA)
TS (re-w2v)
Naive Bayes

RNTN (Pre-tr)
RNTN (retrained)
CNN-S (Pre-tr)

CNN-NS (Pre-tr)
CNN-S (re-w2v)

CNN-NS (re-w2v)
CNN-S (Re-tr)

CNN-NS (Re-tr)

35.80±2.5
35.40±2.0
32.20±3.2
23.60±2.4
30.30±3.8

-
-

18.75±3.2
23.02±2.8
20.12±2.4
25.45±1.8
15.62±2.7
18.98±2.2

83.80±3.1
83.40±2.6
83.80±3.1
68.00±1.2
45.23±3.3

-
-
-
-
-
-
-
-

Table 1: This table shows results from a standard sentiment classification task on all four data sets.
Results from SWESA are in boldface and results from pre-trained models are in blue. No AUC values
are reported for models where classification probabilities of classifiers is not available.
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Figure 1: This figure depicts word embeddings on a unit circle. Most dissimilar word pairs are plotted
based on the cosine angle between the respective word embeddings learned via SWESA and word2vec.

5 Discussions and Conclusions

In this paper we provide a simple optimization based framework, called SWESA that jointly learns word
embeddings and a classifier for the task of sentiment analysis. Through extensive experimentation we
show that SWESA outperforms both non-neural network algorithms (naive Bayes, LSA) as well as state-
of-the-art neural network algorithms based on CNNs and RNNs. As a byproduct of our optimization
formulation we show that the word embeddings learned by SWESA are polarity aware and perform
very well on antonym tasks, even without being explicitly trained for such tasks. Particularly, strongly
polarized word embeddings are easily distinguished. This results indicates that when using finer grained
sentiment labels, word polarized along other scales such as dimension, etc can be determined. Our
contributions strongly emphasize the point that on domains where data is limited, i.e few thousands of
points, but sentiment rich, data size is not a handicap and simple algorithms can do a better task than
more involved neural network based algorithm. In the future, we shall investigate modifications of our
framework for tasks other than sentiment analysis.
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Appendix A: Differences between SDL and SWESA.
The significant differences between SDL and SWESA are i) Input to SDL is a labeled dataset, with

each data point already represented as a vector. This allows for a definition of reconstruction error within
algorithms designed for SDL. In contrast, SWESA has labeled unstructured data without a direct vector
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representation, and the aim is to learn vector representations for such data. As a result the notion of
reconstruction error used in SDL does not apply to SWESA and hence the optimization formulation used
is significantly different from the one used in SDL. ii) In SDL sparse encoding of each data point is to be
learned, whereas in SWESA this sparse encoding is known and is proportional to the number of times a
word appears in the document. (iii) Finally, in SDL the classifier is a high-dimensional vector that acts
on the latent codes.
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