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Abstract

Attention mechanisms have been leveraged for sentiment classification tasks because not all
words have the same importance. However, most existing attention models did not take full ad-
vantage of sentiment lexicons, which provide rich sentiment information and play a critical role
in sentiment analysis. To achieve the above target, in this work, we propose a novel lexicon-based
supervised attention model (LBSA), which allows a recurrent neural network to focus on the sen-
timent content, thus generating sentiment-informative representations. Compared with general
attention models, our model has better interpretability and less noise. Experimental results on
three large-scale sentiment classification datasets showed that the proposed method outperforms
previous methods.

1 Introduction

Sentiment analysis has the goal of analyzing people’s sentiments or opinions and has been well explored
(Turney, 2002; Tang et al., 2014b; Chen et al., 2016). In order to improve sentiment analysis results, large
sentiment lexicons have been built (Wilson et al., 2005; Baccianella et al., 2010; Tang et al., 2014a). A
sentiment lexicon is a set of words such as excellent, terrible and ordinary, each of which is assigned
a fixed positive or negative score that presents its sentiment polarity and strength (Tang et al., 2014a).
Such information can serve as sentiment-informative features and significantly boost the classification
performance (Agarwal et al., 2013; Teng et al., 2016; Qian et al., 2016).

In sentiment classification tasks, sentiment words such as great and terrible tend to play a more critical
role than other words in texts (Liu, 2010). One attribute of words annotated in sentiment lexicons is their
sentiment strength, which is intuitively associated with a word’s contribution to the sentiment represen-
tation of a sentence. It is similar to the basic idea of the attention mechanism that not all words have
the same importance. However, very few studies have focused on a method that combines an attention
mechanism with such sentiment information. Yang et al. (2016) and Chen et al. (2016) proposed a hier-
archical RNN model to learn attention weights based on the local context using an unsupervised method.
However, their method may induce much noise and suffers from a lack of interpretability because it tends
to capture some domain-specific words (Mudinas et al., 2012) instead of real sentiment information. For
example, in movie reviews, the name of a movie with a good reputation tends to be regarded as positive
words, and is thereby assigned higher weights, which does not work in other domains. Long et al. (2017)
incorporated the reading time of human beings into the attention mechanism, but their method also has
much noise because during the reading process, people tend to spend more time on intricate contents
(Goodman, 1988) than on real sentiment words like good and bad. Other methods employed external
information such as users and products to guide attention weights (Ma et al., 2017; Chen et al., 2016),
which can boost the classification performance by a large margin. However, most of the time, we have
no access to such external information.

In this paper, we propose a novel Lexicon-Based Supervised Attention model (LBSA) that com-
bines sentiment lexicons and an attention mechanism to better extract sentiment information and form
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Figure 1: LBSA sentiment classification model.

sentiment-informative representations. We hypothesized that regardless of the polarities, sentiment
words should be given more emphasis than other words in texts. For example, in the phrases great
film and terrible weather, we should pay more attention to the sentiment words great and terrible than
the words film and weather. Moreover, we define the sentiment degree to describe the intensity of the
word sentiment, which can be attained from existing sentiment lexicons. The sentiment degree can then
be used as the criterion for attention weights in a recurrent neural network model. Under the guidance of
a supervised mechanism, sentiment words will be assigned higher attention weights, which reduces the
influence of domain-specific words and generates sentiment-informative representations. We conducted
experiments on three sentiment analysis benchmark datasets (IMDB, Yelp13, Yelp14). The experimental
results showed that our model outperformed other state-of-the-art methods.

To summarize, our main contributions are as follows:

• We propose a novel lexicon-based attention model. It combines an attention mechanism with sen-
timent lexicons based on the sentiment degree. As a result, our model can precisely identify the
sentiment contents in texts and capture accurate sentiment information.

• Benefiting from the guidance of supervised methods, our attention model has better interpretability
and less noise than other attention models. Thus, it is better at summarizing and analyzing the
sentiment of texts in an RNN fashion.

• Our model outperforms state-of-the-art methods on three sentiment analysis datasets (IMDB,
Yelp13, Yelp14). This work validated the effectiveness of combining the sentiment lexicons and
attention mechanism.

2 Approach

The overall architecture of our model is shown in Figure 1. It incorporates a word-level supervised atten-
tion layer and sentence-level supervised attention layer into a hierarchical bidirectional LSTM sentiment
classification model. Formally, let D be a set of documents, and L be a sentiment lexicon. A document
dm ∈ D contains k sentences S1, S2, ..., Si, ..., Sk. A sentence Si is a sequence of words wi1 wi2...wit,
t ∈ [1, T ], where T denotes the length of Si. For each word wit, we define SDL(wit) as the sentiment
degree (see Section 2.2.1) of wit according to lexicon L. The sentiment degree is a positive real number,
which can be attained from lexicons and indicates the strength of word sentiment.
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As the figure shows, the word wit is represented by its word embedding xit, which is fed into a
bidirectional LSTM model (Graves and Schmidhuber, 2005; Graves et al., 2013) to extract sequential
information. The word attention layer aggregates the representation of sentiment-informative words
to form a sentence representation si, with the supervision of the sentiment degree. Similarly, we can
obtain the document representation d through a sentence-level attention layer to finally conduct sentiment
classification. The concrete design is introduced in the following subsections.

2.1 Bidirectional LSTM
We adopt a Long Short-Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997) for the
word-level and sentence-level feature extraction. As an example, consider the word-level case. For each
word token wt in a sentence, the model calculates a hidden state vector ht. The basic LSTM model has
five internal vectors for node t. They control the information flow from the history x1 ...xt and h1 ...ht−1
to the current state ht. Formally, ht is calculated as follows:

it = σ(Wixt +Uiht−1 +Vict−1 + bi)

ft = 1.0− it

c′t = tanh(Wc′xt +Uc′ht−1 + bc′)

ct = ft � ct−1 + it � c′t

ot = σ(Woxt +Uoht−1 +Voct + bo)

ht = ot � tanh(ct)

Each word is embedded into a low-dimensional semantic space. Namely, each word wt is mapped to
its embedding xt ∈ Rn, where n is the word embedding size. � denotes element-wise multiplication,
and σ is the sigmoid function. Wi, Ui, Vi, bi, Wc′ , Uc′ , bc′ , Wo, Uo, Vo, and bo represent LSTM
parameters.

We use a bidirectional version of LSTM (BiLSTM) (Graves and Schmidhuber, 2005; Graves et al.,
2013) to obtain information from both directions for words. The bidirectional LSTM contains the for-
ward LSTM

−→
f , which reads the sentence Si from wi1 to wit, and the backward LSTM

←−
f , which reads

from wit to wi1. The BiLSTM model maps each word embedding xit to a pair of hidden vectors
−→
hit and←−

hit. We use different parameters for the forward LSTM and backward LSTM. These hidden vectors are
the composition of sentence embedding si, and used as features for calculating attention weights. On the
sentence level, we also feed sentence embeddings [s1, s2, ..., sk] into BiLSTM to obtain pairs of hidden
vectors in a similar way.

2.2 Lexicon-based Supervised Attention
In this subsection, we introduce supervised attention to explicitly use sentiment lexicon information
to aggregate sentiment-informative texts. Our basic idea is simple: sentiment words should be given
more attention than others. To achieve this goal, we construct gold attention vectors using the lexicon
information. These are employed as criteria to supervise the attention weights.

2.2.1 Gold Attention Vectors
Each word in the sentiment lexicon is annotated or assigned a fixed positive or negative score that reflects
its sentiment polarity and strength. We map all of them into the interval [−1, 1] as normalized sentiment
scores, where a score in (0, 1] represents various scales of good and one close to 1 means very good, with
negations showing the opposite. Intuitively, a word with a strong positive or negative polarity requires
more attention because it contains more sentiment information than a neutral word. In order to quantify
the intensity of the sentiment, for each word wit in sentence si, we define sentiment degree SDL(wit) as
follows:

SDL(wit) = |scoreL(wit)|, (1)

where scoreL(wit) is the normalized sentiment score according to lexicon L. SDL(wit) is the absolute
value of scoreL(wit), which means its range is [0, 1]. For words not in the lexicon, their sentiment
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degrees are assigned values of 0. For sentence Si, whose length is T , we compute word-level gold
attention vectors a?i by:

a?it =
exp(λwSD

L(wit))∑T
t=1 exp(λwSD

L(wit))
. (2)

λw is a positive hyper-parameter that adjusts the variance of the sentiment degree. A larger λw means a
sharper distinction between sentiment terms and neutral ones in gold attention vectors. a?it denotes the
tth dimension of a?i .

We likewise construct sentence-level gold attention vectors. Given a document with k sentences, Si
denotes the ith sentence in it. Empirically, a sentence tends to achieve a higher sentiment degree if it
contains a higher proportion of sentiment words. Hence, we calculate the sentiment degree of Si using a
simple averaging method:

SDL(Si) =

∑T
t=1 SD

L(wit)

T
. (3)

Let λs be the sentence-level hyper-parameter. We then obtain sentence-level gold attention vectors a?

in a similar way:

a?i =
exp(λsSD

L(Si))∑k
i=1 exp(λsSD

L(Si))
. (4)

2.2.2 Learned Attention Vectors
As described in the previous subsection, we obtain pairs of hidden states

−→
hit and

←−
hit from the word-level

BiLSTM model. They can be employed to calculate a weight value πit, which presents the sentiment
strength of word wit. Formally, πit is defined as follows:

πit = tanh(Wwf
−→
hit +Wwb

←−
hit + bw) · v>w , (5)

where Wwf and Wwb denote word-level weight matrices, and bw is the bias vector. It is worth noting
that vw is a weight vector that can record historical sentiment information. It is just like the query
vector employed by memory networks (Sukhbaatar et al., 2015). It is jointly learned during the training
process. v>w represents the transpose of vw.

After calculating the weight value πit, we use a softmax function to generate the attention vector ai.
The tth dimension ait denotes the attention weight of the tth word wit in sentence Si. Specifically, ait is
computed as follows:

ait =
exp(πit)∑T
t=1 exp(πit)

. (6)

The learned attention vector ai contains different weights for the corresponding words in sentence
Si. We then compute the sentence vector si as a weighted sum of the hidden vectors according to the
weights, where hit means a concatenation of

−→
hit and

←−
hit:

si =

T∑
t=1

aithit. (7)

After obtaining sentence vectors si, 1≤i≤k, we feed them into the sentence-level BiLSTM model to
output hidden vector pairs. Similarly, with the attention mechanism, the hidden vector pairs

−→
hi and

←−
hi,

and their concatenation hi, document vector d can be induced as follows:

πi = tanh(Wsf
−→
hi +Wsb

←−
hi + bs) · v>s , (8)

ai =
exp(πi)∑k
i=1 exp(πi)

, (9)

d =

k∑
i=1

aihi. (10)
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Data Class Train Size Dev. Size Test Size Sents/doc Words/sent
IMDB 10 67,426 8,381 9,112 16.08 24.54
Yelp14 5 183,019 22,745 25,399 11.41 17.26
Yelp13 5 62,522 7,773 8,671 10.89 17.38

Table 1: Statistical information for three datasets. Sents/doc is the average number of sentences in a
document, while Words/sent denotes the average length of a sentence.

2.3 Jointly Supervised Classification and Attention
The final document vector d is used to conduct sentiment classification, which requires the probability
of labeling a document with sentiment polarity c, c ∈ [1, C], where C represents the total number of
classes. The probability is computed by a softmax function:

p = softmax(Wcd+ bc). (11)

To jointly supervise the classification and attention, we introduce a soft constraint method that is em-
ployed by other tasks with supervised attention (Liu et al., 2016). Specifically, it is defined as follows:

L = −
C∑
c=1

gclog(pc) + µw ·
T∑
i=1

4(a?i ,ai) + µs · 4(a?,a), (12)

where the classification loss function is cross entropy. gc ∈ RC denotes the ground truth of the sentiment
classification, presented by a one-hot vector. pc ∈ RC is the predicted probability for each class. a?i and
a? are gold attention vectors for the word and sentence levels, respectively. ai and a are learned attention
vectors for the word and sentence levels, respectively. 4 is a loss function that indicates the disagreement
between two vectors. Because the learned attention vector is a distribution, we naturally use cross entropy
(CE) as the metric:

4(a?,a) = −
∑
i

a?i log(ai). (13)

µw and µs are the coefficients for attention loss functions, which can balance the preference between
classification and attention disagreements, to alleviate the overfitting problem.

3 Experimental Settings

In this section, we introduce the experimental settings in detail, including the datasets and lexicons,
hyper-parameter settings, and baseline models.

3.1 Datasets and Lexicons
We conduct experiments to evaluate the effectiveness of our method on three document-level review
datasets: IMDB, Yelp 2013 and Yelp 2014, which are developed by Tang et al. (2015). We split the
datasets into training, development and testing sets in the proportion of 8:1:1, using pre-processing in the
same way as Tang et al. (2015). Table 1 summarizes the statistics of the datasets. All of these datasets
can be publicly accessed1.

The sentiment lexicon contains four parts. During the process of constructing our lexicon, we only use
the sentiment scores for unigrams. The first part comes from SentimentWordNet3.0 (SWN) (Baccianella
et al., 2010). The original scores in SWN are the probabilities of positive, negative, or neutral polarities
for words. We take the maximum sum of the positive and negative scores as the sentiment degree for
different part-of-speech tags. The second part is extracted from MPQA (Wilson et al., 2005), which
tags polarity ratings for sentiment words. To a word whose polarity is positive or negative, we assign 1
as its sentiment degree. Otherwise, the word’s sentiment degree is 0. The third part consists of the leaf
nodes of the Stanford Sentiment Treebank (SST) dataset (Socher et al., 2013). The sentiment scores of

1http://ir.hit.edu.cn/d̃ytang/paper/acl2015/dataset.7z
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SST are in the range of [0, 1]. We scale it to [-1, 1] and keep the absolute value as the sentiment degree.
The last part is the sentiment lexicon of the Hownet Knowledge Database (HKD)2, which contains a list
of positive or negative words. We conduct the pre-processing in the same way as for MPQA. Finally,
we combine the four parts and average the sentiment degree for words appearing in two or more lexicon
parts. All of the neutral words in different parts are included in our lexicon because of the ignorance of
polarity. Hence, the final lexicon is huge, containing 156,242 tokens and covering 96.8% of the words in
three review datasets.

The sentiment lexicon is of great significance in our experiments. A lexicon of high quality ensures
the effectiveness of the supervised mechanism. Empirically, if the overlapping of the dataset and lexicon
is poor, the performance will be limited. The availability of lexicons is also not a given for any domain
or language. In such scenarios, several existing methods can be used to construct or extend sentiment
lexicons based on large corpora in a semi-supervised way to cover the dataset (Lu et al., 2011; Hamilton
et al., 2016). As the above potential problems are not the main concern of our work, we just briefly touch
on this and will explore it in future work.

3.2 Hyper-parameter Settings

Following Tang et al. (2015) and Chen et al. (2016), we set the dimension of the word embeddings to
200. We use the word2vec tool (Mikolov et al., 2013) to pre-train the word embeddings. We set the
dimensions of the word-level bidirectional LSTM hidden states to 100. All the weight matrices are ini-
tialized by a uniform distribution in [-0.1, 0.1]. The hyper-parameter λw and λs which adjust the variance
of the gold attention vectors, are both set to 3.0. The hyper-parameter µw which adjusts the proportion of
classification and attention loss, is set to 0.001 while µs is set to 0.05. We use Adam (Kingma and Ba,
2014) as the optimizer, which adopts a self-adaptive learning rate to optimize parameters, and its initial
learning rate is set to 0.001. The batch size is set to 32 for efficiency. The model achieving best results
on the developing set is chosen for the final evaluation of the test set.

3.3 Baseline models

We separate baseline models into four groups. In the first group, all of the methods are recently devel-
oped and achieve good performances on three review benchmarks. SSWE + SVM (Tang et al., 2014b)
first generates sentiment-specific word embeddings to compose document presentations and then trains
a SVM classifier. Paragraph + Vector (Le and Mikolov, 2014) learns distributed representations of a
document for classification. RNTN + RNN (Socher et al., 2013) represents sentences with the Recur-
sive Neural Tensor Network (RNTN) and feeds them into a recurrent neural networks (RNN) to obtain
document representations. UPNN (Tang et al., 2015) uses a text preference matrix and vector for each
user and product as extra information to train a CNN sentiment classifier. UPNN(noUP) only uses CNN
without considering user and product information.

The models in Group 2 are based on sentiment lexicons. BiLSTM (Xu et al., 2016) is a bidirectional
LSTM baseline with a simple average pooling layer. AveLex naively averages sentiment scores of words
in the document to measure the overall sentiment polarities according to our sentiment lexicon. BiLSTM
+ Lex (Teng et al., 2016) takes the local context into consideration, which leverages a bidirectional
LSTM to capture context information and calculates the weighted sum of the sentiment scores. The two
lexicon-based methods only work on the word level because sentences do not have a gold sentiment
score. For a fair comparison, BiLSTM + LBSA is our model, which removes the hierarchical structure.

The models in Group 3 are based on attention mechanisms. H-LSTM (Chen et al., 2016) is a baseline
utilizing an average pooling layer at both the word and sentence levels. H-LSTM + LA (Chen et
al., 2016) uses local context to capture semantic information as an attention mechanism. H-LSTM +
CBA (Long et al., 2017) adds cognitive information from external reading time materials. For a fair
comparison, we simplify our method from bidirectional LSTMs to basic ones, which is denoted as H-
LSTM + LBSA.

2http://www.keenage.com/html/e index.html
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Model
IMDB Yelp 2013 Yelp 2014

Acc. RMSE Acc. RMSE Acc. RMSE
SSWE + SVM (Tang et al., 2014b) 0.312 1.973 0.549 0.849 0.557 0.851
Paragraph + Vector (Le and Mikolov, 2014) 0.314 1.814 0.554 0.832 0.564 0.802
RNTN + RNN (Socher et al., 2013) 0.401 1.764 0.574 0.804 0.582 0.821
UPNN(noUP) (Tang et al., 2015) 0.405 1.629 0.577 0.812 0.585 0.808
AveLex 0.223 2.388 0.312 1.393 0.334 1.202
BiLSTM (Xu et al., 2016) 0.433 1.494 0.584 0.764 0.592 0.733
BiLSTM + Lex (Teng et al., 2016) 0.441 1.466 0.588 0.758 0.598 0.726
BiLSTM + LBSA 0.443 1.457 0.590 0.761 0.603 0.720
H-LSTM (Chen et al., 2016) 0.443 1.465 0.627 0.701 0.637 0.686
H-LSTM + LA (Chen et al., 2016) 0.487 1.381 0.631 0.706 0.631 0.715
H-LSTM + CBA (Long et al., 2017) 0.489 1.365 0.638 0.697 0.641 0.678
H-LSTM + LBSA 0.488 1.360 0.640 0.694 0.647 0.670

H-BiLSTM 0.484 1.399 0.640 0.700 0.646 0.672
H-BiLSTM + LA 0.492 1.359 0.647 0.698 0.648 0.665
H-BiLSTM + LBSA 0.494 1.322 0.650 0.691 0.651 0.668

Table 2: Sentiment classification performance on different models. Acc. (Accuracy) and RMSE are the
evaluation metrics. The best results are in bold in the last three groups, respectively.

In Group 4, H-BiLSTM is a hierarchical bidirectional LSTM model with an average pooling layer.
H-BiLSTM + LA is a BiLSTM version of the local attention model based on Chen et al. (2016).

4 Results

This section compares our model (LBSA) with other baseline methods. Two common performance
evaluation metrics are used, including Accuracy (Acc.) and Root Mean Squared Error (RMSE). They
are defined as follows:

Accuracy =
T

N
, (14)

RMSE =

√∑N
i=1(yi − ŷi)2

N
. (15)

Accuracy is a standard metric to measure the overall sentiment classification performance, where N is
the number of overall samples, and T denotes the number of predicted outputs that are identical with
gold labels. RMSE measures the divergences between the predicted sentiment classes and ground truth
ones, where ŷi and yi represent the predicted outputs and gold labels, respectively. Table 2 illustrates
the comparison results, which are separated into four groups. Some results of the baseline methods are
directly taken from Long et al. (2017) and Xu et al. (2016), because we conducted experiments on the
same datasets.

We can observe from Group 2 that the performances are limited without a hierarchical structure be-
cause the texts are very long in document-level sentiment classification. AveLex is the worst method
because it naively averages the sentiment scores of words without considering any textual semantics.
Compared with BiLSTM + Lex, our method achieves a relatively better result. The main reason is that
our method ignores the prior polarity of the sentiment words in lexicons. LBSA is able to lead neural
networks to concentrate on sentimental contents and learn a more accurate polarity according to histor-
ical information. To illustrate the results more specifically, we investigate the sentiment word long in
our datasets. Long has a sentiment degree of 0.42 in our constructed lexicon, which indicates that it
plays a relatively critical role in sentiment classification. The sentiment polarity of long in MPQA and
SST is negative. A random sentence sample ’The several tables were available, so I didn’t understand



875

LA

LBSA

Leonardo comfortDicapriostepsoutofhisusual zoneandisascharismaticasI‘veeverseenhim

Figure 2: Sentence example from IMDB. Local attention (LA) focuses more on the domain-specific
words Leonardo Dicaprio, while our model (LBSA) can exactly capture the real sentiment word charis-
matic.

the long wait.’ is taken from a one-star review in Yelp 2013, which meets our expectation. However,
in other domains or contexts, long is likely to be positive. For instance, the sentence ’Its appeal to me
was immediate and long lasting.’ is extracted from a 10-star movie review in IMDB. It is obviously a
positive sentence, but the prior polarity of long in the sentiment lexicon misleads the judgment of general
methods that directly use sentiment scores.

In Group 3, we observe that our method significantly outperforms other attention mechanisms with the
Yelp 2013 and Yelp 2014 datasets. The evaluation on the RMSE metric is also better than other methods
with the IMDB dataset. This demonstrates that LBSA is effective at capturing sentiment information,
which can be a crucial factor in sentiment classification. Compared with H-LSTM + CBA, our model
achieves better results, which means lexicon information is more suitable for attention supervision in sen-
timent analysis tasks. In the forth group, the bidirectional LSTM improves the basic performance, which
indicates that both forward and backward sequences indispensably contribute to information extraction.
Compared with local context-based attention, the basic performance of our method is outstanding and
has a relatively small improvement when a bidirectional mechanism is added. This indicates that our
method lays emphasis on contents containing rich sentiment information, which is robust in a simpler
structure. In contrast, local context-based attention relies heavily on contexts in both directions. The
characteristic of being dedicated to the contexts may induce domain-specific words and ignore real sen-
timent information. Here, we use a sentence from a movie review in IMDB as an example: ’Leonardo
Dicaprio steps out of his usual comfort zone and is as charismatic as I’ve ever seen him.’ Figure 2
illustrates the main difference between two attention mechanisms.

The LA model gives higher weights to the name Leonardo Dicaprio because it usually appears in a
positive movie review. The words are domain-specific and attract attention from real sentiment words.
In contrast, our method tends to extract specific sentiment information. As a result, it assigns a very high
weight to the word charismatic, which indeed plays a decisive role as a positive adjective.

5 Related Work

Sentiment lexicons are widely used in sentiment analysis and opinion mining tasks because they con-
tain rich sentiment information. Turney (2002) employed the sum of the sentiment scores of all the
words in the texts that appeared in a sentiment lexicon. This is still the standard practice for specific
domains with some carefully constructed domain-specific lexicons. Agarwal et al. (2013) proposed a
tree-structured model leveraging non-polarity features such as POS-tags and capitalized words, adding
the summation of the prior polarity scores of words, which achieved high performance on the twitter
sentiment analysis benchmark. Teng et al. (2016) presented a context-sensitive lexicon-based method
that uses a bidirectional LSTM to extract context information. It calculates the weighted sum of the
sentiment scores of words to measure the sentiment value of a sentence. Qian et al. (2016) proposed a
linguistically regularized LSTM for sentiment analysis. The model combines linguistic resources such
as sentiment lexicons, negation words and intensity words with the basic LSTM model. It is able to cap-
ture the semantic information and sentiment effects in sentences more accurately. Unlike most previous
studies, we incorporate the features of lexicon words into an attention mechanism, which was proven to
be effective in our experiments.

Recently, the attention mechanism has been widely studied in sentiment classification. Yang et al.
(2016) proposed two attention-based bidirectional GRUs to enforce the neural networks to attend to
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the related part of a sentence or document. Apart from local contexts, Chen et al. (2016) incorporated
extra information such as users and products in review datasets into a hierarchical attention mechanism.
Ma et al. (2017) cascaded multiway of user and product information to enhance the effects of different
aspects. Zhou et al. (2016) proposed a LSTM network based on an attention mechanism for cross-lingual
sentiment classification at the document level. The model consists of two attention-based hierarchical
LSTMs for bilingual representation. Long et al. (2017) took cognition into consideration, leveraging
extra resources including the reading time of human beings. They proposed a mutimodel that learns to
predict the reading time to construct the cognitive attention. The main difference between our method
and others is that we supervise the attention weights using sentiment information. As a result, it is able
to capture real sentiment texts and achieves a better result.

6 Conclusion

In this paper, we propose a novel lexicon-based supervised attention model. We combine an attention
mechanism and sentiment lexicons to guide the neural network to focus on the sentiment content. It has
better interpretability and less noise compared with other attention models. Experiments on three large
review datasets validated the effectiveness of our model, showing that it can capture real sentiment infor-
mation and generate sentiment-informative representations to improve the classification performance.
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