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Abstract

In this paper, we propose GiveMeExample that ranks example sentences according to their ca-
pacity of demonstrating the differences among English and Chinese near-synonyms for language
learners. The difficulty of the example sentences is automatically detected. Furthermore, the
usage models of the near-synonyms are built by the GMM and Bi-LSTM models to suggest the
best elaborative sentences. Experiments show the good performance both in the fill-in-the-blank
test and on the manually labeled gold data, that is, the built models can select the appropriate
words for the given context and vice versa.

1 Introduction

Integrating new words into active vocabulary requires language learners to make connections between
the new lexical items and their previous knowledge. The acquisition of (near-)synonyms is especially
challenging as learners need to know in which respects the words are similar and in which ways they dif-
fer from each other in order to make correct lexical choices while composing sentences. While absolute
synonymy, i.e., interchangeability of words in any context, is generally a rare linguistic phenomenon,
near-synonyms, which are similar words that differ in mostly only one aspect, are relatively common
and often confuse learners with small nuances between them (DiMarco et al., 1993).

In order to assist language learners with the acquisition of near-synonyms, we previously developed
GiveMeExample (Chieh-Yang and Lun-Wei, 2016) , a system that allows users to search for a pair
of similar words and obtain a number of ranked example sentences which best highlight the difference
between the words. Based on these examples, learners can derive the different usage patterns. In this
paper, we introduce the enhanced edition, including the basic functions with the added language support
for Chinese, an automatic difficulty scorer, an improved word usage model and a visualization feature
for all the ranked example sentences. The online GiveMeExample system is available at http:
//givemeexample.com/GiveMeExample/.

2 Example Sentence Suggestion

GiveMeExample recommends useful and clear example sentences in two stages: first filtering out
complicated sentences by the automatic difficulty scorer and then ranking the remained sentences by
their clarification ability, which indicates the capability of a sentence to clear up confusion of words.
We start from introducing the materials for the system design.

Experimental Material and Automatic Difficulty Scorer For the English version, the sentence pool
is assembled using example sentences from Vocabulary.com1. On the other hand, the Chinese pool is
composed of sentences collected from two balanced corpora, the Lancaster Corpus of Mandarin Chinese
(McEnery and Xiao, 2003) and the UCLA Written Chinese Corpus (Tao and Xiao, 2007). All of the

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1Text from Vocabulary.com (https://www.vocabulary.com), Copyright c©1998–2016 Thinkmap, Inc. All rights
reserved.
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sentences here are utilized to train the word usage model, but in order to provide useful example sentences
for learners, we further filter out complicated sentences and build with remaining sentences the simple
sentence pool, from which the final example sentences are chosen.

To filter out complicated sentences, we build the automatic difficulty scorer based on the work of
Pilán et al. (2014) but with several modifications. First, in order to assign to each sentence a score (as
opposed to a class) we use a linear regression model instead of SVM. Second, the Swedish-specific
features introduced by Pilán et al. (2014) are omitted. The training data for English sentence difficulty
scorer is manually labeled by a native speaker who grades sentences from two aspects, the difficulty of
wording and the complexity of sentence structure, ranging from 1 to 4. The sentence difficulty score
ranging from 2 to 8 is then obtained by summing up these two scores. However, for the Chinese sentence
difficulty scorer, the training data is collected from mock tests for Hanyu Shuiping Kaoshi (HSK), a
Chinese Proficiency Test, and the difficulty degree of a extracted sentence corresponds to the proficiency
degree of the content that this sentence comes from.

Measuring Clarification Ability of Sentences When searching for useful example sentences for the
target word wi in a word confusion set W , there are two related factors: (1) Fitness: the probability
P (s|wi), whether wi is appropriate for the example sentence s given a slot to put wi. P (s|wi) is calcu-
lated by the word usage model. (2) Relative Closeness: the summation of the differences of between
probabilities P (s|wi) and P (s|wj), i.e.,

∑
wj∈W−wi

P (s|wi)−P (s|wj). A high relative closeness score
denotes a better fit of s to wi and a worse fit to W − wi. We then calculate the clarification score with
the multiplication of the fitness score and the relative closeness score:

score(s|wi) = P (s|wi) ∗ (
∑

wj∈W−wi

P (s|wi)− P (s|wj)) (1)

where score(s|wi) denotes the clarification score of the example sentence s for wi. We generate rec-
ommendations by ranking sentences in the simple sentence pool by their clarification scores. Then we
repeat this procedure for all words in word confusion set W to find their elaborative example sentences.
Next, we describe the calculation of the probability P (s|wi).

Word Usage Model To estimate P (s|w) for an observed sentence s, we build a word usage model for
the word w. The word usage model is built as an one-class classifier to recognize target samples from an
unknown sample space and to process dynamically requested word confusion sets without retraining the
models. We introduce two word usage models, the Gaussian Mixture Model (GMM) (Xu and Jordan,
1996) with contextual feature and the Bi-directional Long Short Term Memory neural network (Bi-
LSTM) (Graves et al., 2013; Schuster and Paliwal, 1997; Hochreiter and Schmidhuber, 1997).

To build the GMM model, for each sentence s = w1 · · ·wt−k · · ·wt · · ·wt+k · · ·wn, where wt is the
target word and k is the window size, we take the k words preceding and following the target word and
represent them as well as their adjacent combinations in sequence using the summation of their word
embeddings (Pennington et al., 2014). For example, the feature extracted by the windows size k = 2
is {ewi−2ewi−1ewi−2,i−1ewi+1ewi+2ewi+1,i+2}, where ew denotes the summation of word embeddings of
word sequence w. Next, GMM applies Expectation–Maximization algorithm to estimate its parameters
and approximate to the data distribution. Empirically, we find that the GMM model with k = 2 and
number (of mixture) = 50 achieves the best performance. To train the GMM model for the target word
wt, a total of 5,000 corresponding sentences are used as the training samples.

To build the Bi-LSTM model, following the same idea of using contextual features, we take words
adjacent to the target word into account. However, rather than using the information limited in a small
window, Bi-LSTM exploits all the preceding and the following words of the target word in the sentence
by a forward LSTM and a backward LSTM respectively. Then the output vectors of these two LSTM
are concatenated together to form the sentence embedding, which is also a kind of contextual feature of
the given sentence. At last, we add two fully connected layers as the binary classifier to predict whether
wt is appropriate for s. To train a Bi-LSTM model for wt, we use 5,000 sentences containing wt as the
positive samples. For the negative samples, we randomly choose another 50,000 sentences (10 times of
the positive samples) which do not contain wt. In the end, a total of 55,000 sentences are used to train
the Bi-LSTM model for each wt.
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3 System

(a) Search page (b) Result page (c) Sentence illustration

(d) Chinese version search page (e) Chinese version result page (f) Sentence illustration

Figure 1: The user interface of GiveMeExample

Near-Synonym Set Search Interface Fig. 1a and Fig. 1d show the search interface. On the search
page, learners can type in the words they want to compare easily and dynamically. In addition,
GiveMeExample also offers a brief explanation of each word. The “gmm &bi-lstm” flag on the right
side of the searched word indicates that GiveMeExample can provide example sentences suggested
by both two models. Furthermore, learners can adjust the difficulty level with a drop-down list to find
example sentences according to their language proficiency.

Fig. 1b and Fig. 1e show the result interface where the system-suggested example sentences are listed.
GiveMeExample provides a “more” button to retrieve additional elaborative sentences. This function
facilitates learners to reach more example sentences to generalize the usage and make inference about
their difference. In Fig. 1b, learners can conclude that only “refuse” is followed by “to Verb” but the
other two words are not. However, example sentences of “disagree” and “deny” do not demonstrate
explicit usage. As a result, more example sentences are needed for learners to infer the correct usage
of these two words. A similar situation occurs in Fig. 1e. Learners can conclude that only “离开” can
be followed by an object, but “离去” cannot. However, for “离去”, learners may need more example
sentences.

Example Sentence Illustration In the example sentence illustration page, each sentence is turned into
a two dimensional point by applying t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and
Hinton, 2008) on its contextual feature vector (either from the GMM or Bi-LSTM model). When Bi-
LSTM model is used, we will generate one figure for each word because each Bi-LSTM word usage
model has it own feature extractor. One confusing word will have different feature vector in different
word models. Therefore, for a confusion word set, we will have several figures for one confusing word
from several word models. Fig. 1c illustrates the figure on the near-synonym set {refuse, disagree}
generated by the Bi-LSTM word usage model of “refuse”. GiveMeExample displays the sentence
represented by each point when the user hovers the mouse over it. With this function, learners can easily
search for either different or similar usage patterns of a set of confusing words. For instance, in Fig. 1c,
the top two blue points of “refuse” both show the usage “someone refuses to do something” of this word
and thus are grouped together, while the red-blue mixed small group at the lower left corner of the figure
showing similar usage “someone refuses/disagrees” of the two confusing words “refuse” and “disagree”.
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Figure 2: An example question for learners. Learners need to select the best sentence pair, one from the
left column and one from the right, to best illustrate the difference between {refuse, disagree}.
In this figure learners can easily find that the example sentences are roughly grouped into three clusters,
suggesting in general there are three major usages of these two words.

Differing Aspect Near-synonym Pair Score Differing Aspect Near-synonym Pair Score
abstract vs. concrete blunder - error 7/10 low vs. high degree mist - fog 2/10

维护-保护 6/10 经常-往往 3/10
formal vs. informal child - kid 6/10 pejorative vs. favorable skinny - slim 3/10

购买-买 9/10 产生-造成 8/10

Table 1: How useful the recommended example sentences can help discriminate near-synonyms.

Evaluation We first evaluate Fitness by the FITB test, which assesses whether the proposed fitness
score can identify the appropriate context for a given word. A FITB question contains a sentence with
a blank field to be filled in by several near-synonym candidate answers. We adopt Edmonds benchmark
for evaluation. Edmonds (1997) suggests the FITB test on 1987 Wall Street Journal (WSJ) and defines 7
near-synonym sets, and after that it becomes a benchmark. Among the one-class models ever reported in
the literature, the 5-gram language model is the best (acc 69.90%) (Islam and Inkpen, 2010). However,
results show our proposed GMM and Bi-LSTM both outperform it by achieving the accuracy 70.26%
and 73.05%, respectively.

Then we evaluate Clarification by the Learner Glod standard (LG) experiment. We define 10 near-
synonym sets, where each set contains 2 near-synonym verbs, for evaluation. For each near-synonym set
we build 20 questions. Fig. 2 shows an example question for the word confusion set {refuse, disagree}.
Each question contains 5 randomly chosen example sentences for each confusing word. The sentences
are listed in parallel, 5-to-5, in each question and 6 learners are requested to choose the best sentence
pair, one sentence for each word. The pair selected by learners are treated as the gold answer and thus
each question has at most six gold pairs from learners. Then the GiveMeExample system answers each
question by regarding it as question of 25 sentence-pair choices. The sytem will rank all these 25 choices
and among them the rank of best gold pair are used to calculate the mean reciprocal rank (MRR). The
MRR of GMM and Bi-LSTM are 0.502, 0.500 respectively, and both outperform the random-ordered
baseline (0.423) and first-seen baseline(0.429).

Discussion In order to investigate how helpful the proposed system is, we conduct a case study for a
number of Chinese and English near-synonym pairs that differ in certain linguistic aspects (abstract vs.
concrete, formal vs. informal, low vs. high degree and pejorative vs. favorable) as proposed by DiMarco
et al. (1993). The ten highest ranked sentences from the system are manually scored for their suitability
to discriminate each two confusing words, conferring one point on a good example sentence and zero
points if the sentence did not highlight a difference between the two near-synonyms. The main criterion
we employ for this decision is whether the synonyms are mutually exchangeable without altering the
meaning and normality of the original statement (Cruse, 1986). According to our results, the system
makes good suggestions for the abstract vs. concrete and formal vs. informal word pairs (Table 1) with
60 to 90 percent of helpful example sentences. Especially the formal and informal difference is the most
recognizable from the example sentences, e.g. “Would you let your kids smoke pot?” vs. “The New York
City Children’s Chorus will perform during the worship service.” Results for the pejorative vs. favorable
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word pairs are mixed, while the suggested sentences for the near-synonyms with varying degrees are
found to be less distinctive by their associated context. The difference in performance seems largely
related to the extend to which the words differ from each other, making “mist - fog” more difficult to
distinguish than “error - blunder”.

The analysis of the recommended sentences also shows that the system picks up two additional as-
pects in which near-synonyms may differ. First, many suggested sentences contain collocational patterns
which are helpful to distinguish similar words, such as fixed expressions e.g. “error bars” but not “blun-
der bars” and common arguments e.g. “维护平衡” vs. “保护鸟种”. Second, the system can demonstrate
monofunctional vs. polyfunctional properties of near-synonyms, e.g. “error” can only serve as noun, but
“blunder” can function as a noun (“What a jolly blunder Police Headquarters would make!”) as well as
a verb (“Ye blundering idiot!”).

4 Conclusion

We have proposed the GiveMeExample system to help language learners understand English and Chi-
nese near-synonyms by utilizing learners’ ability to learn implicitly from the comparison of good exam-
ple sentences. We have shown that GiveMeExample has the design to support the online comparison
of arbitrary words and can perform satisfactory. In the future, we plan to support the analysis of phrases
and further investigate the effect from the learning side.
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