
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 940–948,
Beijing, August 2010

Fast, Greedy Model Minimization for Unsupervised Tagging

Sujith Ravi and Ashish Vaswani and Kevin Knight and David Chiang
University of Southern California

Information Sciences Institute
{sravi,avaswani,knight,chiang}@isi.edu

Abstract

Model minimization has been shown to
work well for the task of unsupervised
part-of-speech tagging with a dictionary.
In (Ravi and Knight, 2009), the authors in-
voke an integer programming (IP) solver
to do model minimization. However,
solving this problem exactly using an
integer programming formulation is in-
tractable for practical purposes. We pro-
pose a novel two-stage greedy approxima-
tion scheme to replace the IP. Our method
runs fast, while yielding highly accurate
tagging results. We also compare our
method against standard EM training, and
show that we consistently obtain better
tagging accuracies on test data of varying
sizes for English and Italian.

1 Introduction

The task of unsupervised part-of-speech (POS)
tagging with a dictionary as formulated by Meri-
aldo (1994) is: given a raw word sequence and a
dictionary of legal POS tags for each word type,
tag each word token in the text. A common ap-
proach to modeling such sequence labeling prob-
lems is to build a bigram Hidden Markov Model
(HMM) parameterized by tag-bigram transition
probabilities P (ti|ti−1) and word-tag emission
probabilities P (wi|ti). Given a word sequence w
and a tag sequence t, of length N , the joint prob-
ability P (w, t) is given by:

P (w, t) =
N∏

i=1

P (wi|ti) · P (ti|ti−1) (1)

We can train this model using the Expectation
Maximization (EM) algorithm (Dempster and Ru-
bin, 1977) which learns P (wi|ti) and P (ti|ti−1)
that maximize the likelihood of the observed data.
Once the parameters are learnt, we can find the
best tagging using the Viterbi algorithm.

t̂ = arg max
t

P (w, t) (2)

Ravi and Knight (2009) attack the Merialdo
task in two stages. In the first stage, they search
for a minimized transition model (i.e., the small-
est set of tag bigrams) that can explain the data
using an integer programming (IP) formulation.
In the second stage, they build a smaller HMM
by restricting the transition parameters to only
those tag bigrams selected in the minimization
step. They employ the EM algorithm to train this
model, which prunes away some of the emission
parameters. Next, they use the pruned emission
model along with the original transition model
(which uses the full set of tag bigrams) and re-
train using EM. This alternating EM training pro-
cedure is repeated until the number of tag bigrams
in the Viterbi tagging output does not change be-
tween subsequent iterations. The final Viterbi tag-
ging output from their method achieves state-of-
the-art accuracy for this task. However, their mini-
mization step involves solving an integer program,
which can be very slow, especially when scal-
ing to large-scale data and more complex tagging
problems which use bigger tagsets. In this pa-
per, we present a novel method that optimizes the
same objective function using a fast greedy model
selection strategy. Our contributions are summa-
rized below:

940

• We present an efficient two-phase greedy-
selection method for solving the minimiza-
tion objective from Ravi and Knight (2009),
which runs much faster than their IP.

• Our method easily scales to large data
sizes (and big tagsets), unlike the previ-
ous minimization-based approaches and we
show runtime comparisons for different data
sizes.

• We achieve very high tagging accuracies
comparable to state-of-the-art results for un-
supervised POS tagging for English.

• Unlike previous approaches, we also show
results obtained when testing on the entire
Penn Treebank data (973k word tokens) in
addition to the standard 24k test data used for
this task. We also show the effectiveness of
this approach for Italian POS tagging.

2 Previous work

There has been much work on the unsupervised
part-of-speech tagging problem. Goldwater and
Griffiths (2007) also learn small models employ-
ing a fully Bayesian approach with sparse pri-
ors. They report 86.8% tagging accuracy with
manual hyperparameter selection. Smith and Eis-
ner (2005) design a contrastive estimation tech-
nique which yields a higher accuracy of 88.6%.
Goldberg et al. (2008) use linguistic knowledge to
initialize the the parameters of the HMM model
prior to EM training. They achieve 91.4% ac-
curacy. Ravi and Knight (2009) use a Minimum
Description Length (MDL) method and achieve
the best results on this task thus far (91.6% word
token accuracy, 91.8% with random restarts for
EM). Our work follows a similar approach using a
model minimization component and alternate EM
training.

Recently, the integer programming framework
has been widely adopted by researchers to solve
other NLP tasks besides POS tagging such as se-
mantic role labeling (Punyakanok et al., 2004),
sentence compression (Clarke and Lapata, 2008),
decipherment (Ravi and Knight, 2008) and depen-
dency parsing (Martins et al., 2009).

3 Model minimization formulated as a
Path Problem

The complexity of the model minimization step
in (Ravi and Knight, 2009) and its proposed ap-
proximate solution can be best understood if we
formulate it as a path problem in a graph.

Let w = w0, w1, . . . , wN , wN+1 be a word se-
quence where w1, . . . , wN are the input word to-
kens and {w0, wN+1} are the start/end tokens.
Let T = {T1, . . . , TK}

⋃{T0, TK+1} be the fixed
set of all possible tags. T0 and TK+1 are special
tags that we add for convenience. These would be
the start and end tags that one typically adds to
the HMM lattice. The tag dictionary D contains
entries of the form (wi, Tj) for all the possible
tags Tj that word token wi can have. We add en-
tries (w0, T0) and (wK+1, TK+1) to D. Given this
input, we now create a directed graph G(V,E).
Let C0, C1 . . . , CK+1 be columns of nodes in G,
where column Ci corresponds to word token wi.
For all i = 0, . . . , N+1 and j = 0, . . . ,K+1, we
add node Ci,j in column Ci if (wi, Tj) ∈ D. Now,
∀i = 0, . . . , N , we create directed edges from ev-
ery node in Ci to every node in Ci+1. Each of
these edges e = (Ci,j , Ci+1,k) is given the label
(Tj , Tk) which corresponds to a tag bigram. This
creates our directed graph. Let l(e) be the tag bi-
gram label of edges e ∈ E. For every path P from
C0,0 to CN+1,K+1, we say that P uses an edge la-
bel or tag bigram (Tj , Tk) if there exists an edge
e in P such that l(e) = (Tj , Tk). We can now
formulate the the optimization problem as: Find
the smallest set S of tag bigrams such that there
exists at least one path from C0,0 to CN+1,K+1 us-
ing only the tag bigrams in S. Let us call this the
Minimal Tag Bigram Path (MinTagPath) problem.

Figure 1 shows an example graph where the
input word sequence is w1, . . . , w4 and T =
{T1, . . . , T3} is the input tagset. We add the
start/end word tokens {w0, w5} and correspond-
ing tags {T0, T4}. The edges in the graph are in-
stantiated according to the word/tag dictionary D
provided as input. The node and edge labels are
also illustrated in the graph. Our goal is to find a
path from C0,0 to C5,4 using the smallest set of tag
bigrams.

941

T0

T1

T2

T3

T4

w0 w1 w2 w3 w4 w5

T0,T1

T0,T3

T1,T2 T1,T2T2,T1

T2,T2

T3,T2

T3,T4

T2,T4

T2,T3

T2,T2

T1,T3

C0,0

C1,1

C1,3

C2,2

C3,1

C3,2 C4,2

C4,3

C5,4

word sequence:

POS tags

Initial graph: G (V, E)

Figure 1: Graph instantiation for the MinTagPath problem.

4 Problem complexity

Having defined the problem, we now show that
it can be solved in polynomial time even though
the number of paths from C0,0 to CN+1,K+1 is
exponential in N , the input size. This relies on the
assumption that the tagset T is fixed in advance,
which is the case for most tagging tasks.1 Let B
be the set of all the tag bigram labels in the graph,
B = {l(e), ∀e ∈ E}. Now, the size of B would
be at most K2 + 2K where every word could be
tagged with every possible tag. For m = 1 . . . |B|,
let Bm be the set of subsets of B each of which
have size m. Algorithm 1 optimally solves the
MinTagPath problem.

Algorithm 1 basically enumerates all the possi-
ble subsets of B, from the smallest to the largest,
and checks if there is a path. It exits the first time a
path is found and therefore finds the smallest pos-
sible set si of size m such that a path exists that
uses only the tag bigrams in si. This implies the
correctness of the algorithm. To check for path ex-
istence, we could either throw away all the edges
from E not having a label in si, and then execute
a Breadth-First-Search (BFS) or we could traverse

1If K, the size of the tagset, is a variable as well, then we
suspect the problem is NP-hard.

Algorithm 1 Brute Force solution to MinTagPath
for m = 1 to |B| do

for si ∈ Bm do
Use Breadth First Search (BFS) to check
if ∃ path P from C0,0 to CN+1,K+1 using
only the tag bigrams in si.
if P exists then

return si,m
end if

end for
end for

only the edges with labels in si during BFS. The
running time of Algorithm 1 is easy to calculate.
Since, in the worst case we go over all the sub-
sets of size m = 1, . . . , |B| of B, the number of
iterations we can perform is at most 2|B|, the size
of the powerset P of B. In each iteration, we do
a BFS through the lattice, which has O(N) time
complexity2 since the lattice size is linear in N
and BFS is linear in the lattice size. Hence the run-
ning time is≤ 2|B| ·O(N) = O(N). Even though
this shows that MinTagPath can be solved in poly-
nomial time, the time complexity is prohibitively
large. For the Penn Treebank, K = 45 and the

2Including throwing away edges or not.

942

worst case running time would be ≈ 1013.55 · N .
Clearly, for all practical purposes, this approach is
intractable.

5 Greedy Model Minimization

We do not know of an efficient, exact algorithm
to solve the MinTagPath problem. Therefore, we
present a simple and fast two-stage greedy ap-
proximation scheme. Notice that an optimal path
P (or any path) covers all the input words i.e., ev-
ery word token wi has one of its possible taggings
in P . Exploiting this property, in the first phase,
we set our goal to cover all the word tokens using
the least possible number of tag bigrams. This can
be cast as a set cover problem (Garey and John-
son, 1979) and we use the set cover greedy ap-
proximation algorithm in this stage. The output
tag bigrams from this phase might still not allow
any path from C0,0 to CN+1,K+1. So we carry out
a second phase, where we greedily add a few tag
bigrams until a path is created.

5.1 Phase 1: Greedy Set Cover
In this phase, our goal is to cover all the word to-
kens using the least number of tag bigrams. The
covering problem is exactly that of set cover. Let
U = {w0, . . . , wN +1} be the set of elements that
needs to be covered (in this case, the word tokens).
For each tag bigram (Ti, Tj) ∈ B, we define its
corresponding covering set STi,Tj as follows:

STi,Tj = {wn : ((wn, Ti) ∈ D

∧ (Cn,i, Cn+1,j) ∈ E

∧ l(Cn,i, Cn+1,j) = (Ti, Tj))∨
((wn, Tj) ∈ D

∧ (Cn−1,i, Cn,j) ∈ E

∧ l(Cn−1,i, Cn,j) = (Ti, Tj))}

Let the set of covering sets be X . We assign
a cost of 1 to each covering set in X . The goal
is to select a set CHOSEN ⊆ X such that⋃

STi,Tj
∈CHOSEN = U , minimizing the total cost

of CHOSEN . This corresponds to covering all
the words with the least possible number of tag
bigrams. We now use the greedy approximation
algorithm for set cover to solve this problem. The
pseudo code is shown in Algorithm 2.

Algorithm 2 Set Cover : Phase 1
Definitions
Define CAND : Set of candidate covering sets
in the current iteration
Define Urem : Number of elements in U re-
maining to be covered
Define ESTi,Tj

: Current effective cost of a set
Define Itr : Iteration number

Initializations
LET CAND = X
LET CHOSEN = ∅
LET Urem = U
LET Itr = 0
LET ESTi,Tj

= 1
|STi,Tj

| , ∀ STi,Tj ∈ CAND

while Urem 6= ∅ do
Itr ← Itr + 1
Define ŜItr = argmin

STi,Tj
∈CAND

ESTi,Tj

CHOSEN = CHOSEN
⋃

ŜItr

Remove ŜItr from CAND
Remove all the current elements in ŜItr from
Urem

Remove all the current elements in ŜItr from
every STi,Tj ∈ CAND
Update effective costs, ∀ STi,Tj ∈ CAND,
ESTi,Tj

= 1
|STi,Tj

|
end while
return CHOSEN

For the graph shown in Figure 1, here are a few
possible covering sets STi,Tj and their initial ef-
fective costs ESTi,Tj

.

• ST0,T1 = {w0, w1}, EST0,T1
= 1/2

• ST1,T2 = {w1, w2, w3, w4}, EST1,T2
= 1/4

• ST2,T2 = {w2, w3, w4}, EST2,T2
= 1/3

In every iteration Itr of Algorithm 2, we pick a
set ŜItr that is most cost effective. The elements
that ŜItr covers are then removed from all the re-
maining candidate sets and Urem and the effec-
tiveness of the candidate sets is recalculated for
the next iteration. The algorithm stops when all
elements of U i.e., all the word tokens are cov-
ered. Let, BCHOSEN = {(Ti, Tj) : STi,Tj ∈

943

CHOSEN}, be the set of tag bigrams that have
been chosen by set cover. Now, we check, using
BFS, if there exists a path from C0,0 to CN+1,K+1

using only the tag bigrams in BCHOSEN . If not,
then we have to add tag bigrams to BCHOSEN to
enable a path. To accomplish this, we carry out the
second phase of this scheme with another greedy
strategy (described in the next section).

For the example graph in Figure 1,
one possible solution BCHOSEN =
{(T0, T1), (T1, T2), (T2, T4)}.

5.2 Phase 2: Greedy Path Completion

We define a graph GCHOSEN (V ′, E′) ⊆
G(V,E) that contains the edges e ∈ E such
l(e) ∈ BCHOSEN .

Let BCAND = B \ BCHOSEN , be the current
set of candidate tag bigrams that can be added to
the final solution which would create a path. We
would like to know how many holes a particular
tag bigram (Ti, Tj) can fill. We define a hole as an
edge e such that e ∈ G \ GCHOSEN and there
exists e′, e′′ ∈ GCHOSEN such that tail(e′) =
head(e) ∧ tail(e) = head(e′′).

Figure 2 illustrates the graph GCHOSEN using
tag bigrams from the example solution to Phase 1
(Section 5.1). The dotted edge (C2,2, C3,1) rep-
resents a hole, which has to be filled in the cur-
rent phase in order to complete a path from C0,0

to C5,4.
In Algorithm 3, we define the effectiveness of a

candidate tag bigram H(Ti, Tj) to be the number
of holes it covers. In every iteration, we pick the
most effective tag bigram, fill the holes and recal-
culate the effectiveness of the remaining candidate
tag bigrams.

Algorithm 3 returns BFINAL, the final set of
chosen tag bigrams. It terminates when a path has
been found.

5.3 Fitting the Model

Once the greedy algorithm terminates and returns
a minimized grammar of tag bigrams, we follow
the approach of Ravi and Knight (2009) and fit
the minimized model to the data using the alter-
nating EM strategy. The alternating EM iterations
are terminated when the change in the size of the
observed grammar (i.e., the number of unique tag

Algorithm 3 Greedy Path Complete : Phase 2
Define BFINAL : Final set of tag bigrams se-
lected by the two-phase greedy approach

LET BFINAL = BCHOSEN

LET H(Ti, Tj) = |{e}| such that l(e) =
(Ti, Tj) and e is a hole, ∀ (Ti, Tj) ∈ BCAND

while @ path P from C0,0 to CN+1,K+1 using
only (Ti, Tj) ∈ BCHOSEN do

Define (T̂i, T̂j) = argmax
(Ti,Tj)∈BCAND

H(Ti, Tj)

BFINAL = BFINAL
⋃

(T̂i, T̂j)
Remove (T̂i, T̂j) from BCAND

GCHOSEN = GCHOSEN
⋃{e} such that

l(e) = (Ti, Tj)
∀ (Ti, Tj) ∈ BCAND, Recalculate H(Ti, Tj)

end while
return BFINAL

bigrams in the tagging output) is ≤ 5%. We refer
to our entire approach using greedy minimization
followed by EM training as MIN-GREEDY.

6 Experiments and Results

6.1 English POS Tagging
Data: We use a standard test set (consisting of
24,115 word tokens from the Penn Treebank) for
the POS tagging task (described in Section 1). The
tagset consists of 45 distinct tag labels and the
dictionary contains 57,388 word/tag pairs derived
from the entire Penn Treebank. Per-token ambi-
guity for the test data is about 1.5 tags/token. In
addition to the standard 24k dataset, we also train
and test on larger data sets of 48k, 96k, 193k, and
the entire Penn Treebank (973k).

Methods: We perform comparative evaluations
for POS tagging using three different methods:

1. EM: Training a bigram HMM model using
EM algorithm.

2. IP: Minimizing grammar size using inte-
ger programming, followed by EM training
(Ravi and Knight, 2009).

3. MIN-GREEDY: Minimizing grammar size
using the Greedy method described in Sec-

944

T0

T1

T2

T3

T4

w0 w1 w2 w3 w4 w5

T0,T1

T1,T2 T1,T2T2,T1

T2,T4

C0,0

C1,1

C1,3

C2,2

C3,1

C3,2 C4,2

C4,3

C5,4

word sequence:

POS tags

 T0,T1

 T1,T2

 T2,T4

Tag bigrams chosen after Phase 1

(BCHOSEN)

Hole in graph: Edge e = (C2,2, C3,1)

Graph after Phase 1: GCHOSEN (V’, E’)

Figure 2: Graph constructed with tag bigrams chosen in Phase 1 of the MIN-GREEDY method.

tion 5, followed by EM training.

Results: Figure 3 shows the tagging perfor-
mance (word token accuracy %) achieved by the
three methods on the standard test (24k tokens) as
well as Penn Treebank test (PTB = 973k tokens).
On the 24k test data, the MIN-GREEDY method
achieves a high tagging accuracy comparable to
the previous best from the IP method. However,
the IP method does not scale well which makes
it infeasible to run this method in a much larger
data setting (the entire Penn Treebank). MIN-
GREEDY on the other hand, faces no such prob-
lem and in fact it achieves high tagging accuracies
on all four datasets, consistently beating EM by
significant margins. When tagging all the 973k
word tokens in the Penn Treebank data, it pro-
duces an accuracy of 87.1% which is much better
than EM (82.3%) run on the same data.

Ravi and Knight (2009) mention that it is pos-
sible to interrupt the IP solver and obtain a sub-
optimal solution faster. However, the IP solver did
not return any solution when provided the same
amount of time as taken by MIN-GREEDY for
any of the data settings. Also, our algorithms
were implemented in Python while the IP method
employs the best available commercial software
package (CPLEX) for solving integer programs.

Figure 4 compares the running time efficiency
for the IP method versus MIN-GREEDY method

Test set Efficiency
(average running time in secs.)

IP MIN-GREEDY
24k test 93.0 34.3
48k test 111.7 64.3
96k test 397.8 93.3
193k test 2347.0 331.0
PTB (973k) test ∗ 1485.0

Figure 4: Comparison of MIN-GREEDY versus
MIN-GREEDY approach in terms of efficiency
(average running time in seconds) for different
data sizes. All the experiments were run on a sin-
gle machine with a 64-bit, 2.4 GHz AMD Opteron
850 processor.

as we scale to larger datasets. Since the IP solver
shows variations in running times for different
datasets of the same size, we show the average
running times for both methods (for each row in
the figure, we run a particular method on three
different datasets with similar sizes and average
the running times). The figure shows that the
greedy approach can scale comfortably to large
data sizes, and a complete run on the entire Penn
Treebank data finishes in just 1485 seconds. In
contrast, the IP method does not scale well—on
average, it takes 93 seconds to finish on the 24k
test (versus 34 seconds for MIN-GREEDY) and
on the larger PTB test data, the IP solver runs for

945

Method Tagging accuracy (%)
when training & testing on:

24k 48k 96k 193k PTB (973k)
EM 81.7 81.4 82.8 82.0 82.3
IP 91.6 89.3 89.5 91.6 ∗

MIN-GREEDY 91.6 88.9 89.4 89.1 87.1

Figure 3: Comparison of tagging accuracies on test data of varying sizes for the task of unsupervised
English POS tagging with a dictionary using a 45-tagset. (∗ IP method does not scale to large data).

 400

 600

 800

 1000

 1200

 1400

 1600

O
b
s
e
r
v
e
d

g
r
a
m
m
a
r

s
i
z
e

(
#

o
f

t
a
g

b
i
g
r
a
m
s
)

i
n

f
i
n
a
l

t
a
g
g
i
n
g

o
u
t
p
u
t

Size of test data (# of word tokens)
24k 48k 96k 193k PTB (973k)

EM
IP

Greedy

Figure 5: Comparison of observed grammar size
(# of tag bigram types) in the final tagging output
from EM, IP and MIN-GREEDY.

more than 3 hours without returning a solution.

It is interesting to see that for the 24k dataset,
the greedy strategy finds a grammar set (contain-
ing only 478 tag bigrams). We observe that MIN-
GREEDY produces 452 tag bigrams in the first
minimization step (phase 1), and phase 2 adds an-
other 26 entries, yielding a total of 478 tag bi-
grams in the final minimized grammar set. That
is almost as good as the optimal solution (459
tag bigrams from IP) for the same problem. But
MIN-GREEDY clearly has an advantage since it
runs much faster than IP (as shown in Figure 4).
Figure 5 shows a plot with the size of the ob-
served grammar (i.e., number of tag bigram types
in the final tagging output) versus the size of the
test data for EM, IP and MIN-GREEDY methods.
The figure shows that unlike EM, the other two
approaches reduce the grammar size considerably
and we observe the same trend even when scaling

Test set Average Speedup Optimality Ratio
24k test 2.7 0.96
48k test 1.7 0.98
96k test 4.3 0.98

193k test 7.1 0.93

Figure 6: Average speedup versus Optimality ra-
tio computed for the model minimization step
(when using MIN-GREEDY over IP) on different
datasets.

to larger data. Minimizing the grammar size helps
remove many spurious tag combinations from the
grammar set, thereby yielding huge improvements
in tagging accuracy over the EM method (Fig-
ure 3). We observe that for the 193k dataset, the
final observed grammar size is greater for IP than
MIN-GREEDY. This is because the alternating
EM steps following the model minimization step
add more tag bigrams to the grammar.

We compute the optimality ratio of the MIN-
GREEDY approach with respect to the grammar
size as follows:

Optimality ratio =
Size of IP grammar

Size of MIN-GREEDY grammar

A value of 1 for this ratio implies that the solu-
tion found by MIN-GREEDY algorithm is exact.
Figure 6 compares the optimality ratio versus av-
erage speedup (in terms of running time) achieved
in the minimization step for the two approaches.
The figure illustrates that our solution is nearly op-
timal for all data settings with significant speedup.

The MIN-GREEDY algorithm presented here
can also be applied to scenarios where the dictio-
nary is incomplete (i.e., entries for all word types
are not present in the dictionary) and rare words

946

Method Tagging accuracy (%) Number of unique tag bigrams in final tagging output
EM 83.4 1195
IP 88.0 875

MIN-GREEDY 88.0 880

Figure 7: Results for unsupervised Italian POS tagging with a dictionary using a set of 90 tags.

take on all tag labels. In such cases, we can fol-
low a similar approach as Ravi and Knight (2009)
to assign tag possibilities to every unknown word
using information from the known word/tag pairs
present in the dictionary. Once the completed dic-
tionary is available, we can use the procedure de-
scribed in Section 5 to minimize the size of the
grammar, followed by EM training.

6.2 Italian POS Tagging
We also compare the three approaches for Italian
POS tagging and show results.

Data: We use the Italian CCG-TUT corpus (Bos
et al., 2009), which contains 1837 sentences. It
has three sections: newspaper texts, civil code
texts and European law texts from the JRC-Acquis
Multilingual Parallel Corpus. For our experi-
ments, we use the POS-tagged data from the
CCG-TUT corpus, which uses a set of 90 tags.
We created a tag dictionary consisting of 8,733
word/tag pairs derived from the entire corpus
(42,100 word tokens). We then created a test set
consisting of 926 sentences (21,878 word tokens)
from the original corpus. The per-token ambiguity
for the test data is about 1.6 tags/token.

Results: Figure 7 shows the results on Italian
POS tagging. We observe that MIN-GREEDY
achieves significant improvements in tagging ac-
curacy over the EM method and comparable to IP
method. This also shows that the idea of model
minimization is a general-purpose technique for
such applications and provides good tagging ac-
curacies on other languages as well.

7 Conclusion

We present a fast and efficient two-stage greedy
minimization approach that can replace the inte-
ger programming step in (Ravi and Knight, 2009).
The greedy approach finds close-to-optimal solu-
tions for the minimization problem. Our algo-

rithm runs much faster and achieves accuracies
close to state-of-the-art. We also evaluate our
method on test sets of varying sizes and show that
our approach outperforms standard EM by a sig-
nificant margin. For future work, we would like
to incorporate some linguistic constraints within
the greedy method. For example, we can assign
higher costs to unlikely tag combinations (such as
“SYM SYM”, etc.).

Our greedy method can also be used for solving
other unsupervised tasks where model minimiza-
tion using integer programming has proven suc-
cessful, such as word alignment (Bodrumlu et al.,
2009).

Acknowledgments

The authors would like to thank Shang-Hua Teng
and Anup Rao for their helpful comments and
also the anonymous reviewers. This work was
jointly supported by NSF grant IIS-0904684,
DARPA contract HR0011-06-C-0022 under sub-
contract to BBN Technologies and DARPA con-
tract HR0011-09-1-0028.

References
Bodrumlu, T., K. Knight, and S. Ravi. 2009. A new

objective function for word alignment. In Proceed-
ings of the NAACL/HLT Workshop on Integer Pro-
gramming for Natural Language Processing.

Bos, J., C. Bosco, and A. Mazzei. 2009. Converting a
dependency treebank to a categorial grammar tree-
bank for Italian. In Proceedings of the Eighth In-
ternational Workshop on Treebanks and Linguistic
Theories (TLT8).

Clarke, J. and M. Lapata. 2008. Global inference for
sentence compression: An integer linear program-
ming approach. Journal of Artificial Intelligence
Research (JAIR), 31(4):399–429.

Dempster, A.P., N.M. Laird and D.B. Rubin. 1977.
Maximum likelihood from incomplete data via the

947

EM algorithm. Journal of the Royal Statistical So-
ciety, 39(1):1–38.

Garey, M. R. and D. S. Johnson. 1979. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. John Wiley & Sons.

Goldberg, Y., M. Adler, and M. Elhadad. 2008.
EM can find pretty good HMM POS-taggers (when
given a good start). In Proceedings of the 46th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies
(ACL/HLT).

Goldwater, Sharon and Thomas L. Griffiths. 2007.
A fully Bayesian approach to unsupervised part-of-
speech tagging. In Proceedings of the 45th Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Martins, A., N. A. Smith, and E. P. Xing. 2009. Con-
cise integer linear programming formulations for
dependency parsing. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the As-
sociation for Computational Linguistics (ACL) and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP.

Merialdo, B. 1994. Tagging English text with a
probabilistic model. Computational Linguistics,
20(2):155–171.

Punyakanok, V., D. Roth, W. Yih, and D. Zimak.
2004. Semantic role labeling via integer linear pro-
gramming inference. In Proceedings of the Inter-
national Conference on Computational Linguistics
(COLING).

Ravi, S. and K. Knight. 2008. Attacking decipher-
ment problems optimally with low-order n-gram
models. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Ravi, S. and K. Knight. 2009. Minimized models
for unsupervised part-of-speech tagging. In Pro-
ceedings of the Joint Conference of the 47th An-
nual Meeting of the Association for Computational
Linguistics (ACL) and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP.

Smith, N. and J. Eisner. 2005. Contrastive estima-
tion: Training log-linear models on unlabeled data.
In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL).

948

