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Abstract 

We report on the results of a series of experiments with 
a prototype text retrieval system which uses relatively 
advanced natural language processing techniques in 
order to enhance the effectiveness of statistical docu- 
ment retrieval. In this paper we show that large-scale 
natural language processing (hundreds of millions of 
words and more) is not only required for a better 
retrieval, but it is also doable, given appropriate 
resources. In particular, we demonstrate that the use of 
syntactic compounds in the representation of database 
documents as well as in the user queries, coupled with 
an appropriate term weighting strategy, can consider- 
ably improve the effectiveness of retrospective search. 
The experiments reported here were conducted on TIP- 
STER database in connection with the Text REtrieval 
Conference series (TREC). 1 

1 Introduction 

The task of information retrieval is to extract 
relevant documents from a large collection of docu- 
ments in response to user queries. When the docu- 
ments contain primarily unrestricted text (e.g., newspa- 
per articles, legal documents, etc.) the relevance of a 
document is established through 'full-text' retrieval. 
This has been usually accomplished by identifying key 
terms in the documents (the process known as 'index- 
ing') which could then be matched against terms in 
queries (Salton, 1989). The effectiveness of any such 
term-based approach is directly related to the accuracy 
with which a set of terms represents the content of a 
document, as well as how well it contrasts a given 
document with respect to other documents. In other 
words, we are looking for a representation R such that 
for any text items D1 and D2, R(D1) = R(D2) iff 
meaning(D1) = meaning(D2), at an appropriate level 
of abstraction (which may depend on the types and 
character of anticipated queries), 

' See (Harman, 1993) for a detailed description of TREC. 

The simplest word-based representations of con- 
tent are usually inadequate since single words are 
rarely specific enough for accurate discrimination, and 
their grouping is often accidental. A better method is to 
identify groups of words that create meaningful 
phrases, especially if these phrases denote important 
concepts in the database domain. For example, joint 
venture is an important term in the Wall Street Journal 
(WSJ henceforth) database, while neither joint nor ven- 
ture are important by themselves. In fact, in a 800+ 
MBytes database, both joint and venture would often 
be dropped from the list of terms by the system because 
their inverted document frequency (idj) weights were 
too low. In large databases comprising hundreds of 
thousands of documents the use of phrasal terms is not 
just desirable, it becomes necessary. 

To illustrate this point let us consider TREC 
Topic 104, an information request from which a data- 
base search query is to be built. The reader may note 
various sections of this Topic, with <desc> correspond- 
ing to the user's original request, further elaborated in 
<narr>, and <con> consisting of expert-assigned 
phrases denoting key concepts to be considered. 

<top> 

<num> Number: 104 

<dora> Domain: Law and Government 

<title> Topic: Catastrophic Health Insurance 

<desc> Description: 

Document will enumerate provisions of the U.S. Catastrophic Health 

Insurance Act of 1988, or the political/legal fallout from that 
legislation. 
<aaarr> Narrative: 
A relevant document will detail the content of the U.S. medicare 
act of 1988 which extended catastrophic illness benefits 
to the elderly, with particular attention to the financing scheme 
which led to a firestorm of protest and a Congressional retreat, 
or a relevant document will detail the political/legal 

consequences of the catastrophic health insurance imbroglio and 

subsequent efforts by Congress to provide similar coverages 

through a less-controversial mechanism. 

<con> Concept(s): 

1. Catastrophic Coverage Act of 1988, Medicare Part B, 
Health Care Financing Administration 
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2. catastrophic-health program, catastrophic illness, catastrophic 
care, acute care, long-term nursing home care 
3. American Association of Retired Persons, AARP, senior citizen, 
National Committee to Preserve Social Security and Medicare 

</top> 

If the phrases are ignored altogether, 2 this query will 
produce an output where the relevant documents are 
scattered as shown in the first table below which lists 
the ranks and scores of relevant documents within the 
top 100 retrieved documents. On the other hand, if we 
include even simple phrases, such as catastrophic- 
health program, acute care, home care, and senior 
citizen, we can considerably sharpen the outcome of 
the search as seen in the second table) 

QUERY:104; NO. RELEVANT:21 
REL DOCUMENT RANK (no phrases) RANK (phrases) 

WSJ890918-0173 2 5 
WSJ891004-0119 7 1 
WSJ870723-(K)64 8 8 
WSJ870213 -(X)53 10 12 
WsJgg0608-0121 14 7 
WSJ891005 -0005 15 4 

WSJ891009 -0009 35 18 

WSJ890920-0115 39 26 

WSJ890928-0184 40 61 

WSJ880609-0(~l 53 50 

WSJ891009-0188 73 46 
WSJ880705-OI94 97 95 
WSJ870601-0075 52 

WSJ891005-0001 72 
WSJ871028-0059 93 

A query obtained from the fields <rifle>, <desc> 
and <narr> will be, as may be expected, much weaker 
than the one using <con> field, especially without the 
phrasal terms, because the narrative contains far fewer 
specific terms while containing some that may prove 
distracting, e.g., firestorm. In fact, Broglio and Croft 
(1993), and Broglio (personal communication, 1993) 
showed that the exclusion of the <con> field makes the 
queries quite ineffective, while adding the <narr> field 
makes them even worse as they lose precision by as 
much as 30%. However, adding phrasal terms can 
improve things considerably. We return to this issue 
later in the paper. 

An accurate syntactic analysis is an essential 
prerequisite for selection of phrasal terms. Various sta- 
tistical methods, e.g., based on word co-occurrences 

2 All single words (except the stopwords such as articles or 
prepositions) am included in the query, including those making up the 
phrases. 

s Including extra terms in documents changes the way other 
terms are weighted. This issue is discussed later in this paper. 

and mutual information, as well as partial parsing tech- 
niques, are prone to high error rates (sometimes as high 
as 50%), turning out many unwanted associations. 
Therefore a good, fast parser is necessary, but it is by 
no means sufficienL While syntactic phrases are often 
better indicators of content than 'statistical phrases' 
where words are grouped solely on the basis of physi- 
cal proximity, e.g., "college junior" is not the same as 
"junior college" - -  the creation of compound terms 
makes the term matching process more complex since 
in addition to the usual problems of synonymy and sub- 
sumption, one must deal with their structure (e.g., "col- 
lege junior" is the same as "junior in college"). 

For all kinds of terms that can be assigned to the 
representation of a document, e.g., words, syntactic 
phrases, fixed phrases, and proper names, various lev- 
els of "regularization" are needed to assure that syn- 
tactic or lexical variations of input do not obscure 
underlying semantic uniformity. Without actually 
doing semantic analysis, this kind of normalization can 
be achieved through the following processes: 4 

(1) morphological stemming: e.g., retrieving is 
reduced to retriev; 

(2) lexicon-based word normalization: e.g., 
retrieval is reduced to retrieve; 

(3) operator-argument representation of phrases: 
e.g., information retrieval, retrieving of infor- 
mation, and retrieve relevant information are 
all assigned the same representation, 
retrieve+information; 

(4) context-based term clustering into synonymy 
classes and subsumption hierarchies: e.g., take- 
over is a kind of acquisition (in business), and 
Fortran is a programming language. 

Introduction of compound terms complicates the 
task of discovery of various semantic relationships 
among them. For example, the term natural language 
can often be considered to subsume any term denoting 
a specific human language, such as English. Therefore, 
a query containing the former may be expected to 
retrieve documents containing the latter. The same can 
be said about language and English, unless language is 
in fact a part of the compound term programming 
language in which case the association language - 
Fortran is appropriate. This is a problem because (a) it 
is a standard practice to include both simple and com- 
pound terms in document representation, and (b) term 
associations have thus far been computed primarily at 
word level (including fixed phrases) and therefore care 

4 An alternative, but less efficient method is to generate all 
variants (lexical, syntactic, etc.) of words~hrases in the queries 
(Sparck-Jones & Tait, 1984). 
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must be taken when such associations are used in term 
matching. This may prove particularly troublesome for 
systems that attempt term clustering in order to create 
"meta-terms" to be used in document representation. 

2 Overall Design 

We have established the general architecture of a 
NLP-IR system, depicted schematically below, in 
which an advanced NLP module is inserted between 
the textual input (new documents, user queries) and the 
database search engine (in our case, NIST's PRISE 
system). This design has already shown some promise 
in producing a better performance than the base statisti- 
cal system (Strzalkowski, 1993b). We would like to 
point out at the outset that this system is completely 
automated, including the statistical core, and the natural 
language processing components, and no human inter- 
vention or manual encoding is required. 

NIP: TAGGER PARSER terms 

In our system the database text is first processed 
with a sequence of programs that include a part-of- 
speech tagger, a lexicon-based morphological stemmer 
and a fast syntactic parser. Subsequently certain types 
of phrases are extracted from the parse trees and used 
as compound indexing terms in addition to single-word 
terms. The extracted phrases are statistically analyzed 
as syntactic contexts in order to discover a variety of 
similarity links between smaller subphrases and words 
occurring in them. A further filtering process maps 
these similarity links onto semantic relations (generali- 
zation, specialization, synonymy, etc.) after which they 
are used to transform a user's request into a search 
query. 

The user's natural language request is also 
parsed, and all indexing terms occurring in it are 
identified. Certain highly ambiguous, usually single- 
word terms may be dropped, provided that they also 
occur as elements in some compound terms. For exam- 
ple, "natural" may be deleted from a query already con- 
taining "natural language" because "natural" occurs in 
many unrelated contexts: "natural number", "natural 
logarithm", "natural approach", etc. At the same time, 
other terms may be added, namely those which are 
linked to some query term through admissible similar- 
ity relations. For example, "unlawful activity" is added 
to a query (TREC topic 055) containing the compound 
term "illegal activity" via a synonymy link between 
"illegal" and "unlawful". 

One of the observations made during the course 
of TREC-2 was to note that removing low-quality 
terms from the queries is at least as important (and 
often more so) as adding synonyms and specializations. 
In some instances (e.g., routing runs) low-quality terms 
had to be removed (or inhibited) before similar terms 
could be added to the query or else the effect of query 
expansion was all but drowned out by the increased 
noise. 

After the final query is constructed, the database 
search follows, and a ranked list of documents is 
returned. It should be noted that all the processing 
steps, those performed by the backbone system, and 
those performed by the natural language processing 
components, are fully automated, and no human inter- 
vention or manual encoding is required. 

3 Fast Parsing with TTP Parser 

T/'P (Tagged Text Parser) is a full-grammar 
parser based on the Linguistic String Grammar 
developed by Sager (1981). It currently encompasses 
most of the grammar productions and many of the res- 
trictions, but it is by no means complete. Unlike a con- 
ventional parser, TYP's output is a regularized 
representation of each sentence which reflects its logi- 
cal predicate-argument structure, e.g., logical subject 
and logical objects are identified depending upon the 
main verb subcategorization frame. For example, the 
verb abide has, among others, a subcategorization 
frame in which the object is a prepositional phrase with 
by, as in he'll abide by the court's decision, i.e., 

ABIDE: subject NP object PREP by NP 

Subcategorization information is read from the on-line 
Oxford Advanced Learner's Dictionary (OALD) which 
TI~P uses. 

Also unlike a conventional parser, TTP is 
equipped with a powerful skip-and-fit recovery 
mechanism that allows it to operate effectively in the 
face of ill-formed input or under severe time pressure. 
A built-in timer regulates the amount of time allowed 
for parsing any one sentence: if a parse is not returned 
before the allotted time elapses, TTP enters the skip- 
ping mode in which it will try to "fit" the parse. While 
in the skip-and-fit mode, the parser attempts to forcibly 
reduce incomplete constituents, possibly skimming 
over portions of input in order to restart processing at a 
next unattempted constituent; in other words, it will 
favor reduction over backtracking. The result of this 
strategy is an approximate parse, partially fitted using 
top-down predictions. In runs with approximately 130 
million words of TREC's Wall Street Journal and San 
Jose Mercury texts, the parser's speed averaged 30 
minutes per Megabyte or about 80 words per second, 
on a Sun SparcStationl0. In addition, T I P  has been 
shown to produce parse structures which are no worse 
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than those generated by full-scale linguistic parsers 
when compared to hand-coded parse trees. 5 

Full details of TTP parser have been described in 
the TREC-1 report (Strzalkowski, 1993a), as well as in 
other works (Strzalkowski, 1992; Strzalkowski & 
Scheyen, 1993). 

As may be expected, the skip-and-fit strategy 
will only be effective if the input skipping can be per- 
formed with a degree of determinism. This means that 
most of the lexical level ambiguity must be removed 
from the input text, prior to parsing. We achieve this 
using a stochastic parts of speech tagger to preprocess 
the text prior to parsing. In order to streamline the pro- 
cessing, we also perform morphological normalization 
of words on the tagged text, before parsing. This is pos- 
sible because the part-of-speech tags retain the infor- 
mation about each word's original form. Thus the sen- 
tence The Soviets have been notified is transformed into 
the/dt soviet/nps have/vbp be/vbn notify/vbn before 
parsing commences. 6 

4 H e a d - M o d i f i e r  S t r u c t u r e s  

Syntactic phrases extracted from T I P  parse 
structures are represented as head-modifier pairs. The 
head in such a pair is a central element of a phrase 
(main verb, main noun, etc.), while the modifier is one 
of the adjuncts or arguments of the head. In the TREC 
experiments reported here we extracted head-modifier 
word pairs only, i.e., nested pairs were not used even 
though this was warranted by the size of the database. 

Figure 1 shows all stages of the initial linguistic 
analysis of a sample sentence from the WSJ database. 
The reader may note that the parser's output is a 
predicate-argument structure centered around the main 
elements of various phrases. For example, BE is the 
main predicate (modified by HAVE) with 2 arguments 
(subject, object) and 2 adjuncts (adv, sub_ord). 
INVADE is the predicate in the subordinate clause with 
2 arguments (subject, object). The subject of BE is a 
noun phrase with PRESIDENT as the head element, 
two modifiers (FORMER, SOVIET) and a determiner 
(THE). From this structure, we extract head-modifier 
pairs that become candidates for compound terms. In 
general, the following types of pairs are considered: (1) 
a head noun of a noun phrase and its left adjective or 
noun adjunct, (2) a head noun and the head of its right 
adjunct, (3) the main verb of a clause and the head of 
its object phrase, and (4) the head of the subject phrase 

s Hand-coded parse trees were obtained from the University of 
Pennsylvania Treebank Project database. 

s The tags are read as follows: dt is determiner, nps is a proper 
name, vbp is a tensed plural verb, vbn is a past participle. 

and the main verb. These types of pairs account for 
most of the syntactic variants for relating two words (or 
simple phrases) into pairs carrying compatible semantic 
content. For example, the pair retrieve+information 
will be extracted from any of the following fragments: 
information retrieval system; retrieval of information 
from databases; and information that can be retrieved 
by a user-controlled interactive search process. We 
also attempted to identify and remove any terms which 
were explicitly negated in order to prevent matches 
against their positive counterparts, either in the data- 
base or in the queries. 

One difficulty in obtaining head-modifier pairs of 
highest accuracy is the notorious ambiguity of nominal 
compounds. The pair extractor looks at the distribution 
statistics of the compound terms to decide whether the 
association between any two words (nouns and adjec- 
fives) in a noun phrase is both syntactically valid and 
semantically significant. For example, we may accept 
language+natural and processing+language from 

INPUT SENTENCE 
The former Soviet president has been a local hero ever since a Rus- 
sian tank invaded Wisconsin. 

TAGGED SENTENCE 
The~dr former/jj Soviet/./)" president/nn has/vbz beenlvbn aldt localljj 
herolnn ever/rb since/in a/dt Russian/jj tanklnn invaded/vbd 
Wisconsin/np ./per 

TAGGED & STEMMED SENTENCE 
the~d1 former/jj soviet/jj president/nn have/vbz belvb, a/dt local/jj 
hero/nn ever/rb since~in a/dt russian/j~ tanklnn invadelvbd 
wiscensin/np ./per 

PARSED SENTENCE 
[assert 

[[perf ]HAVE]I l[verb [BEI] 
[subject [np [n PRESIDENT] [t_.pos THEI 

[adj IFORMERll [adj [SOVIETI]]] 
[object [np [n HERO] [t..pos A] [adj [LOCAL]]]] 
[adv EVER] 
[sub_ord [SINCE 

[[verb [INVADE]] 
[subject [np [n TANK] [t_.pos AI 

[adj [RUSSIAN]l]] 
[object [np [name [WISCONSIN]]]]]]]]]] 

EXTRACTED TERMS & WEIGHTS 
president 2.623519 soviet 5.416102 
president+soviet 11.556747 president+former 14.594883 
hero 7.896426 hero+local 14.314775 
invade 8.435012 tank 6.848128 
tank+invade 17.402237 tank+mssian 16.030809 
russian 7.383342 wisconsin 7.785689 

Figure 1. Stages of sentence processing. 
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natural language processing as correct, however, 
case+trading would make a mediocre term when 
extracted from insider trading case. On the other hand, 
it is important to extract trading+insider to be able to 
match documents containing phrases insider trading 
sanctions act or insider trading activity. 

5 Term Weighting Issues 

Finding a proper term weighting scheme is criti- 
cal in term-based retrieval since the rank of a document 
is determined by the weights of the terms it shares with 
the query. One popular term weighting scheme, known 
as ffidf, weights terms proportionately to their inverted 
document frequency scores and to their in-document 
frequencies (tO. The in-document frequency factor is 
usually normalized by the document length, that is, it is 
more significant for a term to occur in a short 100-word 
abstract, than in a 5000-word article. 7 

A standard ff.idf weighting scheme (see Buckley, 
1993 for details) may be inappropriate for mixed term 
sets, consisting of ordinary concepts, proper names, 
and phrases, because: 

(1) It favors terms that occur fairly frequently in a 
document, which supports only general-type 
queries (e.g., "all you know about X"). Such 
queries were not typical in TREC. 

(2) It attaches low weights to infrequent, highly 
specific terms, such as names and phrases, 
whose only occurrences in a document are 
often decisive for relevance. Note that such 
terms cannot be reliably distinguished using 
their distribution in the database as the sole fac- 
tor, and therefore syntactic and lexical informa- 
tion is required. 

(3) It does not address the problem of inter-term 
dependencies arising when phrasal terms and 
their component single-word terms are all 
included in a document representation, i.e., 
launch+satellite and satellite are not indepen- 
dent, and it is unclear whether they should be 
counted as two terms. 

In our post-TREC-2 experiments we considered 
(1) and (2) only. We changed the weighting scheme so 
that the phrases (but not the names, which we did not 
distinguish in TREC-2) were more heavily weighted by 
their idf scores while the in-document frequency scores 
were replaced by logarithms multiplied by sufficiently 
large constants. In addition, the top N highest-idf 
matching terms (simple or compound) were counted 

7 This is not always true, for example when all occurrences of a 
term are concentrated in a single section or a paragraph rather than 
spread around the article. 

more toward the document score than the remaining 
terms. 

Schematically, these new weights for phrasal and 
highly specific terms are obtained using the following 
formula, while weights for most of the single-word 
terms remain unchanged: 

weight (Ti)=( C1 *log (0c)+C 2 * ot(N,i) )*idf 

In the above, ~t(N,i) is 1 for i <N and is 0 otherwise. 
The selection of a weighting formula was partly con- 
strained by the fact that document-length-normalized tf 
weights were precomputed at the indexing stage and 
could not be altered without re-indexing of the entire 
database. The intuitive interpretation of the oL(N,i) fac- 
tor is as follows. We restrict the maximum number of 
terms on which a query is permitted to match a docu- 
ment to N highest weight terms, where N can be the 
same for all queries or may vary from one query to 
another. Note that this is not the same as simply taking 
the N top terms from each query. Rather, for each 
document for which there are M matching terms with 
the query, only min(M,N) of them, namely those which 
have highest weights, will be considered when comput- 
ing the document score. Moreover, only the global 
importance weights for terms are considered (such as 
idf), while local in-document frequency (eg., tO is 
suppressed by either taking a log or replacing it with a 
constant. 

Changing the weighting scheme for compound 
terms, along with other minor improvements (such as 
expanding the stopword list for topics, or correcting a 
few parsing bugs) has lead to an overall increase of 
precision of more than 20% over our official TREC-2 
ad-hoc results. Table 1 includes statistics of these new 
runs for 50 queries (numbered 101-150) against the 
WSJ database. The gap between the precision levels in 
columns txt2 and con reflects the difference in the qual- 
ity of the queries obtained from the narrative parts of 
the topics (txt2 = title + desc + narr), and those 
obtained primarily from expert's formulation (title + 
desc + con). The column txt2+nlp represents the 
improvement of txt2 queries thanks to NLP, with as 
much as 70% of the gap closed. Similar improvements 
have been obtained for other sets of queries. 

6 Conclusions 

We presented in some detail our natural language 
information retrieval system consisting of an advanced 
NLP module and a 'pure' statistical core engine. While 
many problems remain to be resolved, including the 
question of adequacy of term-based representation of 
document content, we attempted to demonstrate that 
the architecture described here is nonetheless viable. In 
particular, we demonstrated that natural language 
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Run txtl txt2 txt2+nlp con con+nip 

Tot number of docs over all queries 

Re/ 3929 3929 3929 3929 3929 
RelRet 2736 3025 3108 3332 3401 

%chg +9.0 +14.7 +21.8 +24.3 

Recall (interp) Precision Averages 

0.00 0.6874 0.7318 0.7201 0.7469 0.8063 

0.10 0.4677 0.5293 0.5239 0.5726 0.6198 

0.20 0.3785 0.4532 0.4751 0.4970 0.5566 

0.30 0.3060 0.3707 0.4122 0.4193 0.4786 

0.40 0.2675 0.3276 0.3541 0.3747 0.4257 

0.50 0.2211 0.2815 0.3126 0.3271 0.3828 

0.60 0.1765 0.2406 0.2752 0.2783 0.3380 

0.70 0.1313 0.1783 0.2142 0.2267 0.2817 

0.80 0.0828 0.1337 0.1605 0.1670 0.2164 

0.90 0.0451 0.0818 0.1014 0.0959 0.1471 

1.00 0.0094 0.0159 0.0194 0.0168 0.0474 

Average precision over all rel docs 

Avg 0.2309 ] 0.2835 0.3070 0.3210 0.3759 

%chg [ +22.8 +33.0 +39.0 +62.8 

Precision at N documents 

5 0.5000 0.5240 0.5200 0.5600 0.6040 

10 0.4080 0.4600 0.4900 0.5020 0.5580 

100 0.2380 0.2790 0.2914 0.3084 0.3346 

R-Precision (after Rel) 

Exact 0.2671 0.3053 0.3332 0.3455 0.3950 

%chg +14.3 +24.7 +29.3 +47.9 

Table 1. Run statistics for 50 ad-hoc queries against WSJ database 
with 1000 does retrieved per query: (1) txtl - single terms of <narr> 
and <desc> fields m this is the base ran; (2) txt2 - <hart> and <desc> 
fields with low weight terms removed; (3) txt2+nlp -<narr> and 
<desc> fields including syntactic phrase terms using the new weight- 
ing scheme; (4) con - <desc> and <con> fields with low weight terms 
removed but with no NLP; and (5) con+nip - <dese> and <con> 
fields including phrases with the new weighting scheme. 

processing can now be done on a fairly large scale and 
that its speed and robustness can match those of tradi- 
tional statistical programs such as key-word indexing 
or statistical phrase extraction. We suggest, with some 
caution until more experiments are run, that natural 
language processing can be very effective in creating 
appropriate search queries out of a user's initial 

specifications, which can be frequently imprecise or 
vague. 
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