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Abstract

We conduct large-scale experiments to in-
vestigate optimal features for classification
of verbs in biomedical texts. We intro-
duce a range of feature sets and associated
extraction techniques, and evaluate them
thoroughly using a robust method new to
the task: cost-based framework for pair-
wise clustering. Our best results compare
favourably with earlier ones. Interestingly,
they are obtained with sophisticated fea-
ture sets which include lexical and seman-
tic information about selectional prefer-
ences of verbs. The latter are acquired au-
tomatically from corpus data using a fully
unsupervised method.

1 Introduction

Recent years have seen a massive growth in the
scientific literature in the domain of biomedicine.
Because future research in the biomedical sciences
depends on making use of all this existing knowl-
edge, there is a strong need for the development of
natural language processing (NLP) tools which can
be used to automatically locate, organize and man-
age facts related to published experimental results.

Major progress has been made on information
retrieval and on the extraction of specific rela-
tions (e.g. between proteins and cell types) from
biomedical texts (Ananiadou et al., 2006). Other
tasks, such as the extraction of factual information,
remain a bigger challenge.

Researchers have recently begun to use deeper
NLP techniques (e.g. statistical parsing) for im-
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Figure 1: Sample lexical classes

proved processing of the challenging linguistic
structures (e.g. complex nominals, modal subordi-
nation, anaphoric links) in biomedical texts. For
optimal performance, many of these techniques
require richer syntactic and semantic informa-
tion than is provided by existing domain lexicons
(e.g. UMLS metathesaurus and lexicon1). This par-
ticularly applies to verbs, which are central to the
structure and meaning of sentences.

Where the information is absent, lexical classi-
fication can compensate for it, or aid in obtaining
it. Lexical classes which capture the close rela-
tion between the syntax and semantics of verbs
provide generalizations about a range of linguis-
tic properties (Levin, 1993). For example, con-
sider the INDICATE and ACTIVATE verb classes in
Figure 1. Their members have similar subcatego-
rization frames SCFs (e.g. activate / up-regulate /
induce / stimulate NP) and selectional preferences
(e.g. activate / up-regulate / induce / stimulate
GENES:WAF1), and they can be used to make sim-
ilar statements describing similar events (e.g. PRO-
TEINS:P53 ACTIVATE GENES:WAF1).

Lexical classes can be used to abstract away
from individual words, or to build a lexical or-
ganization which predicts much of the behaviour
of a new word by associating it with an appro-
priate class. They have proved useful for various
NLP application tasks, e.g. parsing, word sense dis-

1http://www.nlm.nih.gov/research/umls
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ambiguation, semantic role labeling, information
extraction, question-answering, machine transla-
tion (Dorr, 1997; Prescher et al., 2000; Swier
and Stevenson, 2004; Dang, 2004; Shi and Mi-
halcea, 2005). A large-scale classification spe-
cific to the biomedical data could support key BIO-
NLP tasks such as anaphora resolution, predicate-
argument identification, event extraction and the
identification of biomedical (e.g. interaction) rela-
tions. However, no such classification is available.

Recent research shows that it is possible to auto-
matically induce lexical classes from corpora with
promising accuracy (Schulte im Walde, 2006; Joa-
nis et al., 2007; Sun et al., 2008). A number of
machine learning (ML) methods have been applied
to classify mainly syntactic features (e.g. subcat-
egorization frames (SCFs)) extracted from cross-
domain corpora using e.g. part-of-speech tagging
or robust statistical parsing techniques. Korho-
nen et al. (2006) have recently applied such an
approach to biomedical texts. Their preliminary
experiment shows encouraging results but further
work is required before such an approach can be
used to benefit practical BIO-NLP.

We conduct a large-scale investigation to find
optimal features for biomedical verb classification.
We introduce a range of theoretically-motivated
feature sets and evaluate them thoroughly using
a robust method new to the task: a cost-based
framework for pairwise clustering. Our best re-
sults compare favourably with earlier ones. Inter-
estingly, they are obtained using feature sets which
have proved challenging in general language verb
classification: ones which incorporate information
about selectional preferences of verbs. Unlike in
earlier work, we acquire the latter from corpus data
using a fully unsupervised method.

We present our lexical classification approach in
section 2 and data in section 3. Experimental eval-
uation is reported in section 4. Section 5 provides
discussion and section 6 concludes.

2 Approach

Our lexical classification approach involves (i) ex-
tracting features from corpus data and (ii) cluster-
ing them. These steps are described in the follow-
ing two sections, respectively.

2.1 Features

Lexical classifications are based on diathesis alter-
nations which manifest in alternating sets of syn-

tactic frames (Levin, 1993). Most verb classifi-
cation approaches have therefore employed shal-
low syntactic slots or SCFs as basic features. Some
have supplemented them with further information
about verb tense, voice, and/or semantic selec-
tional preferences on argument heads.2

The preliminary experiment on biomedical verb
classification (Korhonen et al., 2006) employed
basic syntactic features only: SCFs extracted
from corpus data using the system of Briscoe
and Carroll (1997) which operates on the output
of a domain-independent robust statistical parser
(RASP) (Briscoe and Carroll, 2002). Because such
deep syntactic features seem ideally suited for
challenging biomedical data, we adopted the same
basic approach, but we designed and extracted a
range of novel feature sets which include addi-
tional syntactic and semantic information.

The SCF extraction system assigns each occur-
rence of a verb in the parsed data as a member of
one of the 163 verbal SCFs, builds a lexical entry
for each verb (type) and SCF combination, and fil-
ters noisy entries out of the lexicon. We do not
employ the filter in our work because its primary
aim is to filter out SCFs containing adjuncts (as op-
posed to arguments). Adjuncts have been shown
to be beneficial for general language verb classifi-
cation (Sun et al., 2008; Joanis et al., 2007) and
particularly meaningful in biomedical texts (Co-
hen and Hunter, 2006).

The lexical entries provide various information
useful for verb classification, including e.g. the fre-
quency of the entry in the data, the part-of-speech
(POS) tags of verb tokens, the argument heads in
argument positions, the prepositions in PP frames,
and the number of verbal occurrences in active and
passive. Making use of this information we de-
signed ten feature sets for experimentation.

The first three feature sets F1-F3 include basic
SCF frequency information for each verb:

F1: SCFs and their relative frequencies. The SCFs
abstract over lexically governed particles and
prepositions.

F2: F1 with two high frequency PP frames pa-
rameterized for prepositions: the simple PP

and NP-PP frames refined according to the
prepositions provided in the lexical entries
(e.g. PP at, PP on, PP in).

2See section 5 for discussion on previous work.
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F3: F2 with 13 additional high frequency PP

frames parameterized for prepositions.

Although prepositions are an important part of
the syntactic description of lexical classes and
therefore F3 should be the most informative fea-
ture set, we controlled the number of PP frames
parameterized for prepositions to examine the ef-
fect of sparse data in automatic classification.

F4-F7 build on the most refined SCF-based fea-
ture set F3, supplementing it with information
about verb tense (F4-F5) and voice (F6-F7):

F4: The frequencies of POS tags (e.g. VVD for
activated) calculated over all the SCFs of the
verb.

F5: The frequencies of POS tags calculated spe-
cific to each SCF of the verb.

F6: The frequency of the active and passive oc-
currences of the verb (calculated over all the
SCFs of the verb).

F7: The frequency of the active and passive occur-
rences of the verb (calculated specific to each
SCF of the verb).

Also F8-F10 build on feature set F3. They sup-
plement it with information about lexical or se-
mantic selectional preferences (SPs) of the verbs
in the following slots: subject, direct object, sec-
ond object, and the NP within the PP complement.
The SPs are acquired using argument head data in
the ten most frequent SCFs. We use two baseline
methods (F8 and F9) which employ raw data and
one method based on clustering (F10):

F8: The raw argument head types are considered
as SP classes.

F9: Only those raw argument head types which
occur with four or more verbs with frequency
of ≥ 3 are considered as SP classes.

F10: SPs are acquired by clustering those argu-
ment heads which occur with ten or more
verbs with frequency of ≥ 3. We used the PC

clustering method described below in section
2. The number of clusters Knp was set to 10,
20, and 50 to produce SP classes. We call the
feature sets corresponding to these different
values of Knp F10A, F10B and F10C, respec-
tively. Since the clustering algorithms have
an element of randomness, clustering was ran

100 times. The output is a result of voting
among the outputs of the runs.

F3-F10 are entirely novel feature sets in biomed-
ical verb classification. Variations of some of them
have been used in earlier work on general language
classification (see section 5 for details).

2.2 Classification

The clustering method which proved the best in the
preliminary experiment on biomedical verb classi-
fication was Information Bottleneck (IB) (Tishby
et al., 1999). We compare this method against a
probabilistic method: a cost-based framework for
pairwise clustering (PC) (Puzicha et al., 2000).

2.2.1 Information Bottleneck
IB is an information-theoretic method which

controls the balance between: (i) the loss of
information by representing verbs as clusters
(I(Clusters;V erbs)), which has to be min-
imal, and (ii) the relevance of the output
clusters for representing the SCF distribution
(I(Clusters; SCFs)) which has to be maximal.
The balance between these two quantities ensures
optimal compression of data through clusters. The
trade-off between the two constraints is realized
through minimising the cost function:

LIB = I(Clusters; V erbs)

− βI(Clusters; SCFs) ,

where β is a parameter that balances the con-
straints. IB takes three inputs: (i) SCF-verb -based
distributions, (ii) the desired number of clustersK,
and (iii) the initial value of β. It then looks for the
minimal β that decreasesLIB compared to its value
with the initial β, using the given K. IB delivers as
output the probabilities p(K|V ).

2.2.2 Pairwise Clustering
PC is a method where a cost criterion guides

the search for a suitable clustering configuration.
This criterion is realized through a cost function
H(S, M) where

(i) S = {sim(a, b)}, a, b ∈ A : a collection of pairwise
similarity values, each of which pertains to a pair of
data elements a, b ∈ A.

(ii) M = (A1, . . . , Ak) : a candidate clustering configu-

ration, specifying assignments of all elements into the

disjoint clusters (that is ∪Aj = A and Aj ∩ Aj′ = φ

for every 1 ≤ j < j′ ≤ k).
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1 Have an effect on activity (BIO/29) 9 Report (GEN/30)
1.1 Activate / Inactivate 9.1 Investigate
1.1.1 Change activity: activate, inhibit 9.1.1 Examine: evaluate, analyze
1.1.2 Suppress: suppress, repres s 9.1.2 Establish: test, investigate
1.1.3 Stimulate: stimulate 9.1.3 Confirm: verify, determine
1.1.4 Inactivate: delay, diminish 9.2 Suggest

1.2 Affect 9.2.1 Presentational:
1.2.1 Modulate: stabilize, modulate hypothesize, conclude
1.2.2 Regulate: control, support 9.2.2 Cognitive:

1.3 Increase / decrease: increase, decrease consider, believe
1.4 Modify: modify, catalyze 9.3 Indicate: demonstrate, imply

Table 1: Sample classes from the gold standard

Journal Years Words
Genes & Development 2003-5 4.7M
Journal of Biological Chemistry 2004 5.2M

(Vol.1-9)
The Journal of Cell Biology 2003-5 5.6M
Cancer Research 2005 6.5M
Carcinogenesis 2003-5 3.4M
Nature Immunology 2003-5 2.3M
Drug Metabolism and Disposition 2003-5 2.3M
Toxicological Sciences 2003-5 3.1M
Total: 33.1M

Table 2: Data from MEDLINE

The cost function is defined as follows:

H = −Pnj ·Avgsimj ,
Avgsimj = 1

nj ·(nj−1)

P
{a,b∈Aj}

sim(a, b)

where nj is the size of the jth cluster and Avgsimj

is the average similarity between cluster members.
We used the Jensen-Shannon divergence (JS) as the
similarity measure.

3 Data

3.1 Test Verbs and Gold Standard
We employed in our experiments the same gold
standard as earlier employed by Korhonen et al.
(2006). This three level gold standard was created
by a team of human experts: 4 domain experts and
2 linguists. It includes 192 test verbs (typically fre-
quent verbs in biomedical journal articles) classi-
fied into 16, 34 and 50 classes, respectively. The
classes created by domain experts are labeled as
BIO and those created by linguists as GEN. BIO

classes include 116 verbs whose analysis required
domain knowledge (e.g. activate, solubilize, har-
vest). GEN classes include 76 general or scientific
text verbs (e.g. demonstrate, hypothesize, appear).
Each class is associated with 1-30 member verbs.
Table 1 illustrates two of the gold standard classes
with 1-2 example verbs per (sub-)class.

3.2 Test Data
We downloaded the data from the MEDLINE

database, from eight journals covering various ar-

SCF F1 98 39
F2 247 64
F3 486 75

F3 + tense F4 490 79
F5 920 176

F3 + voice F6 488 77
F7 682 153

F3 + SP F8 150407 2112
F9 13352 344

F10A 110280 2091
F10B 115208 2091
F10C 114793 2091

Table 3: (i) The total number of features and (ii)
the average per verb for all the feature sets

eas of biomedicine. The first column in table 2
lists each journal, the second shows the years from
which the articles were downloaded, and the third
indicates the size of the data. We experimented
with two test sets: 1) The 15.5M word sub-set
shown in the first three rows of the table (this was
used for creating the gold standard). 2) All the
data: this new larger data was necessary for exper-
iments with new feature sets as the most refined
ones do not appear in 1) with sufficient frequency.

4 Experimental Evaluation

4.1 Processing the Data
The data was first processed using the feature ex-
traction module. Table 3 shows (i) the total num-
ber of features in each feature set and (ii) the av-
erage per verb in the resulting lexicon. The clas-
sification module was then applied. We requested
K = 2 to 60 clusters from both clustering meth-
ods. We did not want to enforce the actual num-
ber of classes but preferred to let the class hierar-
chy emerge from the clustering results. In order
to find the values of K where the clustering output
might correspond to a level in the class hierarchy
we used the relevance criterion. For each method
(clustering method and feature set combination)
we choose as informative K’s the values for which
the relevance information I(Clusters; SCFs)) in-
creases more sharply betweenK−1 andK clusters
than betweenK andK+1. We then chose for eval-
uation the outputs corresponding only to informa-
tive values of K. The clustering was run 50 times
for each method. The output is a result of voting
among the outputs of the runs.

4.2 Measures
The clusters were evaluated against the gold stan-
dard using four methods. The first measure, the
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adjusted pairwise precision, evaluates clusters in
terms of verb pairs:

APP = 1
K

KP
i=1

num. of correct pairs in ki

num. of pairs in ki
· |ki|−1
|ki|+1

APP is the average proportion of all within-
cluster pairs that are correctly co-assigned. Mul-
tiplied by a factor that increases with cluster size it
compensates for a bias towards small clusters.

The second measure is modified purity, a global
measure which evaluates the mean precision of
clusters. Each cluster is associated with its preva-
lent class. The number of verbs in a cluster K that
take this class is denoted by nprevalent(K). Verbs
that do not take it are considered as errors. Clusters
where nprevalent(K) = 1 are disregarded as not to
introduce a bias towards singletons:

mPUR =

P
nprevalent(ki)≥2

nprevalent(ki)

number of verbs

The third measure is the weighted class accu-
racy, the proportion of members of dominant clus-
ters DOM-CLUSTi within all classes ci.

ACC =

CP
i=1

verbs in DOM-CLUSTi

number of verbs

mPUR can be seen to measure the precision of
clusters and ACC the recall. We define an F mea-
sure as the harmonic mean of mPUR and ACC:

F =
2 ·mPUR · ACC

mPUR + ACC

The experiments were run 50 times on each in-
put to get the distribution of performance due to
the randomness in the initial clustering. We calcu-
lated the average performance and standard devia-
tion from the results of these runs.

4.3 Results for Test Set 1
We first compared IB and PC on the smaller test set
1 using feature set F2. We chose for evaluation the
outputs corresponding to the most informative val-
ues of K: 20, 33, 53 for IB, and 19, 26, 51 for PC.
In the results included in table 4 IB shows slightly
better performance than PC, but the difference is
not significant for K=34 and 50. We decided to use
PC for larger experiments because it has two ad-
vantages over IB: 1) It can cluster the large test set
2 with K = 10 − 60 in minutes, while IB requires
a day for this. 2) It can deal with (and combine)
different feature sets, while IB runs into numeri-
cal problems. Due to its speed and flexibility PC

is thus more suitable for larger-scale experiments
involving comparison of complex feature sets.

4.4 Results for Test Set 2

Tables 5 and 6 include the PC results on the larger
test set 2. Table 5 shows the results for each in-
dividual feature set (indicated in the second col-
umn). It shows also the standard deviations (σavg)
of the four performance measures averaged across
all the runs. These are very similar for 16, 34, and
50 classes and hence only included in one of the
columns. In addition, σdiff is indicated. This is√

2 · σavg and used for calculating the significance
of the performance differences. In the following
discussion we consider a difference of more than
2σdiff (p > 97.7%) as significant.

The first feature sets F1-F3 include basic SCF

(frequency) information for each verb, F2-F3 re-
fined with prepositions. F2 shows clearly better
results than F1 (over 10 F-measure) at all the levels
of gold standard. This demonstrates the usefulness
of prepositions for the task. When moving to F3
the performance decreases for 34 and 50 classes,
while improving for 16 classes, but these differ-
ences are not statistically significant.

Feature sets F4-F10 build on F3. F4-F5 include
information about verb tense. This information
proves quite useful for verb classification, partic-
ularly when specific to individual SCFs. When
compared against the baseline featureset F3, F5
is clearly better - particularly at 50 classes where
the difference is 3.9 in F-measure (2σdiff ). Verb
voice information is not equally helpful: F6-F7 are
not better than F3. In some comparisons they are
worse, e.g. F7 vs. F3 at 16 classes.

F8-F10 supplement F3 with information about
SPs. Surprisingly, these lexical and semantic fea-
tures prove the most useful for our task. At the
level of 34 and 50 classes, the best SP features are
even better than the best tense features (the dif-
ference is statistically significant), and they yield
notable improvement over the baseline features
(e.g. 6.8 difference in F-measure between F9 and
F3). The performance is not equally good at 16
classes. This makes perfect sense because class
members are unlikely to have similar SPs at such a
coarse level of semantic classification.

When comparing the five sets of SPs features
against each other, F9 and F10C produce the best
results at 34 and 50 classes. F9 uses raw (filtered)
argument head data for SP acquisition while F10C

uses clustering. It is interesting that the differ-
ence between these two very different methods is
not statistically significant. Whether one employs
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16 Classes 34 Classes 50 Classes
APP mPUR ACC F APP mPUR ACC F APP mPUR ACC F

IB 74 77 66 71 69 75 81 77 54 72 79 75
PC 71 78 58 67 64 71 81 75 63 71 73 72
± 1.1 1.0 1.0 0.8 1.8 1.6 1.3 1.4 2.1 1.5 1.6 1.1

Table 4: Performance on test set 1

16 Classes 34 Classes 50 Classes
APP mPUR ACC F APP mPUR ACC F APP mPUR ACC F

SCF F1 62.7 68.2 54.6 60.6 50.4 58.4 53.4 55.8 41.5 50.3 55.7 52.9
F2 68.7 76.4 66.4 71.1 61.9 65.5 65.8 65.6 53.9 61.2 65.4 63.2
F3 69.3 77.7 67.6 72.3 61.6 66.0 64.0 65.0 53.7 60.2 65.9 62.9

F3 + tense F4 70.1 77.5 65.5 71.0 62.0 70.3 69.4 69.8 53.3 60.6 68.0 64.1
F5 68.5 75.4 71.7 73.5 61.9 67.8 68.2 68.0 58.2 62.7 71.7 66.8

F3 + voice F6 70.6 78.1 64.0 70.4 61.2 66.0 65.8 65.9 54.3 59.6 70.1 64.4
F7 74.0 79.5 59.7 68.2 62.6 65.4 65.1 65.2 55.1 60.9 69.2 64.7

F3 + SP F8 77.1 78.2 61.6 68.9 69.6 69.3 71.2 70.2 61.3 62.7 71.1 66.6
F9 72.4 77.1 64.0 69.9 72.2 72.0 71.6 71.8 62.3 65.6 72.4 68.8

F10A 75.6 80.0 63.2 70.6 66.1 69.2 70.6 69.9 59.4 63.5 69.0 66.2
F10B 68.8 77.1 69.2 72.9 65.3 67.2 69.8 68.5 59.9 61.9 70.5 65.9
F10C 74.1 78.9 65.7 71.7 68.8 71.7 69.7 70.7 59.8 63.4 71.1 67.0
σavg 2.2 1.5 1.8 1.4
σdiff 3.1 2.1 2.5 2.0

Table 5: Performance on test set 2: PC clustering results for individual feature sets at the three levels of
gold standard. σavg and σdiff were calculated across all the three classification levels.

16 CL. F5+F9 F4+ F10C F5 F5+ F8
APP 72.3 68.2 68.5 72.2

mPUR 76.4 77.0 75.4 76.5
ACC 73.6 70.9 71.7 69.9

F 75.0 73.8 73.5 73.0
34 CL. F5+ F9 F5+ F8 F9 F4+ F10A

APP 68.7 71.0 72.2 62.9
mPUR 70.1 71.0 72.0 68.4

ACC 74.8 73.4 71.6 75.0
F 72.4 72.2 71.8 71.5

50 CL. F9 F5+ F9 F5+ F8 F4+ F9
APP 62.3 59.8 62.8 59.7

mPUR 65.6 63.8 64.1 63.1
ACC 72.4 72.7 71.0 71.8

F 68.8 68.0 67.4 67.1

Table 6: Results for the top four feature set combi-
nations. All the feature sets build on F3.

fine grained clusters (F10C) or coarse-grained ones
(F10A) as SPs does not make much difference.

We next combined various feature sets. Table 6
shows the performance for the top four combina-
tions. Comparing these results against the ones in
Table 5, (see the σdiff values in Table 5) we can see
that combining feature sets does not result in better
performance3. The only exception is the difference
in APP and mPUR between F9 and F4 + F10A at
N=34. However, these results show similar ten-
dencies as the earlier ones: at 16 classes the most

3Recall that all F4-F10 are actually already ’combined’
with F3 - we do not refer to this combination here.

useful features are based on verb tense, while at 34
and 50 classes they are based on SPs.

5 Discussion

The results presented in the previous section are
in interesting contrast with those reported in ear-
lier work. In previous work on general lan-
guage verb classification, syntactic features (slots
or SCFs) have proved generally the most help-
ful features, e.g. (Schulte im Walde, 2006; Joa-
nis et al., 2007). The preliminary experiment on
biomedical verb classification (Korhonen et al.,
2006) experimented only with them. In our ex-
periments, SCFs proved useful baseline features.
When we refined them further, we faced sparse
data problems: considerable improvement was ob-
tained when moving from F1 to F2, but not when
moving to F3. Although many verb classes are
sensitive to preposition types, many of the types
are low in frequency. Future work could address
this problem by employing smoothing techniques,
or backing off to preposition classes.

Joanis et al. (2007) experimented with tense
and voice -based features in general English verb
classification. They offered no significant im-
provement over basic syntactic features. Also in
our experiments, we obtained little improvement
with voice features. This could be due to the
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un-distinctiveness of passive in biomedical texts
where it is used typically with high frequency.
However, tense-based features clearly improved
the baseline performance in our experiments. This
could be partly because we ’parameterize’ POS in-
formation for SCFs, and partly because semanti-
cally similar verbs in biomedical language tend to
behave similarly also in terms of tense (Friedman
et al., 2002).

Joanis (2002) and Schulte im Walde (2006) used
SP-based features in general English and German
verb classifications, respectively. The former ac-
quired them from WordNet (Miller, 1990) and
the latter from GermaNet (Kunze, 2000). Joa-
nis (2002) obtained no improvement over syntactic
features while Schulte im Walde (2006) obtained,
but the improvement was not significant. In our
experiments, SP features gave the best results and
the clearest improvement over the baseline features
at the finer-grained levels of classification where
class members are indeed likely to be the most uni-
form in terms of their SPs.

We obtained this improvement despite using
a fully unsupervised approach to SP acquisition.
We did not exploit lexical resources like Joa-
nis (2002) and Schulte im Walde (2006) because
it would have required combining general re-
sources (e.g. WordNet) with domain specific ones
(e.g. UMLS). We opted for a simpler approach in
this initial work – using raw argument heads and
clustering – and obtained surprisingly good results.
In our experiments filtering of raw argument heads
and clustering with N=50 produced equivalent re-
sults, suggesting that relatively fine-grained clus-
ters are optimal. Future work will require quali-
tative analysis of noun clusters and comparison of
these against classes in lexical resources to deter-
mine an optimal method for SP acquisition.

Does the fact that we obtain good results with
features which have not proved helpful in general
language classification indicate a need for domain-
specific feature engineering? We do not believe
so. The feature sets we experimented with are the-
oretically well-motivated and should, in principle,
also aid general language verb classification. We
believe they proved helpful in our experiments be-
cause being domain-specific, biomedical language
is conventionalised and therefore less varied in
terms of verb sense and usage than general lan-
guage. For example, verbs have stronger SPs for
their argument heads when many of their corpus

occurrences are of similar sense. This renders SP-
based features more useful for classification.

Due to differences in the data, methods, and ex-
perimental setup, direct comparison of our perfor-
mance figures with previously published ones is
difficult. The closest comparison point with gen-
eral language is (Korhonen et al., 2003) which re-
ported 59% mPUR using IB to assign 110 polyse-
mous English verbs into 34 classes. Our best re-
sults are substantially better (72-80% mPUR). It
is encouraging that we obtained such good results
despite focusing on a linguistically challenging do-
main.

In addition to the points mentioned earlier, our
future plans include seeding automatic classifica-
tion with more sophisticated information acquired
automatically from domain-specific texts (e.g. us-
ing named entity recognition and anaphoric link-
ing (Vlachos et al., 2006)). We will also explore
semi-automatic ML technology and active learn-
ing in aiding the classification. Finally, we plan to
conduct a bigger experiment with a larger number
of verbs, make the resulting classification publicly
available, and demonstrate its usefulness for prac-
tical BIO-NLP application tasks.

6 Conclusion

We reported large-scale experiments to investigate
the optimal characteristics of features required for
biomedical verb classification. A range of feature
sets and associated extraction methods were intro-
duced for this work, along with a robust cluster-
ing method capable of dealing with large data and
complex feature sets. A number of experiments
were reported. The best performing feature sets
proved to be the ones which include information
about SCFs supplemented with information about
verb tense and SPs in particular. The latter were
acquired automatically from corpus data using an
unsupervised method. Similar feature sets have
not proved equally useful in earlier work in gen-
eral language verb classification. We discussed
reasons for this and highlighted several areas for
future work.
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