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Abstract

WebQuestions and SimpleQuestions are two benchmark data-sets commonly used in recent
knowledge-based question answering (KBQA) work. Most questions in them are ‘simple’ ques-
tions which can be answered based on a single relation in the knowledge base. Such data-sets lack
the capability of evaluating KBQA systems on complicated questions. Motivated by this issue,
we release a new data-set, namely ComplexQuestions1, aiming to measure the quality of KBQA
systems on ‘multi-constraint’ questions which require multiple knowledge base relations to get
the answer. Beside, we propose a novel systematic KBQA approach to solve multi-constraint
questions. Compared to state-of-the-art methods, our approach not only obtains comparable re-
sults on the two existing benchmark data-sets, but also achieves significant improvements on the
ComplexQuestions.

1 Introduction

Knowledge-based question answering is a task that aims to answer natural language questions based
on existing knowledge bases (KB). In the last decades, large scale knowledge bases, such as Free-
base (Bollacker et al., 2008), have been constructed. Based on Freebase, two benchmark data-sets,
WebQuestions (Berant et al., 2013) and SimpleQuestions (Bordes et al., 2015) are constructed and used
in most of KBQA work (Berant and Liang, 2014; Bordes et al., 2014a; Fader et al., 2014; Yang et al.,
2014; Bao et al., 2014; Reddy et al., 2014; Dong et al., 2015; Yih et al., 2015).
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Which films star by Forest Whitaker and are directed by Mark Rydell

Figure 1: Simple and multi-constraint questions.

However, about 85% of questions (Yao,
2015) of WebQuestions and all questions in
SimpleQuestions are ‘simple’ questions, where
a ‘simple’ question denotes that it can be
answered based on a single KB relation.
For example in Figure 1, “Which films star
by Forest Whitaker” is a simple question
that can be answered by the KB triples
like 〈Forest Whitaker,acted films,?〉with a
single KB relation acted films. This leads
to the fact that such data-sets cannot measure
the capability of KBQA systems on ‘multi-
constraint’ questions, where ‘multi-constraint’
means a question containing multiple semantic
constraints expressed with different expressions
to restrict the answer set. To answer a multi-constraint question, we have to base on multiple KB re-
lations. For example in Figure 1, “Which films star by Forest Whitaker and are directed by Mark Ry-
dell” is a multi-constraint question with a constraint “directed by Mark Rydell”, which requires multiple

∗This work was finished while the author was visiting Microsoft Research Asia.
1https://github.com/JunweiBao/MulCQA/tree/ComplexQuestions

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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Constraint Category Example Percentage
Multi-Entity which films star by Forest Whitaker and are directed by Mark Rydell? 30.6%

Type which city did Bill Clinton born? 38.8%
Explicit Temporal who is the governor of Kentucky 2012? 10.4%
Implicit Temporal who is the us president when the Civil War started? 3.5%

Ordinal what is the second longest river in China? 5.1%
Aggregation how many children does bill gates have? 1.2%

Table 1: Constraint categories, examples, and distributions over a set of web queries. Note, a multi-
constraint question may belong to not only one constraint category. And there are still other relatively
low frequency type of complex questions existing which we don’t take consideration in this work. So
the sum of the Percentage for these constraints are not guaranteed to be 1.

KB triples 〈Forest Whitaker,acted films,Even Money〉 and 〈Even Money,director,Mark Rydell〉
with two KB relations acted films and director to get the exact answer set.

Motivated by this issue, this work contributes to QA research in the following two aspects: (1) We
propose a novel systematic KBQA approach to solve multi-constraint questions by translating a multi-
constraint question (MulCQ) to a multi-constraint query graph (MulCG); (2) A new QA data-set, name-
ly ComplexQuestions, is released, aiming to measure the quality of KBQA systems on multi-constraint
questions. Compared to state-of-the-art approaches, our method obtains comparable results on the ex-
isting benchmark data-sets WebQuestions and SimpleQuestions. Furthermore, we achieve significant
improvement on the newly created ComplexQuestions data-set.

2 Multi-Constraint Question

2.1 Constraint Classification

A MulCQ is defined as a question which requires multiple KB relations or special operations to get the
answer. Based on web query analysis, we classify constraints into 6 categories as follows:

(1) Multi-entity constraint. A question in this category denotes that multiple entities occur in it, which
restrict the answer. For example, “Forest Whitaker” and “Mark Rydell” are two entity constraints in the
first question in Table 1.

(2) Type constraint. A question in this category denotes that its answer should follow a type, which is
explicitly mentioned by the question. For example, the answer to the second question in Table 1 should
be a “city” name, instead of locations with other types such as country, town, etc.

(3) Explicit temporal constraint. A question in this category denotes that it contains explicit temporal
expressions, such as “2012” in the third question in Table 1. Such questions are very common in web
queries, which means handling them well will bring about significant improvements.

(4) Implicit temporal constraint. A question in this category denotes that it contains implicit temporal
expressions. For example, “when the Civil War started” denotes an implicit temporal constraint in the
fourth question in Table 1. We should transform it into an explicit temporal constraint before answering
the question. Such constraints are usually expressed by subordinate clauses.

(5) Ordinal constraint. A question in this category denotes that its answer should be selected from a
ranked set, based on ordinal numbers or superlative phrases as ranking criteria. For example, “second
longest” in the fifth question in Table 1 denotes that the answer should be the second item in the ranked
Chinese river set, based on their lengths.

(6) Aggregation constraint. A question in this category denotes that it asks for the number of a set,
which often starts with phrases “how many” or contains “number of”, “count of”, etc.

2.2 Question Selection

We perform the following steps to select suitable multi-constraint question candidates for human anno-
tators to label, based on Freebase.

Firstly, a three month (2015.1.1-2015.4.1) query log from a practical search engine is used as the raw
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Operation Trigger Description
Equal(y0, y1) N/A Return True if y0 is equal to y1, otherwise False
< (y0, y1) “after” or “later then” Return True if y0 is smaller than y0, otherwise False
> (y0, y1) “before” or “earlier then” Return True if y0 is larger than y0, otherwise False
MaxAtN(x, n) Maximize superlatives in WordNet Rank items of x in descending order, return the nth one
MinAtN(x, n) Minimize superlatives in WordNet Rank items of x in ascending order, return the nth one
Count(x) ”how many”, “count of” or “number of” Return the number of entity set x.

Table 2: Functional predicates defined in this work.

query set, which contains 20,999,951 distinct 5W1H questions2 that satisfy the following two rules: (i)
each query should not contain pronouns (e.g., ‘you’, ‘my’, etc.), as questions with such words are usually
non-factual questions, and (ii) each query’s length is between 7 and 20, as short queries seldom contain
multi-constraints, and long queries are usually difficult to answer. Then, we further sample 10 percent of
questions, and use an entity linking method (Yang and Chang, 2015) to detect entities. If no entity can
be detected from a query, we simply remove it. Next, both WebQuestions and SimpleQuestions are used
to extract a set of words, without considering stop words and entity words. If a query does not contain
any word in this word set, we simply remove it. This is intuitive, as WebQuestions and SimpleQuestions
are our training data, and we only consider queries that can be covered by the training data as query
candidates. Last, we classify the remaining queries based on the following rules:

(1) If a question contains at least two non-overlap entities, then it belongs in the Multi-Entity category;
(2) If a question contains a type phrase that comes from Freebase, then it belongs in the Type category;
(3) If a question contains a time expression detected by an Named Entity Recognizer (NER) (Finkel

et al., 2005), then it belongs in the Explicit Temporal category;
(4) If a question contains keywords “when”, “before”, “after” and “during” in the middle, then it

belongs in the Implicit Temporal category;
(5) If a question contains ordinal number or superlative phrase from WordNet (Miller, 1995), then it

belongs in the Ordinal category;
(6) If a question starts with “how many”, or includes “number of” or “count of”, then it belongs in the

Aggregation category.
Note, a multi-constraint question may contain multiple types of constraints. We show constraint types,

examples, and distributions in Table 1. Ten thousand questions from the above 6 categories are selected,
according to their distributions. By manually labeling these questions according to Freebase, we obtain
878 multi-constraint question answer pairs.

2.3 Question Annotation
We release the ComplexQuestions data-set, which consists of 2100 multi-constraint question answer pairs
coming from 3 sources:

(1) 596 QA pairs selected from WebQuestions training set, and 326 from the test set,
(2) 300 QA pairs released by (Yin et al., 2015),
(3) 878 manually labeled QA pairs based on Section 2.2.
We then split it into two parts: a training set containing 1300 QA pairs and a test set including 800 QA

pairs3.

3 Definition

3.1 Knowledge base
K denotes a knowledge base4 (KB) that stores a set of facts. Each fact t ∈ K is a triple 〈s, p, o〉, where p
represents a predicate (e.g., birthday), and s, o (e.g., BarackObama, 1961) represent an entity or a value,

25W1H questions are ones the start with “what”, “where”, “when”, “who”, “which” or “how”.
3We put QA pairs from the training (testing) set of WebQuestions still in the training (testing) set of ComplexQuestions, and

the same for the test part.
4In this work, we use Freebase, which is a large knowledge base with more than 46 million entities and 2.6 billion facts. In

Freebase setting, CVT, namely compound value type is a special entity category, which is not a real world entity, but is used to
collect multiple fields of an event.
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which are the subject and object of t.

3.2 Multi-Constraint Query Graph

Before introducing multi-constraint query graph (MulCG), we first define four basic elements:
Vertex There are two types of vertices: constant vertex (rectangle) and variable vertex (circle). A

constant vertex represents a grounded KB entity or a value, such as Barack Obama or 1961. A variable
vertex represents ungrounded entities or unknown values.

Edge There are two types of edges: relational edge and functional edge. A relational edge represents
a predicate in the KB, such as birthday. A functional edge represents a functional predicate of a truth,
such as < in the truth 〈2000, <, 2001〉. Functional predicates are defined in Table 2.

Basic Query Graph A basic query graph is defined as a triple 〈vs, p, vo〉, where vs denotes a constant
vertex as the subject that occurs in a given question, vo (shaded circle) denotes a variable vertex as hidden
answers of the question, p denotes the ‘path’ that links vs and vo by one or two edges 5 (e.g., officials-
holder).

Constraint A constraint is defined as a triple 〈vs, r, vo〉, where vs is a constant vertex, vo is a variable
vertex, r is a functional edge, and after instantiation based on a knowledge base, all instantiated entities
from vo should satisfy the predicate of r with regard to vs.

MulCG A MulCG is constructed based on a basic query graph B of a question and an ordered
constraint sequence C = {C1, ..., CN} by the following operations: (1) Treat the basic query graph B of
the given question as G0; (2) Iteratively add Ci to Gi−1 to generate Gi, by linking the variable vertex of
Ci to a vertex of Gi−1 with some possible path, or directly merge them as one variable vertex. (3) Output
GN .

Given a MulCG of a question, we can execute it based on the KB by instantiating all variable vertices
according to the constraints in order. Specifically, we start from the constant vertex in the basic query
graph and instantiate all variable vertices according to the constraints in order. During this procedure,
each instantiated paired entities connected by an edge should satisfy the predicate of the edge based on
K and commonsense knowledge.
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Figure 2: MulCG for question “Who was the first
president of United States after 2000?”

Figure 2 shows one possible MulCG for the
given question. B is a basic query graph
with a constant vertex United States, variable
vertices y0 and x, and two edges officials

and holder. {C1, C2, C3} is an ordered con-
straint sequence detected based on the ques-
tion, where C1 = 〈President,Equal,y1〉, C2 =
〈2000,<,y2〉, C3 = 〈1,MaxAtN,y2〉. By adding
C1, C2, C3 in order, we can construct the MulCG
in Figure 2. Note, different constraint order can
result in different MulCGs. We will introduce
how to generate a MulCG in Section 4.

Compared to the stage graph in Yih et al.
(2015), our MulCG has the following two dif-
ferences: (1) Entity constraints can be added beyond single KB fact, while stage graph only considers
entities that connect to the CVT node of a single KB fact as constraints. (2) Non-entity constraints are
defined and handled in a systematic way, while stage graph only considers limited non-entity constraints,
i.e., type and gender.

4 Our Approach

Problem Formalization Given a MulCQ Q and a KB K, the question is parsed into a set of MulCGs
H(Q). For each MulCG G ∈ H(Q), a feature vector F(Q,G) is extracted and the one with the highest

5If p contains two edges, then the vertex between must represent a CVT entity in KB. We call an edge or two edges with a
CVT variable vertex ‘path’ in this work.
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“Which films star by Forest Whitaker and are directed by
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(b) MulCG with implicit temporal constraint for question
“Who was U.S. president after the Civil War started”.

Figure 3: MulCGs examples for different type of constraints.

ranking score is selected. Finally, by executing the MulCG, we get the answers A.

4.1 Basic Query Graph Generation
We use the entity linking approach proposed by (Yang and Chang, 2015) to detect entities mentioned
by the given question. For each detected entity s, we treat it as a subject constant vertex. Based on
the KB, for each unique KB ‘path’ from s, where a KB ‘path’ means one hop predicate p0 or two hop
predicates p1-p2

6, we construct a basic query graph 〈s, p0, x〉 or 〈s, p1-ycvt-p2, x〉. ycvt and x are variable
vertices, and x denotes the answer. For example, the basic query graph B in Figure 2 can be represented
as 〈United States, officials-y0-holder, x〉.

To measure the quality of each basic query graph constructed, we leverage a convolutional neural
network (CNN)-based model that is similar to (Gao et al., 2015; Shen et al., 2014b; Shen et al., 2014a;
Yih et al., 2015) to calculate the similarity between question and the path of the basic query graph. We
will describe the training resource in Section 4.4.

4.2 Constraint Detection and Binding
Basic query graph is fit for single relation questions (Yih et al., 2014; Bordes et al., 2015), but not suffices
to express a question with multiple constraints, such as the question in Figure 2. Hence, we propose to
use constraints to restrict the answer set by adding them into the basic query graph.Adding a constraint
contains two steps: Constraint Detection and Constraint Binding. We explain how to add each of the six
kinds of constraints respectively in the following parts.

Entity Constraint Entity constraint is designed to understand entities and relations which are often
expressed by noun phrases and verb phrases. A constraint with an entity as its constant vertex is an entity
constraint. For instance, Figure 3(a) is a question with multiple entities such as “Forest Whitaker” and
“Mark Rydell”. After the basic query graph G0 = B is generated, we detect a constraint C1 = 〈Mark
Rydell, Equal, y1〉 and bind it to G0 by an edge director. Generally, the two steps to add an entity
constraint are as follows: (1) Constraint Detection: For a detected entity e ∈ E (e.g., Mark Rydell),
we construct a constraint Ci = 〈e, Equal, yi〉 (e.g., 〈Mark Rydell, Equal, y1〉); (2) Constraint Binding:
Given a MulCG Gi−1 (e.g., B), and a detected constraint Ci (e.g., 〈Mark Rydell, Equal, y1〉), we try to
bind Ci to Gi−1 by linking the variable vertex of Ci (e.g., y1 of C1) to a vertex of Gi−1 (e.g., x of B) by
a possible path p (e.g., director). To measure the similarity between the path p (e.g., director) and
the ‘context pattern’7 (e.g., “directed by e1”) of constraint Ci, we adopt a convolutional neural network
(CNN) model which is described in Section 4.4.

6A KB ‘path’ containing two hop predicates means the entity between the two predicates is a CVT entity in the KB.
7A ‘context pattern’ is a 2-word context with the entity mention replaced by a slot “e1”
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Note, a constraint can be linked to any vertex in the basic query graph. For example, the constraint C1
in Figure 2 is binding to a variable vertex y0. When a constraint is binding to a constant vertex, then it is
usually used for entity disambiguation.

Type Constraint Answer type is often explicitly expressed by nouns in questions. For instance, “film”
is the answer type of the question in Figure 3(a), which denotes a type constraint. (1) Constraint De-
tection: Different from an entity constraint, we detect an answer type with simple but efficient rules
as Yao and Durme (2014) for the question. For each KB type8, we construct a type constraint (e.g.,
C2 = 〈Film, Equal, y2〉); (2) Constraint Binding: A type constraint is only added to the variable vertex
which denotes the answers with a specific edge type.

Explicit Temporal Constraint Temporal constraint is designed to understand temporal expressions,
which are often expressed by numericals, prepositional phrases or clauses. An explicit time expression,
such as “after 2000” in the question in Figure 2 indicates a temporal constraint C2. Through linking the
vertex y0 to y2 with a predicate from, functional constraint C2 = 〈2000, <, y2〉 selects the subset of the
grounded entities for y0 whose taking office time is later than 2000. Generally, the two steps to add
an explicit temporal constraint are as follows: (1) Constraint Detection: We use Stanford NER (Finkel
et al., 2005) to detect a time phrase. If a time t (e.g., 2000) is detected, and a functional operation r
(e.g., <) is triggered by a lexicon which is partially listed in Table 2, we then construct a constraint
Ci = 〈t, r, yi〉 (e.g., C2 = 〈2000, <, y2〉); (2) Constraint Binding: If an explicit temporal constraint Ci
(e.g., C2) is detected, then we execute Gi−1 (e.g., B with C1) on the KB. If there is a KB path p from
grounded entities of the linking vertex (e.g., y0) in Gi−1 satisfying the restriction that p’s object KB type
is Date Time, then the temporal constraint Ci is bound to Gi−1 by an edge denoting p.

Implicit Temporal Constraint Time expressions such as the clause “after the Civil War started” in
the question in Figure 3(b) can also trigger a temporal constraint, but it is expressed with an implicit
temporal adverbial clause. (1) Constraint Detection: A NER can not detect this kind of implicit temporal
expressions, so the dependency information is adopted to detect temporal clause starting with predefined
keywords9. We first use our system to answer the clause to get an explicit time (e.g., by a MulCG S to get
1861), then the detection falls into the same procedure as an explicit temporal constraint; (2) Constraint
Binding: It is same as an explicit temporal constraint.

Ordinal Constraint An ordinal constraint aims to understand the numerals and superlative forms of
adjectives or adverbs. For example, the question in Figure 2 contains an expression “first” which denotes
that an ordinal constraint C3 should be added to graph G2 (B with constraints C1 and C2). After executing
G2, we rank the grounded values of vertex y2 and pick up the 1st one by functional operation MaxAtN.
Generally, two steps are adopted to add an ordinal constraint: (1) Constraint Detection: We use a man-
ually collected ordinal number list and superlative vocabulary from WordNet (Miller, 1995) to detect an
ordinal number n (e.g., 1) and a functional operation op (e.g., MaxAtN or MinAtN) to construct an ordinal
constraint Ci = 〈n, op, yi〉; (2) Constraint Binding: If an edge p (e.g., from) linking a vertex of Gi−1 (e.g.,
y0 of G2) to the variable vertex of a constraint Ci (e.g., y2

10 of C3) satisfies the restriction that the object
entity of the predicate of p is a numerical or time value, and the word embedding similarity between the
superlative word and the binding path’s last word is the largest, then Ci is bound to Gi−1 with edge p
(e.g., C3 is bound to G2 with from).

Aggregation Constraint An aggregation constraint is added when the question starts with phrase “how
many”, or contains “number of”, “count of”. For instance, the phrase “how many” in the question “how
many children does bill gates have” trigger an aggregation constraint. We treat it specially by counting
the number of the grounded entities of the answer vertex.

4.3 Search Space Generation

8A KB type is the type of an entity in the KB, such as People, Film. We extract entire KB types from Freebase.
9Such as “when”,“before”,“after”,“during”,etc.

10Note, since the linking edges for C2 and C3 are both from, we bind C3 with G2 by merging y3 and y2 as y2.
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Algorithm 1: MulCG Generation
1 H(Q) = ∅;
2 T = ∅;
3 E = EntityLinking(Q);
4 foreach s ∈ E do
5 Gb = BasicQueryGraphGenration(s,K);
6 foreach gb ∈ Gb do
7 insert gb to T ;
8 insert gb toH(Q);
9 end

10 end
11 foreach gb ∈ T do
12 C = ConstraintDetection(gb, E ,Q,K);
13 foreach I ∈ Permutation(C) do
14 gc = gb;
15 for i = 0 to |I| − 1 do
16 gc = ConstraintBinding(gc, CIi);
17 end
18 insert gc toH(Q);
19 end
20 end
21 returnH(Q).

Given a MulCGQ, Algorithm 1 explains how to
generate the search space H(Q). Firstly, we set
H(Q) and a temp set T empty. A set of enti-
ties E are detected by entity linking component
which takes Q as input. Secondly, for each en-
tity e ∈ E , we generate all possible basic query
graphs Gb based on the knowledge base K. Each
basic query graph gb ∈ Gb is added into both
T and H(Q). Then, for each basic query graph
gb ∈ T , based on Q, E ,K, a set of constraints C
are detected through constraint detection com-
ponent. Function Permutation(C) returns all
possible index sequences of permutations of C.
For each index sequence I ∈ Permutation(C),
constraints are bound recurrently. For each con-
straint CIi , we try to bind CIi into a temporary
MulCG gc. Finally, a set of MulCG candidates
H(Q) is generated.

4.4 Features and Ranking
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Figure 4: Siamese Convolutional Neural Network

In this work, we propose using Siamese convolutional neural networks (CNN) in Figure 4 to calculate
the similarity of two sequences. The model consists of two neural networks taking two sequences as input
and maps both of them to k-dimensional vectors. Similar models, such as CDSSM (Shen et al., 2014b;
Gao et al., 2015) has been proved for web search. Besides, Yih et al. (2015) use similar frameworks
for semantic parsing and question answering. This continuous space representation approach has shown
better results compared to lexical matching approaches (e.g., word-alignment models).

Specifically, for two sequences Sl = (w1, w2, ..., wn) and Sr = (w
′
1, w

′
2, ..., w

′
m), we add “〈S〉” and

“〈E〉” to the head and tail of them respectively to form an input S ′l and S ′r of the network. Firstly, a word
hashing layer is adopted to hash a word w ∈ Sl (or Sr) to a one-hot vector Hh =OneHot(w,V) based
on the vocabulary V . Then by looking up the word embedding table We, each word w is embedded
into a k-dimensional vector He = LookUp(Hh,We). A convolutional matrix Wc is used to project
the embedding of words within a context window of 3 words to a local contextual feature vector, and a
max pooling layer follows which extracts the most salient local features to get a fix length global feature
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vector. With a multi-layer perceptron (MLP) to map the max pooling layer to a semantic layer, we get
Hl and Hr as the distributed representation of the left and right side. Finally, the semantic similarity is
computed as cosine(Hl,Hr). To conclude, this model can be defined as Sim(Sl,Sr).

Based on the CNN model described above, we design four features in Table 3 for the basic query graph,
and four types of features for each kind of constraints, namely indicating features Is/t/e/i/o/a, count fea-
tures Ns/t/e/i/o/a, constraint detection features Vs/t/e/i/o/a and constraint binding features Ps/t/e/i/o/a.

Given a MulCQ Q and a MulCG candidate Gi ∈ H(Q) , Fk(Q,Gi) represents the kth feature
of 〈Q,Gi〉. A liner scoring function is adopted to calculate the reward score of each 〈Q,Gi〉 as
Score(Q,Gi) =

∑
k λk · Fk(Q,Gi). A learning to rank method lambda-rank (Burges, 2010) is used

to learn the each feature weight λk.

Features Description
Basic Sent: Entity linking score (‘EntityLinking’)
Query Spc: CNN score between question pattern and path (‘PatChain’)
Graph Sqep: CNN score between question and entity+path (‘QuesEP’)

Scw: CNN score between question and path, where the model is trained on ClueWeb (‘ClueWeb’)
Constraint Is/t/e/i/o/a: Indicating features for each kind of constraints, each value is 1 or 0

Ns/t/e/i/o/a: Number of each kind of constraints, each value is a positive integer
Vs: Sum of entity linking scores for constant Vertex in each entity constraint.
Vt: Sum of CNN scores between answer type and KB type of the constant Vertex in each type constraint
Vi: Sum of reward scores of temporal clause for constant Vertex in each implicit temporal constraint
Ps: Sum of CNN scores between context pattern and binding Path for each entity constraint
Po: Sum of embedding similarities between superlative phrase and binding Path for each ordinal constraint

Table 3: Features and their description.

5 Experiment

We introduce experiment part on these aspects. We first introduce the settings of our experiments, es-
pecially the three data sets containing question/answer (QA) pairs. On these data sets, the results of our
method are given, and based on the results we analyze drawbacks.

5.1 Set Up

System Components We use the entire Freebase dump which is same as Berant et al. (2013) and host
it with Virtuoso engine11. Besides, an entity linker (Yang and Chang, 2015), the Stanford NER (Finkel et
al., 2005), and an in-house implementation of shift-reduce dependency parser (Zhang and Nivre, 2011)
with Stanford dependency (De Marneffe et al., 2006) which is used in detecting temporal clause are
adopted in this work.

Data Sets We evaluate our approach on three data sets.
(i) ComplexQuestions (CompQ): It is a new data set which includes 2100 QA pairs released by this

work with the details in Section 2.
(ii) WebQuestions (WebQ): It contains 3778 QA pairs on training set and 2032 on test set which

is released by Berant et al. (2013). The questions are collected from query log and the answers are
manually labeled based on Freebase.

(iii) SimpleQuestions (SimpQ): Each question in SimpleQuestions is written by a human with reference
to a knowledge base triple.

CNN Training Data To train a CNN model, we first use our system S0 to enumerate all possible basic
query graphs for each question, and pick up the ones with the F1 score larger then 0. We then get a set
of question-path pairs to train the initial CNN models. Then we use these CNN models to train a system
S1. Given S1, we use it to answer each question to get all MulCGs and pick up the ones with the F1

score larger then 0.5. Finally we get a set of question-path pairs as our CNN training data.
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METHOD SETTING CNN TRAINING SOURCE TEST (Average F1)
Constraint CompQ-Train WebQ-Train SimpQ CompQ-Test WebQ-Test

STAGG

√ √
- - 36.89 -√

-
√

- - 52.36√ √ √
- 37.42 52.35√ √ √ √

37.69 54.30

This Work

-
√

- - 30.31 -
- -

√
- - 50.98

-
√ √

- 31.58 51.69
-

√ √ √
31.42 54.20√ √

- - 40.94 -√
-

√
- - 52.43√ √ √
- 41.75 52.49√ √ √ √

42.33 54.36

Table 4: Average F1 score on CompQ-Test and WebQ-Test which stand for the test sets of Com-
plexQuestions and WebQuestions respectively. CompQ-Train, WebQ-Train stand for the training sets
of ComplexQuestions and WebQuestions respectively, and SimpQ represents the SimpleQuestions. Con-
straint means whether to add constraints or not.

5.2 Results and Analysis

We re-implement STAGG method (Yih et al., 2015) as our baseline. STAGG method considers some
constraints, such as entity constraint on CVT vertex, type constraint and ordinal constraint triggered by
“first” and “oldest”. To evaluate our method compared to the baseline on different settings, we design
experiments shown in Table 4. The results show that our method outperforms the baseline on the test set
of ComplexQuestions and have comparable result on the test set of WebQuestions.

Specifically, the Constraint column in Table 4 indicates using constraints or not. Through these
settings, we can see how important the constraints are for answering multi-constraint questions. Besides,
Spc and Sqep are in-domain features that the CNN models they relay on vary from the training data. So
we train different CNN models for Spc and Sqep on different combinations of training resource. By these
settings, we can know how does the amount of CNN training data effect on the results.

5.2.1 Results on ComplexQuestions

Table 4 shows that, when using the same CNN training sources, our method outperforms the STAGG
method about 4.35±0.30 points (40.94-36.89, 41.75-37.42 and 42.33-37.69) on ComplexQuestions. This
result indicates that our systematic constraint solving method is more suitable for answering questions
with multiple constraints than the baseline. Besides, adding constraints can bring about 10.54 ± 0.37
points’ (40.94-30.31, 41.75-31.58 and 42.33-31.42) gain on ComplexQuestions which tells that con-
straints as an important feature can help to bring a significant improvement for multi-constraint ques-
tions. Since the training set of ComplexQuestions contains a relative small size of QA pairs (1300),
we add WebQuestions and SimpleQuestions to enlarge the CNN training data. So another improvement
is gained from adding new CNN training resource. STAGG achieves a 0.8 points’ gain, our method
improves with 1.39 and 1.11 points with or without constraint respectively.

5.2.2 Results on WebQuestions and SimpleQuestions

We also evaluate our method on the test set WebQuestions. From Table 4 we can see that, our method
has comparable results with STAGG by comparing 52.43 to 52.3612, 52.49 to 52.35, and 54.36 to 54.30.
This indicates that adding constraints can get a small improvement on the WebQuestions because most
of the questions in the WebQuestions are simple questions, each of which can be solved by a single KB
relation. So adding more CNN training resource bring about 1.93 (54.36-52.43) point improvement for
our method. Table 5 also shows the results of recent work on WebQuestions, and this work outperforms
the others.

11http://virtuoso.openlinksw.com/
12We get a similar result with Yih (2015)’s 52.50 F1 score.
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Besides, the result also shows that our system performs stable, which not only works well on multi-
constraint questions, but also simple questions. To further prove the stability of our system, we al-
so test on the test set of SimpleQuestions, by using a dictionary based entity linker, our method
achieves 72.78 on accuracy. This is because all the SimpleQuestions are single relation questions.

Method Average F1

(Berant et al., 2013) 35.70
(Bordes et al., 2014b) 29.70
(Yao and Durme, 2014) 33.00
(Bao et al., 2014) 37.50
(Berant and Liang, 2014) 39.90
(Yang et al., 2014) 41.30
(Wang et al., 2014) 45.30
(Bordes et al., 2015) 39.90
(Yao, 2015) 44.30
(Berant and Liang, 2015) 49.70
(Yih et al., 2015) 52.50
(Reddy et al., 2016) 50.30
(Xu et al., 2016) 53.30
This work 54.36

Table 5: QA result on WebQ.

6 Related Work and Discussion

Knowledge-based question answering (KBQA) works with lex-
ical features (Yao, 2015) or convolutional neural network fea-
tures (Yih et al., 2015) already achieve good results on single
relation questions. WebQuestions (Berant et al., 2013) and Sim-
pleQuestions (Bordes et al., 2015) are two data sets for KBQA
task. Based on our analysis, more than 84% and almost all ques-
tions in WebQuestions and SimpleQuestions are single relation
questions.

Previous KBQA work (Yao and Durme, 2014; Bordes et al.,
2014a; Yang et al., 2014; Fader et al., 2014; Reddy et al., 2014;
Dong et al., 2015; Bordes et al., 2015) testing on these two data
sets do not solve multiple constraints systematically. Different
methods such as specific bridging operator (Berant et al., 2013),
semantic template p.(p1.e1 u p2.e2) (Berant and Liang, 2014) are used to treat questions with multiple
entities specially. Yih et al. (2015) have already done some work to handle questions with constraints,
such as considering entity constraints on CVT vertice or ordinal constraints triggered by “first” or “old-
est”. But these methods haven’t specifically evaluated their KBQA systems or presented solutions to
multi-constraint questions in a systematic manner.

We propose a novel method to answer questions with multi-constraints by multiple-constraint query
graphs. By evaluating it on the ComplexQuestions released by this work, we find our method works well
on multi-constraint questions.

7 Conclusion

We release a QA data-set ComplexQuestions which contains multi-constraint questions, and propose a
novel systematic KBQA method using multi-constraint query graph to answer multi-constraint questions.
Experiments show that, compared to state-of-the-art approaches, our method obtains comparable results
on the existing benchmark data-sets WebQuestions and SimpleQuestions. Furthermore, we achieve sig-
nificant improvement on the newly created ComplexQuestions data-set. Besides, we put learning the
matching between constraint expressions and semantic constraints from massive data in future work.
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