
Robust Text Processing in Automated Information Retrieval

Tomek Strzalkowski
Courant Institute of Mathematical Sciences

New York University
715 Broadway, rm. 704
New York, NY 10003

tomek@cs.nyu.edu

Abstract

We report on the results of a series of experiments with
a prototype text retrieval system which uses relatively
advanced natural language processing techniques in
order to enhance the effectiveness of statistical docu-
ment retrieval. In this paper we show that large-scale
natural language processing (hundreds of millions of
words and more) is not only required for a better
retrieval, but it is also doable, given appropriate
resources. In particular, we demonstrate that the use of
syntactic compounds in the representation of database
documents as well as in the user queries, coupled with
an appropriate term weighting strategy, can consider-
ably improve the effectiveness of retrospective search.
The experiments reported here were conducted on TIP-
STER database in connection with the Text REtrieval
Conference series (TREC). 1

1 Introduction

The task of information retrieval is to extract
relevant documents from a large collection of docu-
ments in response to user queries. When the docu-
ments contain primarily unrestricted text (e.g., newspa-
per articles, legal documents, etc.) the relevance of a
document is established through 'full-text' retrieval.
This has been usually accomplished by identifying key
terms in the documents (the process known as 'index-
ing') which could then be matched against terms in
queries (Salton, 1989). The effectiveness of any such
term-based approach is directly related to the accuracy
with which a set of terms represents the content of a
document, as well as how well it contrasts a given
document with respect to other documents. In other
words, we are looking for a representation R such that
for any text items D1 and D2, R(D1) = R(D2) iff
meaning(D1) = meaning(D2), at an appropriate level
of abstraction (which may depend on the types and
character of anticipated queries),

' See (Harman, 1993) for a detailed description of TREC.

The simplest word-based representations of con-
tent are usually inadequate since single words are
rarely specific enough for accurate discrimination, and
their grouping is often accidental. A better method is to
identify groups of words that create meaningful
phrases, especially if these phrases denote important
concepts in the database domain. For example, joint
venture is an important term in the Wall Street Journal
(WSJ henceforth) database, while neither joint nor ven-
ture are important by themselves. In fact, in a 800+
MBytes database, both joint and venture would often
be dropped from the list of terms by the system because
their inverted document frequency (idj) weights were
too low. In large databases comprising hundreds of
thousands of documents the use of phrasal terms is not
just desirable, it becomes necessary.

To illustrate this point let us consider TREC
Topic 104, an information request from which a data-
base search query is to be built. The reader may note
various sections of this Topic, with <desc> correspond-
ing to the user's original request, further elaborated in
<narr>, and <con> consisting of expert-assigned
phrases denoting key concepts to be considered.

<top>

<num> Number: 104

<dora> Domain: Law and Government

<title> Topic: Catastrophic Health Insurance

<desc> Description:

Document will enumerate provisions of the U.S. Catastrophic Health

Insurance Act of 1988, or the political/legal fallout from that
legislation.
<aaarr> Narrative:
A relevant document will detail the content of the U.S. medicare
act of 1988 which extended catastrophic illness benefits
to the elderly, with particular attention to the financing scheme
which led to a firestorm of protest and a Congressional retreat,
or a relevant document will detail the political/legal

consequences of the catastrophic health insurance imbroglio and

subsequent efforts by Congress to provide similar coverages

through a less-controversial mechanism.

<con> Concept(s):

1. Catastrophic Coverage Act of 1988, Medicare Part B,
Health Care Financing Administration

168

2. catastrophic-health program, catastrophic illness, catastrophic
care, acute care, long-term nursing home care
3. American Association of Retired Persons, AARP, senior citizen,
National Committee to Preserve Social Security and Medicare

</top>

If the phrases are ignored altogether, 2 this query will
produce an output where the relevant documents are
scattered as shown in the first table below which lists
the ranks and scores of relevant documents within the
top 100 retrieved documents. On the other hand, if we
include even simple phrases, such as catastrophic-
health program, acute care, home care, and senior
citizen, we can considerably sharpen the outcome of
the search as seen in the second table)

QUERY:104; NO. RELEVANT:21
REL DOCUMENT RANK (no phrases) RANK (phrases)

WSJ890918-0173 2 5
WSJ891004-0119 7 1
WSJ870723-(K)64 8 8
WSJ870213 -(X)53 10 12
WsJgg0608-0121 14 7
WSJ891005 -0005 15 4

WSJ891009 -0009 35 18

WSJ890920-0115 39 26

WSJ890928-0184 40 61

WSJ880609-0(~l 53 50

WSJ891009-0188 73 46
WSJ880705-OI94 97 95
WSJ870601-0075 52

WSJ891005-0001 72
WSJ871028-0059 93

A query obtained from the fields <rifle>, <desc>
and <narr> will be, as may be expected, much weaker
than the one using <con> field, especially without the
phrasal terms, because the narrative contains far fewer
specific terms while containing some that may prove
distracting, e.g., firestorm. In fact, Broglio and Croft
(1993), and Broglio (personal communication, 1993)
showed that the exclusion of the <con> field makes the
queries quite ineffective, while adding the <narr> field
makes them even worse as they lose precision by as
much as 30%. However, adding phrasal terms can
improve things considerably. We return to this issue
later in the paper.

An accurate syntactic analysis is an essential
prerequisite for selection of phrasal terms. Various sta-
tistical methods, e.g., based on word co-occurrences

2 All single words (except the stopwords such as articles or
prepositions) am included in the query, including those making up the
phrases.

s Including extra terms in documents changes the way other
terms are weighted. This issue is discussed later in this paper.

and mutual information, as well as partial parsing tech-
niques, are prone to high error rates (sometimes as high
as 50%), turning out many unwanted associations.
Therefore a good, fast parser is necessary, but it is by
no means sufficienL While syntactic phrases are often
better indicators of content than 'statistical phrases'
where words are grouped solely on the basis of physi-
cal proximity, e.g., "college junior" is not the same as
"junior college" - - the creation of compound terms
makes the term matching process more complex since
in addition to the usual problems of synonymy and sub-
sumption, one must deal with their structure (e.g., "col-
lege junior" is the same as "junior in college").

For all kinds of terms that can be assigned to the
representation of a document, e.g., words, syntactic
phrases, fixed phrases, and proper names, various lev-
els of "regularization" are needed to assure that syn-
tactic or lexical variations of input do not obscure
underlying semantic uniformity. Without actually
doing semantic analysis, this kind of normalization can
be achieved through the following processes: 4

(1) morphological stemming: e.g., retrieving is
reduced to retriev;

(2) lexicon-based word normalization: e.g.,
retrieval is reduced to retrieve;

(3) operator-argument representation of phrases:
e.g., information retrieval, retrieving of infor-
mation, and retrieve relevant information are
all assigned the same representation,
retrieve+information;

(4) context-based term clustering into synonymy
classes and subsumption hierarchies: e.g., take-
over is a kind of acquisition (in business), and
Fortran is a programming language.

Introduction of compound terms complicates the
task of discovery of various semantic relationships
among them. For example, the term natural language
can often be considered to subsume any term denoting
a specific human language, such as English. Therefore,
a query containing the former may be expected to
retrieve documents containing the latter. The same can
be said about language and English, unless language is
in fact a part of the compound term programming
language in which case the association language -
Fortran is appropriate. This is a problem because (a) it
is a standard practice to include both simple and com-
pound terms in document representation, and (b) term
associations have thus far been computed primarily at
word level (including fixed phrases) and therefore care

4 An alternative, but less efficient method is to generate all
variants (lexical, syntactic, etc.) of words~hrases in the queries
(Sparck-Jones & Tait, 1984).

169

must be taken when such associations are used in term
matching. This may prove particularly troublesome for
systems that attempt term clustering in order to create
"meta-terms" to be used in document representation.

2 Overall Design

We have established the general architecture of a
NLP-IR system, depicted schematically below, in
which an advanced NLP module is inserted between
the textual input (new documents, user queries) and the
database search engine (in our case, NIST's PRISE
system). This design has already shown some promise
in producing a better performance than the base statisti-
cal system (Strzalkowski, 1993b). We would like to
point out at the outset that this system is completely
automated, including the statistical core, and the natural
language processing components, and no human inter-
vention or manual encoding is required.

NIP: TAGGER PARSER terms

In our system the database text is first processed
with a sequence of programs that include a part-of-
speech tagger, a lexicon-based morphological stemmer
and a fast syntactic parser. Subsequently certain types
of phrases are extracted from the parse trees and used
as compound indexing terms in addition to single-word
terms. The extracted phrases are statistically analyzed
as syntactic contexts in order to discover a variety of
similarity links between smaller subphrases and words
occurring in them. A further filtering process maps
these similarity links onto semantic relations (generali-
zation, specialization, synonymy, etc.) after which they
are used to transform a user's request into a search
query.

The user's natural language request is also
parsed, and all indexing terms occurring in it are
identified. Certain highly ambiguous, usually single-
word terms may be dropped, provided that they also
occur as elements in some compound terms. For exam-
ple, "natural" may be deleted from a query already con-
taining "natural language" because "natural" occurs in
many unrelated contexts: "natural number", "natural
logarithm", "natural approach", etc. At the same time,
other terms may be added, namely those which are
linked to some query term through admissible similar-
ity relations. For example, "unlawful activity" is added
to a query (TREC topic 055) containing the compound
term "illegal activity" via a synonymy link between
"illegal" and "unlawful".

One of the observations made during the course
of TREC-2 was to note that removing low-quality
terms from the queries is at least as important (and
often more so) as adding synonyms and specializations.
In some instances (e.g., routing runs) low-quality terms
had to be removed (or inhibited) before similar terms
could be added to the query or else the effect of query
expansion was all but drowned out by the increased
noise.

After the final query is constructed, the database
search follows, and a ranked list of documents is
returned. It should be noted that all the processing
steps, those performed by the backbone system, and
those performed by the natural language processing
components, are fully automated, and no human inter-
vention or manual encoding is required.

3 Fast Parsing with TTP Parser

T/'P (Tagged Text Parser) is a full-grammar
parser based on the Linguistic String Grammar
developed by Sager (1981). It currently encompasses
most of the grammar productions and many of the res-
trictions, but it is by no means complete. Unlike a con-
ventional parser, TYP's output is a regularized
representation of each sentence which reflects its logi-
cal predicate-argument structure, e.g., logical subject
and logical objects are identified depending upon the
main verb subcategorization frame. For example, the
verb abide has, among others, a subcategorization
frame in which the object is a prepositional phrase with
by, as in he'll abide by the court's decision, i.e.,

ABIDE: subject NP object PREP by NP

Subcategorization information is read from the on-line
Oxford Advanced Learner's Dictionary (OALD) which
TI~P uses.

Also unlike a conventional parser, TTP is
equipped with a powerful skip-and-fit recovery
mechanism that allows it to operate effectively in the
face of ill-formed input or under severe time pressure.
A built-in timer regulates the amount of time allowed
for parsing any one sentence: if a parse is not returned
before the allotted time elapses, TTP enters the skip-
ping mode in which it will try to "fit" the parse. While
in the skip-and-fit mode, the parser attempts to forcibly
reduce incomplete constituents, possibly skimming
over portions of input in order to restart processing at a
next unattempted constituent; in other words, it will
favor reduction over backtracking. The result of this
strategy is an approximate parse, partially fitted using
top-down predictions. In runs with approximately 130
million words of TREC's Wall Street Journal and San
Jose Mercury texts, the parser's speed averaged 30
minutes per Megabyte or about 80 words per second,
on a Sun SparcStationl0. In addition, T I P has been
shown to produce parse structures which are no worse

170

than those generated by full-scale linguistic parsers
when compared to hand-coded parse trees. 5

Full details of TTP parser have been described in
the TREC-1 report (Strzalkowski, 1993a), as well as in
other works (Strzalkowski, 1992; Strzalkowski &
Scheyen, 1993).

As may be expected, the skip-and-fit strategy
will only be effective if the input skipping can be per-
formed with a degree of determinism. This means that
most of the lexical level ambiguity must be removed
from the input text, prior to parsing. We achieve this
using a stochastic parts of speech tagger to preprocess
the text prior to parsing. In order to streamline the pro-
cessing, we also perform morphological normalization
of words on the tagged text, before parsing. This is pos-
sible because the part-of-speech tags retain the infor-
mation about each word's original form. Thus the sen-
tence The Soviets have been notified is transformed into
the/dt soviet/nps have/vbp be/vbn notify/vbn before
parsing commences. 6

4 H e a d - M o d i f i e r S t r u c t u r e s

Syntactic phrases extracted from T I P parse
structures are represented as head-modifier pairs. The
head in such a pair is a central element of a phrase
(main verb, main noun, etc.), while the modifier is one
of the adjuncts or arguments of the head. In the TREC
experiments reported here we extracted head-modifier
word pairs only, i.e., nested pairs were not used even
though this was warranted by the size of the database.

Figure 1 shows all stages of the initial linguistic
analysis of a sample sentence from the WSJ database.
The reader may note that the parser's output is a
predicate-argument structure centered around the main
elements of various phrases. For example, BE is the
main predicate (modified by HAVE) with 2 arguments
(subject, object) and 2 adjuncts (adv, sub_ord).
INVADE is the predicate in the subordinate clause with
2 arguments (subject, object). The subject of BE is a
noun phrase with PRESIDENT as the head element,
two modifiers (FORMER, SOVIET) and a determiner
(THE). From this structure, we extract head-modifier
pairs that become candidates for compound terms. In
general, the following types of pairs are considered: (1)
a head noun of a noun phrase and its left adjective or
noun adjunct, (2) a head noun and the head of its right
adjunct, (3) the main verb of a clause and the head of
its object phrase, and (4) the head of the subject phrase

s Hand-coded parse trees were obtained from the University of
Pennsylvania Treebank Project database.

s The tags are read as follows: dt is determiner, nps is a proper
name, vbp is a tensed plural verb, vbn is a past participle.

and the main verb. These types of pairs account for
most of the syntactic variants for relating two words (or
simple phrases) into pairs carrying compatible semantic
content. For example, the pair retrieve+information
will be extracted from any of the following fragments:
information retrieval system; retrieval of information
from databases; and information that can be retrieved
by a user-controlled interactive search process. We
also attempted to identify and remove any terms which
were explicitly negated in order to prevent matches
against their positive counterparts, either in the data-
base or in the queries.

One difficulty in obtaining head-modifier pairs of
highest accuracy is the notorious ambiguity of nominal
compounds. The pair extractor looks at the distribution
statistics of the compound terms to decide whether the
association between any two words (nouns and adjec-
fives) in a noun phrase is both syntactically valid and
semantically significant. For example, we may accept
language+natural and processing+language from

INPUT SENTENCE
The former Soviet president has been a local hero ever since a Rus-
sian tank invaded Wisconsin.

TAGGED SENTENCE
The~dr former/jj Soviet/./)" president/nn has/vbz beenlvbn aldt localljj
herolnn ever/rb since/in a/dt Russian/jj tanklnn invaded/vbd
Wisconsin/np ./per

TAGGED & STEMMED SENTENCE
the~d1 former/jj soviet/jj president/nn have/vbz belvb, a/dt local/jj
hero/nn ever/rb since~in a/dt russian/j~ tanklnn invadelvbd
wiscensin/np ./per

PARSED SENTENCE
[assert

[[perf]HAVE]I l[verb [BEI]
[subject [np [n PRESIDENT] [t_.pos THEI

[adj IFORMERll [adj [SOVIETI]]]
[object [np [n HERO] [t..pos A] [adj [LOCAL]]]]
[adv EVER]
[sub_ord [SINCE

[[verb [INVADE]]
[subject [np [n TANK] [t_.pos AI

[adj [RUSSIAN]l]]
[object [np [name [WISCONSIN]]]]]]]]]]

EXTRACTED TERMS & WEIGHTS
president 2.623519 soviet 5.416102
president+soviet 11.556747 president+former 14.594883
hero 7.896426 hero+local 14.314775
invade 8.435012 tank 6.848128
tank+invade 17.402237 tank+mssian 16.030809
russian 7.383342 wisconsin 7.785689

Figure 1. Stages of sentence processing.

171

natural language processing as correct, however,
case+trading would make a mediocre term when
extracted from insider trading case. On the other hand,
it is important to extract trading+insider to be able to
match documents containing phrases insider trading
sanctions act or insider trading activity.

5 Term Weighting Issues

Finding a proper term weighting scheme is criti-
cal in term-based retrieval since the rank of a document
is determined by the weights of the terms it shares with
the query. One popular term weighting scheme, known
as ffidf, weights terms proportionately to their inverted
document frequency scores and to their in-document
frequencies (tO. The in-document frequency factor is
usually normalized by the document length, that is, it is
more significant for a term to occur in a short 100-word
abstract, than in a 5000-word article. 7

A standard ff.idf weighting scheme (see Buckley,
1993 for details) may be inappropriate for mixed term
sets, consisting of ordinary concepts, proper names,
and phrases, because:

(1) It favors terms that occur fairly frequently in a
document, which supports only general-type
queries (e.g., "all you know about X"). Such
queries were not typical in TREC.

(2) It attaches low weights to infrequent, highly
specific terms, such as names and phrases,
whose only occurrences in a document are
often decisive for relevance. Note that such
terms cannot be reliably distinguished using
their distribution in the database as the sole fac-
tor, and therefore syntactic and lexical informa-
tion is required.

(3) It does not address the problem of inter-term
dependencies arising when phrasal terms and
their component single-word terms are all
included in a document representation, i.e.,
launch+satellite and satellite are not indepen-
dent, and it is unclear whether they should be
counted as two terms.

In our post-TREC-2 experiments we considered
(1) and (2) only. We changed the weighting scheme so
that the phrases (but not the names, which we did not
distinguish in TREC-2) were more heavily weighted by
their idf scores while the in-document frequency scores
were replaced by logarithms multiplied by sufficiently
large constants. In addition, the top N highest-idf
matching terms (simple or compound) were counted

7 This is not always true, for example when all occurrences of a
term are concentrated in a single section or a paragraph rather than
spread around the article.

more toward the document score than the remaining
terms.

Schematically, these new weights for phrasal and
highly specific terms are obtained using the following
formula, while weights for most of the single-word
terms remain unchanged:

weight (Ti)=(C1 *log (0c)+C 2 * ot(N,i))*idf

In the above, ~t(N,i) is 1 for i <N and is 0 otherwise.
The selection of a weighting formula was partly con-
strained by the fact that document-length-normalized tf
weights were precomputed at the indexing stage and
could not be altered without re-indexing of the entire
database. The intuitive interpretation of the oL(N,i) fac-
tor is as follows. We restrict the maximum number of
terms on which a query is permitted to match a docu-
ment to N highest weight terms, where N can be the
same for all queries or may vary from one query to
another. Note that this is not the same as simply taking
the N top terms from each query. Rather, for each
document for which there are M matching terms with
the query, only min(M,N) of them, namely those which
have highest weights, will be considered when comput-
ing the document score. Moreover, only the global
importance weights for terms are considered (such as
idf), while local in-document frequency (eg., tO is
suppressed by either taking a log or replacing it with a
constant.

Changing the weighting scheme for compound
terms, along with other minor improvements (such as
expanding the stopword list for topics, or correcting a
few parsing bugs) has lead to an overall increase of
precision of more than 20% over our official TREC-2
ad-hoc results. Table 1 includes statistics of these new
runs for 50 queries (numbered 101-150) against the
WSJ database. The gap between the precision levels in
columns txt2 and con reflects the difference in the qual-
ity of the queries obtained from the narrative parts of
the topics (txt2 = title + desc + narr), and those
obtained primarily from expert's formulation (title +
desc + con). The column txt2+nlp represents the
improvement of txt2 queries thanks to NLP, with as
much as 70% of the gap closed. Similar improvements
have been obtained for other sets of queries.

6 Conclusions

We presented in some detail our natural language
information retrieval system consisting of an advanced
NLP module and a 'pure' statistical core engine. While
many problems remain to be resolved, including the
question of adequacy of term-based representation of
document content, we attempted to demonstrate that
the architecture described here is nonetheless viable. In
particular, we demonstrated that natural language

172

Run txtl txt2 txt2+nlp con con+nip

Tot number of docs over all queries

Re/ 3929 3929 3929 3929 3929
RelRet 2736 3025 3108 3332 3401

%chg +9.0 +14.7 +21.8 +24.3

Recall (interp) Precision Averages

0.00 0.6874 0.7318 0.7201 0.7469 0.8063

0.10 0.4677 0.5293 0.5239 0.5726 0.6198

0.20 0.3785 0.4532 0.4751 0.4970 0.5566

0.30 0.3060 0.3707 0.4122 0.4193 0.4786

0.40 0.2675 0.3276 0.3541 0.3747 0.4257

0.50 0.2211 0.2815 0.3126 0.3271 0.3828

0.60 0.1765 0.2406 0.2752 0.2783 0.3380

0.70 0.1313 0.1783 0.2142 0.2267 0.2817

0.80 0.0828 0.1337 0.1605 0.1670 0.2164

0.90 0.0451 0.0818 0.1014 0.0959 0.1471

1.00 0.0094 0.0159 0.0194 0.0168 0.0474

Average precision over all rel docs

Avg 0.2309] 0.2835 0.3070 0.3210 0.3759

%chg [+22.8 +33.0 +39.0 +62.8

Precision at N documents

5 0.5000 0.5240 0.5200 0.5600 0.6040

10 0.4080 0.4600 0.4900 0.5020 0.5580

100 0.2380 0.2790 0.2914 0.3084 0.3346

R-Precision (after Rel)

Exact 0.2671 0.3053 0.3332 0.3455 0.3950

%chg +14.3 +24.7 +29.3 +47.9

Table 1. Run statistics for 50 ad-hoc queries against WSJ database
with 1000 does retrieved per query: (1) txtl - single terms of <narr>
and <desc> fields m this is the base ran; (2) txt2 - <hart> and <desc>
fields with low weight terms removed; (3) txt2+nlp -<narr> and
<desc> fields including syntactic phrase terms using the new weight-
ing scheme; (4) con - <desc> and <con> fields with low weight terms
removed but with no NLP; and (5) con+nip - <dese> and <con>
fields including phrases with the new weighting scheme.

processing can now be done on a fairly large scale and
that its speed and robustness can match those of tradi-
tional statistical programs such as key-word indexing
or statistical phrase extraction. We suggest, with some
caution until more experiments are run, that natural
language processing can be very effective in creating
appropriate search queries out of a user's initial

specifications, which can be frequently imprecise or
vague.

Acknowledgements

The author would like to thank Donna Harman of
NIST for making her PRISE system available for this
research. We would also like to thank Ralph
Weischedel and Constantine Papageorgiou of BBN for
providing and assisting in the use of the part of speech
tagger. This paper is based upon work supported by
the Advanced Research Projects Agency under Con-
tract N00014-90-J-1851 from the Office of Naval
Research, under Contract N00600-88-D-3717 from
PRC Inc., under ARPA's Tipster Phase-2 Contract 94-
FI57900-000, and the National Science Foundation
under Grant IRI-93-02615.

References

Broglio, John and W. Bruce Croft. 1993. "Query Pro-
cessing for Retrieval from Large Text Bases."
Human Language Technology, Proceedings of the
workshop, Princeton, NJ. Morgan-Kaufmann, pp.
353-357.

Buckley, Chris. 1993. "The Importance of Proper
Weighting Methods." Human Language Technol-
ogy, Proceedings of the workshop, Princeton, NJ.
Morgan-Kaufmann, pp. 349-352.

Harman, Donna (ed.). 1993. Firs t Text REtr ieva l
Conference. NIST special publication 500-207.

Sager, Naomi. 1981. Natura l Language Information
Process ing. Addison-Wesley.

Sparck Jones, K. and J. I. Tait. 1984. "Automatic
search term variant generation." Journal o f D o c u -
mentat ion, 40(1), pp. 50-66.

Strzalkowski, Tomek. 1992. " T I P : A Fast and Robust
Parser for Natural Language." Proceedings of the
14th International Conference on Computational
Linguistics (COLING), Nantes, France, July 1992.
pp. 198-204.

Strzalkowski, Tomek. 1993a. "Natural Language Pro-
cessing in Large-Scale Text Retrieval Tasks."
Proceedings of the First Text REtrieval Conference
(TREC-1), NIST Special Publication 500-207, pp.
173-187.

Strzalkowski, Tomek. 1993b. "Robust Text Processing
in Automated Information Retrieval." Proc. of
ACL-sponsored workshop on Very Large Corpora.
Ohio State Univ. Columbus, June 22.

Strzalkowski, Tomek, and Peter Scheyen. 1993.
"Evaluation of TTP Parser: a preliminary report."
Proceedings of International Workshop on Parsing
Technologies (IWPT-93), Tilburg, Netherlands and
Durbuy, Belgium, pp. 293-308.

173

